JPS59162709A - Insulated connector of rubber and plastic insulated power cable - Google Patents

Insulated connector of rubber and plastic insulated power cable

Info

Publication number
JPS59162709A
JPS59162709A JP3697783A JP3697783A JPS59162709A JP S59162709 A JPS59162709 A JP S59162709A JP 3697783 A JP3697783 A JP 3697783A JP 3697783 A JP3697783 A JP 3697783A JP S59162709 A JPS59162709 A JP S59162709A
Authority
JP
Japan
Prior art keywords
layer
insulated
tape
rubber
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3697783A
Other languages
Japanese (ja)
Other versions
JPH0132731B2 (en
Inventor
伸一 入江
山下 泰浩
孝男 中野
田辺 輝義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP3697783A priority Critical patent/JPS59162709A/en
Publication of JPS59162709A publication Critical patent/JPS59162709A/en
Publication of JPH0132731B2 publication Critical patent/JPH0132731B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)
  • Cable Accessories (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、特に新規な縁切り構造をもったゴム、プラス
チック絶縁ケーブルの絶縁接続部に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention particularly relates to an insulated connection of a rubber or plastic insulated cable with a novel edge cut structure.

長尺の単心ケーブルでは、導体電流の電磁誘導によって
シースに電位が誘起されるが、いわゆるクロスボンド方
式により、こうした電位を減少できる。こうしたクロス
ボンド方式には、ケーブル中間接続部として絶縁接続部
が使用される。絶縁接続部は絶縁遮蔽層を何等かの手段
を使用して電気的に絶縁したものである。
In long single-core cables, a potential is induced in the sheath by electromagnetic induction of conductor current, but this potential can be reduced by using the so-called cross-bond method. In such a cross-bond system, an insulated connection part is used as a cable intermediate connection part. The insulating connection portion is formed by electrically insulating the insulating shielding layer using some means.

従来、この種のゴム、プラスチック絶縁ケーブルの絶縁
接続部の縁切り構造は、その−例を第1図に示すように
、接続した2個の導体1,1′を中心としこの上に設け
た補強絶縁層上に、接続部絶縁遮蔽層5を同軸的に設け
てスリット8を形成し、上下方向に絶縁遮蔽層を縁切っ
たものが知られている。このような架橋ポリエチレン絶
縁ケーブルの絶縁接続部は次のように製造される。
Conventionally, the edge-cutting structure of the insulated connection part of this type of rubber or plastic insulated cable is as shown in FIG. It is known that a connecting portion insulating shielding layer 5 is coaxially provided on an insulating layer, a slit 8 is formed, and the insulating shielding layer is edged in the vertical direction. The insulated connection part of such a crosslinked polyethylene insulated cable is manufactured as follows.

まず、接続すべき2本のケーブルの端部の絶縁体層43
をそれぞれ図にもみられるように鉛筆状に削り、圧縮ス
リーブ等で導体fll fl)’を接続した後、その上
に半導電性テープあるいは半導電性熱収縮チューブによ
り内部半導電層2を形成する。次いでこの内部半導電層
2上にケープ段絶縁体層43に亘って自己融着性絶縁テ
ープなどのゴムまたはプラスチック絶縁テープを巻回し
た後、これを加圧加熱し一体に融着する。
First, the insulator layer 43 at the ends of the two cables to be connected
As shown in the figure, after sharpening each into a pencil shape and connecting the conductor fll fl)' with a compression sleeve etc., the internal semiconductive layer 2 is formed on top of it using semiconductive tape or semiconductive heat shrink tube. . Next, a rubber or plastic insulating tape, such as a self-adhesive insulating tape, is wound over the inner semiconducting layer 2 over the cape stage insulating layer 43, and is then heated under pressure to be fused together.

あるいは内部半導電層2の周囲に所望の金型(図示せず
)を設け、そこに溶融樹脂を射出し成形した後、適当な
手段により加熱融着させることにより接続部補強絶縁体
層4を形成する。
Alternatively, a desired mold (not shown) is provided around the internal semiconducting layer 2, molten resin is injected into the mold, and the connecting portion reinforcing insulating layer 4 is formed by heat-sealing it by an appropriate means. Form.

