JP3139719B2 - Connection method of cross-linked polyethylene insulated power cable - Google Patents

Connection method of cross-linked polyethylene insulated power cable

Info

Publication number
JP3139719B2
JP3139719B2 JP03170414A JP17041491A JP3139719B2 JP 3139719 B2 JP3139719 B2 JP 3139719B2 JP 03170414 A JP03170414 A JP 03170414A JP 17041491 A JP17041491 A JP 17041491A JP 3139719 B2 JP3139719 B2 JP 3139719B2
Authority
JP
Japan
Prior art keywords
insulator
cable
connection
semiconductive
cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03170414A
Other languages
Japanese (ja)
Other versions
JPH04368410A (en
Inventor
一 野田
進 佐久間
鉄男 松本
芳久 高橋
Original Assignee
古河電気工業株式会社
東京電力株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河電気工業株式会社, 東京電力株式会社 filed Critical 古河電気工業株式会社
Priority to JP03170414A priority Critical patent/JP3139719B2/en
Publication of JPH04368410A publication Critical patent/JPH04368410A/en
Application granted granted Critical
Publication of JP3139719B2 publication Critical patent/JP3139719B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Processing Of Terminals (AREA)
  • Cable Accessories (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、架橋ポリエチレン絶縁
電力ケーブルの接続方法の改良に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improved method for connecting a crosslinked polyethylene insulated power cable.

【0002】[0002]

【従来の技術】架橋ポリエチレン絶縁電力ケーブルは、
その優れた絶縁性と取扱いの容易さによって、急速に高
電圧化の道をたどってきており、 275KV級の長距離線路
にも使用されつつある。長距離線路には接続部が必要不
可欠であるが、 275KV級にはいわゆる押出モールド型の
接続方法が採用されている。
2. Description of the Related Art Crosslinked polyethylene insulated power cables are:
Due to its excellent insulation properties and ease of handling, it is rapidly following the path of higher voltage, and is being used for 275KV-class long-haul lines. Connections are indispensable for long-distance lines, but the so-called extrusion-molded connection method is adopted for the 275KV class.

【0003】従来の押出モールド型の接続方法は、次の
ように行われている。まず、接続しようとする架橋ポリ
エチレン絶縁電力ケーブルの、外部半導電層を所定の寸
法に剥ぎとってケーブル絶縁体を露出させ、ケーブル絶
縁体を所定の形状に整形加工する。その後ケーブル導体
を導体接続管により圧縮接続し、その接続部に内部半導
電層を形成する。
The connection method of the conventional extrusion mold type is performed as follows. First, the outer semiconductive layer of the crosslinked polyethylene insulated power cable to be connected is peeled to a predetermined dimension to expose the cable insulator, and the cable insulator is shaped into a predetermined shape. Thereafter, the cable conductor is compression-connected by a conductor connection tube, and an internal semiconductive layer is formed at the connection portion.

【0004】次に接続部に二つ割の金型を被せ、その中
に架橋剤入りで未架橋のポリエチレンを押し出して接続
部絶縁体を形成する。この接続部絶縁体を所定の形状に
切削加工して整形した後、その外周に半導電性熱収縮チ
ューブを被せ、加熱収縮させて接続部外部半導電層を形
成し、その後接続部絶縁体を加圧加熱して架橋する。
[0004] Next, the connecting portion is covered with a mold, and a non-crosslinked polyethylene containing a crosslinking agent is extruded therein to form a connecting portion insulator. After cutting and shaping the connecting portion insulator into a predetermined shape, a semiconductive heat-shrinkable tube is put on the outer periphery of the outer portion, and the outer portion is heated and shrunk to form a connecting portion external semiconductive layer. Crosslink by heating under pressure.

【0005】[0005]

【課題】上記の接続方法において、ケーブルの外部半導
電層を剥ぎ取るときおよび接続部絶縁体を所定の形状に
切削加工するときには、電動工具やガラス片を用いて絶
縁体表面を丁寧に削り取ることが行われるが、このとき
ケーブル絶縁体や接続部絶縁体の表面に、細かい傷がつ
き易い。傷がついた絶縁体表面に接続部外部半導電層を
形成して架橋すると、接続部外部半導電層が溶融したと
きに絶縁体表面の細かい傷に流れ込んで、導電性の突起
となることがある。この突起は電気的欠陥となり、接続
部の耐電圧特性を著しく低下させる。
In the above connection method, when the outer semiconductive layer of the cable is peeled off and when the connection insulator is cut into a predetermined shape, the surface of the insulator is carefully scraped off using a power tool or a glass piece. However, at this time, the surface of the cable insulator or the connecting portion insulator is likely to be finely scratched. If the connecting portion external semiconductive layer is formed on the damaged insulator surface and crosslinked, when the connecting portion external semiconductive layer is melted, it may flow into fine scratches on the insulator surface and become conductive protrusions. is there. These protrusions become electrical defects, and significantly lower the withstand voltage characteristics of the connection portion.

【0006】[0006]

【課題の解決手段】本発明は上記の課題を解決した架橋
ポリエチレン絶縁電力ケーブルの接続方法を提供するも
ので、その構成は、接続部絶縁体を未架橋ポリエチレン
の押出モールドにより形成し、整形加工した後、融点が
接続部絶縁体の融点よりも高くかつ接続部絶縁体の架橋
温度よりも低い半導電性熱収縮チューブを、接続部絶縁
体とその両側のケーブル外部半導電層に跨がるように被
せて加熱収縮させ、しかる後、接続部絶縁体を加圧加熱
して架橋することを特徴とするものである。
SUMMARY OF THE INVENTION The present invention provides a method for connecting a crosslinked polyethylene insulated power cable which solves the above-mentioned problems. After that, a semiconductive heat-shrinkable tube whose melting point is higher than the melting point of the connecting portion insulator and lower than the cross-linking temperature of the connecting portion insulator is laid over the connecting portion insulator and the cable outer semiconductive layer on both sides thereof. In this manner, the connection portion insulator is shrunk by heating, and then the connection portion insulator is cross-linked by heating under pressure.

【0007】半導電性熱収縮チューブとしては、高密度
ポリエチレンをベースポリマーとしたものを用いること
が望ましい。
As the semiconductive heat-shrinkable tube, it is desirable to use a tube having high-density polyethylene as a base polymer.

【0008】[0008]

【作用】本発明の接続方法によると、接続絶縁体を加圧
加熱して架橋するとき、その温度上昇過程においてまず
接続部絶縁体とケーブル絶縁体が溶融し始める。このと
き半導電性熱収縮チューブは溶融していないので、半導
電性熱収縮チューブの平滑な内面が外周からの加圧力で
接続部絶縁体、ケーブル絶縁体の表面に押し付けられ
て、それらの絶縁体表面の平滑化が行われる。さらに温
度上昇すると半導電性熱収縮チューブが溶融して接続部
絶縁体とケーブル絶縁体に融着する。その後架橋に必要
な温度に達したならば、それを所定時間維持することに
より接続部絶縁体の架橋が行われる。
According to the connection method of the present invention, when the connection insulator is cross-linked by heating under pressure, the connection insulator and the cable insulator first begin to melt in the process of increasing the temperature. At this time, the semiconductive heat-shrinkable tubing is not melted, so the smooth inner surface of the semiconductive heat-shrinkable tubing is pressed against the surface of the connection insulator and the cable insulator by the pressure from the outer periphery, and the insulation between them is reduced. The body surface is smoothed. When the temperature further rises, the semiconductive heat-shrinkable tube melts and fuses to the connecting portion insulator and the cable insulator. After that, when the temperature required for the cross-linking has been reached, the connection insulator is cross-linked by maintaining the temperature for a predetermined time.

【0009】このように本発明の接続方法は、接続部絶
縁体およびケーブル絶縁体の表面平滑化処理と接続部絶
縁体の架橋とを連続的に行うことになるので、従来の方
法と同じ接続工程で、接続部外部半導電層に導電性突起
等の欠陥のない接続部を得ることができる。
As described above, according to the connection method of the present invention, the surface smoothing process of the connecting portion insulator and the cable insulator and the bridging of the connecting portion insulator are continuously performed. In the process, a connection portion having no defect such as a conductive protrusion can be obtained in the connection portion external semiconductive layer.

【0010】[0010]

【実施例】以下、本発明に係る架橋ポリエチレン絶縁電
力ケーブルの接続方法の実施例を図面を参照して詳細に
説明する。なお、実施例に使用したケーブルは電圧 275
KV、導体サイズ2000mm2 の架橋ポリエチレン絶縁電力ケ
ーブルである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a method for connecting a crosslinked polyethylene insulated power cable according to the present invention will be described below in detail with reference to the drawings. The cable used in the examples had a voltage of 275
KV, cross-linked polyethylene insulated power cable conductor size 2000 mm 2.

【0011】実施例1まず図1において、架橋ポリエチ
レン絶縁電力ケーブル11a、11bを接続する前に、接続
に必要な部品と共に半導電性熱収縮チューブ13をケーブ
ルに外挿する。この半導電性熱収縮チューブ13は、融点
が 129℃の高密度ポリエチレンをベースポリマーとし、
これに導電性を付与するためのカーボンと、老化防止剤
を添加したものである。
Embodiment 1 First, in FIG. 1, before connecting the crosslinked polyethylene insulated power cables 11a and 11b, a semiconductive heat-shrinkable tube 13 is extrapolated to the cables together with parts required for connection. The semiconductive heat-shrinkable tube 13 is made of high-density polyethylene having a melting point of 129 ° C. as a base polymer,
This is obtained by adding carbon for imparting conductivity and an antioxidant.

【0012】次にケーブル11a、11bのケーブル外部半
導電層15a、15bを所定の長さ剥ぎ取ってケーブル絶縁
体17a、17bを露出させ、それらの端部をテーパー状に
加工すると共にケーブル導体19a、19bを露出させる。
そしてケーブル導体19aと19bを導体接続管21により圧
縮接続し、その上に半導電性テープまたは半導電性熱収
縮チューブによって、接続部内部半導電層23を形成す
る。
Next, the cable outer semiconductive layers 15a, 15b of the cables 11a, 11b are stripped off by a predetermined length to expose the cable insulators 17a, 17b, and their ends are tapered, and the cable conductors 19a, 17b are processed. , 19b are exposed.
Then, the cable conductors 19a and 19b are compression-connected by the conductor connection tube 21, and the connection portion inner semiconductive layer 23 is formed thereon by a semiconductive tape or a semiconductive heat shrink tube.

【0013】その後両側のケーブル絶縁体17a、17bに
跨がるように二つ割の金型(図示せず)を被せ、その中
に小型押出機により架橋剤入りで未架橋のポリエチレン
を押し出し、接続部絶縁体25を形成する。これが所定の
温度まで冷えた後、金型を外し、簡易クリーンルーム内
において接続部絶縁体25を所定の形状に電動工具やガラ
ス片を用いて整形加工する。
Thereafter, a two-piece mold (not shown) is put over the cable insulators 17a and 17b on both sides, and a non-crosslinked polyethylene containing a crosslinking agent is extruded therein by a small extruder. The connection insulator 25 is formed. After this cools down to a predetermined temperature, the mold is removed, and the connecting portion insulator 25 is shaped into a predetermined shape using a power tool or a piece of glass in a simple clean room.

【0014】次に予めケーブルに外挿してあった半導電
性熱収縮チューブ13を引き戻し、接続部絶縁体25とその
両側のケーブル外部半導電層15a、15bに跨がるように
セットする。その後例えばドライヤーなどにより熱風を
吹きつけて加熱収縮させ、接続部絶縁体25、ケーブル絶
縁体17a、17bおよびケーブル外部半導電層15a、15b
に密着させる。
Next, the semiconductive heat-shrinkable tube 13 previously extrapolated to the cable is pulled back and set so as to straddle the connecting portion insulator 25 and the cable external semiconductive layers 15a and 15b on both sides thereof. Thereafter, for example, hot air is blown by a dryer or the like to be heated and shrunk, and the connection portion insulator 25, the cable insulators 17a and 17b, and the cable outer semiconductive layers 15a and 15b
In close contact.

【0015】このあと図2に示すように、架橋用ガスバ
リアー層27やヒーター(図示せず)を取り付け、さらに
加圧加熱装置29を取り付け、その中に不活性ガスを送り
込んで、ヒーターと不活性ガスで加熱加圧して接続部絶
縁体25を架橋する。このときポリエチレンの発泡を防ぐ
ために、例えば温度センサーを用いて接続部絶縁体とケ
ーブル絶縁体を個別に温度管理する。
Thereafter, as shown in FIG. 2, a gas barrier layer 27 for cross-linking and a heater (not shown) are attached, and a pressurizing and heating device 29 is further attached. The connection insulator 25 is crosslinked by heating and pressurizing with an active gas. At this time, in order to prevent foaming of the polyethylene, the temperature of the connecting portion insulator and the cable insulator are individually controlled using, for example, a temperature sensor.

【0016】架橋時における接続部絶縁体の温度上昇の
パターンは、図3に示すようになる。ところで、前記し
たように半導電性熱収縮チューブ13のベースポリマーで
ある高密度ポリエチレンは、融点が 129℃と極めて高
く、接続部絶縁体のポリエチレンが溶融する温度(105
℃程度) では溶融していない。
FIG. 3 shows a pattern of a rise in the temperature of the connecting portion insulator at the time of crosslinking. Incidentally, as described above, high-density polyethylene, which is the base polymer of the semiconductive heat-shrinkable tube 13, has an extremely high melting point of 129 ° C.
(About ℃).

【0017】図3に示した架橋工程における温度上昇の
パターンによると、常温(Tr :25℃) から架橋温度
(Tm :150 ℃程度) まで昇温していく過程において、
約105℃を超えたところで接続部絶縁体25およびケーブ
ル絶縁体17a、17bの表面が溶融し始める。このとき半
導電性熱収縮チューブ13は溶融していないので、半導電
性熱収縮チューブ13の平滑な内面が加圧力で接続部絶縁
体25およびケーブル絶縁体17a、17bに押し付けられ
て、それらの絶縁体表面の平滑化が行われる。その後温
度上昇して 129℃付近になると、半導電性熱収縮チュー
ブ13が溶融して接続部絶縁体25、ケーブルの絶縁体17
a、17bおよびケーブル外部半導電層15a、15bに融着
する。さらに温度上昇して架橋温度例えば 150℃に達し
たならば、これを例えば5時間維持することにより接続
部絶縁体25の架橋が行われる。
According to the temperature rise pattern in the crosslinking step shown in FIG. 3, during the process of raising the temperature from room temperature (Tr: 25 ° C.) to the crosslinking temperature (Tm: about 150 ° C.)
When the temperature exceeds about 105 ° C., the surfaces of the connection insulator 25 and the cable insulators 17a and 17b begin to melt. At this time, since the semiconductive heat-shrinkable tube 13 is not melted, the smooth inner surface of the semiconductive heat-shrinkable tube 13 is pressed against the connection portion insulator 25 and the cable insulators 17a and 17b by a pressing force, and the The surface of the insulator is smoothed. Thereafter, when the temperature rises to about 129 ° C., the semiconductive heat-shrinkable tube 13 melts, and the connection insulator 25 and the cable insulator 17 are melted.
a, 17b and the cable outer semiconductive layers 15a, 15b. If the temperature further rises and reaches a cross-linking temperature of, for example, 150 ° C., the connection insulator 25 is cross-linked by maintaining this for, for example, 5 hours.

【0018】なお、接続部の熱容量が小さくて、接続部
絶縁体とケーブル絶縁体等の融点から架橋温度に至るま
での昇温に要する時間が速く、平滑化処理に必要な時間
が少ない場合には、図4に示すように平滑化処理のため
の昇温停滞時間を意図的に設定することができる。すな
わち、接続部絶縁体25およびケーブル絶縁体17a、17b
が溶融状態にあり、半導電性熱収縮チューブ13が溶融し
ていない温度例えば 120℃に達したとき、例えば1時間
維持させて平滑化処理を行わせる。このようにすると接
続部の熱容量が小さくても、接続部絶縁体25およびケー
ブル絶縁体17a、17bの表面の平滑化が確実に行える。
When the heat capacity of the connecting portion is small, the time required for raising the temperature from the melting point of the connecting portion insulator and the cable insulator to the crosslinking temperature is short, and the time required for the smoothing process is short. As shown in FIG. 4, it is possible to intentionally set the temperature rise stagnation time for the smoothing process. That is, the connecting portion insulator 25 and the cable insulators 17a, 17b
Is in a molten state, and when the temperature reaches a temperature at which the semiconductive heat-shrinkable tube 13 is not melted, for example, 120 ° C., for example, it is maintained for one hour to perform a smoothing treatment. In this way, even if the heat capacity of the connection portion is small, the surfaces of the connection portion insulator 25 and the cable insulators 17a and 17b can be surely smoothed.

【0019】実施例2この実施例では半導電性熱収縮チ
ューブの材料に、融点が 127℃の直鎖状低密度ポリエチ
レンをベースポリマーとし、導電性を付与するためのカ
ーボンと、老化防止剤を添加配合した組成物を用いた。
実施例1と同じケーブルを用い、それと同様の手段で押
出モールド型の接続部を製作した。
Example 2 In this example, a semiconductive heat-shrinkable tube was made of a linear low-density polyethylene having a melting point of 127 ° C. as a base polymer, and carbon for imparting conductivity and an antioxidant were used. The composition added and blended was used.
The same cable as in Example 1 was used, and an extrusion-molded connection was manufactured by the same means.

【0020】実施例1、2によって製作した接続部、お
よび従来の方法による接続部について、電気絶縁破壊試
験を実施した。その結果は次のとおりである。
An electrical breakdown test was performed on the connection parts manufactured according to Examples 1 and 2 and the connection part according to the conventional method. The results are as follows.

【0021】 実施例1による接続部は、破壊電圧が
1200〜1260KV(サンプル数n=3)の範囲に集中した。
実施例2による接続部は、破壊電圧が1290〜1350KV
(n=3)の範囲に集中した。 従来の方法による接
続部は、破壊電圧が 860〜 910KV(n=2)で、いずれ
も接続部外部半導電層の処理部で破壊した。破壊孔を調
査したところ、破壊の起点はいずれも接続部外部半導電
層の導電性突起であった。
The connection portion according to the first embodiment has a breakdown voltage
The concentration was in the range of 1200 to 1260 KV (the number of samples n = 3).
The connection portion according to the second embodiment has a breakdown voltage of 1290 to 1350 KV.
(N = 3). The connection part by the conventional method had a breakdown voltage of 860 to 910 KV (n = 2), and all were broken by the processing part of the connection outside semiconductive layer. When the fracture holes were examined, the starting points of the fracture were all conductive protrusions of the semiconductive layer outside the connection portion.

【0022】上記のように、本発明に係る接続方法の実
施例1および2による接続部は、従来の接続方法による
接続部より遥かに良好な電気特性を有することが確認さ
れた。
As described above, it has been confirmed that the connection portions according to the first and second embodiments of the connection method according to the present invention have much better electric characteristics than the connection portions according to the conventional connection method.

【0023】なお、本発明に用いる半導電性熱収縮チュ
ーブのベースポリマーは、実施例で用いた高密度ポリエ
チレン、または直鎖状低密度ポリエチレンに限定するも
のではない。ベースポリマーは、コンパウンドとして一
定の導電性を有し、かつ融点が接続部絶縁体の融点より
高くかつ接続部絶縁体の架橋温度よりも低いものであれ
ばよい。
The base polymer of the semiconductive heat-shrinkable tube used in the present invention is not limited to the high-density polyethylene or the linear low-density polyethylene used in the examples. The base polymer only needs to have a certain conductivity as a compound, and have a melting point higher than the melting point of the connecting portion insulator and lower than the crosslinking temperature of the connecting portion insulator.

【0024】半導電性熱収縮チューブのベースポリマー
としては、一般的な低密度ポリエチレン、エチレンエチ
ルアクリレート共重合体、エチレンエチルアクリル酸共
重合体等のオレフィン系樹脂を用いることができる。ま
た二種以上のポリマーをブレンドしたものでもよい。ベ
ースポリマーの融点は架橋温度までの上昇速度にもよる
が、接続部絶縁体の融点より2℃以上高いものが、温度
測定誤差を考慮したとき実用的である。
As the base polymer of the semiconductive heat-shrinkable tube, olefin resins such as general low density polyethylene, ethylene ethyl acrylate copolymer and ethylene ethyl acrylate copolymer can be used. Further, a blend of two or more polymers may be used. Although the melting point of the base polymer depends on the rate of rise to the cross-linking temperature, a melting point higher than the melting point of the connection insulator by 2 ° C. or more is practical when temperature measurement errors are considered.

【0025】[0025]

【発明の効果】以上の説明より明らかなように、本発明
に係る架橋ポリエチレン絶縁電力ケーブルの接続方法に
よれば、接続部外部半導電層用の半導電性熱収縮チュー
ブの融点が、接続部絶縁体の融点よりも高くかつ接続部
絶縁体の架橋温度よりも低くなっているので、接続部絶
縁体を架橋するために温度を上げていくと、接続部絶縁
体とケーブルの絶縁体が溶融し始めても半導電性熱収縮
チューブが溶融しない状態が生じ、このとき半導電性熱
収縮チューブの平滑な内面が加圧力で接続部絶縁体およ
びケーブル絶縁体に押し付けられて、それらの絶縁体表
面の平滑化が行われる。
As is apparent from the above description, according to the method for connecting a crosslinked polyethylene insulated power cable according to the present invention, the melting point of the semiconductive heat-shrinkable tube for the external semiconductive layer at the connection portion is determined by the following method. Since the temperature is higher than the melting point of the insulator and lower than the cross-linking temperature of the connection insulator, if the temperature is increased to bridge the connection insulator, the connection insulator and the cable insulator will melt. When the heat treatment begins, the semiconductive heat-shrinkable tubing does not melt. At this time, the smooth inner surface of the semiconductive heat-shrinkable tubing is pressed against the connection insulator and the cable insulator by the pressing force, and the surface of the insulator is shrunk. Is smoothed.

【0026】さらに温度が上昇すると半導電性熱収縮チ
ューブが溶融して接続部とケーブルの絶縁体に融着し、
その後架橋温度に達したところで接続部絶縁体の架橋が
行われる。
When the temperature further rises, the semiconductive heat-shrinkable tube melts and fuses to the connection portion and the insulator of the cable,
Thereafter, when the cross-linking temperature is reached, the connecting portion insulator is cross-linked.

【0027】したがって接続部絶縁体表面に多少の傷が
あっても、それが平滑に修正され、接続部外部半導電層
が絶縁体表面に突起となって食い込むことがなくなるた
め、確実に電気的に性能のよい架橋ポリエチレン絶縁電
力ケーブルの接続部を得ることができる。
Therefore, even if there are some scratches on the surface of the insulator of the connection portion, the damage is corrected smoothly, and the external semiconductive layer of the connection portion does not dig into the surface of the insulator as a protrusion, so that the electrical connection is surely achieved. Thus, a connection portion of a crosslinked polyethylene insulated power cable having high performance can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明に係る架橋ポリエチレン絶縁電力ケー
ブルの接続方法の一実施例における中間工程を示す断面
図である。
FIG. 1 is a cross-sectional view showing an intermediate step in one embodiment of a method for connecting a crosslinked polyethylene insulated power cable according to the present invention.

【図2】 同じく最終工程を示す断面図である。FIG. 2 is a sectional view showing a final step in the same manner.

【図3】 本発明に係る架橋ポリエチレン絶縁電力ケー
ブルの接続方法の一実施例における架橋時の温度上昇の
一つのパターンを示すグラフである。
FIG. 3 is a graph showing one pattern of temperature rise at the time of crosslinking in one embodiment of the method for connecting a crosslinked polyethylene insulated power cable according to the present invention.

【図4】 同じく他のパターンを示すグラフである。FIG. 4 is a graph showing another pattern.

【符号の説明】[Explanation of symbols]

11a、11b:架橋ポリエチレン絶縁電力ケーブル 13:半導電性熱収縮チューブ 15a、15b:ケーブ
ル外部半導電層 17a、17b:ケーブル絶縁体 19a、19b:ケーブ
ル導体 21:導体接続管 23:接続部内部半導電層 2
5:接続部絶縁体 27:架橋用ガスバリアー層 29:加圧加熱装置
11a, 11b: Cross-linked polyethylene insulated power cable 13: Semi-conductive heat-shrinkable tube 15a, 15b: Cable outer semi-conductive layer 17a, 17b: Cable insulator 19a, 19b: Cable conductor 21: Conductor connection tube 23: Connection inner half Conductive layer 2
5: Connection insulator 27: Gas barrier layer for crosslinking 29: Pressurized heating device

フロントページの続き (72)発明者 佐久間 進 東京都千代田区丸の内2丁目6番1号 古河電気工業株式会社内 (72)発明者 松本 鉄男 東京都千代田区丸の内2丁目6番1号 古河電気工業株式会社内 (72)発明者 高橋 芳久 東京都千代田区内幸町1丁目1番3号 東京電力株式会社内Continued on the front page (72) Inventor Susumu Sakuma 2-6-1 Marunouchi, Chiyoda-ku, Tokyo Inside Furukawa Electric Co., Ltd. (72) Inventor Tetsuo Matsumoto 2-6-1 Marunouchi, Chiyoda-ku, Tokyo Furukawa Electric Co., Ltd. Inside the company (72) Inventor Yoshihisa Takahashi 1-3-1 Uchisaiwaicho, Chiyoda-ku, Tokyo Inside Tokyo Electric Power Company

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 接続部絶縁体を未架橋ポリエチレンの押
出モールドにより形成し、整形加工した後、融点が接続
部絶縁体の融点よりも高くかつ接続部絶縁体の架橋温度
よりも低い半導電性熱収縮チューブを、接続部絶縁体と
その両側のケーブル外部半導電層に跨がるように被せて
加熱収縮させ、しかる後、接続部絶縁体を加圧加熱して
架橋することを特徴とする架橋ポリエチレン絶縁電力ケ
ーブルの接続方法。
1. A semiconductive material whose melting point is higher than the melting point of the connecting part insulator and lower than the cross-linking temperature of the connecting part insulator, after forming the connecting part insulator by extrusion molding of uncrosslinked polyethylene and shaping. The heat-shrinkable tube is covered with the connecting portion insulator and the outer semiconductive layer of the cable on both sides thereof so as to be heated and shrunk, and thereafter, the connecting portion insulator is pressurized and heated to crosslink. Connection method of cross-linked polyethylene insulated power cable.
【請求項2】 請求項1記載の架橋ポリエチレン絶縁電
力ケーブルの接続方法で、半導電性熱収縮チューブとし
て、高密度ポリエチレンをベースポリマーとしたものを
用いることを特徴とするもの。
2. The method for connecting a crosslinked polyethylene insulated power cable according to claim 1, wherein the semiconductive heat-shrinkable tube is made of high-density polyethylene as a base polymer.
JP03170414A 1991-06-17 1991-06-17 Connection method of cross-linked polyethylene insulated power cable Expired - Fee Related JP3139719B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03170414A JP3139719B2 (en) 1991-06-17 1991-06-17 Connection method of cross-linked polyethylene insulated power cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03170414A JP3139719B2 (en) 1991-06-17 1991-06-17 Connection method of cross-linked polyethylene insulated power cable

Publications (2)

Publication Number Publication Date
JPH04368410A JPH04368410A (en) 1992-12-21
JP3139719B2 true JP3139719B2 (en) 2001-03-05

Family

ID=15904485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03170414A Expired - Fee Related JP3139719B2 (en) 1991-06-17 1991-06-17 Connection method of cross-linked polyethylene insulated power cable

Country Status (1)

Country Link
JP (1) JP3139719B2 (en)

Also Published As

Publication number Publication date
JPH04368410A (en) 1992-12-21

Similar Documents

Publication Publication Date Title
US4084307A (en) Method of joining two cables with an insulation of cross-linked polyethylene or another cross linked linear polymer
JPH0132730B2 (en)
JP3139719B2 (en) Connection method of cross-linked polyethylene insulated power cable
JPH1141779A (en) Connection part for cross-linked polyethylene insulated power cable
JP3171657B2 (en) Cable connection end
JP3243142B2 (en) Method of forming prefabricated connection of crosslinked polyethylene insulated power cable
JP3014542B2 (en) Method of connecting crosslinked rubber / plastic insulated power cable and electric field relaxation tape used therefor
JPH0516234A (en) Manufacture of heat-shrinkable tube
FI66999B (en) SAETT VIDAR SCARVES AV EN CABLE WITH ISOLERING AV TVAERBUNDEN POYETEN ELLER ANNAN TVAERBUNDEN POLYMER
JP2903215B2 (en) Cable mold joint method
JPH07236216A (en) Mold joint for crosslinked polyethylene cable with sheath separation and jointing method
JPH09284943A (en) Method for extrusion mold joint of bridgeable polyethylene cable
JPH0522822A (en) Manufacture of cylindrical insulating block for connecting power cable
JP3042535B2 (en) Method of forming cross-linked polyethylene insulated power cable connection
JPS6057657B2 (en) Method of forming insulated cable connections
JP3014502B2 (en) Insulation block for power cable connection and connection method using it
JPH099448A (en) Connection method of rubber plastic power cable
JP2598850B2 (en) Method of manufacturing power cable connection
JPH056767B2 (en)
JP2840837B2 (en) Cable mold joint method
JPH0132731B2 (en)
JPS6364276A (en) Method of forming joint of plastic insulated cable
JPS59171483A (en) Method of heating polyolefin insulated cable at time of producing connector
JP2000299920A (en) Jointed part of crosslinked polyethylene-insulated power cable
JPS5859025A (en) Manufacture of joined section of cable insulated with crosslinked polyethylene

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees