JP3042535B2 - Method of forming cross-linked polyethylene insulated power cable connection - Google Patents
Method of forming cross-linked polyethylene insulated power cable connectionInfo
- Publication number
- JP3042535B2 JP3042535B2 JP2168496A JP16849690A JP3042535B2 JP 3042535 B2 JP3042535 B2 JP 3042535B2 JP 2168496 A JP2168496 A JP 2168496A JP 16849690 A JP16849690 A JP 16849690A JP 3042535 B2 JP3042535 B2 JP 3042535B2
- Authority
- JP
- Japan
- Prior art keywords
- insulator
- heat
- cable
- reinforcing
- shrinkable tube
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title claims description 13
- 229920003020 cross-linked polyethylene Polymers 0.000 title claims description 9
- 239000004703 cross-linked polyethylene Substances 0.000 title claims description 9
- 239000012212 insulator Substances 0.000 claims description 72
- 230000003014 reinforcing effect Effects 0.000 claims description 30
- 230000000630 rising effect Effects 0.000 claims description 11
- 238000010438 heat treatment Methods 0.000 claims description 10
- 238000007493 shaping process Methods 0.000 claims description 5
- 239000004698 Polyethylene Substances 0.000 claims description 4
- 239000003431 cross linking reagent Substances 0.000 claims description 4
- 238000001125 extrusion Methods 0.000 claims description 4
- -1 polyethylene Polymers 0.000 claims description 4
- 229920000573 polyethylene Polymers 0.000 claims description 4
- 238000003825 pressing Methods 0.000 claims 1
- 239000004020 conductor Substances 0.000 description 11
- 239000011521 glass Substances 0.000 description 6
- 230000015556 catabolic process Effects 0.000 description 5
- 238000009499 grossing Methods 0.000 description 5
- 238000004132 cross linking Methods 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 230000004888 barrier function Effects 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 229920006026 co-polymeric resin Polymers 0.000 description 2
- 230000002950 deficient Effects 0.000 description 2
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229920002379 silicone rubber Polymers 0.000 description 1
- 239000004945 silicone rubber Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical group FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Processing Of Terminals (AREA)
- Cable Accessories (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は架橋ポリエチレン絶縁電力ケーブル接続部の
形成方法に関するものである。Description: FIELD OF THE INVENTION The present invention relates to a method for forming a cross-linked polyethylene insulated power cable connection.
架橋ポリエチレン絶縁電力ケーブルは、その優れた絶
縁性と取扱いの容易さによって、急速に高電圧化の道を
たどってきており、275KV級の長距離線にも使用されつ
つある。長距離線路には接続部が必要不可欠であるが、
275KV級にはいわゆる押出モールド型の接続部が採用さ
れている。Crosslinked polyethylene insulated power cables are rapidly following the path of higher voltage due to their superior insulation properties and ease of handling, and are being used for 275KV-class long-distance lines. Connections are indispensable for long-distance lines,
For the 275KV class, a so-called extrusion mold type connection is adopted.
この押出モールド型接続部の形成方法を図−2および
図−3を用いて詳細に説明する。The method of forming the extrusion-molded connection will be described in detail with reference to FIGS.
まず図−2に示すように、ケーブル11a、11bのケーブ
ル外部導電層13a、13bを所定の寸法に剥ぎ取ってケーブ
ル絶縁体15a、15bを露出させ、そのケーブル絶縁体15
a、15bの端部を鉛筆状に加工すると共に導体16a、16bを
露出させ、導体16a、16b相互を導体接続管17を用いて圧
縮接続し、その導体接続部上に半導電性テープや半導電
性チューブによって接続部内部導電層19を形成した後、
両側のケーブル絶縁体15a、15bに跨がるように二つ割の
金型(図示せず)をかぶせ、その中に小型押出機により
架橋剤入りのポリエチレンを押し出し、モールド成形し
て補強絶縁体21を形成する。この補強絶縁体21を所定の
形状に切削加工して整形した後、両絶縁体15a、15b、21
上に半導電性熱収縮チューブを被覆し、加熱収縮させて
接続部外部導電層23を形成し、その後図−3に示すよう
に、架橋用ガスバリアー層27を取付け、さらに加圧加熱
容器29を取付けて、ガス加圧しながら加熱して補強絶縁
体21を架橋するのである。First, as shown in FIG. 2, the cable outer conductive layers 13a and 13b of the cables 11a and 11b are stripped to predetermined dimensions to expose the cable insulators 15a and 15b.
The ends of a and 15b are processed into a pencil shape, and the conductors 16a and 16b are exposed, and the conductors 16a and 16b are compression-connected to each other using a conductor connection pipe 17, and a semiconductive tape or a semiconductive tape is placed on the conductor connection portion. After forming the connection portion internal conductive layer 19 with a conductive tube,
A two-piece mold (not shown) is placed over the cable insulators 15a and 15b on both sides, and polyethylene containing a cross-linking agent is extruded into it by a small extruder, and molded into a reinforcing insulator. Form 21. After cutting and shaping this reinforcing insulator 21 into a predetermined shape, both insulators 15a, 15b, 21
A semiconductive heat-shrinkable tube is coated on the top, and heat-shrinks to form a connection portion outer conductive layer 23. Thereafter, as shown in FIG. 3, a cross-linking gas barrier layer 27 is attached. Is attached, and the reinforcing insulator 21 is cross-linked by heating while applying gas pressure.
前記した従来技術による押出モールド型接続部の形成
方法においては、次のような問題がある。The conventional method of forming the extrusion-molded connection portion has the following problems.
すなわち、ケーブル外部導電層13a、13bを剥ぎ取る際
および補強絶縁体21を所定の形状に整形する際には、ガ
ラス片等を用いて樹脂をていねいに削り取ることが行わ
れているが、このときにケーブル絶縁体15a、15bや補強
絶縁体21の表面に傷がつき易い。傷がついた絶縁体の上
に接続部外部導電層23を形成して架橋すると、接続部外
部導電層23が溶融して両絶縁体表面の細かい傷に流れ込
んで導電性の突起となり、電気的欠陥となることがあ
る。That is, when stripping the cable outer conductive layers 13a and 13b and shaping the reinforcing insulator 21 into a predetermined shape, the resin is carefully scraped off using a glass piece or the like. In addition, the surfaces of the cable insulators 15a and 15b and the reinforcing insulator 21 are easily damaged. When the connecting portion external conductive layer 23 is formed on the damaged insulator and cross-linked, the connecting portion external conductive layer 23 is melted and flows into fine scratches on both insulator surfaces to become conductive protrusions, and May be defective.
両絶縁体表面の傷に対しては、例えば#400程度のサ
ンドペーパーで研磨し、平滑に仕上げることも行われて
いるが、サンドペーパーに擦り込まれた研磨材の微粉が
絶縁体の表面に異物として残り易い。異物を残したまま
その上に接続部外部導電層23を形成して架橋すると、残
った異物が導電性突起となったり、界面の接着を阻害し
たりすることがあり、前記と同様に電気的欠陥となり易
い。The surface of both insulators is polished with sandpaper of about # 400, for example, to achieve a smooth finish, but fine powder of abrasive rubbed into the sandpaper causes foreign matter to adhere to the surface of the insulator. It is easy to remain as. If the connecting portion external conductive layer 23 is formed thereon and crosslinked with the foreign matter left, the remaining foreign matter may become a conductive protrusion or hinder the adhesion at the interface, and the electrical It is easy to be defective.
異物を残さないためには粒度の細かい、例えば#1000
程度のサンドペーパーを用いて仕上げ研磨をしたり、溶
剤で拭き取る等の方法が考えられるが、作業に長時間を
必要とするだけでなく、仕上げ残しや仕上げむらが生じ
易い。また溶剤が絶縁体に化学的影響を与える懸念があ
る。In order not to leave foreign matter, fine particle size, for example, # 1000
A method such as finish polishing using a certain amount of sandpaper or wiping with a solvent is conceivable, but not only requires a long time for the work, but also undesired finish and uneven finish are likely to occur. There is also a concern that the solvent may chemically affect the insulator.
以上のような問題点に鑑み、作業性がよく、仕上げむ
らが生じにくい接続部の形成方法の開発が望まれてい
た。In view of the above problems, there has been a demand for the development of a method for forming a connection portion that has good workability and is less likely to cause unevenness in finish.
本発明は、上記した課題を解決した架橋ポリエチレン
絶縁電力ケーブル接続部の形成方法を提供するもので、
その構成は、接続部の補強絶縁体を架橋剤入りポリエチ
レンの押出モールド成形により形成し、整形加工した
後、ケーブル絶縁体と、補強絶縁体の少なくともスロー
プ立ち上がり部とに跨がるように、フッ素樹脂熱収縮チ
ューブを被覆し、加熱収縮させた後、その熱収縮チュー
ブを除去することにより両絶縁体の表面を平滑化処理
し、その後前記ケーブル絶縁体および補強絶縁体表面に
接続部外部導電層を形成し、外部から加圧加熱して補強
絶縁体を架橋することを特徴とするものである。The present invention provides a method for forming a cross-linked polyethylene insulated power cable connection that solves the above-described problems,
The structure is such that the reinforcing insulator of the connection portion is formed by extrusion molding of polyethylene containing a cross-linking agent, and after shaping, the fluorine is stretched over the cable insulator and at least the slope rising portion of the reinforcing insulator. After covering the resin heat-shrinkable tube and heat-shrinking it, the surface of both insulators is smoothed by removing the heat-shrinkable tube, and then the connecting portion external conductive layer is formed on the surface of the cable insulator and the reinforcing insulator. And pressurizing and heating from outside to crosslink the reinforcing insulator.
なお、本発明における熱収縮チューブ用フッ素樹脂と
しては、特に4フッ化エチレン樹脂(TFE)、4フッ化
エチレン−パーフロロアルキルビニルエーテル共重合体
樹脂(PFA)、4フッ化エチレン−6フッ化プロピレン
共重合体樹脂(FEP)が好適である。As the fluororesin for the heat shrinkable tube in the present invention, in particular, tetrafluoroethylene resin (TFE), tetrafluoroethylene-perfluoroalkylvinylether copolymer resin (PFA), tetrafluoroethylene-6-propylene fluoride Copolymer resins (FEP) are preferred.
フッ素樹脂熱収縮チューブは、内面が極めて平滑であ
り、耐熱性に優れ、化学的に安定である。したがって、
これをケーブル絶縁体と補強絶縁体スロープ立ち上がり
部とに跨がるように被覆し、加熱収縮させると、収縮力
で得られる面圧によって、絶縁体表面にフッ素樹脂熱収
縮チューブの平滑な内面が転写され、両絶縁体の表面が
極めて平滑な面に仕上がる。また、フッ素樹脂熱収縮チ
ューブは加熱されても化学的に安定であるから、絶縁体
に化学的影響を与えることはない。The inner surface of the fluororesin heat-shrinkable tube is extremely smooth, has excellent heat resistance, and is chemically stable. Therefore,
When this is covered so as to straddle the cable insulator and the reinforcing insulator slope rising portion, and is shrunk by heating, the smooth inner surface of the fluororesin heat shrink tube is formed on the insulator surface by the surface pressure obtained by the shrinking force. It is transferred, and the surfaces of both insulators are finished to an extremely smooth surface. Further, since the fluororesin heat-shrinkable tube is chemically stable even when heated, it does not chemically affect the insulator.
以下、本発明の実施例を図−1ないし図−3を参照し
て詳細に説明する。Hereinafter, embodiments of the present invention will be described in detail with reference to FIGS.
なお、使用したケーブルは導体サイズ2000mm2、275KV
級架橋ポリエチレン絶縁電力ケーブルである。The cable used was conductor size 2000mm 2 , 275KV
Class cross-linked polyethylene insulated power cable.
実施例1 図−2に示すように、ケーブル11a、11bのケーブル外
部導電層13a、13bを所定の寸法に剥ぎ取ってケーブル絶
縁体15a、15bを露出させ、そのケーブル絶縁体15a、15b
の端部を鉛筆状に加工すると共に導体16a、16bを露出さ
せ、導体16a、16b相互を導体接続管17を用いて圧縮接続
した。圧縮接続前に予め必要部品と共に、PFA製の熱収
縮チューブをケーブル11a、11b上に外挿しておいた。次
に導体接続部上に半導電性テープや半導電性チューブに
よって接続部内部導電層19を形成した後、両側のケーブ
ル絶縁体15a、15bに跨がるように二つ割の金型(図示せ
ず)をかぶせ、その中に小型押出機により架橋剤入りの
ポリエチレンを押し出し、補強絶縁体21を形成した。補
強絶縁体21が所定の温度に冷却した後、金型を外し、補
強絶縁体21を所定の形状に電動工具やガラス片を用いて
整形加工した。その整形加工は簡易クリーンルーム内で
行った。Example 1 As shown in FIG. 2, the cable outer conductive layers 13a and 13b of the cables 11a and 11b were stripped to predetermined dimensions to expose the cable insulators 15a and 15b, and the cable insulators 15a and 15b were exposed.
Was processed into a pencil shape, the conductors 16a and 16b were exposed, and the conductors 16a and 16b were compression-connected to each other using a conductor connection tube 17. Prior to the compression connection, a heat-shrinkable tube made of PFA was extrapolated on the cables 11a and 11b together with necessary parts in advance. Next, after forming the connection portion inner conductive layer 19 on the conductor connection portion using a semiconductive tape or a semiconductive tube, a two-piece mold (see FIG. (Not shown), and a small extruder was used to extrude polyethylene containing a cross-linking agent, thereby forming a reinforcing insulator 21. After the reinforcing insulator 21 was cooled to a predetermined temperature, the mold was removed, and the reinforcing insulator 21 was shaped into a predetermined shape using a power tool or a piece of glass. The shaping was performed in a simple clean room.
なお、ケーブル絶縁体露出部31a、31bは、ケーブル外
部導電層13a、13bを剥ぎ取った後にガラス片で整形加工
済みであるが、補強絶縁体21を押し出し成形した後さら
にガラス片で整形加工する。次に図−1に示すように予
めケーブル11a、11bに外挿しておいたPFA製の熱収縮チ
ューブ33a、33bをケーブル絶縁体露出部31a、31bとその
近傍の補強絶縁体スロープ立ち上がり部35a、35b上にか
ぶせ、加熱収縮させて、ケーブル絶縁体露出部31a、31b
と補強絶縁体スロープ立ち上がり部35a、35bの表面を加
熱融解させた。これにより、PFA製の熱収縮チューブ33
a、33bの加熱収縮時の収縮力で得られる面圧と、チュー
ブ内面の平滑性とを利用して、ケーブル絶縁体露出部31
a、31bと絶縁スロープ立ち上がり部35a、35bの表面を平
滑化処理した。その後冷却してPFA製の熱収縮チューブ
を除去した。Note that the cable insulator exposed portions 31a and 31b are shaped with glass pieces after stripping the cable outer conductive layers 13a and 13b, but are further shaped with glass pieces after extrusion molding of the reinforcing insulator 21. . Next, as shown in FIG. 1, heat-shrinkable tubes 33a and 33b made of PFA previously extrapolated to the cables 11a and 11b are connected to the cable insulator exposed portions 31a and 31b and the reinforcing insulator slope rising portions 35a in the vicinity thereof, Cover over 35b, heat shrink, and expose cable insulators 31a, 31b
Then, the surfaces of the reinforcing insulator slope rising portions 35a and 35b were heated and melted. As a result, the PFA heat-shrinkable tube 33
a, using the surface pressure obtained by the contraction force at the time of heat shrinkage of 33b and the smoothness of the inner surface of the tube, the cable insulator exposed portion 31
The surfaces of a, 31b and the rising portions 35a, 35b of the insulating slope were smoothed. After cooling, the heat-shrinkable tube made of PFA was removed.
絶縁体表面を平滑化処理した後、補強絶縁体21とケー
ブル絶縁体15a、15b上に半導電性熱収縮チューブをかぶ
せて加熱収縮させ、図−2のように接続部外部導電層23
を形成した。その後図−3に示すように架橋用ガスバリ
アー層27やヒーター(図示せず)を取りつけ、さらに加
圧加熱装置29を取付け、不活性ガス加圧下で加熱架橋を
行った。After smoothing the surface of the insulator, a semiconductive heat shrink tube is placed over the reinforcing insulator 21 and the cable insulators 15a and 15b to be shrunk by heating, and as shown in FIG.
Was formed. Thereafter, as shown in FIG. 3, a gas barrier layer 27 for cross-linking and a heater (not shown) were attached, and further, a pressurizing and heating device 29 was attached, and heat cross-linking was performed under inert gas pressure.
この実施例において、平滑化処理用の収縮チューブと
してフッ素樹脂製の熱収縮チューブを使用している理由
は、フッ素樹脂が内面平滑で耐熱性に富み、加熱により
分解生成物が絶縁体上にブリードアウトしたり、絶縁体
と化学反応したりすることがないからである。フッ素樹
脂製の熱収縮チューブとしては、例えばグンゼ製GFシリ
ーズを使用することができる。In this embodiment, the reason for using a heat-shrinkable tube made of fluororesin as a shrink tube for smoothing treatment is that the fluororesin has a smooth inner surface and has high heat resistance, and decomposition products are bleed on the insulator by heating. This is because they do not come out or chemically react with the insulator. As the heat-shrinkable tube made of fluororesin, for example, GF series manufactured by Gunze can be used.
加熱後の平滑性を得るだけであれば、シリコンゴム熱
収縮チューブなどのフッ素樹脂以外の材質の熱収縮チュ
ーブも使用可能であるが、収縮時の加熱により発生する
低分子量の成分が、絶縁体上に拡散して外部導電層との
接着性を阻害するため、これを溶剤で除去する必要があ
り、そうすると絶縁体表面の平滑性が再び損なわれると
いう欠点がある。A heat-shrinkable tube made of a material other than fluororesin, such as a silicone rubber heat-shrinkable tube, can be used if only smoothness after heating is obtained. Since it diffuses upward and hinders the adhesiveness to the external conductive layer, it must be removed with a solvent, which has the disadvantage that the smoothness of the insulator surface is impaired again.
平滑化処理を行う範囲は、少なくとも電気ストレスが
高いケーブル絶縁体露出部31a、31bと、その近傍の補強
絶縁体スロープ立ち上がり部35a、35bとすることが望ま
しく、必要に応じて補強絶縁体スロープの延長部36a、3
6bまで広げる。補強絶縁体がケーブルと同径に近いいわ
ゆる同径接続部の場合には、補強絶縁体中間部37を含め
た全表面に対して行うのがよい。The range in which the smoothing process is performed is preferably at least the cable insulator exposed portions 31a and 31b having high electric stress, and the reinforcing insulator slope rising portions 35a and 35b in the vicinity thereof. Extensions 36a, 3
Expand to 6b. In the case where the reinforcing insulator is a so-called same-diameter connection portion having the same diameter as that of the cable, it is preferable to perform the process on the entire surface including the reinforcing insulator intermediate portion 37.
実施例2 実施例1と同じケーブルを用い、実施例1と次の点で
異なる方法で架橋ポリエチレン絶縁電力ケーブル接続部
を形成した。すなわち、ケーブル絶縁体露出部31a、31b
と補強絶縁体の全表面35a、35b、36a、36b、37をガラス
片で削った後、それらの表面全体を#1000のサンドペー
パーで研磨したことと、このあとPFA製熱収縮チューブ
によって、全表面にわたって平滑化処理を施したことで
ある。Example 2 Using the same cable as in Example 1, a crosslinked polyethylene insulated power cable connection was formed by a method different from that of Example 1 in the following points. That is, the cable insulator exposed portions 31a, 31b
After shaving the entire surface 35a, 35b, 36a, 36b, and 37 of the reinforcing insulator with a piece of glass, the entire surface was polished with a # 1000 sandpaper. That is, a smoothing process was performed over the surface.
なお、PFA製熱収縮チューブを熱収縮させてから、押
さえテープで外周より面圧を与え、さらに加熱を行うと
(例えば10分間)、ガラス削り面のままでも全体を鏡面
に近い表面にすることができる。After heat-shrinking the PFA heat-shrinkable tube, apply surface pressure from the outer circumference with the holding tape, and further heat (for example, 10 minutes), the entire surface will be close to the mirror surface even if the glass shaved surface remains Can be.
以上説明した二つの実施例の他に、比較のため従来の
接続方法による接続部2個と、平滑化処理にシリコン熱
収縮チューブを使用した接続部1個を作製した。In addition to the two examples described above, two connection parts by a conventional connection method and one connection part using a silicon heat-shrinkable tube for smoothing were produced for comparison.
実施例1、2を含めた5個の接続部の、ケーブル絶
縁体および補強絶縁体表面の処理条件、絶縁体表面と
接続部外部導電層との接着性の良否、絶縁体表面の処
理後の最大粗さを表−1にまとめて示す。また、これら
接続部の交流電圧破壊試験結果を表−2に示す。The processing conditions of the surface of the cable insulator and the reinforcing insulator of the five connection parts including the first and second embodiments, the quality of adhesion between the surface of the insulator and the external conductive layer of the connection part, The maximum roughness is shown in Table 1. Table 2 shows the results of the AC voltage breakdown test of these connection parts.
従来例1および2の接続部は破壊電圧が860〜910kv
で、何れもケーブル絶縁体表面の外部導電層形成部で破
壊した。破壊孔を調査したところ、破壊の起点は何れも
接続部外部導電層の突起であった。また、比較例1の接
続部は、破壊電圧が1010kvで、補強絶縁体の中間部で破
壊した。 Breakdown voltage is 860 to 910kv for the connection parts of Conventional Examples 1 and 2.
In each case, the fracture occurred at the outer conductive layer forming portion on the surface of the cable insulator. Inspection of the fracture holes revealed that all of the fractures originated from protrusions of the external conductive layer at the connection portion. In addition, the connection portion of Comparative Example 1 had a breakdown voltage of 1010 kv and was broken at an intermediate portion of the reinforcing insulator.
これに対し、本発明の実施例1の接続部は破壊電圧が
1160kv、実施例2の接続部は破壊電圧が1210kvと極めて
高い値で破壊した。破壊箇所は実施例1は補強絶縁体の
中間部、実施例2は補強絶縁体スロープ立ち上がり部で
あった。On the other hand, the connection portion of the first embodiment of the present invention has a breakdown voltage.
At 1160 kv, the connection portion of Example 2 was broken at an extremely high breakdown voltage of 1210 kv. The broken part was the middle part of the reinforcing insulator in Example 1 and the rising part of the reinforcing insulator slope in Example 2.
以上説明したように、本発明はケーブル絶縁体と、補
強絶縁体の少なくともスロープ立ち上がり部とに跨がる
ように、フッ素樹脂熱収縮チューブを加熱被覆して両者
の絶縁体表面を平滑化処理するので、絶縁体表面に仕上
げ残しや仕上げむらのない極めて平滑な面を形成するこ
とができる。したがって、ケーブル絶縁体露出部および
補強絶縁スロープ立ち上がり部に、異物の残留や化学的
な影響のない、しかも接続部外部導電層との接着性の良
好な表面が得られ、これによって電気特性の良好な架橋
ポリエチレン絶縁電力ケーブル接続部を確実に得ること
ができる。As described above, the present invention heat-coats the fluororesin heat-shrinkable tube and smoothes both insulator surfaces so as to straddle the cable insulator and at least the slope rising portion of the reinforcing insulator. Therefore, it is possible to form an extremely smooth surface with no unfinished portion or uneven finish on the insulator surface. Accordingly, the exposed surface of the cable insulator and the rising portion of the reinforcing insulating slope have a surface free of foreign matter and chemical influence and having good adhesiveness with the external conductive layer at the connection portion, thereby providing good electrical characteristics. A reliable cross-linked polyethylene insulated power cable connection can be obtained.
図−1は本発明に係る架橋ポリエチレン絶縁電力ケーブ
ル接続部の形成方法の要部を示す断面図、 図−2は押出モールド型接続部の断面図、図−3は同接
続部に加圧加熱装置を取り付けた状態を示す断面図であ
る。 11a、11b:ケーブル 13a、13b:ケーブル外部導電層 15a、15b:ケーブル絶縁体、16:導体 17:導体接続管、19:接続部内部導電層 21:補強絶縁体、23:接続部外部導電層 27:架橋用ガスバリアー層 29:加圧加熱装置 31a、31b:ケーブル絶縁体露出部 33a、33b:フッ素樹脂熱収縮チューブ 35a、35b:補強絶縁体スロープ立ち上り部 36a、36b:同上の延長部 37:補強絶縁体中間部FIG. 1 is a cross-sectional view showing a main part of a method for forming a cross-linked polyethylene insulated power cable connecting portion according to the present invention, FIG. 2 is a cross-sectional view of an extrusion-molded connecting portion, and FIG. It is sectional drawing which shows the state which attached the apparatus. 11a, 11b: Cable 13a, 13b: Cable outer conductive layer 15a, 15b: Cable insulator, 16: Conductor 17: Conductor connection pipe, 19: Connection inner conductive layer 21: Reinforced insulator, 23: Connection outer conductive layer 27: Gas barrier layer for cross-linking 29: Pressurized heating device 31a, 31b: Cable insulator exposed portion 33a, 33b: Fluororesin heat-shrinkable tube 35a, 35b: Reinforcement insulator slope rising portion 36a, 36b: Same as extension 37 : Intermediate part of reinforced insulator
───────────────────────────────────────────────────── フロントページの続き (72)発明者 飯住 昌弘 東京都千代田区丸の内2丁目6番1号 古河電気工業株式会社内 (72)発明者 後藤 伸一 東京都千代田区丸の内2丁目6番1号 古河電気工業株式会社内 (56)参考文献 特開 昭60−70914(JP,A) 実開 昭55−48316(JP,U) 実開 昭55−148315(JP,U) (58)調査した分野(Int.Cl.7,DB名) H02G 1/14 H02G 15/08 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Masahiro Iizumi 2-6-1 Marunouchi, Chiyoda-ku, Tokyo Inside Furukawa Electric Co., Ltd. (72) Inventor Shinichi Goto 2-6-1 Marunouchi, Chiyoda-ku, Tokyo Furukawa Electric Co., Ltd. (56) References JP-A-60-70914 (JP, A) Japanese Utility Model Showa 55-48316 (JP, U) Japanese Utility Model Application Showa 55-148315 (JP, U) (58) (Int.Cl. 7 , DB name) H02G 1/14 H02G 15/08
Claims (1)
レンの押出モールド成形により形成し、整形加工した
後、 ケーブル絶縁体と、補強絶縁体の少なくともスロープ立
ち上がり部とに跨がるように、フッ素樹脂熱収縮チュー
ブを被覆し、加熱収縮させた後、その熱収縮チューブを
除去することにより両絶縁体の表面を平滑化処理し、 その後前記ケーブル絶縁体および補強絶縁体表面に接続
部外部導電層を形成し、 外部から加圧加熱して補強絶縁体を架橋する、 ことを特徴とする架橋ポリエチレン絶縁電力ケーブル接
続部の形成方法。The reinforcing insulator of the connecting portion is formed by extrusion molding of polyethylene containing a cross-linking agent, and after shaping, is formed so as to straddle the cable insulator and at least the slope rising portion of the reinforcing insulator. After covering the fluororesin heat-shrinkable tube and shrinking by heating, the surface of both insulators is smoothed by removing the heat-shrinkable tube. A method for forming a crosslinked polyethylene insulated power cable connection, comprising: forming a layer; and externally applying pressure and heating to crosslink the reinforcing insulator.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2168496A JP3042535B2 (en) | 1990-06-28 | 1990-06-28 | Method of forming cross-linked polyethylene insulated power cable connection |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2168496A JP3042535B2 (en) | 1990-06-28 | 1990-06-28 | Method of forming cross-linked polyethylene insulated power cable connection |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0458711A JPH0458711A (en) | 1992-02-25 |
JP3042535B2 true JP3042535B2 (en) | 2000-05-15 |
Family
ID=15869164
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2168496A Expired - Fee Related JP3042535B2 (en) | 1990-06-28 | 1990-06-28 | Method of forming cross-linked polyethylene insulated power cable connection |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3042535B2 (en) |
-
1990
- 1990-06-28 JP JP2168496A patent/JP3042535B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH0458711A (en) | 1992-02-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3042535B2 (en) | Method of forming cross-linked polyethylene insulated power cable connection | |
JP3013730B2 (en) | Cable processing method at connection part for CV cable | |
JPH1141779A (en) | Connection part for cross-linked polyethylene insulated power cable | |
JP3014501B2 (en) | Method of manufacturing tubular insulating block for power cable connection | |
JP3243142B2 (en) | Method of forming prefabricated connection of crosslinked polyethylene insulated power cable | |
JP3700913B2 (en) | Power cable terminal processing method | |
JP3171657B2 (en) | Cable connection end | |
JP2864184B2 (en) | Surface finishing method of cable insulation at the connection end of cross-linked polyethylene insulated cable | |
JP2594208Y2 (en) | Cable connection | |
JP2818666B2 (en) | Rubber plastic power cable | |
JPH07236216A (en) | Mold joint for crosslinked polyethylene cable with sheath separation and jointing method | |
JP4309077B2 (en) | CV cable mold heating tube and CV cable terminal processing method. | |
JPH11262127A (en) | Terminal processing method for prefabricated connector of crosslinked polyethylene insulated power cable | |
JP3139719B2 (en) | Connection method of cross-linked polyethylene insulated power cable | |
JP2903215B2 (en) | Cable mold joint method | |
JP2789583B2 (en) | Forming method of cable connection | |
JPS60131714A (en) | Method of vulcanizing rubber sheath cable | |
KR100235555B1 (en) | Semiconductive layer for high voltage insulated cable | |
JPH0870519A (en) | Connecting method for plastic power cable | |
JP2000299920A (en) | Jointed part of crosslinked polyethylene-insulated power cable | |
JP3014502B2 (en) | Insulation block for power cable connection and connection method using it | |
JPH09284943A (en) | Method for extrusion mold joint of bridgeable polyethylene cable | |
JPH0564336A (en) | Method of connecting rubber or plastic insulated cable | |
JP2787346B2 (en) | Method of forming cable edge connection | |
JP2939317B2 (en) | Insulated molded body for power cable connection and connection method using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |