JPH0580724B2 - - Google Patents
Info
- Publication number
- JPH0580724B2 JPH0580724B2 JP8428785A JP8428785A JPH0580724B2 JP H0580724 B2 JPH0580724 B2 JP H0580724B2 JP 8428785 A JP8428785 A JP 8428785A JP 8428785 A JP8428785 A JP 8428785A JP H0580724 B2 JPH0580724 B2 JP H0580724B2
- Authority
- JP
- Japan
- Prior art keywords
- thin film
- magnetic
- metal thin
- ferromagnetic metal
- melting point
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 230000005291 magnetic effect Effects 0.000 claims description 101
- 239000010409 thin film Substances 0.000 claims description 77
- 230000005294 ferromagnetic effect Effects 0.000 claims description 74
- 239000002184 metal Substances 0.000 claims description 64
- 229910052751 metal Inorganic materials 0.000 claims description 64
- 239000011521 glass Substances 0.000 claims description 36
- 238000002844 melting Methods 0.000 claims description 36
- 230000008018 melting Effects 0.000 claims description 33
- 238000000034 method Methods 0.000 claims description 25
- 239000000758 substrate Substances 0.000 claims description 23
- 230000001105 regulatory effect Effects 0.000 claims description 16
- 238000004519 manufacturing process Methods 0.000 claims description 14
- 239000011162 core material Substances 0.000 description 37
- 230000008569 process Effects 0.000 description 13
- 239000000463 material Substances 0.000 description 12
- 229910000859 α-Fe Inorganic materials 0.000 description 9
- 230000000694 effects Effects 0.000 description 7
- 229910000702 sendust Inorganic materials 0.000 description 7
- 229910000808 amorphous metal alloy Inorganic materials 0.000 description 5
- 239000000696 magnetic material Substances 0.000 description 5
- 229910045601 alloy Inorganic materials 0.000 description 4
- 239000000956 alloy Substances 0.000 description 4
- 239000002131 composite material Substances 0.000 description 4
- 238000009792 diffusion process Methods 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 238000004544 sputter deposition Methods 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000000151 deposition Methods 0.000 description 3
- 239000003302 ferromagnetic material Substances 0.000 description 3
- 239000010408 film Substances 0.000 description 3
- 238000004804 winding Methods 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 2
- 238000005429 filling process Methods 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 229910000889 permalloy Inorganic materials 0.000 description 2
- 230000035699 permeability Effects 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 238000007517 polishing process Methods 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 229910021364 Al-Si alloy Inorganic materials 0.000 description 1
- 229910017082 Fe-Si Inorganic materials 0.000 description 1
- 229910017133 Fe—Si Inorganic materials 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 229910052790 beryllium Inorganic materials 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 238000007733 ion plating Methods 0.000 description 1
- 238000010884 ion-beam technique Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 239000006247 magnetic powder Substances 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 235000019353 potassium silicate Nutrition 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000000427 thin-film deposition Methods 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Landscapes
- Magnetic Heads (AREA)
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は磁気ヘツドの製造方法に関するもので
あり、特に磁気ギヤツプ近傍部が強磁性金属薄膜
で形成されてなる、いわゆる複合型の磁気ヘツド
の製造方法に関するものである。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing a magnetic head, and particularly to a so-called composite type magnetic head in which the vicinity of the magnetic gap is formed of a ferromagnetic metal thin film. This relates to a manufacturing method.
本発明は、磁気コア半体の突き合わせ面に強磁
性金属薄膜を設けた複合型の磁気ヘツドを製造す
るに際し、あらかじめトラツク幅規制溝に高融点
ガラスを充填し、トラツク幅に対応してこの高融
点ガラスを除去した後、強磁性金属薄膜を被着形
成するとともに、この強磁性金属薄膜の不要部分
を平面研削により除去して磁気コアブロツクを作
製し、これら磁気コアブロツクの接合を低融点ガ
ラスを用いて低い温度で行うことにより、強磁性
金属薄膜と強磁性酸化物の疑似ギヤツプを小さな
ものとし、かつ磁気テープ対接面に臨む非磁性材
の信頼性を確保しようとするものである。
In the present invention, when manufacturing a composite magnetic head in which a ferromagnetic metal thin film is provided on the abutting surfaces of the magnetic core halves, the track width regulating grooves are filled with high melting point glass in advance, and the high melting point glass is adjusted in accordance with the track width. After removing the melting point glass, a ferromagnetic metal thin film is deposited and an unnecessary portion of this ferromagnetic metal thin film is removed by surface grinding to create a magnetic core block, and these magnetic core blocks are joined using low melting point glass. By carrying out this process at a low temperature, the pseudo gap between the ferromagnetic metal thin film and the ferromagnetic oxide can be made small, and the reliability of the non-magnetic material facing the magnetic tape can be ensured.
例えばVTR(ビデオテープレコーダ)等の磁気
記録再生装置においては、記録信号の高密度化が
進められており、この高密度記録に対応して磁気
記録媒体として磁性粉にFe,Co,Ni等の強磁性
金属の粉末を用いた、いわゆるメタルテープ、あ
るいはこの強磁性金属材料を蒸着等の手法でベー
スフイルム上に被着した、いわゆる蒸着テープ等
が使用されるようになつている。そして、この種
の磁気記録媒体は高い抗磁力Hcを有するために、
記録再生に用いる磁気ヘツドのヘツド材料にも高
い飽和磁束密度Bs及び透磁率μを有することが
要求されている。しかしながら、例えば、従来磁
気ヘツド材料として多用されているフエライト材
では飽和磁束密度Bsが低く、またパーマロイで
は耐摩耗性に問題がある。
For example, in magnetic recording and reproducing devices such as VTRs (video tape recorders), the recording signal density is increasing, and in response to this high density recording, magnetic powders such as Fe, Co, and Ni are used as magnetic recording media. So-called metal tapes using ferromagnetic metal powder, or so-called vapor-deposited tapes in which the ferromagnetic metal material is deposited on a base film by a method such as vapor deposition, have come into use. Since this type of magnetic recording medium has a high coercive force Hc,
Head materials for magnetic heads used for recording and reproduction are also required to have high saturation magnetic flux density Bs and magnetic permeability μ. However, for example, ferrite material, which has been conventionally widely used as a magnetic head material, has a low saturation magnetic flux density Bs, and permalloy has problems in wear resistance.
一方、上述の高密度記録化に伴つて、磁気記録
媒体に記録される記録トラツクのトラツク幅の狭
小化も進められており、これに対応して磁気ヘツ
ドのトラツク幅も極めて狭いものが要求されてい
る。 On the other hand, along with the above-mentioned high-density recording, the track width of the recording track recorded on the magnetic recording medium is also becoming narrower, and in response to this, the track width of the magnetic head is also required to be extremely narrow. ing.
そこで従来、例えばば第15図に示すように、
セラミクス等の非磁性ガード材50,50でセン
ダスト等よりなる強磁性金属薄膜51を挟み付
け、この薄膜51でトラツク及び磁気ギヤツプg
を形成した磁気ヘツドが提案されている。 Therefore, conventionally, for example, as shown in FIG.
A ferromagnetic metal thin film 51 made of sendust or the like is sandwiched between non-magnetic guard materials 50, 50 made of ceramics, etc., and this thin film 51 is used to form a track and a magnetic gap g.
A magnetic head has been proposed.
この種の磁気ヘツドは狭トラツク化が可能であ
るが、磁路が強磁性金属薄膜51のみで形成され
ているため、磁気抵抗が大きく磁気効率上好まし
くない。また、上記強磁性金属薄膜51はトラツ
ク幅に相当する膜厚を非磁性ガード材50上に形
成しなくてはならず、しかもこの薄膜51はスパ
ツタリング等の真空薄膜形成技術で形成されるの
で膜の成長速度が極めて遅く、さらにこの薄膜5
1は上記非磁性ガード材50の一面(ヘツドチツ
プの面積に相当)に全面に亘つて形成する必要が
あり、薄膜作製に時間を要するとともに、1個の
磁気ヘツドに対する強磁性金属材料の量が多くな
る等の問題がある。さらに、上記非磁性ガード材
50,50には、磁気ヘツドの信頼性上、熱膨脹
係数が上記強磁性金属薄膜51のそれにできるだ
け近く、耐摩耗性が少なくともフエライトと同等
以上であり、マイクロボア(微細孔)ができるだ
け少ないこと等の要求があり、これら要求を満足
する非磁性ガード材50,50を選択することが
難しいという問題もある。 Although this type of magnetic head can have a narrow track, since the magnetic path is formed only of the ferromagnetic metal thin film 51, the magnetic resistance is large, which is not desirable in terms of magnetic efficiency. Further, the ferromagnetic metal thin film 51 must be formed on the non-magnetic guard material 50 to a thickness corresponding to the track width, and since this thin film 51 is formed by a vacuum thin film forming technique such as sputtering, the film is thin. The growth rate of this thin film 5 is extremely slow.
1 needs to be formed over the entire surface of the non-magnetic guard material 50 (corresponding to the area of the head chip), which requires time to prepare a thin film and requires a large amount of ferromagnetic metal material for one magnetic head. There are problems such as: Furthermore, for the reliability of the magnetic head, the non-magnetic guard materials 50, 50 have a coefficient of thermal expansion as close as possible to that of the ferromagnetic metal thin film 51, a wear resistance at least equal to or higher than that of ferrite, and micro-pores (fine holes). There is also a problem that it is difficult to select a non-magnetic guard material 50, 50 that satisfies these requirements.
そこでさらに従来、第16図に示すように、一
対の磁気コア半体60,60をMn−Znフエライ
ト等の酸化物磁性体により形成するとともに、磁
気ギヤツプgより発生する磁界の強度を高めるた
め、これら磁気コア半体60,60の磁気ギヤツ
プ形成面にスパツタリング等の真空薄膜形成技術
を用いてセンダスト等の強磁性金属薄膜62,6
2を形成し、これら一対の磁気コア半体60,6
0を高融点ガラス63,63で融着接合すること
により構成される磁気ヘツドが提案されている。 Therefore, conventionally, as shown in FIG. 16, a pair of magnetic core halves 60, 60 are formed of an oxide magnetic material such as Mn-Zn ferrite, and in order to increase the strength of the magnetic field generated from the magnetic gap g. A ferromagnetic metal thin film 62, 6 such as Sendust is formed on the magnetic gap forming surfaces of these magnetic core halves 60, 60 using a vacuum thin film forming technique such as sputtering.
2, and these pair of magnetic core halves 60, 6
A magnetic head constructed by fusion-bonding 0 with high melting point glasses 63, 63 has been proposed.
この種の磁気ヘツドにあつては、磁気ギヤツプ
gが高透磁率μを有する強磁性金属薄膜62によ
り構成されていることから、メタルテープ等の高
い抗磁力Hcを有する磁気テープに対応し、充分
な記録再生特性を発揮するとともに、磁気テープ
摺動面の耐摩耗性に優れたものとなつている。さ
らに上記磁気ヘツドにおいては、強磁性金属薄膜
62がギヤツプ形成面にのみ、記録再生に充分な
膜厚で膜付けするだけで良く、薄膜62の形成時
間を短縮できる等の利点を有する。 In this type of magnetic head, since the magnetic gap g is composed of a ferromagnetic metal thin film 62 having a high magnetic permeability μ, it is compatible with magnetic tapes such as metal tapes having a high coercive force Hc, and has a sufficient In addition to exhibiting excellent recording and reproducing characteristics, the magnetic tape sliding surface has excellent wear resistance. Furthermore, the magnetic head described above has the advantage that the ferromagnetic metal thin film 62 only needs to be deposited on the gap forming surface to a thickness sufficient for recording and reproducing, and the time for forming the thin film 62 can be shortened.
しかしながら、上述の磁気ヘツドにおいては、
コア材であるフエライト上に異種材料である強磁
性金属薄膜62を被着形成しているので、製造時
の熱処理による疑似ギヤツプの発生や強磁性金属
薄膜の磁気特性の劣化等が問題となつている。特
に、この磁気ヘツドは、強磁性金属薄膜62を形
成後に、一対の磁気コア半体60,60を高融点
ガラス63を用いて融着接合してなるので、上記
各磁性材(フエライト及びセンダスト)が高温に
さらされるため、この結合境界部61,61にお
いて、フエライトとセンダストの拡散反応を生じ
易くなり、この結合境界部61,61での疑似ギ
ヤツプとしての作用が顕著なものとなつて、ノイ
ズ等を生じ易く、アナログ記録再生への対応が困
難である。あるいは、磁気コア半体60,60の
接合に、より融点の低いガラス材料、いわゆる低
融点ガラス等を使用することも考えられている
が、この場合にはテープ摺接面に大きく露出する
低融点ガラスの信頼性が低下する。 However, in the above magnetic head,
Since the ferromagnetic metal thin film 62, which is a different material, is adhered and formed on the ferrite core material, there are problems such as generation of pseudo gaps due to heat treatment during manufacturing and deterioration of the magnetic properties of the ferromagnetic metal thin film. There is. In particular, since this magnetic head is formed by forming a ferromagnetic metal thin film 62 and then fusion-bonding a pair of magnetic core halves 60, 60 using high melting point glass 63, each of the above-mentioned magnetic materials (ferrite and sendust) is used. is exposed to high temperatures, a diffusion reaction between ferrite and sendust tends to occur at the joint boundary parts 61, 61, and the effect of a pseudo gap at the joint boundary parts 61, 61 becomes remarkable, causing noise. etc., making it difficult to support analog recording and playback. Alternatively, it has been considered to use a glass material with a lower melting point, so-called low melting point glass, to join the magnetic core halves 60, 60, but in this case, the low melting point that is largely exposed on the tape sliding contact surface Glass reliability decreases.
このように、非磁性ガード材で強磁性金属薄膜
を挟み付けた磁気ヘツドでは、この薄膜の形成に
時間を要し生産性に劣り、かつ信頼性に問題があ
り、またこの問題点を解消するために、強磁性酸
化物よりなるコア半体の磁気ギヤツプ形成面に強
磁性金属薄膜を形成した磁気ヘツドでは、製造時
の熱処理により疑似ギヤツプの作用が顕著なもの
となり、充分な記録再生特性が得難いという問題
がある。
In this way, in a magnetic head in which a ferromagnetic metal thin film is sandwiched between non-magnetic guard materials, it takes time to form the thin film, resulting in poor productivity and reliability problems. Therefore, in a magnetic head in which a ferromagnetic metal thin film is formed on the magnetic gap forming surface of the core half made of ferromagnetic oxide, the pseudo gap effect becomes noticeable due to heat treatment during manufacturing, making it difficult to obtain sufficient recording and reproducing characteristics. The problem is that it is difficult to obtain.
そこで、本発明はこのような問題点を解決する
ために提案されたものであつて、疑似ギヤツプの
発生がなく、信頼性に優れた磁気ヘツドを効率良
く作製する磁気ヘツドの製造方法を提供すること
を目的とする。 Therefore, the present invention has been proposed to solve these problems, and provides a method for manufacturing a magnetic head that efficiently manufactures a highly reliable magnetic head that does not generate pseudo gaps. The purpose is to
このような目的を達成するために、本発明の磁
気ヘツドの製造方法は、強磁性酸化物よりなる基
板の上面にトラツク幅規制溝を設け、このトラツ
ク幅規制溝を充たし上記基板の上面を覆う如く高
融点ガラスを流し込んだ後、トラツク幅に対応し
て上記基板上面の高融点ガラスを除去し、上記基
板上面の全面に亘つて強磁性金属薄膜を被着形成
し、上記強磁性金属薄膜の不要部分を平面研削に
より除去して一対の磁気コアブロツクを作製し、
これらの磁気コアブロツクの強磁性金属薄膜同志
を突き合わせた後、低融点ガラスで接合し、複数
のヘツドチツプに切断することを特徴とするもの
である。
In order to achieve such an object, the method for manufacturing a magnetic head of the present invention provides track width regulating grooves on the upper surface of a substrate made of ferromagnetic oxide, and fills the track width regulating grooves to cover the upper surface of the substrate. After pouring the high melting point glass as described above, the high melting point glass on the top surface of the substrate is removed in accordance with the track width, and a ferromagnetic metal thin film is deposited over the entire top surface of the substrate. Remove unnecessary parts by surface grinding to create a pair of magnetic core blocks.
The ferromagnetic metal thin films of these magnetic core blocks are butted against each other, then bonded with low melting point glass, and then cut into a plurality of head chips.
このように、本発明の磁気ヘツドの製造方法
は、先ずトラツク幅規制溝を形成した基板の上面
に高融点ガラスを充たし、次いで磁気ギヤツプ形
成面に強磁性金属薄膜を被着し、さらに所定の工
程を経て一対の磁気コアブロツクを作製した後、
低融点ガラスを用いてこれら磁気コアブロツクの
強磁性金属薄膜同志を突き合わせて接合している
ので、上記強磁性金属薄膜形成後は磁気コアブロ
ツクを高温にさらすことなく作製でき、したがつ
て各強磁性体間の結合境界部での拡散反応が抑え
られ、疑似ギヤツプの影響が抑えられるととも
に、テープ摺接面に露出する非磁性材の信頼性も
確保される。また、上記強磁性金属薄膜は記録再
生に充分な膜厚とすれば良く、例えばトラツク幅
に相当する膜厚に比べると少ない膜厚で良いこと
から、薄膜形成時間を短縮できる。
As described above, in the method of manufacturing a magnetic head of the present invention, first, the upper surface of the substrate in which the track width regulating groove is formed is filled with high melting point glass, then a ferromagnetic metal thin film is deposited on the surface where the magnetic gap is formed, and then a predetermined After creating a pair of magnetic core blocks through the process,
Since the ferromagnetic metal thin films of these magnetic core blocks are butt-bonded using low-melting glass, the magnetic core blocks can be manufactured without exposing them to high temperatures after the ferromagnetic metal thin films are formed, and therefore each ferromagnetic material The diffusion reaction at the bonding boundary between the tapes is suppressed, the influence of pseudo gaps is suppressed, and the reliability of the non-magnetic material exposed on the tape sliding surface is also ensured. Further, the ferromagnetic metal thin film need only have a thickness sufficient for recording and reproducing, and may be smaller than the thickness corresponding to the track width, for example, so that the time required for forming the thin film can be shortened.
以下、本発明による磁気ヘツドの製造方法の一
実施例を図面を参照しながら詳細に説明する。
Hereinafter, one embodiment of the method for manufacturing a magnetic head according to the present invention will be described in detail with reference to the drawings.
先ず、第1図に示すように、例えばMn−Zn系
フエライト等の強磁性酸化物よりなる基板1の上
面1aに、トラツク幅を規制するためのトラツク
幅規制溝2を設け、所定のトラツク幅で突き合わ
される強磁性金属薄膜形成面1bを基板1の上面
1aの全幅に亘つて複数平行に形成する。このト
ラツク幅規制溝2は回転砥石等によりそれぞれ断
面が略V字状となるように複数形成され、また上
面1aの全幅に亘つて所定間隔、所定幅、所定深
さとなるように形成されている。 First, as shown in FIG. 1, a track width regulating groove 2 for regulating the track width is provided on the upper surface 1a of a substrate 1 made of ferromagnetic oxide such as Mn-Zn ferrite, and a predetermined track width is formed. A plurality of ferromagnetic metal thin film forming surfaces 1b are formed in parallel over the entire width of the upper surface 1a of the substrate 1, and are butted against each other. A plurality of these track width regulating grooves 2 are formed using a rotating grindstone or the like so that each section has a substantially V-shape, and are formed at predetermined intervals, a predetermined width, and a predetermined depth over the entire width of the upper surface 1a. .
次に、第2図に示すように、上記トラツク幅規
制溝2内に非磁性材である高融点ガラス4を600
〜800℃にて流し込み、トラツク幅規制溝2を充
填するとともに上記強磁性金属薄膜形成面1bを
覆うように形成する。なお、上記高融点ガラス4
を形成後、この上面4aを平面研削し、平滑度良
く面出ししておくことが望ましい。 Next, as shown in FIG.
It is poured at ~800°C to fill the track width regulating grooves 2 and to cover the ferromagnetic metal thin film forming surface 1b. In addition, the above-mentioned high melting point glass 4
After forming the upper surface 4a, it is desirable to surface-ground the upper surface 4a to provide a smooth surface.
次いで、第3図に示すように、上記強磁性金属
薄膜形成面1b上に形成された高融点ガラス4を
フオトリングフライ技術、あるいは機械的手段等
により除去する。ここで、基板1上に残存した高
融点ガラス4の切欠き面4aは、強磁性金属薄膜
形成面1bと所定角度で、例えばこの切り欠き面
4aと強磁性金属薄膜形成面1bとがなす角度が
90゜〜110゜となるように傾斜するように斜面とし
て形成することが好ましい。 Next, as shown in FIG. 3, the high melting point glass 4 formed on the ferromagnetic metal thin film forming surface 1b is removed by photoring fly technique or mechanical means. Here, the notch surface 4a of the high melting point glass 4 remaining on the substrate 1 is at a predetermined angle with the ferromagnetic metal thin film forming surface 1b, for example, the angle formed by this notch surface 4a and the ferromagnetic metal thin film forming surface 1b. but
It is preferable to form a slope so as to be inclined at an angle of 90° to 110°.
さらに、第4図に示すように、上記高融点ガラ
ス4の上面及び強磁性金属薄膜形成面1b上に
Co−Zr−Nb系の強磁性金属薄膜5をスパツタリ
ングにより被着形成する。本実施例においては、
上記薄膜5の膜厚は約10μmとした。ここで、上
記強磁性金属薄膜5の材質としては、強磁性非晶
質合金、いわゆるアモルフアス合金(例えばFe,
Ni,Coの1つ以上の元素とP,C,B,Siの1
つ以上の元素とからなる合金、またはこれらを主
成分としAl,Ge,Be,Sn,In,Mo,W,Ti,
Mn,Cr,Zr,Hf,Nb等を含んだ合金)、Fe−
Al−Si系合金であるセンダスト合金、Fe−Al系
合金、Fe−Si系合金、パーマロイ等が使用可能
であり、その膜付け方法としても、フラツシユ蒸
着、ガス中蒸着、イオンプレーテイング、スパツ
タリング、クラスター・イオンビーム法等に代表
される真空薄膜形成技術が採用される。 Furthermore, as shown in FIG.
A Co--Zr--Nb based ferromagnetic metal thin film 5 is deposited by sputtering. In this example,
The thickness of the thin film 5 was approximately 10 μm. Here, the material of the ferromagnetic metal thin film 5 is a ferromagnetic amorphous alloy, a so-called amorphous alloy (for example, Fe,
One or more elements of Ni, Co and one of P, C, B, Si
Al, Ge, Be, Sn, In, Mo, W, Ti,
alloy containing Mn, Cr, Zr, Hf, Nb, etc.), Fe−
Sendust alloy, which is an Al-Si alloy, Fe-Al alloy, Fe-Si alloy, Permalloy, etc. can be used, and the film deposition methods include flash deposition, vapor deposition in gas, ion plating, sputtering, etc. Vacuum thin film formation techniques such as the cluster ion beam method will be used.
さらに、第5図に示すように、上記強磁性金属
薄膜5の上面5aを回転砥石等で平面研削しコア
ブロツク6を作製する。この研削は高融点ガラス
5の表面が現れるまで行い、上記強磁性金属薄膜
5が上記強磁性金属薄膜形成面1bにのみ残存す
るようにする。ここで、得られる基板1の上面6
aは磁気ギヤツプ形成面に対応する。 Further, as shown in FIG. 5, the upper surface 5a of the ferromagnetic metal thin film 5 is ground by surface grinding using a rotary grindstone or the like to produce a core block 6. This grinding is performed until the surface of the high melting point glass 5 is exposed, so that the ferromagnetic metal thin film 5 remains only on the ferromagnetic metal thin film forming surface 1b. Here, the upper surface 6 of the obtained substrate 1
a corresponds to the magnetic gap forming surface.
上述のような工程により作製される一対のコア
ブロツク6,6のうち一方のコアブロツク6に対
して、第6図に示すように、上記高融点ガラス4
及び強磁性金属薄膜5と直交する方向に溝加工を
施し、巻線溝7を設け、コアブロツク8を形成す
る。 As shown in FIG. 6, the high melting point glass 4 is applied to one core block 6 of the pair of core blocks 6, 6 produced by the above-described process.
Then, a groove is formed in a direction perpendicular to the ferromagnetic metal thin film 5 to provide a winding groove 7 and a core block 8.
次に、上記一対のコアブロツク6,8の磁気ギ
ヤツプ形成面に対応する上面6a,8aに対し鏡
面加工を施す。本実施例では、これらコアブロツ
ク6,8の強磁性金属薄膜5の膜厚は5μmとし
た。 Next, the upper surfaces 6a and 8a of the pair of core blocks 6 and 8 corresponding to the magnetic gap forming surfaces are mirror-finished. In this embodiment, the thickness of the ferromagnetic metal thin film 5 of these core blocks 6 and 8 was 5 μm.
次いで、上記強磁性金属薄膜5に対して熱処理
を施し、この薄膜5の磁気特性を調整する。この
熱処理は、コアブロツク6,8の上面6a,8a
に対して垂直な静磁場中、あるいはこの上面6
a,8aに対して平行な回転磁場中で380℃にて
行つた。 Next, the ferromagnetic metal thin film 5 is subjected to heat treatment to adjust the magnetic properties of the thin film 5. This heat treatment is performed on the upper surfaces 6a and 8a of the core blocks 6 and 8.
in a static magnetic field perpendicular to or on this upper surface 6
The experiments were carried out at 380°C in a rotating magnetic field parallel to a and 8a.
次に、これら一対のコアブロツク6,8の上面
6a,8a、すなわち磁気ギヤツプ形成面の少な
くとも一方にSiO2等の非磁性材よりなるギヤツ
プスペーサを所定のギヤツプ長となるような厚さ
に形成する。 Next, a gap spacer made of a non-magnetic material such as SiO 2 is formed on at least one of the upper surfaces 6a and 8a of the pair of core blocks 6 and 8, that is, the magnetic gap forming surface, to a thickness that provides a predetermined gap length.
続いて、第7図に示すように、これら一対のコ
アブロツク6,8の基板を強磁性金属薄膜形成面
3上に被着される各強磁性金属薄膜5,5同志が
互いに精度良く付き合わさるように配置し、これ
らコアブロツク6,8を低融点ガラスを使用して
400℃以下で接合する。なお、400℃以上で接合す
ると、例えば強磁性金属薄膜5として非晶質合金
を用いたときには、この非晶質合金が結晶化して
しまう等の問題がある。本実施例では水ガラスを
用いて150℃で接合した。 Subsequently, as shown in FIG. 7, the substrates of the pair of core blocks 6 and 8 are aligned so that the ferromagnetic metal thin films 5 and 5 deposited on the ferromagnetic metal thin film forming surface 3 are aligned with each other with high precision. These core blocks 6 and 8 are made of low melting point glass.
Bonding is done at 400℃ or less. Note that when bonding is performed at 400° C. or higher, for example, when an amorphous alloy is used as the ferromagnetic metal thin film 5, there is a problem that the amorphous alloy crystallizes. In this example, water glass was used and bonding was carried out at 150°C.
最後に、第7図中X−X線及びX′−X′線の位
置でスライシング加工し、複数個のヘツドチツプ
を切り出した後、磁気テープ摺接面を円筒研磨す
ることにより、第8図に示す磁気ヘツド10を完
成する。 Finally, slicing was performed at the positions of the X-X line and the X'-X' line in Figure 7, and after cutting out a plurality of head chips, the magnetic tape sliding contact surface was cylindrically polished, as shown in Figure 8. The magnetic head 10 shown is completed.
このようにして作製された磁気ヘツド10は、
フエライト等の強磁性酸化物よりなる基板1と強
磁性金属薄膜5の境界部の疑似ギヤツプg′,g′が
主ギヤツプgに対して平行に形成されるが、この
疑似ギヤツプg′,g′の再生出力は、主ギヤツプの
それに比べ−50dB以下に抑えることができた。
すなわち、上記強磁性金属薄膜5を被着形成後
は、この薄膜5を高温にさらす工程がないため、
疑似ギヤツプg′,g′近傍部での各強磁性体間の拡
散反応が抑えられるので、疑似ギヤツプg′,g′の
影響を無視できる程度に低減することができ、ア
ナログ記録再生に充分に対応できるものとなる。 The magnetic head 10 manufactured in this way is
Pseudo gaps g', g' at the boundary between the substrate 1 made of ferrite or other ferromagnetic oxide and the ferromagnetic metal thin film 5 are formed parallel to the main gap g; The playback output of the main gap was suppressed to less than -50dB compared to that of the main gap.
That is, after the ferromagnetic metal thin film 5 is deposited, there is no step of exposing the thin film 5 to high temperature.
Since the diffusion reaction between the ferromagnetic materials in the vicinity of the pseudo gaps g' and g' is suppressed, the influence of the pseudo gaps g' and g' can be reduced to a negligible level, which is sufficient for analog recording and reproduction. It will be possible to respond.
本発明者等の実験によれば、上述の方法に従い
Mn−Znフエライトにアモルフアス薄膜を被着形
成し、このアモルフアス薄膜に対して400℃で熱
処理を施した後、200℃でギヤツプ接合を行つた
磁気ヘツドは、極めて良好な再生特性を示した。 According to the experiments of the present inventors, according to the above method,
A magnetic head in which an amorphous thin film was formed on Mn--Zn ferrite, heat treated at 400°C, and then gap bonded at 200°C showed extremely good reproduction characteristics.
すなわち、上記磁気ヘツドの再生出力の周波数
特性を調べたところ、第9図中曲線aで示すよう
に、上記磁気ヘツドでは疑似ギヤツプによる再生
出力の低下がほとんど見られなかつた。これに対
して、強磁性金属薄膜としてセンダスト合金薄膜
を用い、600〜650℃の温度条件でギヤツプ融着を
行つた磁気ヘツドでは、第9図中曲線bで示すよ
うに、疑似ギヤツプの影響による再生出力の変動
が見られた。 That is, when the frequency characteristics of the reproduced output of the magnetic head were examined, as shown by curve a in FIG. 9, almost no reduction in the reproduced output due to the pseudo gap was observed in the magnetic head. On the other hand, in a magnetic head in which a sendust alloy thin film is used as the ferromagnetic metal thin film and gap welding is performed at a temperature of 600 to 650°C, as shown by curve b in Fig. 9, the effect of the pseudo gap is Fluctuations in playback output were observed.
また、磁気テープ摺接部は高融点ガラス4と強
磁性金属薄膜5で構成されるので、耐摩耗性等が
向上し、信頼性に優れたものとなる。 Further, since the magnetic tape sliding contact portion is composed of high melting point glass 4 and ferromagnetic metal thin film 5, wear resistance etc. are improved and reliability is excellent.
ところで、本発明は上述の実施例に限定される
ものではなく、例えばフロントギヤツプ側のみに
高融点ガラスと強磁性金属薄膜を形成した磁気ヘ
ツドであつても良い。すなわち、第10図に示す
ように、強磁性酸化物よりなる基板21の上面
に、フロントギヤツプ形成面に対応する上面21
aとバツクギヤツプ形成面に対応する上面21b
を段差を持たせて形成し、上記上面21aに対し
てのみトラツク幅を規制するための略V字状のト
ラツク幅規制溝22を複数形成する。この基板2
1は、先の実施例中第1図に示す基板1に対応す
る。次に、上記基板21の上面21aに対して、
高融点ガラス25の充填工程、高融点ガラス25
の一部除去工程及び強磁性金属薄膜26の被着工
程を行い、さらに、得られた基板の上面24aを
平面研削して、第11図に示すコアブロツク24
を一対作製する。なお、上述の各工程は、先の実
施例と同様の手法で行えば良い。続いて、先の実
施例と同様の手法にて、コアブロツク24と巻線
溝28を設けたコアブロツク29を低融点ガラス
にて融着接合し、複数個のヘツドチツプを切り出
し、テープ摺接面を円筒研磨して第12図に示す
磁気ヘツド27を作製しても良い。この磁気ヘツ
ド27はフロントギヤツプ側のみに高融点ガラス
25及び強磁性金属薄膜26が形成されてなるも
のであるが、先の実施例と同様の効果を有するこ
とはいうまでもない。 By the way, the present invention is not limited to the above-described embodiment, and may be a magnetic head in which high-melting point glass and a ferromagnetic metal thin film are formed only on the front gear side, for example. That is, as shown in FIG. 10, an upper surface 21 corresponding to the front gap forming surface is formed on the upper surface of the substrate 21 made of ferromagnetic oxide.
a and the upper surface 21b corresponding to the back gap forming surface.
A plurality of substantially V-shaped track width regulating grooves 22 are formed to regulate the track width only on the upper surface 21a. This board 2
1 corresponds to the substrate 1 shown in FIG. 1 in the previous embodiment. Next, with respect to the upper surface 21a of the substrate 21,
Filling process of high melting point glass 25, high melting point glass 25
The process of partially removing the ferromagnetic metal thin film 26 and the process of depositing the ferromagnetic metal thin film 26 are then carried out, and the upper surface 24a of the obtained substrate is then surface ground to form the core block 24 shown in FIG.
Make a pair. Note that each of the above-mentioned steps may be performed in the same manner as in the previous embodiment. Next, in the same manner as in the previous embodiment, the core block 24 and the core block 29 provided with the winding grooves 28 are welded together using low melting point glass, a plurality of head chips are cut out, and the tape sliding surface is shaped into a cylinder. The magnetic head 27 shown in FIG. 12 may be manufactured by polishing. Although this magnetic head 27 has a high melting point glass 25 and a ferromagnetic metal thin film 26 formed only on the front gear side, it goes without saying that it has the same effect as the previous embodiment.
さらに、強磁性金属薄膜にセンダストを使用し
た場合には、この薄膜の熱処理を500℃以上で行
う必要があり、このため疑似ギヤツプの影響を無
視できなくなる。このような場合には、先の実施
例において、第3図に示す高融点ガラスの一部除
去工程後、第13図に示すように、各高融点ガラ
ス34,34間の強磁性金属薄膜形成面を略V字
状に切り欠くことにより切溝31を形成し、この
切溝31内を含む基板30の上面に強磁性金属薄
膜32を被着するようにしても良い。このような
切溝31を形成した後、さらに先の実施例と同様
の工程を経て第14図に示す磁気ヘツド33を作
製する。このようにして得られた磁気ヘツド33
は、先の実施例と同様に接合時に高温が加わるこ
とはなく、さらに主ギヤツプgと平行になる境界
面が存在しないため、疑似ギヤツプg′,g′による
再生出力の影響は無視できる。 Furthermore, when sendust is used for a ferromagnetic metal thin film, the thin film must be heat-treated at a temperature of 500°C or higher, which makes it impossible to ignore the effects of pseudo-gaps. In such a case, in the previous embodiment, after the step of partially removing the high melting point glass shown in FIG. 3, as shown in FIG. The kerf 31 may be formed by notching the surface in a substantially V-shape, and the ferromagnetic metal thin film 32 may be deposited on the upper surface of the substrate 30 including the inside of the kerf 31. After forming such a groove 31, the magnetic head 33 shown in FIG. 14 is manufactured through the same steps as in the previous embodiment. Magnetic head 33 thus obtained
As in the previous embodiment, no high temperature is applied during bonding, and since there is no boundary plane parallel to the main gap g, the influence of the pseudo gaps g' and g' on the reproduction output can be ignored.
以上の説明から明らかなように、本発明の磁気
ヘツドの製造方法によれば、先ずトラツク幅規制
溝を形成した基板の上面に高融点ガラスを充た
し、次いで磁気ギヤツプ形成面に強磁性金属薄膜
を被着し、さらに所定の工程を経て一対の磁気コ
アブロツクを作製した後、低融点ガラスを用いて
これれら磁気コアブロツクの強磁性金属薄膜同志
を突き合わせて接合しているので、強磁性金属薄
膜形成後は、磁気コアブロツクを高温にさらす工
程がなく、したがつて各強磁性体間での拡散反応
を抑えられ、疑似ギヤツプの影響を無視できるの
で、アナログ記録再生に好適な磁気ヘツドが得ら
れる。
As is clear from the above description, according to the method of manufacturing a magnetic head of the present invention, first, the upper surface of the substrate on which the track width regulating groove is formed is filled with high melting point glass, and then a ferromagnetic metal thin film is formed on the surface where the magnetic gap is formed. After the two magnetic core blocks are deposited and further subjected to a predetermined process to produce a pair of magnetic core blocks, the ferromagnetic metal thin films of these magnetic core blocks are butted and bonded together using low-melting glass, thereby forming a ferromagnetic metal thin film. Thereafter, there is no step of exposing the magnetic core block to high temperatures, and therefore the diffusion reaction between the ferromagnetic materials can be suppressed, and the influence of pseudo gaps can be ignored, so that a magnetic head suitable for analog recording and reproduction can be obtained.
また、上記強磁性金属薄膜として、優れた磁気
特性を有する非晶質合金を使用しても、その特性
を充分に発揮できる。 Further, even if an amorphous alloy having excellent magnetic properties is used as the ferromagnetic metal thin film, its properties can be fully exhibited.
さらに、磁気テープ摺接部が強磁性金属薄膜と
高融点ガラスで構成されているので、耐摩耗性に
優れる等、信頼性の高い磁気ヘツドが得られる。 Furthermore, since the magnetic tape sliding contact portion is composed of a ferromagnetic metal thin film and high melting point glass, a highly reliable magnetic head with excellent wear resistance can be obtained.
一方、上記強磁性金属薄膜は、記録再生に充分
な膜厚とすれば良く、例えばトラツク幅に相当す
る膜厚に比べると少ない膜厚で良いことから、こ
の薄膜の形成時間を大幅に短縮でき、生産性を向
上できる。 On the other hand, the above-mentioned ferromagnetic metal thin film only needs to have a thickness sufficient for recording and reproduction, and for example, the thickness can be smaller than the thickness corresponding to the track width, so the formation time of this thin film can be significantly shortened. , productivity can be improved.
第1図ないし第8図は本発明の磁気ヘツドの製
造方法をその工程順序に従つて示す概略的な斜視
図であつて、第1図は強磁性酸化物基板のトラツ
ク幅規制溝加工工程、第2図は高融点ガラスの充
填工程、第3図は高融点ガラスの一部除去工程、
第4図は強磁性金属薄膜の被着工程、第5図はコ
アブロツクの平面研削工程、第6図は巻線溝の形
成工程、第7図はコアブロツクの接合工程、第8
図は円筒研磨工程をそれぞれ示す。第9図は本発
明の製造方法に従つて作製した磁気ヘツドの再生
出力の周波数特性を従来の製造方法により作製し
た磁気ヘツドのそれと比較して示す特性図であ
る。第10図ないし第12図は本発明の他の実施
例を示す概略的な斜視図であつて、第10図は強
磁性酸化物基板のトラツク幅規制溝加工工程、第
11図はコアブロツクの平面研削工程、第12図
は円筒研磨工程をそれぞれ示す。第13図及び第
14図は本発明のさらに他の実施例を示す概略的
な斜視図であつて第13図は切溝(強磁性金属薄
膜形成面)加工工程、第14図は円筒研磨工程で
ある。また、第15図は複合型の磁気ヘツドの一
例を示す概略的な斜視図であり、第16図は複合
型の磁気ヘツドの他の例を示す概略的な斜視図で
ある。
1……基板、2……トラツク幅規制溝、4……
高融点ガラス、5……強磁性金属薄膜、6,8…
コアブロツク。
1 to 8 are schematic perspective views showing the method of manufacturing a magnetic head according to the present invention in the order of steps, in which FIG. 1 shows the step of forming track width regulating grooves in a ferromagnetic oxide substrate; Figure 2 shows the high melting point glass filling process, Figure 3 shows the high melting point glass removal process,
Figure 4 shows the ferromagnetic metal thin film deposition process, Figure 5 shows the core block surface grinding process, Figure 6 shows the winding groove formation process, Figure 7 shows the core block bonding process, and Figure 8 shows the core block bonding process.
The figures each show the cylindrical polishing process. FIG. 9 is a characteristic diagram showing the frequency characteristics of the reproduced output of a magnetic head manufactured according to the manufacturing method of the present invention in comparison with that of a magnetic head manufactured using a conventional manufacturing method. 10 to 12 are schematic perspective views showing other embodiments of the present invention, in which FIG. 10 shows a track width regulating groove machining process for a ferromagnetic oxide substrate, and FIG. 11 shows a plane view of a core block. The grinding process and FIG. 12 respectively show the cylindrical polishing process. 13 and 14 are schematic perspective views showing still another embodiment of the present invention, in which FIG. 13 is a kerf (ferromagnetic metal thin film forming surface) processing step, and FIG. 14 is a cylindrical polishing step. It is. FIG. 15 is a schematic perspective view showing an example of a composite magnetic head, and FIG. 16 is a schematic perspective view showing another example of a composite magnetic head. 1... Board, 2... Track width regulating groove, 4...
High melting point glass, 5...Ferromagnetic metal thin film, 6,8...
core block.
Claims (1)
幅規制溝を設け、 このトラツク幅規制溝を充たし上記基板の上面
を覆う如く高融点ガラスを流し込んだ後、 トラツク幅に対応して上記基板上面の高融点ガ
ラスを除去し、 上記基板上面の全面に亘つて強磁性金属薄膜を
被着形成し、 上記強磁性金属薄膜の不要部分を平面研削によ
り除去して一対の磁気コアブロツクを作製し、 これら磁気コアブロツクの強磁性金属薄膜同志
を突き合わせた後、低融点ガラスで接合し、 複数のヘツドチツプに切断することを特徴とす
る磁気ヘツドの製造方法。[Scope of Claims] 1. Track width regulating grooves are provided on the upper surface of a substrate made of ferromagnetic oxide, and after pouring high melting point glass to fill the track width regulating grooves and covering the upper surface of the substrate, a track width regulating groove is formed that corresponds to the track width. Then, the high melting point glass on the upper surface of the substrate is removed, a ferromagnetic metal thin film is deposited over the entire upper surface of the substrate, and unnecessary portions of the ferromagnetic metal thin film are removed by surface grinding to form a pair of magnetic core blocks. 1. A method for manufacturing a magnetic head, characterized in that the ferromagnetic metal thin films of these magnetic core blocks are butted together, then bonded with low melting point glass, and then cut into a plurality of head chips.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8428785A JPS61242311A (en) | 1985-04-19 | 1985-04-19 | Production of magnetic head |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8428785A JPS61242311A (en) | 1985-04-19 | 1985-04-19 | Production of magnetic head |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61242311A JPS61242311A (en) | 1986-10-28 |
JPH0580724B2 true JPH0580724B2 (en) | 1993-11-10 |
Family
ID=13826250
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8428785A Granted JPS61242311A (en) | 1985-04-19 | 1985-04-19 | Production of magnetic head |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61242311A (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0775048B2 (en) * | 1986-12-25 | 1995-08-09 | キヤノン株式会社 | Magnetic head manufacturing method |
JPH0380508U (en) * | 1989-11-30 | 1991-08-19 |
-
1985
- 1985-04-19 JP JP8428785A patent/JPS61242311A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS61242311A (en) | 1986-10-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0654527B2 (en) | Magnetic head | |
JPH0580724B2 (en) | ||
JPS6214313A (en) | Magnetic head | |
JPS60231903A (en) | Composite type magnetic head and its production | |
KR930006583B1 (en) | Production of magnetic head | |
JPH0648527B2 (en) | Magnetic head manufacturing method | |
JPS6236708A (en) | Magnetic head | |
JPH0565924B2 (en) | ||
JPH0833980B2 (en) | Method of manufacturing magnetic head | |
JPH0585962B2 (en) | ||
JPS63288407A (en) | Production of magnetic head | |
JPH0770023B2 (en) | Magnetic head | |
JPH0795364B2 (en) | Magnetic head | |
JPH0476168B2 (en) | ||
JPH0785288B2 (en) | Magnetic head manufacturing method | |
JPH0658727B2 (en) | Magnetic head | |
JPH08315318A (en) | Laminar magnetic head and its production | |
JPH0522963B2 (en) | ||
JPS63164010A (en) | Manufacture of magnetic head | |
JPH0411306A (en) | Composite-type magnetic head and its production | |
JPS62277607A (en) | Magnetic head | |
JPH06111230A (en) | Magnetic head | |
JPH08255310A (en) | Magnetic head and its production | |
JPS61188706A (en) | Magnetic head | |
JPH0648528B2 (en) | Magnetic head |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |