JPH061937B2 - Cable mold joint construction method - Google Patents

Cable mold joint construction method

Info

Publication number
JPH061937B2
JPH061937B2 JP63216042A JP21604288A JPH061937B2 JP H061937 B2 JPH061937 B2 JP H061937B2 JP 63216042 A JP63216042 A JP 63216042A JP 21604288 A JP21604288 A JP 21604288A JP H061937 B2 JPH061937 B2 JP H061937B2
Authority
JP
Japan
Prior art keywords
inner electrode
resin
outer semiconductive
insulator
semiconductive layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63216042A
Other languages
Japanese (ja)
Other versions
JPH0265611A (en
Inventor
宗晴 井坂
享 高橋
幸平 牧野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP63216042A priority Critical patent/JPH061937B2/en
Publication of JPH0265611A publication Critical patent/JPH0265611A/en
Publication of JPH061937B2 publication Critical patent/JPH061937B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Processing Of Terminals (AREA)
  • Cable Accessories (AREA)

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、モールドジョイント工法に係り、特に、外部
半導電層の2分割された電極のうち、内側電極の接着性
に改良を加え、耐破壊電圧の向上を図った工法に関する
ものである。
Description: TECHNICAL FIELD The present invention relates to a mold joint method, and in particular, among electrodes divided into two parts of an outer semiconductive layer, the adhesion of the inner electrode is improved and The present invention relates to a method for improving the breakdown voltage.

〈従来の技術〉 ケーブル、例えばCVケーブルのモールドジョイント部
では、一般に外部半導電層が設けられるわけであるが、
この外部半導電層にあっては、ジョイント部の全長に渡
って一連に連続されるものと、適宜部分で周方向に沿っ
て2分割され、互いの端部が絶縁してラップ状に重ねら
れるものがある。
<Prior Art> In a mold joint portion of a cable, for example, a CV cable, an outer semiconductive layer is generally provided,
In this outer semiconductive layer, one that is continuous over the entire length of the joint portion and one that is divided into two along the circumferential direction at appropriate portions are laminated in a lap shape with their ends insulated from each other. There is something.

このような2分割方式を採用する理由は、電磁誘導によ
って生じるシースの電位上昇およびシース回路損失を低
減することにある。
The reason for adopting such a two-division system is to reduce the potential rise of the sheath and the sheath circuit loss caused by electromagnetic induction.

〈発明が解決しようとする課題〉 ところが、このような分割構造をとると、外部半導電層
の端部に、電界集中等のストレスが集中し易くなるた
め、端部組成物材料の選定、形状成形等には細心の注意
が必要とされ、端部の構成が耐破壊電圧の向上に重要な
位置を占めてくる。
<Problems to be Solved by the Invention> However, when such a divided structure is adopted, stress such as electric field concentration is likely to concentrate at the end of the outer semiconductive layer. Careful attention is required for molding and the like, and the configuration of the end portion occupies an important position in improving the breakdown voltage.

現に、本発明者等の試験、研究によると、外部半導電層
の端部、特にモールド時、内側に入る内側電極端部に微
小剥離等によるボイドが発生したり、あるいは形状変形
により突起や尖形部等ができたりすると、これに起因し
て、電機破壊が容易に起こることが判った。特に、近
年、CVケーブルにおいては、急速に高電圧化されつつ
あるため、この点の改善は強く望まれている。
In fact, according to the tests and studies conducted by the present inventors, voids are generated at the ends of the outer semiconductive layer, particularly the ends of the inner electrodes that enter the inside during molding, due to microdelamination, or due to shape deformation, protrusions or sharp points. It has been found that if a shaped part or the like is formed, the electric machine is easily destroyed due to this. In particular, in recent years, the voltage of CV cables has been rapidly increased, and improvement in this respect is strongly desired.

そこで、本発明者等がより一層深く検討したところ、外
部半導電層の内側電極端部の接着性を一層向上させる技
術として、この内側電極に用いられるベース樹脂と同材
質(同一または同種の材質)の樹脂テープを、この内側
電極を囲むような形で巻き込み、その後、ジョイント全
体を加熱融着モールドさせると、接着性の優れたジョイ
ツトができることを見出した。
Therefore, the present inventors have studied more deeply, and as a technique for further improving the adhesiveness of the inner electrode end portion of the outer semiconductive layer, the same material (same or similar material as the base resin used for this inner electrode It has been found that a resin tape of (1) is wound in such a manner as to surround the inner electrode, and then the entire joint is heated and fusion-molded to form a joint having excellent adhesiveness.

本発明は、このようには観点に立ってなされたものであ
る。
The present invention is thus made from the viewpoint.

〈課題を解決するための手段及びその作用〉 かゝる本発明の特徴とする点は、モールド樹脂絶縁体6
の外周に被覆される外部半導電層7,8が周方向に沿っ
て2分割され、一方の外部半導電層7のみからなる端部
が内側に入り、この上に他方の端部が一定の絶縁間隔を
保ちながらラップ状に重ねられるケーブルのモールドジ
ョイント部において、前記外部半導電層7,8の内側に
入る内側電極7aを被覆する前に、この内側電極7aの
下と前記モールド樹脂絶縁体6の外周に跨がって、当該
内側電極7aに用いられるベース樹脂と同一または同種
の材質からなる樹脂テープ10を巻き込み、しかる後、
前記内側電極7aを被覆し、さらに、この内側電極7a
の上と前記モールド樹脂絶縁体6上の樹脂テープ10上
に再度当該樹脂テープ10を巻き込んだ後、ジョイント
部全体を加熱溶融させてモールドするケーブルのモール
ドジョイント工法にある。
<Means for Solving the Problem and Its Action> The feature of the present invention lies in that the molded resin insulator 6
The outer semiconductive layers 7 and 8 which are coated on the outer circumference of the are divided into two along the circumferential direction, and one end of the outer semiconductive layer 7 only enters the inside, and the other end is fixed on top of this. Before covering the inner electrode 7a that enters inside the outer semiconductive layers 7 and 8 in the mold joint portion of a cable that is stacked in a lap shape while maintaining an insulation interval, the inner side of the inner electrode 7a and the mold resin insulator are covered. A resin tape 10 made of the same or the same material as the base resin used for the inner electrode 7a is wound over the outer circumference of 6, and then,
The inner electrode 7a is covered with the inner electrode 7a.
And the resin tape 10 on the molded resin insulator 6 is rewound on the resin tape 10, and then the entire joint portion is heated and melted to mold the cable.

本発明で使用される外部半導電層の組成物としては、エ
チレン−エチルアクリレート共重合体(EEA)、エチ
レン酢酸ビニル共重合体(EVA)、エチレン−アクリ
ル酸共重合体(EAA)等のベース樹脂に、カーボンや
金属等の導電性粉末、および若干の架橋剤、例えばジク
ミルパーオキサイド(DCP)、2,5−ジメチル−
2,5−ジ(t−ブチルパーオキシ)ヘキシン−3、
2,5−ジメチル−2,5−ジ(t−ブチルパーオキ
シ)ヘキサン等を添加してなるものが挙げられる。そし
て、これらの各成分の配合量は、使用うる材料にもよる
が、ベース樹脂100重量部に対して、導電性粉末10
〜70重量部、架橋剤0.2〜1重量部程とし、何れに
しても、外部半導電層としてモールド樹脂絶縁体上に被
覆された際に、そのゲル分率(110℃のキシレン中に
24時間浸漬したときの抽出法による)が、10〜50
%の範囲になるように調整するとよい。なぜならば、ゲ
ル分率が10%未満ではモールド樹脂絶縁体との接着性
は良好であるが、架橋度が不十分のため、形状保持性が
悪く、端部が潰れる等して、突起や尖形部が生じ易く、
電気破壊の原因となるからである。また、ゲル分率が5
0%を越えるようになると、十分な架橋度により形状保
持性は強化されるが、モールド樹脂絶縁体との接着性が
悪化して、端部に微小剥離等によるボイドが発生し易
く、やはり電気破壊の原因となるからである。
The composition of the external semiconductive layer used in the present invention includes ethylene-ethyl acrylate copolymer (EEA), ethylene-vinyl acetate copolymer (EVA), ethylene-acrylic acid copolymer (EAA) and the like bases. Resin, conductive powder such as carbon or metal, and some cross-linking agents such as dicumyl peroxide (DCP), 2,5-dimethyl-
2,5-di (t-butylperoxy) hexyne-3,
Examples include those obtained by adding 2,5-dimethyl-2,5-di (t-butylperoxy) hexane and the like. The amount of each of these components mixed depends on the materials that can be used, but the conductive powder 10 is added to 100 parts by weight of the base resin.
˜70 parts by weight and 0.2 to 1 parts by weight of the cross-linking agent, and in any case, when it is coated on the mold resin insulator as the external semiconductive layer, its gel fraction (in xylene at 110 ° C. It depends on the extraction method when immersed for 24 hours) is 10 to 50
It is good to adjust it so that it is in the range of%. This is because when the gel fraction is less than 10%, the adhesiveness with the mold resin insulator is good, but the degree of cross-linking is insufficient, the shape retention is poor, and the ends are crushed, resulting in protrusions and sharp points. Shaped parts are likely to occur,
It is a cause of electric breakdown. Also, the gel fraction is 5
When it exceeds 0%, the shape retention is enhanced by a sufficient degree of crosslinking, but the adhesiveness with the mold resin insulator deteriorates, and voids due to minute peeling etc. tend to occur at the ends, and electrical resistance is also expected. This will cause destruction.

また、上記外部半導電層の内側電極に巻き込む樹脂テー
プは、内側電極を絶縁体と良好に接着させるための界面
接着補強用のテープであり、その材質としては、外部半
導電層と同一または同種の材質からなるものを使用す
る。この材質の選定により、良好な接着性が得られる。
Further, the resin tape wound around the inner electrode of the outer semiconductive layer is a tape for interfacial adhesion reinforcement for favorably adhering the inner electrode to the insulator, and its material is the same as or similar to that of the outer semiconductive layer. Use a material made from. Good adhesion can be obtained by selecting this material.

次に、本発明工法の具体的な一例を、第1図により説明
する。
Next, a specific example of the method of the present invention will be described with reference to FIG.

図においえ、F,Fは互いに接続されるケーブル、Jは
そのジョイント部である。
In the figure, F and F are cables connected to each other, and J is a joint portion thereof.

本発明工法では、上記ケーブルF,Fの接続しようとす
る両接続端部分の被覆部(絶縁体等)2,2を削り取り
(ペンシンリング処理)、口出しし、両導体1,1部分
を筒状等の金属製圧着スリーブ3に両側から挿入し、こ
の後、この圧着スリーブ3を押し潰して、先ず、導体接
続を行う。
In the method of the present invention, the coating portions (insulators, etc.) 2 and 2 of both connection end portions to which the cables F and F are to be connected are scraped off (pensin ring treatment) and exposed, and both conductors 1 and 1 are piped. The pressure-bonding sleeve 3 is inserted from both sides into a metal-shaped pressure-bonding sleeve 3 and then the pressure-bonding sleeve 3 is crushed to first perform conductor connection.

次に、この接続部分に、例えば半導電性テープを巻き、
加熱溶融させて架橋させ、架橋済のモールド内部半導電
層4を形成する。勿論、このモールド内部半導電層4は
ケーブルF,F側の内部半導電層5,5と接続処理す
る。
Next, wind a semi-conductive tape around this connection part,
It is heated and melted to be crosslinked to form the crosslinked mold inner semiconductive layer 4. Of course, this mold inner semiconductive layer 4 is connected to the inner semiconductive layers 5 and 5 on the cables F, F side.

この後、この部分に、例えば未架橋の架橋剤入り組成物
テープを巻き付けて、絶縁体6を形成する。また、この
絶縁体6の形成にあったては、このテープ巻きの他に、
この部分に、例えば、押出モールド金型をセットし、通
常の方法で、モールド樹脂を絶縁体6として押し出して
形成してもよい。
After that, for example, an uncrosslinked composition tape containing a crosslinking agent is wound around this portion to form the insulator 6. When forming the insulator 6, in addition to the tape winding,
For example, an extrusion molding die may be set in this portion, and the molding resin may be extruded as the insulator 6 by a usual method.

この絶縁体6の外周には、半導電性テープを巻き付けた
り、半導電性モールドチユーブを取付けたりして、2分
割された外部半導電性層7,8を形成する。この際、一
方の外部半導電層7の内側電極7aは内側に入れ、この
上に他方の外部半導電性層8の外側電極8aを一定間隔
の絶縁を保ちながらラップ状に重ね合わせる。
A semiconductive tape is wrapped around the outer periphery of the insulator 6 or a semiconductive mold tube is attached to form the outer semiconductive layers 7 and 8 divided into two parts. At this time, the inner electrode 7a of the one outer semiconductive layer 7 is put inside, and the outer electrode 8a of the other outer semiconductive layer 8 is superposed on the inner electrode 7a in a lap shape while maintaining insulation at regular intervals.

このとき、第2図に示したように、モールド外部半導電
性層7、特に、内側電極7a部分のモールド樹脂との界
面接着力を向上させる目的で、この内側電極7aに用い
られるベース樹脂と同材質(同一または同種の材質)の
樹脂テープ10をこの内側電極7aを囲むような形で巻
き込む。
At this time, as shown in FIG. 2, a base resin used for the inner electrode 7a is used for the purpose of improving the interfacial adhesion with the mold outer semiconductive layer 7, particularly, the inner electrode 7a portion with the mold resin. A resin tape 10 of the same material (the same or the same material) is wound so as to surround the inner electrode 7a.

この樹脂テープ10による囲み方は、特に問わないが、
例えば、次のような方法により行うことができる。
The method of enclosing the resin tape 10 is not particularly limited,
For example, it can be performed by the following method.

すなわち、既に架橋剤入りポリエチレンテープ等の巻き
込みによりモールド形状に形成された絶縁体6上の一方
(第1図中、右寄り)に、例えば、一枚目の樹脂テープ
10を周方向に1/2ラップで巻き込み、この上に外部半
導電性層7の内側電極7aが来るように当該外部半導電
性層7の半導電性モールドチューブを取付ける。次に、
この上から二枚目の樹脂テープ10を、やはり1/2ラッ
プで巻き込み、上記内側電極7aの上側に被せると共
に、上記一枚目の樹脂テープ10に重ね合わせる。この
後、絶縁体6をなす架橋剤入りポリエチレンテープ等を
所定厚さまで巻き込み、最後に外部半導電性層8の半導
電性モールドチューブを取付け、その外部電極8aを丁
度上記内側電極7a上に重ね合わせればよい。また、上
記二枚目の樹脂テープ10だけを1/2ラップで巻き込む
方法でもよい。
That is, for example, one side of the resin tape 10 is halved in the circumferential direction on one side (on the right side in FIG. 1) on the insulator 6 which is already formed in a mold shape by winding up a polyethylene tape containing a crosslinking agent. It is wrapped with a wrap, and the semiconductive mold tube of the outer semiconductive layer 7 is attached so that the inner electrode 7a of the outer semiconductive layer 7 is placed thereon. next,
The second resin tape 10 from the top is also wound in 1/2 wrap, and is covered on the upper side of the inner electrode 7a, and is overlapped on the first resin tape 10. Then, a polyethylene tape containing a cross-linking agent forming the insulator 6 is wound up to a predetermined thickness, and finally a semiconductive mold tube of the outer semiconductive layer 8 is attached, and the outer electrode 8a thereof is superposed just on the inner electrode 7a. Just match. Alternatively, only the second resin tape 10 may be wound in a 1/2 wrap.

そして、この内側電極層7aの先端形状は、好ましく
は、第2図に示すように外側に滑らかな面取りを施すと
よい。勿論、これらの外部半導電層7,8もケーブル
F,F側の外部半導電層9,9と接続処理する。
The tip shape of the inner electrode layer 7a is preferably chamfered to the outside as shown in FIG. Of course, these outer semiconductive layers 7 and 8 are also connected to the outer semiconductive layers 9 and 9 on the cables F and F sides.

このようにして形成された外部半導電層7,8上には、
さらに、抑えテープで抑え巻きし、その後、モールド用
の金型セットし、例えば、6Kg/cm2の窒素ガス加圧下で
180℃、3時間の加圧加熱により、上記未架橋ないし
架橋不十分な絶縁体6および外部半導電層7.8部分を
溶融モールドさせ、最終的な架橋度(ゲル分率60〜8
5%)まで導く。なお、外部半導電層7,8部分の最終
的な架橋は、絶縁体6のモールド樹脂部分からの架橋剤
の移行により行われる。
On the outer semiconductive layers 7 and 8 thus formed,
Further, it is pressed and wound with a pressing tape, then set in a mold for molding, and heated at 180 ° C. for 3 hours under a pressure of nitrogen gas of 6 kg / cm 2 , for example, and the above-mentioned uncrosslinked or insufficient crosslinking is achieved. The insulator 6 and the external semiconducting layer 7.8 are melt-molded to obtain a final degree of crosslinking (gel fraction 60 to 8).
Lead to 5%). Final cross-linking of the outer semiconductive layers 7 and 8 is performed by migration of the cross-linking agent from the mold resin portion of the insulator 6.

また、このモールドの際、外部半導電性層7,8、特に
内側電極7aは、上述したゲル分率(10〜50%)の
組成物になると共に、上下が当該外部半導電性層7と同
材質の樹脂テープ10で囲まれているため、この樹脂テ
ープ10が内側電極7aと強固に接着されると同時に、
絶縁体6中に一種のアンカーとして埋設されると形とな
るため、、絶縁体6とも極めて良好に接着され、かつ窒
素ガス加圧下でも、形崩れすることがない。従って、ボ
イドの発生や、突起、尖形部等の発生もなく、結果とし
て、高い耐破壊電圧が得られるようになる。
Further, in this molding, the outer semiconductive layers 7 and 8, particularly the inner electrode 7a, are composed of the above-mentioned gel fraction (10 to 50%), and the upper and lower parts are the outer semiconductive layer 7 and the outer semiconductive layer 7, respectively. Since the resin tape 10 is surrounded by the resin tape 10 of the same material, the resin tape 10 is firmly bonded to the inner electrode 7a, and at the same time,
Since it has a shape when embedded as a kind of anchor in the insulator 6, it also adheres very well to the insulator 6 and does not lose its shape even under pressure of nitrogen gas. Therefore, voids, protrusions, pointed portions, etc. are not generated, and as a result, a high breakdown voltage can be obtained.

〈実施例〉 第1表に示したように、内側電極組成と界面接着補強用
の樹脂テープとの組合せにより、本発明の条件を満たす
モールドジョイント工法(実施例〜)と本発明の条
件を満たさないモールドジョイント工法(比較例〜
)を実施した。
<Example> As shown in Table 1, the combination of the inner electrode composition and the resin tape for interfacial adhesion reinforcement satisfies the conditions of the present invention for the mold joint method (Examples ~) and the conditions of the present invention. No mold joint method (Comparative example ~
) Was carried out.

ここで、用いたケーブルはCVケーブル(15KV、12
00mm2)であった。
The cables used here are CV cables (15 KV, 12
It was 00 mm 2 ).

上記各モールドジョイント工法によるジョイント部につ
いて、交流破壊電圧値を調べた。この試験は1工法につ
き2試料づつ行った。その結果は、上記第1表に併記し
た。
The AC breakdown voltage value was examined for the joint portion formed by each of the above mold joint construction methods. This test was conducted for two samples per one construction method. The results are also shown in Table 1 above.

上記第1表から、本発明実施例〜の場合、高い交流
破壊電圧値が得られ、しかも破壊箇所が外部半導電層の
内側電極先端以外であることが多かった。これに対し
て、比較例〜のように界面接着補強用樹脂テープが
ない場合には、交流破壊電圧値も低く、内側電極先端部
分で破壊の起こる頻度が高いことが判る。
From Table 1 above, in the case of Examples 1 to 3 of the present invention, a high AC breakdown voltage value was obtained, and the breakdown location was often other than the inner electrode tip of the outer semiconductive layer. On the other hand, when there is no resin tape for reinforcing the interfacial adhesion as in Comparative Examples 1 to 3, it can be seen that the AC breakdown voltage value is low and the breakdown occurs frequently at the inner electrode tip portion.

〈発明の効果〉 以上の説明から明らかなように本発明によれば、外部半
導電層の内側電極を当該外部半導電層のみで構成し、特
別な部材を用いることなく、界面接着補強用の樹脂テー
プを巻き付けて囲ってあるのみであるため、この内側電
極と絶縁体との接着性が大幅に改善、向上され、微小剥
離等によるボルトや形状変形による突起、尖形部等の発
生が最小限に押さえれられ、電気特性に優れていると共
に、特別な部材が不要なことから、部材コストも安価
で、しかも、単に樹脂テープの巻き付けにより対応でき
ることから、現場施工性に優れたケーブルのモールドジ
ョイント工法を得ることができる。
<Effects of the Invention> As is apparent from the above description, according to the present invention, the inner electrode of the outer semiconductive layer is constituted only by the outer semiconductive layer, and without using a special member, for interfacial adhesion reinforcement. Since it is only wrapped with a resin tape to surround it, the adhesion between the inner electrode and the insulator is greatly improved and improved, and the occurrence of protrusions and pointed parts due to bolts and shape deformation due to minute peeling is minimal. The mold joint of the cable has excellent electrical properties, and the cost of the member is low because no special member is required. Moreover, it can be handled simply by wrapping the resin tape. The construction method can be obtained.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明に係るケーブルのモールドジョイント工
法の一実施例を示した概略断面図、第2図は第1図の工
法で用いる外部半導電層の内側電極の一例を示した拡大
断面図である。 図中、 F,F・・・ケーブル、 J・・・・・ジョイント部、 1,1・・・導体、 2,2・・・被覆部(絶縁体)、 3・・・・・圧着スリーブ、 4・・・・・内部半導電層、 6・・・・・モールド樹脂絶縁体、 7,8・・・外部半導電層、 7a・・・・内側電極、 8a・・・・外側電極、 10・・・・樹脂テープ、
FIG. 1 is a schematic sectional view showing an embodiment of a cable mold joint method according to the present invention, and FIG. 2 is an enlarged sectional view showing an example of an inner electrode of an outer semiconductive layer used in the method shown in FIG. Is. In the figure, F, F ... Cable, J ... Joint, 1, 1 ... Conductor, 2, 2 ... Cover (insulator), 3 ... Crimping sleeve, 4 ... inner semi-conductive layer, 6 ... molded resin insulator, 7, 8 ... outer semi-conductive layer, 7a ... inner electrode, 8a ... outer electrode, 10 .... Resin tape,

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】モールド樹脂絶縁体6の外周に被覆される
外部半導電層7,8が周方向に沿って2分割され、一方
の外部半導電層7のみからなる端部が内側に入り、この
上に他方の端部が一定の絶縁間隔を保ちながらラップ状
に重ねられるケーブルのモールドジョイント部におい
て、前記外部半導電層7,8の内側に入る内側電極7a
を被覆する前に、この内側電極7aの下と前記モールド
樹脂絶縁体6の外周に跨がって、当該内側電極7aに用
いられるベース樹脂と同一または同種の材質からなる樹
脂テープ10を巻き込み、しかる後、前記内側電極7a
を被覆し、さらに、この内側電極7aの上と前記モール
ド樹脂絶縁体6上の樹脂テープ10上に再度当該樹脂テ
ープ10を巻き込んだ後、ジョイント部全体を加熱溶融
させてモールドすることを特徴とするケーブルのモール
ドジョイント工法。
1. An outer semiconductive layer 7, 8 coated on the outer periphery of a molded resin insulator 6 is divided into two along the circumferential direction, and an end portion consisting of only one outer semiconductive layer 7 enters inside, In the mold joint portion of the cable, on which the other end portion is overlapped in a lap shape while keeping a constant insulation interval, the inner electrode 7a which enters inside the outer semiconductive layers 7 and 8 is formed.
Before covering the inner electrode 7a and the outer periphery of the molded resin insulator 6, a resin tape 10 made of the same or similar material as the base resin used for the inner electrode 7a is wound around before covering the Then, the inner electrode 7a
And further winding the resin tape 10 on the inner electrode 7a and on the resin tape 10 on the molded resin insulator 6 again, and then melting and melting the entire joint portion for molding. Mold joint method for cables.
JP63216042A 1988-08-30 1988-08-30 Cable mold joint construction method Expired - Lifetime JPH061937B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63216042A JPH061937B2 (en) 1988-08-30 1988-08-30 Cable mold joint construction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63216042A JPH061937B2 (en) 1988-08-30 1988-08-30 Cable mold joint construction method

Publications (2)

Publication Number Publication Date
JPH0265611A JPH0265611A (en) 1990-03-06
JPH061937B2 true JPH061937B2 (en) 1994-01-05

Family

ID=16682367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63216042A Expired - Lifetime JPH061937B2 (en) 1988-08-30 1988-08-30 Cable mold joint construction method

Country Status (1)

Country Link
JP (1) JPH061937B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109239542A (en) * 2018-08-21 2019-01-18 博侃电气(合肥)有限公司 A kind of method of mineral insulated cable proof voltage detection

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5736732U (en) * 1980-08-11 1982-02-26

Also Published As

Publication number Publication date
JPH0265611A (en) 1990-03-06

Similar Documents

Publication Publication Date Title
EP0088450B1 (en) Insulating joint for rubber or plastic insulated power cable
JPH061937B2 (en) Cable mold joint construction method
JP2001525599A (en) Insulated conductor and contact method
JP2840837B2 (en) Cable mold joint method
JPH0546163B2 (en)
JP3029203B2 (en) Connections and ends of cross-linked polyethylene power cables
JPH1141779A (en) Connection part for cross-linked polyethylene insulated power cable
JP3171657B2 (en) Cable connection end
JP3014542B2 (en) Method of connecting crosslinked rubber / plastic insulated power cable and electric field relaxation tape used therefor
JPH0214275Y2 (en)
JP2000299920A (en) Jointed part of crosslinked polyethylene-insulated power cable
JPH0514681Y2 (en)
JPH0126003Y2 (en)
JPH02237418A (en) Mold joint technique of cable
JPS6155206B2 (en)
JPH0696625A (en) Rubber/plastic insulated electric power cable, connecting portion therefor, and manufacture thereof
JPH01243305A (en) Electrically insulated cable
JP2639649B2 (en) Method of forming connection part of power cable
JPH02155416A (en) Molded joint method of cable
JPH0124856Y2 (en)
JPS5854837Y2 (en) cable end
JPH0429448Y2 (en)
JP2000115977A (en) Taping winding type linear connected part
JP2000115976A (en) Taping winding type linear connected part
JPS59162708A (en) Insulated connector of rubber and plastic insulated power cable