さらにこの接続部補強絶縁体層4の外周に同軸的にスリ
ット部8を設けた外部半導電層5を設けて接続部が完成
する。
Further, an external semiconducting layer 5 having a slit portion 8 coaxially provided on the outer periphery of the connecting portion reinforcing insulating layer 4 is provided to complete the connecting portion.

しかしながら、このような従来のゴム、プラスチック絶
縁ケーブルの絶縁接続部には多くの欠点が存在した。す
なわち、 (イ)補強絶縁体層4を形成するためのテープ巻回層な
どを加熱し、一体に融着する際にスリット8を形成する
半導電層5の先端が変形してしまう。このため先端の電
界が大きくなるため、形成された接続部はこの先端から
破壊し易くなる。
However, the insulated connections of such conventional rubber and plastic insulated cables have many drawbacks. That is, (a) the tip of the semiconductive layer 5 forming the slit 8 is deformed when the tape winding layer for forming the reinforcing insulating layer 4 is heated and fused together. As a result, the electric field at the tip increases, and the formed connection becomes more likely to break from this tip.

(ロ)半導電層5でスリット8を作成する際、同軸的に
同心円上にすることが困難であり、そのため電界の乱れ
が生じ易い。
(b) When forming the slits 8 in the semiconductive layer 5, it is difficult to form them coaxially on a concentric circle, and therefore disturbances in the electric field are likely to occur.

こうした欠点に鑑み第1図のようなスリット8を必要と
しない第2図にみられるよ5・なゴム、プラスチック絶
縁型カケープルのケーブル導体接続部上を覆う絶縁補強
層4の外周上に、交流での体積固有抵抗率106〜10
12Ω・儒、比誘電率6〜100を有する高誘電率かつ
高抵抗層7を介して絶縁遮蔽層6を設け、絶縁遮蔽層6
を縁切る高誘電率、高抵抗型絶縁接続部が提案された。
In view of these drawbacks, the slit 8 shown in FIG. 1 is not required, and the insulation reinforcing layer 4 covering the cable conductor connection part of the rubber or plastic insulated cable cable shown in FIG. Volume resistivity at 106~10
An insulating shielding layer 6 is provided via a high dielectric constant and high resistance layer 7 having a relative permittivity of 6 to 100 and a dielectric constant of 12Ω.
A high-permittivity, high-resistance type insulated connection part was proposed to separate the

ここで、この高誘電率・、高抵抗層の数値の根拠は、体
積抵抗率106Ω・儂以下、比誘電率100Ju上では
、ケーブル線路に侵入してくるインパルス電圧で閃絡し
てしまい、一方体積固有抵抗率1012Ω・1以上、比
誘率6以下では本接続部に課電した場合、第2図絶縁遮
蔽層6と高誘電率、高抵抗層7の際に電界が集中し、容
易に破壊してしまうためである。
Here, the basis for the numerical value of this high dielectric constant and high resistance layer is that when the volume resistivity is below 106Ω・I and the relative permittivity is above 100Ju, flash shorting occurs due to the impulse voltage that enters the cable line. If the specific volume resistivity is 1012 Ω・1 or more and the dielectric constant is 6 or less, when a voltage is applied to the main connection part, the electric field will be concentrated between the insulation shielding layer 6 and the high dielectric constant, high resistance layer 7 in FIG. This is because it will be destroyed.

従来このような高誘電率で高抵抗型縁切り部としてはカ
ーボン含有儀を適当に調整することにより、上記抵抗範
囲の高抵抗層を絶縁体円周上に設ける方法があるが、こ
の方法ではカーボンのみ含有した高抵抗層がヒートサイ
クル等の熱履歴により抵抗値が変動し易いという問題点
があった。
Conventionally, there is a method of forming a high-resistance layer having the above resistance range on the circumference of the insulator by appropriately adjusting a carbon-containing layer to form such a high-permittivity, high-resistance edge cut. There was a problem in that the resistance value of the high-resistance layer containing only the above-mentioned materials tends to fluctuate due to thermal history such as heat cycling.

本発明は高誘電率、高抵抗型絶縁接続部における上述の
如き欠点を除去し、安定にして簡易な絶縁接続部を提供
することにある。
The object of the present invention is to eliminate the above-mentioned drawbacks of high dielectric constant, high resistance type insulated connections and provide a stable and simple insulated connection.

すなわち、第2図の高誘電率、高抵抗層(縁切り部)7
としては基体樹脂100重量部に対して、炭化硅素50
〜700重量部及びカーボン2〜60重量部を混和配合
した組成物を使用したことを特徴とした絶縁接続部であ
る。基体樹脂としては低密度ポリエチレン、中密度ポリ
エチレン、高密度ポリエチレン、エチレン−プロピレン
共重合体、エチレン−エチルアクリレート共重合体、エ
チレン−酢酸ビニル共重合体、エチレン−αオレフィン
−ポリエン三元共! 合体く例えば三井石油化学製エラ
ストマー(エチレン・l−ブテン會5−エチリデンー2
−ノルボルネン三元共重合体))、これらの材料の単独
又は二種以上のブレンド物又はこれらの架橋体が適当で
ある。
In other words, the high dielectric constant, high resistance layer (edge cut portion) 7 in FIG.
As for 100 parts by weight of base resin, 50 parts by weight of silicon carbide
This insulated connection part is characterized by using a composition in which ~700 parts by weight and 2 to 60 parts by weight of carbon are mixed and blended. Base resins include low-density polyethylene, medium-density polyethylene, high-density polyethylene, ethylene-propylene copolymer, ethylene-ethyl acrylate copolymer, ethylene-vinyl acetate copolymer, and ethylene-α-olefin-polyene ternary copolymer! For example, Mitsui Petrochemical's elastomer (ethylene/l-butene 5-ethylidene-2
- norbornene terpolymer)), these materials alone or a blend of two or more thereof, or a crosslinked product thereof are suitable.

次に本発明における数量限定の理由を簡単に述べると、
基体樹脂100重量部に対して炭化硅素の配合量が50
重量部未満では、熱履歴によって電気抵抗が変化するの
で、不可である。
Next, to briefly explain the reason for the limited quantity in the present invention,
The blending amount of silicon carbide is 50 parts by weight based on 100 parts by weight of the base resin.
If the amount is less than part by weight, the electrical resistance will change depending on the thermal history, so it is not possible.

又700重量部を越えると、組成物が非常に硬くなり、
加工しに、くいので不可である。又、カーボンが2重量
部未満では、所望の誘電率抵抗が得られないので、不可
であり、逆に60重量部を越えると、組成物が硬くなり
、加工しにくいので不可である。
Moreover, if it exceeds 700 parts by weight, the composition becomes very hard.
It is difficult to process, so it is not possible. Further, if the carbon content is less than 2 parts by weight, the desired dielectric constant resistance cannot be obtained, so it is not acceptable.On the other hand, if it exceeds 60 parts by weight, the composition becomes hard and difficult to process, so it is not acceptable.

かかる発明の構造による効果、特徴は、カーボンブラッ
クのみ含有の高誘電率、高抵抗層に比して、炭化硅素を
配合したことにより熱履歴を受けてもカーボンブラック
の移動が生じに(くなり、抵抗率の変化がほとんど見ら
れないという特徴を有する。
The effects and features of the structure of this invention are that, compared to a high dielectric constant and high resistance layer containing only carbon black, the inclusion of silicon carbide prevents carbon black from moving even when subjected to thermal history. , it is characterized by almost no change in resistivity.

縁切り部の形成法は次の如くにする。すなゎち、 (1)前記配合組成テープを接続部補強絶縁体層4上に
巻回する。場合によっては本テープを巻回した後、接続
部補強絶縁体層4にこれを加熱融着させる。
The method for forming the edge cut portion is as follows. In other words, (1) Wrap the tape with the above-mentioned composition on the connection portion reinforcing insulator layer 4. In some cases, after winding the tape, it is heat-fused to the connection portion reinforcing insulator layer 4.

