JPS59162708A - Insulated connector of rubber and plastic insulated power cable - Google Patents

Insulated connector of rubber and plastic insulated power cable

Info

Publication number
JPS59162708A
JPS59162708A JP3697683A JP3697683A JPS59162708A JP S59162708 A JPS59162708 A JP S59162708A JP 3697683 A JP3697683 A JP 3697683A JP 3697683 A JP3697683 A JP 3697683A JP S59162708 A JPS59162708 A JP S59162708A
Authority
JP
Japan
Prior art keywords
insulated
layer
rubber
tape
plastic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3697683A
Other languages
Japanese (ja)
Other versions
JPH0368613B2 (en
Inventor
伸一 入江
山下 泰浩
孝男 中野
田辺 輝義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP3697683A priority Critical patent/JPS59162708A/en
Publication of JPS59162708A publication Critical patent/JPS59162708A/en
Publication of JPH0368613B2 publication Critical patent/JPH0368613B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Cable Accessories (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、特に新規な縁切り構造をもったゴム、プラス
チック絶縁ケーブルの絶縁接続部に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention particularly relates to an insulated connection of a rubber or plastic insulated cable with a novel edge cut structure.

長尺の単心ケーブルでは、導体電流の電磁誘導によって
シースに電位が誘起されるが、いわゆるクロスボンド方
式により、こうした電位を減少できる。こうしたクロス
ボンド方式には、ケーブル中間接続部として絶縁接続部
が使用される。絶縁接続部は、絶縁遮蔽層を何等かの手
段を使用して電気的に絶縁したものである。
In long single-core cables, a potential is induced in the sheath by electromagnetic induction of conductor current, but this potential can be reduced by using the so-called cross-bond method. In such a cross-bond system, an insulated connection part is used as a cable intermediate connection part. The insulating connection portion is an insulating shielding layer electrically insulated using some means.

従来、この種のゴム、プラスチック絶縁ケーブルの絶縁
接続部の縁切り構造は、その−例を第1図に示すように
、接続した2個の導体1.1’を中心とし、この上に設
けた補強絶縁体層上に接続部絶縁遮蔽層5を同軸的に設
けてスリット8を形成し、上下方向に絶縁遮蔽層を縁切
ったものが知られている。このような架橋ポリエチレン
絶縁ケーブルの絶縁接続部は次のように製造される。
Conventionally, the edge cutting structure of the insulated connection part of this type of rubber or plastic insulated cable is as shown in FIG. It is known that a connecting portion insulating shielding layer 5 is coaxially provided on a reinforcing insulating layer to form a slit 8, and the insulating shielding layer is edged in the vertical direction. The insulated connection part of such a crosslinked polyethylene insulated cable is manufactured as follows.

まず、接続すべき2本のケーブルの端部の絶縁体層3,
3をそれぞれ図にもみられるように鉛筆状に削り、圧縮
スリーブ等で露出させた導体(+) (1)’を接続し
た後、そのり上に半導電性テープあるいは半導電性熱収
縮チューブにより内部半導電層2を形成する。次いでこ
の内部半導電層2上にケーブル絶縁層3,3に亘って自
己融着性絶縁テープなどのゴムまたはプラスチック絶縁
テープを巻回した後、これを加圧加熱し一体に融着する
。あるいは内部半導電層2の周囲に所望の金型(図示せ
ず)を設け、そこに溶融樹脂を射出し成形した後、適当
な手段により加熱融着させることにより接続部補強絶縁
体層4を形成する。さらにこの接続部補強絶縁体層4の
外周に同軸的にスリット部8を設けた外部半導電層5を
設けて接続部が完成する。
First, the insulator layer 3 at the ends of the two cables to be connected,
3 into a pencil shape as shown in the figure, connect the exposed conductor (+) (1)' with a compression sleeve, etc., and then connect it with semiconductive tape or semiconductive heat shrink tube. An internal semiconducting layer 2 is formed. Next, a rubber or plastic insulating tape such as a self-adhesive insulating tape is wound over the inner semiconducting layer 2 over the cable insulating layers 3, 3, and then heated under pressure to be fused together. Alternatively, a desired mold (not shown) is provided around the internal semiconducting layer 2, molten resin is injected into the mold, and the connecting portion reinforcing insulating layer 4 is formed by heat-sealing it by an appropriate means. Form. Further, an external semiconducting layer 5 having a slit portion 8 coaxially provided on the outer periphery of the connecting portion reinforcing insulating layer 4 is provided to complete the connecting portion.

しかしながら、このような従来のゴム、プラスチック絶
縁ケーブルの絶縁接続部には多くの欠点が存在した。す
なわち (イ)補強絶縁体層4を形成するためのテープ巻回層な
どを加熱し、一体に融着する際にスリット8を形成する
半導電層5の先端が変形してしまう、このため先端の電
界が大きくなるため、形成された接続部はこの先端から
破壊し易くなる。
However, the insulated connections of such conventional rubber and plastic insulated cables have many drawbacks. That is, (a) the tip of the semiconductive layer 5 forming the slit 8 is deformed when the tape-wound layer for forming the reinforcing insulating layer 4 is heated and fused together; Since the electric field becomes larger, the formed connection becomes more likely to break from this tip.

(ロ)半導電層5でスリットを作成する際、同軸的に同
心円上にすることが困難であり、そのため電界の乱れが
生じ易い。
(b) When creating slits in the semiconducting layer 5, it is difficult to make them coaxially on a concentric circle, which tends to cause disturbances in the electric field.

こうした欠点に鑑み第1図のようなスリット8を必要と
しない第2図にみられるようなゴム、プラスチック絶縁
型カケープルのケーブル導体接続部上を覆う絶縁補強層
4の外周上に、交流での体積固有抵抗率] 0’〜10
12Ω・α、比誘電率6〜100を有する高誘電率かつ
高抵抗層7を介して絶縁遮蔽層6を設け、絶縁遮蔽層6
を長手方向で縁切る高誘電率、高抵抗型絶縁接続部が提
案された。、ここで、この高誘電率、高抵抗層形成材の
数値の根拠は、体積抵抗率10Ω・σ以下比誘電率10
0以上ではケーブル線路に侵入してくるインパルス電圧
で閃絡してしまい1.一方体積固有抵抗率10 Ω・σ
以上、比誘率6以下では本接給部に課電した場合、第2
図絶縁遮蔽層6と高誘電率、高抵抗層7の際に電界が集
中し、容易に破壊してしまうためである。
In view of these drawbacks, an AC insulator is added on the outer periphery of the insulating reinforcing layer 4 covering the cable conductor connection part of the rubber or plastic insulated cable cable shown in Fig. 2, which does not require the slit 8 as shown in Fig. 1. Specific volume resistivity] 0'~10
An insulating shielding layer 6 is provided via a high dielectric constant and high resistance layer 7 having a dielectric constant of 12Ω·α and a relative permittivity of 6 to 100.
A high-permittivity, high-resistance type insulated connection that cuts the edges in the longitudinal direction has been proposed. Here, the basis for the numerical value of this high dielectric constant, high resistance layer forming material is that the volume resistivity is 10Ω・σ or less, and the relative permittivity is 10
If it is above 0, the impulse voltage entering the cable line will cause a flash short circuit.1. On the other hand, volume resistivity 10 Ω・σ
As mentioned above, when the relative dielectric constant is 6 or less, when applying electricity to the main contact part, the second
This is because the electric field concentrates between the insulating shielding layer 6 and the high dielectric constant, high resistance layer 7, which easily breaks down.

従来このような高誘電率で高抵抗型縁切り部としではカ
ーボン含有量を適当に調整することにより、上記抵抗範
囲の高抵抗層を絶縁体円周上に設ける方法があるが、こ
の方法では、カーボンのみ含有した高抵抗層がヒートサ
イクル等の熱履歴により抵抗値が変動し易いとい5問題
点があった。
Conventionally, there is a method of forming a high-resistance layer having the above-mentioned resistance range on the circumference of the insulator by appropriately adjusting the carbon content to form such a high-permittivity, high-resistance type edge cut. There were five problems in that the resistance value of the high resistance layer containing only carbon was likely to fluctuate due to thermal history such as heat cycling.

本発明は高誘電率、高抵抗型絶縁接続部における上述の
如き欠点を除去し、安定にして簡易かつ高性能の絶縁接
続部を提供することにある。
The object of the present invention is to eliminate the above-mentioned drawbacks of high dielectric constant, high resistance type insulated connections, and provide a stable, simple, and high performance insulated connection.

すなわち第2図の高誘電率、高抵抗層(縁切り部)7と
しては、基体樹脂10’O重量部に対して酸化亜鉛50
〜700重量部及びカーボン2〜60重量部を混和配合
した組成物を使用したことを特徴とした絶縁接続部であ
る。基体樹脂の内、ゴム系材料としては、エチレンプロ
ピレンゴム、エチレン−酢酸ビニルゴム、アクリルゴム
、フッ素ゴム、スチレン−ブタジェンゴム、ブタジェン
ゴム、他方プラスチック材料としては、低密度ポリエチ
レン、中密度ポリエチ1/7、高密度ホI)エチレン、
エチレンプロピレンゴム モノマーJ”4合体(E、P’DM )、エチレン−エ
チルアクリレート共重合体、エチレン−酢酸ビニル共重
合体、エチレン−αオレフィン−ポリエン三元共重合体
(例えば三井石油化学製エラストマー(エチレン・1−
ブfン・5−ニーf−IJ fノー2−ノルボルネン三
元共重合体))、これらの材料の単独又は二種以上のブ
レンド物又はこれら加硫物または架橋物が適当である。
In other words, the high dielectric constant, high resistance layer (edge cut portion) 7 in FIG.
This insulated connection part is characterized by using a composition in which ~700 parts by weight and 2 to 60 parts by weight of carbon are mixed and blended. Among the base resins, rubber-based materials include ethylene propylene rubber, ethylene-vinyl acetate rubber, acrylic rubber, fluororubber, styrene-butadiene rubber, butadiene rubber, and plastic materials include low-density polyethylene, medium-density polyethylene 1/7, and high-density polyethylene. Density I) Ethylene,
Ethylene propylene rubber monomer J"4 polymer (E, P'DM), ethylene-ethyl acrylate copolymer, ethylene-vinyl acetate copolymer, ethylene-α olefin-polyene terpolymer (e.g. Mitsui Petrochemical elastomer) (Ethylene 1-
Suitable materials include 2-norbornene ternary copolymers, single or blends of two or more of these materials, and vulcanized or crosslinked products thereof.

次に本発明における数量限定の理由を簡単に述べると、
基体樹脂100重量部に対して、酸化亜鉛の配合量が5
0重量部未満では、熱履歴によって電気抵抗が変化する
ので、不可である。
Next, to briefly explain the reason for the limited quantity in the present invention,
The amount of zinc oxide blended is 5 parts by weight based on 100 parts by weight of the base resin.
If it is less than 0 parts by weight, the electrical resistance will change depending on the thermal history, so it is not acceptable.

又700重量部を越えると、組成物が非常に硬くなり、
加工しに(いので不可である。又、カーボンが2重量部
未満では、所望の誘電率抵抗が得られないので、不可で
あり、逆に60重量部を越え為と、組成物が硬くなり、
加工しに(いので不可である。
Moreover, if it exceeds 700 parts by weight, the composition becomes very hard.
In addition, if the carbon content is less than 2 parts by weight, the desired dielectric constant resistance cannot be obtained, and if it exceeds 60 parts by weight, the composition becomes hard. ,
It cannot be processed (because it is difficult to process).

かかる発明の構造による効果、特徴は、力一ポンプラッ
クのみ含有の高誘電率、高抵抗層に比して、酸化亜鉛を
配合したことにより熱履歴を受けてもカーボンブラック
の移動が生じにくくなり、抵抗率の変化がほとんど見ら
れないという特徴を有する。
The effects and features of the structure of this invention are that, compared to a high dielectric constant, high resistance layer containing only a power pump rack, the inclusion of zinc oxide makes it difficult for carbon black to migrate even when subjected to thermal history. , it is characterized by almost no change in resistivity.

縁切り部の形成法は次の如くにする。ずなわち、 (1)前記配合組成テープを接続部補強絶縁体層4上に
巻回する。場合によっては本テープを巻回した後、接続
部補強絶縁体層4にこれを加熱融着させる゛。
The method for forming the edge cut portion is as follows. (1) The tape with the above-mentioned composition is wound onto the connection portion reinforcing insulator layer 4. In some cases, after winding the tape, it is heat-fused to the connecting portion reinforcing insulating layer 4.

(2)  予め前記配合組成物からなるチューブを、設
計した接続部補強絶縁体層4の外径に合わせて作成し、
補強絶縁体層4を成形後、この補強絶縁体層4上に該チ
ューブを挿入被覆し、加熱融着する。
(2) A tube made of the above-mentioned compounded composition is prepared in advance according to the outer diameter of the designed connecting portion reinforcing insulating layer 4,
After forming the reinforcing insulating layer 4, the tube is inserted and coated onto the reinforcing insulating layer 4, and heat-fused.

(3)補強絶縁層成形後、この絶縁層上に金型を置き、
縁切り部の設計に合わせて、前記の配合組成物を射出あ
るいは押出成形する。さらに絶縁層に加熱融着させる。
(3) After molding the reinforcing insulating layer, place a mold on this insulating layer,
The above compounded composition is injection molded or extruded according to the design of the edge cut portion. Furthermore, it is heat-fused to the insulating layer.

ここで該高誘電率かつ高抵抗層の厚さ及び長さについて
は、定格電圧級によって異なるが、例えば66 KV級
のケーブルで、厚さは1〜3 mm絶縁遮蔽層間の離隔
距離は50〜100+nmが好ましい。次に本発明の実
施例を示す。
Here, the thickness and length of the high dielectric constant and high resistance layer vary depending on the rated voltage class, but for example, for a 66 KV class cable, the thickness is 1 to 3 mm, and the separation distance between the insulation shielding layers is 50 to 3 mm. 100+nm is preferred. Next, examples of the present invention will be shown.

実施例1 6007++、a154KV 架橋ポリエチレン絶縁電
カケープルの絶縁体′a3を鉛筆削りした後、圧縮スリ
ーブ(図示せず)で露出させた導体1,1tを接続後、
半導電性テープ(日本ユニカー株式会社製商品名DFD
J 0580をテープ化したもの)を、導体接続部上に
巻回した後、温度150℃で4時間加熱成形した。その
後、形成した導電1目 層2の周期に金型(図示せず)を取付け、30mm押出
機から架橋剤入りポリエチレン組成物(HFDJ 42
01(日本ユニカー株式会社製商品名)〕を金型内に押
出し成形した。この押出機(図示せず)の設定温度は1
20℃であった。
Example 1 After sharpening the insulator 'a3 of the 6007++, a154KV cross-linked polyethylene insulated capeple, and connecting the exposed conductors 1 and 1t with a compression sleeve (not shown),
Semi-conductive tape (product name DFD manufactured by Nippon Unicar Co., Ltd.)
J 0580 (made into a tape) was wound onto the conductor connection portion and then heat-molded at a temperature of 150° C. for 4 hours. Thereafter, a mold (not shown) was attached to the period of the formed first conductive layer 2, and a polyethylene composition containing a crosslinking agent (HFDJ 42
01 (trade name manufactured by Nippon Unicar Co., Ltd.)] was extruded into a mold. The set temperature of this extruder (not shown) is 1
The temperature was 20°C.

次に冷却後前記金型を取外し、形成した接続部補強絶縁
体層4の第2図に示す高誘電率かつ高抵抗層には次の第
1表に示す組成物のテープを3闘厚さで、縁切り部距離
100mmその他の個所には上記の半導電性テープをそ
れぞれ巻いた。
Next, after cooling, the mold was removed, and a tape having a composition shown in Table 1 below was applied to the high dielectric constant and high resistance layer shown in FIG. 2 of the formed connection reinforcement insulating layer 4. Then, the above-mentioned semiconductive tape was wrapped around the edges at a distance of 100 mm and other parts.

而して得た接続部を加硫管(図示せず)中に入れ、窒素
ガフ8阪 て6時間加熱した後、ガス加圧下にて冷却した。
The thus obtained joint was placed in a vulcanization tube (not shown), heated for 6 hours using a nitrogen gaff, and then cooled under gas pressure.

尚、ジヨイント補強絶縁体層4の厚さば25醋であった
The thickness of the joint reinforcing insulator layer 4 was 25 mm.

接続部成形後、高誘電率かつ高抵抗層の交流での体積固
有抵抗率、インパルス閃絡耐圧テストを実施した後、導
体温度90°Cになるよ5に200日間毎日8時間通電
した。ヒートサイクルテスト実施後、高誘電率かつ高抵
抗層の交流での体積固有抵抗率、インパルス閃絡耐圧テ
ストをおこなった。得られた結果を第1表に併記した。
After forming the connection part, the high dielectric constant and high resistance layer was tested for volume resistivity and impulse flash breakdown voltage under alternating current, and then electricity was applied for 8 hours every day for 200 days to bring the conductor temperature to 90°C. After conducting heat cycle tests, we conducted volume resistivity and impulse flash breakdown voltage tests of the high dielectric constant and high resistance layers under alternating current. The obtained results are also listed in Table 1.

第1表から明らかなように本実施例による絶縁接続部は
何れも従来のものに比して、ヒートサイクル熱履歴後の
縁切り部の特性が比較例に比べ非常に安定している。
As is clear from Table 1, the characteristics of the edge cut portions after heat cycle thermal history are much more stable than those of the comparative examples in all of the insulated connection parts according to the present example, compared to the conventional ones.

実施例2 250 *wi’ 66 KV架橋ポリエチレン絶縁ケ
ーブルの絶縁体a3を鉛筆削りした後、圧縮ス1)′−
ブ(図示せず)で露出させた導体1,11を接続後、半
導電性テープ(日本ユニカー株式会社製DFDJ 05
80をテープ化したもの)を、導体接続部上に巻回した
後、温度150℃で3時間熱成形した。その後、形成し
た導電層2の周囲に金型(図示せず)を取付け、30朋
押出機がら架橋可能なポリエチレン組成物(日本ユニカ
ー製HFDJ4201)を絶縁厚12朋になるように金
型内に押出し成形した。この押出機(図示せず)の設定
は120℃であった。次に冷却後、前記金型を取外し、
形成した接続部補強絶縁体層4の第2図に示す高誘電率
かつ高抵抗層には次の第2表に示す組成物のテープを2
11m1厚さで、−縁切り部距離70酊、第2図の6の
箇所には上記の半導電テープを巻いた。本接続部を加硫
管(図示せず)中に入れ、窒素ガス8kg/c+d、雰
囲気温度210℃にて4時間加熱し、ガス加圧下にて冷
却し接続部を成形した。
Example 2 After sharpening the insulator a3 of the 250 *wi' 66 KV cross-linked polyethylene insulated cable with a pencil, compressed it 1)'-
After connecting the exposed conductors 1 and 11 with a tape (not shown), semiconductive tape (DFDJ 05 manufactured by Nippon Unicar Co., Ltd.)
80 into a tape) was wound onto the conductor connection portion and then thermoformed at a temperature of 150° C. for 3 hours. Thereafter, a mold (not shown) is attached around the formed conductive layer 2, and a crosslinkable polyethylene composition (HFDJ4201 manufactured by Nippon Unicar) is injected into the mold using an extruder so that the insulation thickness is 12 mm. Extruded. The extruder (not shown) was set at 120°C. Next, after cooling, remove the mold,
The high dielectric constant and high resistance layer shown in FIG. 2 of the formed connection reinforcing insulator layer 4 was coated with two tapes having the composition shown in Table 2 below.
The thickness was 11 m1, the edge cutting distance was 70 mm, and the above-mentioned semiconductive tape was wrapped around the point 6 in FIG. The connected portion was placed in a vulcanized tube (not shown), heated for 4 hours at an ambient temperature of 210° C. under nitrogen gas of 8 kg/c+d, and cooled under gas pressure to form the connected portion.

接続部成形稜高誘電率かつ高抵抗層の交流での体積固有
抵抗率、インパルス閃絡耐圧テストを実施した後、導体
温度90℃になるように200日間毎日8時間通電した
。ヒートサイクルテスト実施後、高誘電率、高抵抗層の
交流での体積固有抵抗率、インパルス閃絡耐圧テストを
おこなった。得られた結果を第2表に併記した。
After testing the high dielectric constant and high resistance layer of the connection portion molding for volume specific resistivity and impulse flash withstand voltage, electricity was applied for 8 hours every day for 200 days to maintain the conductor temperature at 90°C. After conducting heat cycle tests, we conducted volume resistivity and impulse flash breakdown voltage tests of the high dielectric constant and high resistance layers under alternating current. The obtained results are also listed in Table 2.

第2表から明らかなように本実施例による絶縁接続部は
何れも従来のものに比して、ヒートサイクル熱履歴後の
縁切り部の特性が比較例に比べ非常に安定していること
がわかる。
As is clear from Table 2, it can be seen that the characteristics of the edge cut parts after heat cycle thermal history are much more stable than those of the comparative example in all of the insulated joints according to this example, compared to the conventional ones. .

実施例3 250 gJ 66 KVエチレン−プロピレンラバー
絶縁ケーブルの絶縁体へ3を鉛筆削りした後、圧縮スリ
ーブ(図示せず)で露出させた導体1゜1′を接続後、
半導電テープ(日本ユニカー製DFDJ 0580  
をテープ化したもの)を導体接続部上に巻回した後、温
度150℃で3時間加熱成形した。その後形成した半導
電層2上にエチレン−プロピレン共重合体テープ(du
 pont社製ノーデル2722をテープ化したもの)
を絶縁厚が20順になるように巻回し、さらに絶縁体4
上に第2図に示す縁切り部7を作成するため、第2表の
1の組成物で作ったテープを2市厚さで、縁切り部距離
70龍、第2図6の箇所には半導電テープを巻いた。本
接続部を加硫管(図示せず)中に入れ、窒素ガス8kg
/crI、雰囲気温度210℃にて4時間加熱しガス加
圧下にて冷却し接続部を作成した。
Example 3 After sharpening 3 on the insulator of a 250 gJ 66 KV ethylene-propylene rubber insulated cable, and connecting the exposed conductor 1°1' with a compression sleeve (not shown),
Semi-conductive tape (DFDJ 0580 manufactured by Nippon Unicar)
After winding the tape over the conductor connection portion, it was heat-molded at a temperature of 150° C. for 3 hours. After that, an ethylene-propylene copolymer tape (du
Tape made from Pont's Nordel 2722)
are wound so that the insulation thickness is 20, and then the insulator 4 is wound.
In order to create the edge cut portion 7 shown in FIG. 2 above, use a tape made of the composition 1 in Table 2 to a thickness of 2 cm, the edge cut distance is 70 mm, and a semi-conducting conductor is applied to the portion shown in FIG. 2 6. I wrapped the tape around it. Place this connection part into a vulcanization tube (not shown) and apply 8 kg of nitrogen gas.
/crI, heated at an ambient temperature of 210° C. for 4 hours, and cooled under gas pressure to create a connection part.

接続部作成後、縁切り部の交流での体積固有抵抗率は2
×10 Ω・口、インパルス閃絡電圧は140KVであ
った。
After creating the connection, the volume specific resistivity of the cut edge part at AC is 2.
×10 Ω·mouth, impulse flash voltage was 140 KV.

本接続部を導体温度90℃、8時間通電、16時間通電
停止の条件でヒートサイクルを200サイクル行った後
、上記の試験を行ったが特性に変化はなかった。
The above test was conducted after this connection was subjected to 200 heat cycles at a conductor temperature of 90° C., energized for 8 hours, and stopped for 16 hours, but there was no change in the characteristics.

実施例4 600m11154に■架橋ポ+)−r−fし7絶縁’
r−プルの絶縁体a3を鉛筆削りした後、圧縮スリーブ
で露出させた導体1.1′を接続後、この導体接続部上
に半導電性テープ(古河電工社製商品名導電性Cテープ
)を、巻回し、更にこの半導電層2上にエチレンプロピ
レンゴムを基体にした絶縁テープ(古河電工社製商品名
工フコ31号)を絶縁厚50iamとなるまで巻回し、
接続部補強絶縁体層4を形成した。この補強絶縁層4上
の第2図に示した縁切り部7には、前記第1表の1と同
一組成物のテープを他の個所には上記半導電層2に用い
たと同一の半導電性テープをそれぞれ巻いた絶縁接続部
を作った。
Example 4 600m11154 ■Cross-linked po+)-r-f and 7 insulation'
After sharpening the r-pull insulator A3, connect the exposed conductor 1.1' with the compression sleeve, and then apply semiconductive tape (product name: Conductive C Tape, manufactured by Furukawa Electric Co., Ltd.) on the conductor connection. , further winding an insulating tape based on ethylene propylene rubber (Fuko Fuco No. 31, manufactured by Furukawa Electric Co., Ltd.) on this semiconductive layer 2 until the insulation thickness becomes 50 iam,
A connection portion reinforcing insulator layer 4 was formed. A tape of the same composition as 1 in Table 1 is applied to the edge cutting portion 7 shown in FIG. I made insulated connections by wrapping each piece of tape.

接続部作成後、縁切り部の交流での体積固有抵抗率は2
×】09Ω・m、インパルス閃絡電圧はj20KVであ
った。
After creating the connection, the volume specific resistivity of the cut edge part at AC is 2.
x]09Ω·m, and the impulse flash voltage was j20KV.

本接続部を導体温度が90℃になるように、200日間
毎日・8時間通電するヒートサイクルテストを行ったが
、縁切り部の特性は変化していなかった。
A heat cycle test was conducted in which electricity was applied for 8 hours every day for 200 days so that the conductor temperature reached 90° C., but the characteristics of the edge cut portion did not change.

実施例5 66KV250−のポリエチレン絶縁ケーブルの絶縁体
λ3を鉛筆削りした後、圧縮スリーブで露出させた導体
1,1tを接続後、この導体接続部上に半導電テープ(
ポリエチレン(NUp9025)100部にカーボンブ
ラック(VulcanXC72)70部混合したcom
poundをテープ化したもの)を導体接続部上に巻回
し、温度120℃で1時間加熱成形して半導電層2を形
成した。
Example 5 After sharpening the insulator λ3 of a 66KV250- polyethylene insulated cable, connect the exposed conductors 1 and 1t with a compression sleeve, and then apply semiconducting tape (
com mixed with 100 parts of polyethylene (NUp9025) and 70 parts of carbon black (VulcanXC72)
A tape formed from Pound) was wound onto the conductor connection portion and heat-molded at a temperature of 120° C. for 1 hour to form a semiconductive layer 2.

ついで絶縁テープ(ポリエチレン(NUC9025)を
テープ化したもの)を絶縁厚が12+uになるように巻
回し、さらに第2図に示す縁切り部7を作成するため実
施例2の組成4で作ったテープを2龍厚さで巻いた。次
にこの接続部を窒素ガス8に9/ay/I、雰囲気温度
130℃で2時間加熱し絶縁接続部を形成した。
Next, an insulating tape (polyethylene (NUC9025) made into a tape) was wound so that the insulation thickness was 12+U, and further, in order to create the edge cut portion 7 shown in FIG. It was rolled to a thickness of 2 dragons. Next, this connection portion was heated in nitrogen gas 8/day/I at an ambient temperature of 130° C. for 2 hours to form an insulated connection portion.

接続部作成後、縁切り部の交流での体積固有抵抗率は2
×10Ω・儂、インパルス閃絡電圧は110 KVであ
った。
After creating the connection, the volume specific resistivity of the cut edge part at AC is 2.
×10Ω・I, the impulse flash voltage was 110 KV.

本接続部について実施例】と同様のヒートサイクル試験
を実施したが、縁切り部の特性は何等変化がなかった。
A heat cycle test similar to that in Example] was conducted on this connection, but there was no change in the characteristics of the edge cut portion.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はゴム、プラスチック絶縁ケーブルの従来の絶縁
接続部の一例を示す部分縦断面略図、第2図は本発明の
絶縁接続部の一実施例を示す部分縦断面略図である。 1.1’・・・導体、2・・・内部半導電層、3・・ケ
ーブル絶縁体層、4・・接続部補強絶縁体層、5・・接
続部外部半導電層、6・・・接続部外部半導電層、7・
・・高誘電率、高抵抗層、8・・・スリット部。
FIG. 1 is a schematic partial vertical cross-sectional view showing an example of a conventional insulated connection part of a rubber or plastic insulated cable, and FIG. 2 is a schematic partial vertical cross-sectional view showing an embodiment of the insulated connection part of the present invention. 1.1'...Conductor, 2...Inner semiconducting layer, 3...Cable insulator layer, 4...Connection part reinforcing insulator layer, 5...Connection part outer semiconducting layer, 6... Connecting portion external semiconducting layer, 7.
...High dielectric constant, high resistance layer, 8...Slit part.

Claims (1)

【特許請求の範囲】[Claims] 1 ケーブル導体接続部を覆った絶縁補強層の外周に絶
縁遮蔽層を設けてなるゴムまたはプラスチック絶縁型カ
ケープルの接続部において、前記絶縁遮蔽層を、ゴムま
たはプラスチックを基体とし、その100重量部に対し
て酸化亜鉛50〜700重量部およびカーボンブラック
2〜60重量部を配合してなる混和物からなる高誘電率
、高抵抗層を介して長手方向に左右対向した状態に設け
たことを特徴とするゴム、プラスチック絶縁型カケープ
ルの絶縁接続部。
1. In the connection part of a rubber or plastic insulated cable cable in which an insulating shielding layer is provided on the outer periphery of an insulating reinforcing layer covering the cable conductor connection part, the insulating shielding layer is made of rubber or plastic as a base, and 100 parts by weight of the insulating shielding layer is A high dielectric constant, high resistance layer made of a mixture of 50 to 700 parts by weight of zinc oxide and 2 to 60 parts by weight of carbon black is disposed between the left and right sides in the longitudinal direction. Insulated connections for rubber and plastic insulated cables.
JP3697683A 1983-03-07 1983-03-07 Insulated connector of rubber and plastic insulated power cable Granted JPS59162708A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3697683A JPS59162708A (en) 1983-03-07 1983-03-07 Insulated connector of rubber and plastic insulated power cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3697683A JPS59162708A (en) 1983-03-07 1983-03-07 Insulated connector of rubber and plastic insulated power cable

Publications (2)

Publication Number Publication Date
JPS59162708A true JPS59162708A (en) 1984-09-13
JPH0368613B2 JPH0368613B2 (en) 1991-10-29

Family

ID=12484784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3697683A Granted JPS59162708A (en) 1983-03-07 1983-03-07 Insulated connector of rubber and plastic insulated power cable

Country Status (1)

Country Link
JP (1) JPS59162708A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015153514A (en) * 2014-02-12 2015-08-24 昭和電線ケーブルシステム株式会社 Highly dielectric composition for cable connection part and cable connection part using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015153514A (en) * 2014-02-12 2015-08-24 昭和電線ケーブルシステム株式会社 Highly dielectric composition for cable connection part and cable connection part using the same

Also Published As

Publication number Publication date
JPH0368613B2 (en) 1991-10-29

Similar Documents

Publication Publication Date Title
US20020010252A1 (en) Cross-linkable semiconductive composition, and an electric cable having a semiconductive coating
US3793476A (en) Insulated conductor with a strippable layer
CA1217249A (en) Electrical stress control apparatus and method
JPH0132730B2 (en)
US4216351A (en) Plastic collar integral with a cable jacket
US20140287175A1 (en) Products for stress control in electrical power cables
US3487455A (en) Insulated high voltage conductor with potential gradient equalization means
JPS59162708A (en) Insulated connector of rubber and plastic insulated power cable
GB334840A (en) Improvements in the manufacture of electric cables
JPH07170624A (en) Attachment for power line connection and power line provided with such attachment
JPS59162709A (en) Insulated connector of rubber and plastic insulated power cable
JP3171657B2 (en) Cable connection end
JP3014542B2 (en) Method of connecting crosslinked rubber / plastic insulated power cable and electric field relaxation tape used therefor
JPS6176005A (en) Method of connecting cable
JPS5819810A (en) Extrusion crosslinking insulator
JPH0127398Y2 (en)
JPH0214275Y2 (en)
JPS59194310A (en) Electric cable
JPS59198817A (en) Crosslinked rubber and plastic insulated cable connector
JPH0546163B2 (en)
JPH0965563A (en) Cable insulating connection part
JPH0757852A (en) Waterproof heating element unit
JP2840837B2 (en) Cable mold joint method
JPH061937B2 (en) Cable mold joint construction method
JPS63269408A (en) Rubber plastic power cable