(2)予め前記配合組成物からなるチューブを、設計し
た接続部補強絶縁体層4の外径に合わせて作成し、補強
絶縁体層4を成形後、この補強絶縁体層4−ヒに該チュ
ーブを挿入被覆し加熱融着する。
(2) A tube made of the above compounded composition is prepared in advance according to the outer diameter of the designed connecting portion reinforcing insulating layer 4, and after molding the reinforcing insulating layer 4, the tube is made of the above-mentioned compounded composition. Insert the tube, cover it, and heat-seal it.

(3)  補強絶縁層成形後、この絶縁層上に金型を置
き、縁切り部の設計に合わせて、前記の配合組成物を射
出あるいは押出成形する。さらに絶縁層に加熱融着させ
る。
(3) After molding the reinforcing insulating layer, a mold is placed on the insulating layer, and the above compounded composition is injected or extruded according to the design of the edge cut portion. Furthermore, it is heat-fused to the insulating layer.

ここで該高誘電率かつ高抵抗層の厚さ及び長さについて
は、定格電圧縁によって異なるが、例えば66KV級の
ケーブルで、厚さは1〜3 tnm絶縁遮蔽層間の離隔
距離は50〜100+mが好ましい。
Here, the thickness and length of the high dielectric constant and high resistance layer vary depending on the rated voltage edge, but for example, for a 66KV class cable, the thickness is 1 to 3 tnm, and the separation distance between the insulation shielding layers is 50 to 100+ m. is preferred.

実施例1 600m++t154KV 架橋ポリエチレン絶縁ケー
ブルの絶縁体重3を、鉛筆削りした後、圧縮スリーブ(
図示せず)で導体L IIを接続後、半導電性テープ(
日本ユニカー株式会社製商品名DFD、JO580をテ
ープ化したもの)を、導体接続部上に巻回した後、温度
150℃で4時間加熱成形した。その後、形成した導電
層2の周囲に金型(図示せず)を取付け、30闘押出機
から架橋剤入りポリエチレン組成物(HFDJ4201
(日本五二カー株式会社製商品名)〕を金型内に押出し
成形した。この押出機(図示せず)の設定温度は120
℃であった。次に冷却後前記金型を取外し、形成した接
続部補強絶縁体層4の第2図に示す高誘電率かつ高抵抗
層には次の第1表に示す組成物のテープを3朋厚さで、
縁切り部距離100耶その他の個所には上記の半導電性
テープをそれぞれ巻いた。而して得た接続部を加硫管(
図示せず)中に入れ、窒素ガス8 kg/ cr/I雰
囲気で温度210 ”Cにて6時間加熱した後、ガス加
圧下にて冷却した。尚、ジヨイント補強絶縁体層4の厚
さは25朋であったJ 接続部成形後、高誘電率かつ高抵抗層の交流での体積固
有抵抗率、インパルス閃絡耐圧テストを実施した後、導
体温度90°(7になるように200日間毎日8時間通
電した。ヒートサイクルテスト実施後、高誘電率かつ高
抵抗層の交流での体積固有抵抗率、インパルス閃絡耐圧
テストをおこなった。得られた結果を第1表に併記した
Example 1 A 600m++t154KV cross-linked polyethylene insulated cable with an insulation weight of 3 was sharpened with a pencil and then compressed into a compression sleeve (
After connecting conductor L II with semi-conductive tape (not shown),
A tape made of Nippon Unicar Co., Ltd. (trade name: DFD, JO580) was wound onto the conductor connection portion and then heat-formed at a temperature of 150° C. for 4 hours. Thereafter, a mold (not shown) was attached around the formed conductive layer 2, and a polyethylene composition containing a crosslinking agent (HFDJ4201
(trade name manufactured by Nippon Gounika Co., Ltd.)] was extruded into a mold. The set temperature of this extruder (not shown) is 120
It was ℃. Next, after cooling, the mold was removed, and a tape having a composition shown in Table 1 below was applied to the high dielectric constant and high resistance layer shown in FIG. in,
The above semiconductive tape was wrapped around the edge cut distance 100 mm and other parts. The connection thus obtained is then connected to a vulcanized tube (
(not shown), heated at a temperature of 210"C for 6 hours in a nitrogen gas atmosphere of 8 kg/cr/I, and then cooled under gas pressure.The thickness of the joint reinforcing insulator layer 4 is After forming the connection part, the high dielectric constant and high resistance layer was subjected to alternating current volume resistivity and impulse flash breakdown voltage tests. Electricity was applied for 8 hours. After conducting the heat cycle test, the high dielectric constant and high resistance layer was subjected to alternating current volume resistivity and impulse flash breakdown voltage tests. The obtained results are also listed in Table 1.

第1表から明らかなように本実施例による絶縁接続部は
何れも従来のものに比して、ヒートサイクル熱履歴後の
縁切り部の特性が比較例に比べ非常に安定している。
As is clear from Table 1, the characteristics of the edge cut portions after heat cycle thermal history are much more stable than those of the comparative examples in all of the insulated connection parts according to the present example, compared to the conventional ones.

実施例2 250mm66KV架橋ポリエチレン絶縁ケーブルの絶
縁体λ3を鉛筆削りした後、圧縮スリーブ(図示せず)
で露出させた導体1,12を接続後半導電性テープ(日
本ユニカー株式会社製DFDJ、0580をテープ化し
たもの)を、導体接続部上に巻回した後、温度150℃
で3時間加熱成形した。その後形成した導電層2の周囲
に金型(図示せず)を取付け、30朋押出機から架橋可
能なポリエチレン組成物(日本ユニカー製HFDJ 4
201)を絶縁厚12Ml11になるように金型内に押
出し成形した。この押出機(図示せず)の設定は120
℃であった。次に冷却後、前記金型を取外し、形成した
接続部補強絶縁体層4の第2図に示す高誘電率かつ高抵
抗層には次の第2表に示す組成物のテープを2朋厚さで
、縁切り部距離70闘、第2図の6の個所には上記の半
導電テープを巻いた。本接続部を加硫管(図示せず)中
に入れ、窒素ガス8kg/Cr!、雰囲気温度210°
Cにて4時間加熱し、ガス加圧下にて冷却し接続部を成
形した。
Example 2 After sharpening the insulator λ3 of a 250 mm 66 KV cross-linked polyethylene insulated cable, a compression sleeve (not shown) was applied.
After connecting the exposed conductors 1 and 12, a conductive tape (a tape of DFDJ, 0580 manufactured by Nippon Unicar Co., Ltd.) was wound over the conductor connection portion, and then heated to a temperature of 150°C.
It was heat-molded for 3 hours. Thereafter, a mold (not shown) was attached around the formed conductive layer 2, and a crosslinkable polyethylene composition (HFDJ 4 manufactured by Nippon Unicar Co., Ltd.
201) was extruded into a mold so that the insulation thickness was 12Ml11. The settings for this extruder (not shown) are 120
It was ℃. Next, after cooling, the mold was removed, and a tape of the composition shown in Table 2 below was applied to the high dielectric constant and high resistance layer shown in FIG. Now, the edge cutting distance was 70 mm, and the above semiconductive tape was wrapped around the point 6 in Fig. 2. Place this connection part into a vulcanizing tube (not shown) and use nitrogen gas of 8 kg/Cr! , ambient temperature 210°
C for 4 hours and cooled under gas pressure to form a connection part.

接続部成形後、高誘電率かつ高抵抗層の交流での体積固
有抵抗率、インパルス閃絡耐圧テストを実施した後、導
体温度90℃になるように200日間毎日8時間通電し
た。ヒートサイクルテスト実施後、高誘電率、高抵抗層
の交流での体積固有抵抗率、インパルス閃絡耐圧テスト
をおこなった。得られた結果を第2表に併記した。
After forming the connection part, the high dielectric constant and high resistance layer was tested for volume resistivity and impulse flash breakdown voltage under alternating current, and then electricity was applied for 8 hours every day for 200 days so that the conductor temperature was 90°C. After conducting heat cycle tests, we conducted volume resistivity and impulse flash breakdown voltage tests of the high dielectric constant and high resistance layers under alternating current. The obtained results are also listed in Table 2.

第2表から明らかなように本実施例による絶縁接続部は
何れも従来のものに比して、ヒートサイクル熱履歴後の
縁切り部の特性が比較例に比べ非常に安定していること
がわかる。
As is clear from Table 2, it can be seen that the characteristics of the edge cut parts after heat cycle thermal history are much more stable than those of the comparative example in all of the insulated joints according to this example, compared to the conventional ones. .

実施例3 250+u66KVエチレン−プロピレンラバー絶縁ケ
ーブルの絶縁体屑入3を鉛筆削りした後、圧縮スリーブ
(図示せず′)で露出させた導体】。
Example 3 After pencil sharpening the insulator waste container 3 of a 250+u66KV ethylene-propylene rubber insulated cable, the conductor was exposed with a compression sleeve (not shown).

]’//接続後、半導電テープ(日本ユニカー製DFD
J 0580をテープ化したもの)を導体接続 □部上
に巻回した後、温度150℃で3時間加熱成形した。そ
の後形成した半導電層2上にエチレン−プロピレン共重
合体テープ(du pont 社製ノーデル2722を
テープ化したもの)を、絶縁厚が20藺になるように巻
回し、さらに絶縁体4上に第2図に示す縁切り部7を作
成するため、第2表1の組成物で作ったテープを2問厚
さで、縁切り部距離70III+11、第2図6の箇所
には半導電テープを巻いた。本接続部を加硫管(図示せ
ず)中に入れ、窒素ガス8に9/cd、雰囲気温度21
’0℃にて4時間加熱しガス加圧下にて冷却し接続部を
作成した。
]'//After connection, apply semi-conductive tape (DFD manufactured by Nippon Unicar)
J 0580 (made into a tape) was wound onto the conductor connection □ portion, and then heated and molded at a temperature of 150° C. for 3 hours. Thereafter, an ethylene-propylene copolymer tape (a tape made of Nordel 2722 manufactured by Du Pont) was wound on the semiconductive layer 2 formed so that the insulation thickness was 20 mm, and then a third layer was wound on the insulator 4. In order to create the edge cut portion 7 shown in FIG. 2, a tape made from the composition shown in Table 2 1 was used to a thickness of 2, and the edge cut distance was 70III+11, and semiconductive tape was wrapped at the location shown in FIG. 2 6. Place this connection part into a vulcanization tube (not shown), add nitrogen gas to 8/9/cd, and atmosphere temperature to 21
A connection portion was prepared by heating at 0° C. for 4 hours and cooling under gas pressure.

接続部作成後、縁切り部の交流での体積固有抵抗率は2
×10Ω・a1インパルス閃絡電圧は140 KVであ
った。
After creating the connection, the volume specific resistivity of the cut edge part at AC is 2.
×10Ω·a1 impulse flash voltage was 140 KV.

本接続部を導体温度90℃8時間通電、16時間通電停
止の条件でヒートサイクルを200サイクル行った後、
上記の試験を行ったか特性に変化はなかった。
After performing 200 heat cycles on this connection part at a conductor temperature of 90°C, energizing for 8 hours and stopping for 16 hours,
There was no change in the characteristics after the above test.

実施例4 600+n4154KV架橋ポリエチレン絶縁ケーブル
の絶縁体洩3を鉛筆削りした後、圧縮スリーブで露出さ
せた導体1,1′を接続後、この導体接続部上に半導電
性テープ(古河電工社製商品名導電性Cテープ)を、巻
回し、更にこの半導電層2上にエチレンプロピレンゴム
を基体にした絶縁テープ(古河電工社製商品名工フコ3
1号)を絶縁厚50mmとなるまで巻回し、接続部補強
絶縁体層4を形成した。この補強絶縁層4上の第2図に
示した縁切り部7には、前記第1表の1と同一組成物の
テープを他の個所には上記半導電層2に用いたと同一の
半導電性テープをそれぞれ巻いた絶縁接続部を作った。
Example 4 After sharpening the insulator leakage 3 of a 600+n4154KV cross-linked polyethylene insulated cable, connect the exposed conductors 1 and 1' with a compression sleeve, and then apply semiconductive tape (a product manufactured by Furukawa Electric Co., Ltd.) on the conductor connection part. A conductive C tape) is wound around the semi-conductive layer 2, and an insulating tape based on ethylene propylene rubber (Fuko Fuco 3 manufactured by Furukawa Electric Co., Ltd.) is wrapped around the semi-conductive layer 2.
No. 1) was wound to an insulation thickness of 50 mm to form a connecting portion reinforcing insulator layer 4. A tape of the same composition as 1 in Table 1 is applied to the edge cutting portion 7 shown in FIG. I made insulated connections by wrapping each piece of tape.

接続部作成後、縁切り部の交流での体積固有抵抗率は2
X10”Ω・α、インパルス閃絡電圧は120KVであ
った。
After creating the connection, the volume specific resistivity of the cut edge part at AC is 2.
The impulse flash voltage was 120 KV.

本接続部を導体温度が90℃になるように200日間毎
日8時間通電するヒートサイクルテストを行ったが、縁
切り部の特性は変化していなかった。
A heat cycle test was conducted in which electricity was applied to this connection for 8 hours every day for 200 days so that the conductor temperature reached 90° C., but the characteristics of the edge cut portion did not change.

実施例5 66KV250−ポリエチレン絶縁ケーブルの絶縁体3
,3を鉛筆削りした後、圧縮スリーブで露出させた導体
1,1′を接続後、この導体接続部上に半導電テープ(
ポリエチレン(NUC9025)100部ニカーボンブ
ラック(Vulcan XC72)70部を混合したc
ompoundをテープ化したもの)を導体接続部上に
巻回し、温度120℃で1時間加熱成形して半導電層2
を形成した。ついで絶縁テープ(ポリエチレン(NUC
9025)をテープ化したもの)を絶縁厚が12mrn
になるように巻回し、さらに第2図に示す縁切り部7を
作成するため実施例20組成4で作ったテープを2關厚
さで巻いた。次にこの接続部を窒素ガスs ky / 
d、雰囲気温度130℃で2時間加熱し絶縁接続部を形
成した。
Example 5 Insulator 3 of 66KV250-polyethylene insulated cable
, 3, connect the exposed conductors 1 and 1' with the compression sleeve, and then apply semiconductive tape (
c mixed with 100 parts of polyethylene (NUC9025) and 70 parts of carbon black (Vulcan XC72)
compound) was wound onto the conductor connection part and heated and molded at 120°C for 1 hour to form the semiconductive layer 2.
was formed. Next, insulating tape (polyethylene (NUC)
9025) into a tape) with an insulation thickness of 12 mrn.
Then, in order to create the edge cut portion 7 shown in FIG. 2, a tape made from composition 4 of Example 20 was wound to a thickness of 2 times. Next, connect this connection with nitrogen gas sky /
d. Heating was performed at an ambient temperature of 130° C. for 2 hours to form an insulated connection portion.

接続部作成後、縁切り部の交流での体積固有抵抗率は2
×jOΩ・儂、インパルス閃絡電圧は] ] OKV 
であった。
After creating the connection, the volume specific resistivity of the cut edge part at AC is 2.
×jOΩ・I, impulse flash voltage is]] OKV
Met.

本接続部について実施例1と同様のヒートサイクル試験
を実施したが、縁切り部の特性は何等変化がなかった。
A heat cycle test similar to that in Example 1 was conducted for this connection, but there was no change in the characteristics of the edge cut portion.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はゴム、プラスチック絶縁ケーブルの従来の絶縁
接続部の一例を示ず部分縦断面略図、第2図は本発明の
絶縁接続部の一実施例を示す部分縦断面略図である。 1、II・・導体、2・・内部半導電層、3・ケーブル
絶縁体層、4・・接続部補強絶縁体層、5・接続部外部
半導電層、6・・接続部外部半導電層。 7・・高誘電率、高抵抗層、8・・スリット部(縁切り
部)。
FIG. 1 is a schematic partial vertical cross-sectional view showing an example of a conventional insulated connection part of a rubber or plastic insulated cable, and FIG. 2 is a schematic partial vertical cross-sectional view showing an embodiment of the insulated connection part of the present invention. 1, II...Conductor, 2...Inner semiconducting layer, 3...Cable insulator layer, 4...Connection part reinforcing insulator layer, 5...Connection part outer semiconducting layer, 6...Connection part outer semiconducting layer . 7. High dielectric constant, high resistance layer, 8. Slit part (edge cutting part).

Claims (1)

【特許請求の範囲】[Claims] 1 ケーブル導体接続部を覆った絶縁補強層の外周に絶
縁遮蔽層を設けてなるゴムまたはプラスチック絶縁型カ
ケープルの接続部において、前記絶縁遮蔽層を、プラス
チックを基体とし、その100重量部に対して炭化硅素
50〜700重量部およびカーボンブラック2〜60重
量部を配合してなる混和物からなる高誘電率、高抵抗層
を介して長手方向に左右対向した状態に設けたことを特
徴とするゴム、プラスチック絶縁型カケープルの絶縁接
続部。
1. In the connection part of a rubber or plastic insulated cable cable in which an insulating shielding layer is provided on the outer periphery of an insulating reinforcing layer that covers the cable conductor connecting part, the insulating shielding layer is made of plastic as a base, and the amount of the insulating shielding layer is 100 parts by weight A rubber characterized by being provided in a state in which left and right sides are opposed in the longitudinal direction with a high dielectric constant and high resistance layer made of a mixture of 50 to 700 parts by weight of silicon carbide and 2 to 60 parts by weight of carbon black. , insulated connections for plastic insulated cables.
JP3697783A 1983-03-07 1983-03-07 Insulated connector of rubber and plastic insulated power cable Granted JPS59162709A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3697783A JPS59162709A (en) 1983-03-07 1983-03-07 Insulated connector of rubber and plastic insulated power cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3697783A JPS59162709A (en) 1983-03-07 1983-03-07 Insulated connector of rubber and plastic insulated power cable

Publications (2)

Publication Number Publication Date
JPS59162709A true JPS59162709A (en) 1984-09-13
JPH0132731B2 JPH0132731B2 (en) 1989-07-10

Family

ID=12484811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3697783A Granted JPS59162709A (en) 1983-03-07 1983-03-07 Insulated connector of rubber and plastic insulated power cable

Country Status (1)

Country Link
JP (1) JPS59162709A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01164211A (en) * 1987-10-13 1989-06-28 Standard Teleph Og Kabelfab As Cable installation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01164211A (en) * 1987-10-13 1989-06-28 Standard Teleph Og Kabelfab As Cable installation

Also Published As

Publication number Publication date
JPH0132731B2 (en) 1989-07-10

Similar Documents

Publication Publication Date Title
US3777048A (en) Molding process for splicing cable and product formed thereby
CA1217249A (en) Electrical stress control apparatus and method
JPH0132730B2 (en)
US4216351A (en) Plastic collar integral with a cable jacket
US20140287175A1 (en) Products for stress control in electrical power cables
JPS59162709A (en) Insulated connector of rubber and plastic insulated power cable
JPH0368613B2 (en)
JPH07170624A (en) Attachment for power line connection and power line provided with such attachment
JPS6176005A (en) Method of connecting cable
JPS58192424A (en) Plastic insulated cable connector
JP3014542B2 (en) Method of connecting crosslinked rubber / plastic insulated power cable and electric field relaxation tape used therefor
JPH0214275Y2 (en)
GB2108329A (en) Joining electric cables
JPS58192423A (en) Plastic insulated power cable connector
JPS59198817A (en) Crosslinked rubber and plastic insulated cable connector
JPH0127398Y2 (en)
JP3139719B2 (en) Connection method of cross-linked polyethylene insulated power cable
JPH0546163B2 (en)
JPS6342502Y2 (en)
JPH0965563A (en) Cable insulating connection part
JPH0640426Y2 (en) Insulation connection part of rubber / plastic insulation cable
JPH11205991A (en) Power cable connection part
JPH028528B2 (en)
JPH0538016A (en) Method for forming cable connection
JPS6059806B2 (en) Manufacturing method for rubber/plastic power cable connections