JP3243142B2 - Method of forming prefabricated connection of crosslinked polyethylene insulated power cable - Google Patents

Method of forming prefabricated connection of crosslinked polyethylene insulated power cable

Info

Publication number
JP3243142B2
JP3243142B2 JP04976995A JP4976995A JP3243142B2 JP 3243142 B2 JP3243142 B2 JP 3243142B2 JP 04976995 A JP04976995 A JP 04976995A JP 4976995 A JP4976995 A JP 4976995A JP 3243142 B2 JP3243142 B2 JP 3243142B2
Authority
JP
Japan
Prior art keywords
semiconductive
cable
shrink tube
smoothing
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04976995A
Other languages
Japanese (ja)
Other versions
JPH08251793A (en
Inventor
進 佐久間
宏明 鈴木
伸一 深野
一 野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP04976995A priority Critical patent/JP3243142B2/en
Publication of JPH08251793A publication Critical patent/JPH08251793A/en
Application granted granted Critical
Publication of JP3243142B2 publication Critical patent/JP3243142B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Processing Of Terminals (AREA)
  • Cable Accessories (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、架橋ポリエチレン絶縁
電力ケーブルのプレハブ型接続部の形成方法に関し、特
に組み立て作業が簡単なプレハブ型接続部の形成方法に
関する。
The present invention relates to a method for forming a prefabricated connection of a crosslinked polyethylene insulated power cable, and more particularly to a method for forming a prefabricated connection which is easy to assemble.

【0002】[0002]

【従来の技術】架橋ポリエチレン絶縁電力ケーブルはそ
の優れた絶縁性と取扱の容易さによって急速に超高圧化
の道をたどってきており、275kV級では既に長距離
線路が実用化され、さらに500kV級の長距離線路の
建設が計画されようとしている。長距離線路には接続部
が必要不可欠であり、275kVクラスには押出モール
ド式の接続部が実用化されている。しかしながら、押出
モールド式の接続部では、施工時間が長くなり、また現
場における品質管理が煩雑になるという問題がある。そ
こで、工場で接続パーツの品質管理が可能であり、現場
ではパーツの組立を行えばよいプレハブ型接続部が開発
され、一部採用されている。
2. Description of the Related Art Crosslinked polyethylene insulated power cables are rapidly following the path of ultra-high voltage due to their excellent insulation properties and ease of handling. Long-distance lines have already been put into practical use in the 275 kV class, and further 500 kV class. The construction of a long-distance track is planned. A connection part is indispensable for long-distance lines, and an extrusion-molded connection part has been put into practical use for the 275 kV class. However, there is a problem that the connection time of the extruded mold is long, and that the quality control on site is complicated. Therefore, a prefabricated connection part which can control the quality of the connection parts at a factory and assemble the parts at the site has been developed and partially adopted.

【0003】このプレハブ型接続部について、図3を用
いて詳しく説明する。図3において、先ず、所定の寸法
にケーブル導体2、ケーブル絶縁体5、半導電層10を
順次段剥ぎし、ケーブル1の導体2同士を導体接続管3
を用いて圧縮接続したのち、あらかじめケーブル1に挿
通しておいたエポキシ成形体からなる絶縁ユニット4、
ストレスコーン6を挿着する。次いで、圧縮装置7のス
プリング7aによってストレスコーン6を絶縁ユニット
4に押圧し、絶縁ユニット4とストレスコーン6間、及
びストレスコーン6とケーブル絶縁体5間に形成される
界面8、9を圧接する。4aは絶縁ユニット4を導体接
続管3に接続するロックリングである。
[0003] This prefabricated connecting portion will be described in detail with reference to FIG. In FIG. 3, first, the cable conductor 2, the cable insulator 5, and the semiconductive layer 10 are sequentially stripped to predetermined dimensions, and the conductors 2 of the cable 1 are connected to the conductor connection pipe 3.
After compression-connecting using an insulation unit 4 made of an epoxy molded body that has been inserted through the cable 1 in advance,
The stress cone 6 is inserted. Next, the stress cone 6 is pressed against the insulating unit 4 by the spring 7a of the compression device 7, and the interfaces 8, 9 formed between the insulating unit 4 and the stress cone 6 and between the stress cone 6 and the cable insulator 5 are pressed against each other. . Reference numeral 4a denotes a lock ring that connects the insulating unit 4 to the conductor connection pipe 3.

【0004】このプレハブ型接続部に要求される電気性
能を得るために、接続部の組立に先立ちケーブル絶縁体
5に対しては以下に示すような表面処理が行われる。そ
の詳細を図4を用いて説明する。図4において、ケーブ
ル1の外部半導電層10を削り取る際にはガラス片を用
いたり、削り作業専用の工具を用いるが、この作業の際
に、外部半導電層10下側のケーブル絶縁体5表面に細
かい傷が生ずる。この傷は、サンドペーパーなどで研磨
し平滑に仕上げることも行われているが、表面の平滑化
に限界があるだけでなく、ペーパーに擦り込まれた研磨
材の微粉がケーブル絶縁体5の表面に異物として残り易
い。一方、ゴムストレスコーン6の半導電層部分6aと
接触するケーブル側の外部半導電層の肉厚が厚い場合に
は、ゴムストレスコーンの半導電層とケーブルの外部半
導電層の端部との間にギャップができて電気的弱点にな
り易いため、ケーブルの外部半導電層10を一旦剥ぎ取
り絶縁体5上に新たに半導電層11をモールド成形して
いる。しかし、外部半導電層10を剥ぎ取ったケーブル
絶縁体5上にそのまま半導電層11をモールドし架橋す
ると、溶融した半導電層11がケーブル絶縁体5上の細
かい傷に流れ込んで導電性の突起となり電気的欠陥とな
る可能性がある。また、表面に残った異物が導電性突起
となったり、界面9aの密着を阻害したりすることがあ
り、同様に電気的弱点となり易かった。
[0004] In order to obtain the electrical performance required for the prefabricated connection, the cable insulator 5 is subjected to the following surface treatment prior to assembly of the connection. The details will be described with reference to FIG. In FIG. 4, when the outer semiconductive layer 10 of the cable 1 is shaved, a glass piece is used or a tool dedicated to the shaving operation is used. In this operation, the cable insulator 5 below the outer semiconductive layer 10 is used. Fine scratches on the surface. This flaw is polished with a sandpaper or the like to finish the surface smoothly, but not only is there a limit to the smoothness of the surface, but also the fine powder of the abrasive rubbed into the paper is applied to the surface of the cable insulator 5. It is easy to remain as foreign matter. On the other hand, when the thickness of the external semiconductive layer on the cable side in contact with the semiconductive layer portion 6a of the rubber stress cone 6 is large, the connection between the semiconductive layer of the rubber stress cone and the end of the external semiconductive layer of the cable is made. Since a gap is formed between the cables, the outer semiconductive layer 10 of the cable is easily peeled off, and the semiconductive layer 11 is newly molded on the insulator 5. However, when the semiconductive layer 11 is molded and crosslinked as it is on the cable insulator 5 from which the outer semiconductive layer 10 has been peeled off, the molten semiconductive layer 11 flows into fine scratches on the cable insulator 5 and the conductive protrusions are formed. And may be an electrical defect. In addition, foreign substances remaining on the surface sometimes become conductive protrusions or hinder the adhesion of the interface 9a, and similarly, the foreign matter easily becomes an electric weak point.

【0005】また、ゴムストレスコーン6の絶縁体部分
6bとケーブル絶縁体5との界面9bでは、その電気特
性を確保するためには界面9bの密着を良好にせしめる
必要がある。このため、界面9bに異物等の付着がない
ような現場品質管理を行うとともに、ケーブル絶縁体5
の表面を平滑にすることが行われている。
Further, at the interface 9b between the insulator portion 6b of the rubber stress cone 6 and the cable insulator 5, it is necessary to make the interface 9b adhere well in order to secure the electrical characteristics. For this reason, while performing on-site quality control to prevent foreign matter from adhering to the interface 9b, the cable insulator 5
Has been performed to smooth the surface.

【0006】[0006]

【発明が解決しようとする課題】ケーブル絶縁体表面の
平滑性や異物の有無を検査し品質を保証するために、平
滑化処理前にCCD カメラなどによる表面検査により異物
チェックを行い、次に平滑化処理後に再び表面検査を行
い表面の平滑性及び異物チェックを行い、さらに半導電
層モールド後に再度ケーブル絶縁体の表面検査を行い、
表面の異物チェックを行っている。このような品質チェ
ックには精密な検査装置を必要とするため、装置のセッ
ティングに時間がかかるだけでなく、高倍率で広い面積
を検査するため検査自体にも時間がかかり、さらに各段
階で表面検査を行うため、その回数倍の検査時間を要す
ることとなり、プレハブ型接続部本来の施工の簡便性が
損なわれるという問題があった。
In order to check the smoothness of the cable insulator surface and the presence of foreign matter and to guarantee the quality, a foreign matter check is performed by a surface inspection using a CCD camera or the like before the smoothing process, and then the smoothing is performed. After the surface treatment, the surface is inspected again to check the surface smoothness and foreign matter, and after the semiconductive layer molding, the surface inspection of the cable insulator is performed again.
Check for foreign matter on the surface. Such a quality check requires a precise inspection device, which not only takes time to set up the device, but also takes time to inspect at a high magnification over a large area. Since the inspection is performed, the inspection time is required twice as many times, and there is a problem that the simplicity of the original construction of the prefabricated connection part is impaired.

【0007】このような問題を解決するために、半導電
層11がモールドされる部分及びゴムストレスコーン6
が密着する部分のケーブル絶縁体5表面を平滑化する方
法として、特願平1-107046に示されるようないわゆる鏡
面処理方法が提案されている。この鏡面処理とは、外部
半導電層10を剥ぎ取ったケーブル絶縁体5表面に、テ
フロン等でできた平滑加工用熱収縮チューブを加熱収縮
させて、熱収縮チューブの内面の平滑性を利用して対象
となるケーブル絶縁体5表面を全面均一に滑らかにする
処理のことで、加熱後、該熱収縮チューブを除去するこ
とにより平滑なケーブル絶縁体5表面を得ることが出来
る。しかし、かかる鏡面処理方法では、鏡面処理した後
で半導電層をモールド成形しなければならず、工数が増
加し、特に現場作業に支障をきたしていた。
In order to solve such a problem, a portion where the semiconductive layer 11 is molded and the rubber stress cone 6 are formed.
As a method for smoothing the surface of the cable insulator 5 at a portion where the cable is in close contact, a so-called mirror surface treatment method as disclosed in Japanese Patent Application No. 1-107046 has been proposed. This mirror surface treatment uses the smoothness of the inner surface of the heat-shrinkable tube by heat-shrinking a heat-shrinkable tube made of Teflon or the like on the surface of the cable insulator 5 from which the outer semiconductive layer 10 has been peeled off. In this process, the entire surface of the target cable insulator 5 is smoothed uniformly. By removing the heat-shrinkable tube after heating, a smooth surface of the cable insulator 5 can be obtained. However, in such a mirror surface treatment method, it is necessary to mold the semiconductive layer after the mirror surface treatment, which increases the number of steps and particularly hinders on-site work.

【0008】[0008]

【課題を解決するための手段】本発明は上記問題点を解
決した架橋ポリエチレン絶縁電力ケーブルのプレハブ型
接続部の形成方法を提供するもので、第1の発明は、架
橋ポリエチレン絶縁電力ケーブルの端部に露出させたケ
ーブル絶縁体表面に、該絶縁体より高い融点を有し、且
つ、内面が平滑な半導電収縮チューブを端面から所定間
隔おいて被覆し、次いで、前記半導電収縮チューブ上を
含む露出絶縁体上に前記半導電収縮チューブより高い融
点を有し、且つ内側が平滑な平滑化処理用収縮チューブ
を被覆し、次いで、前記平滑化処理用収縮チューブを押
圧した状態で、前記半導電収縮チューブの融点以上に加
熱することによって平滑化処理を施して後、前記平滑化
処理用収縮チューブを除去し、次いで、前記平滑化処理
を施した部分にストレスコーンを圧接することを特徴と
する。
SUMMARY OF THE INVENTION The present invention provides a method for forming a prefabricated connection portion of a crosslinked polyethylene insulated power cable which solves the above problems. On the surface of the cable insulator exposed to the portion, a semiconductive shrink tube having a higher melting point than the insulator and having a smooth inner surface is coated at a predetermined distance from the end surface, and then the semiconductive shrink tube is coated on the semiconductive shrink tube. A coating having a higher melting point than the semiconductive shrinkable tube and having a smooth inside is coated on the exposed insulator including the smoothing shrinkage tube, and then, while the smoothing shrinkage tube is pressed, the semi-conductive shrinkage tube is pressed. After performing the smoothing treatment by heating to a temperature equal to or higher than the melting point of the conductive shrink tube, the shrink tube for the smoothing process is removed, and then the smoothed portion is swept. Characterized by pressing the Resukon.

【0009】また、第2の発明は、前記発明において、
半導電収縮チューブの少なくとも片方の先端部の厚さが
テーパー処理されていることを特徴とする。
[0009] The second invention is the above-mentioned invention,
The thickness of at least one end of the semiconductive shrinkable tube is tapered.

【0010】[0010]

【作用】上述のように、ケーブル絶縁体に被覆された半
導電収縮チューブの融点がケーブル絶縁体の融点より高
く、且つ、外側から押圧されているので、この部分を加
熱すると、先ず架橋ポリエチレンからなるケーブル絶縁
体の表面が溶融し、その表面に形成された半導電収縮チ
ューブの内面の平滑性が転写され、ケーブル絶縁体表面
が平滑になる。その後、加熱温度が上昇すると、半導電
収縮チューブが溶融して、その内面が平滑なケーブル絶
縁体表面と接着する。一方、平滑化処理用の収縮チュー
ブがケーブル絶縁体に直接接触している部分では、外側
からの押圧力の作用によりチューブ内面の平滑性がケー
ブル絶縁体に転写され、同時に平滑化処理が施され、最
後に押圧手段、平滑化処理用収縮チューブを除去する。
このように、ケーブル絶縁体に被覆される半導電層(本
発明では、半導電収縮チューブで構成されている)の形
成と、ケーブル絶縁体表面の平滑化処理が一回の加熱処
理で同時になされるので、ケーブルの端末処理が短時間
で行え、接続部の組み立て作業の効率化が図られる。さ
らに、加熱処理後に平滑化処理用収縮チューブを剥ぎ取
った後に、ケーブル絶縁体の表面検査を一回行うだけで
異物や平滑性の品質保証が出来るので、大幅な検査時間
の短縮を図ることが出来る。
As described above, since the melting point of the semiconductive shrink tube covered with the cable insulator is higher than the melting point of the cable insulator and is pressed from the outside, when this portion is heated, first, the crosslinked polyethylene is converted from the crosslinked polyethylene. The surface of the cable insulator is melted, the smoothness of the inner surface of the semiconductive shrink tube formed on the surface is transferred, and the surface of the cable insulator becomes smooth. Thereafter, when the heating temperature rises, the semiconductive shrinkable tube melts and its inner surface adheres to the smooth surface of the cable insulator. On the other hand, in the part where the contraction tube for smoothing treatment is in direct contact with the cable insulator, the smoothness of the inner surface of the tube is transferred to the cable insulator by the action of the pressing force from the outside, and the smoothing treatment is performed at the same time. Finally, the pressing means and the shrink tube for smoothing are removed.
As described above, the formation of the semiconductive layer (consisting of the semiconductive shrinkable tube in the present invention) to be coated on the cable insulator and the smoothing of the cable insulator surface are simultaneously performed by one heat treatment. Therefore, the terminal processing of the cable can be performed in a short time, and the efficiency of the assembling work of the connecting portion can be improved. Furthermore, after stripping the smoothing shrink tube after the heat treatment, the quality of foreign matter and smoothness can be assured by performing a single surface inspection of the cable insulator, so that the inspection time can be significantly reduced. I can do it.

【0011】[0011]

【実施例】以下、図面に示した実施例に基づいて本発明
を詳細に説明する。 (実施例1)図1は、本発明にかかる架橋ポリエチレン
絶縁電力ケーブルのプレハブ型接続部を形成する手順を
示す一実施例であり、275kV、2000mm2 のケ
ーブルに施されたものである。その製作工程は以下の通
りである。即ち、 1)先ず、ケーブル1を加熱整直した後に、所定の寸法
にシースを段剥ぎし、端部からL1 の寸法に自動外導削
り機で外部半導電層10を除去した。 2)次いで、端部からL4 の間隔をおいて、長さL2
半導電収縮チューブ21を外部半導電層10に跨がるよ
うに挿着し、トーチ等で加熱収縮させてケーブル絶縁体
5に仮固定させた。さらに、端部から外部半導電層10
に跨がるように、L3 の長さの平滑化処理用収縮チュー
ブ22を挿着し、トーチ等で加熱収縮して定位置に仮固
定した。 3)次いで、平滑化処理用収縮チューブ22の全長に渡
り押さえテープ23を巻回し、その上に、半導電収縮チ
ューブ21の左側端部近傍に、温度制御用のサーモカッ
プル24を配置し、その上に加熱ヒーター25、断熱層
26を巻いた。 4)この状態で、温度制御点(サーモカップル24配置
点)で150℃×1hrの加熱処理を行った。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail based on embodiments shown in the drawings. (Embodiment 1) FIG. 1 is an embodiment showing a procedure for forming a prefabricated connection portion of a crosslinked polyethylene insulated power cable according to the present invention, which is applied to a 275 kV, 2000 mm 2 cable. The manufacturing process is as follows. That is, 1) First, after re heated integer cable 1, the sheath and stripping stage to a predetermined size, to remove the outer semiconductive layer 10 automatically outside guide sharpener to the dimensions of L 1 from the end portion. 2) Then, at intervals of L 4 from the end portion, and inserting the semiconductive shrinkable tube 21 of length L 2 in the outer semiconductive layer 10 so as to extend over the cable insulation by heat shrinking torch etc. It was temporarily fixed to the body 5. Furthermore, the outer semiconductive layer 10
So as to extend over, and inserting the smoothing length processing shrinkable tube 22 of L 3, and temporarily fixed in place by heat shrinkage at a torch or the like. 3) Next, a pressing tape 23 is wound around the entire length of the smoothing process shrinkable tube 22, and a thermocouple 24 for temperature control is arranged thereon near the left end of the semiconductive shrinkable tube 21. A heater 25 and a heat insulating layer 26 were wound thereon. 4) In this state, a heat treatment at 150 ° C. × 1 hr was performed at the temperature control point (the thermocouple 24 arrangement point).

【0012】本来、平滑化処理用収縮チューブ22の被
覆範囲は、平滑化処理の対象となるケーブル絶縁体5表
面と直接接触する部分、L4 の範囲で充分であるが、平
滑化処理用収縮チューブ22の端部が半導電収縮チュー
ブ21の先端Aや途中部分(例えばB)にあると、平滑
化処理用収縮チューブ22による押さえ圧力の不連続部
分が発生する。即ち、Aの場合にはケーブル絶縁体5に
凹みが生じ、Bの場合にはケーブル絶縁体5中に半導電
収縮チューブ21がもぐり込み、ともに電気的欠陥とな
り易い。このため、平滑化処理用収縮チューブ22はL
4 とL2 の全体にまたがって被覆させることが好まし
い。
[0012] Originally, coverage of the smoothing processing shrinkable tube 22 is subject to the cable insulation 5 surface direct contact with portions of the smoothing process, it is sufficient in the range of L 4, smoothing processing shrinkage If the end of the tube 22 is located at the tip A or in the middle (for example, B) of the semiconductive shrink tube 21, a discontinuous portion of the pressing pressure by the smoothing shrink tube 22 occurs. That is, in the case of A, the cable insulator 5 is dented, and in the case of B, the semiconductive shrinkable tube 21 gets into the cable insulator 5, and both tend to cause electrical defects. For this reason, the smoothing process shrink tube 22 is L
It is preferable to cover across the entire 4 and L 2.

【0013】なお、半導電収縮チューブ21はベースポ
リマーを直鎖状低密度ポリエチレン(例えば三菱化学製
M-40S )とし、老化防止剤及び導電性を付与するために
カーボンをブレンドした材料からなり、融点は124℃
である。この半導電収縮チューブ21は、押出機で押し
出された薄肉パイプを放射線照射により架橋し形状記憶
させたのちに、拡管成形されたものである。この半導電
収縮チューブ21を加熱収縮した後には、ガラス削りに
て先端の厚さをなめらかなテーパー状に成形した。ま
た、平滑化処理用収縮チューブ22としては、耐熱性、
内面の平滑性に富むテフロン収縮チューブ(例えば
(株)グンゼ製GFシリーズ)などを用いる。
The semiconductive shrinkable tube 21 is made of linear low-density polyethylene (for example, manufactured by Mitsubishi Chemical Corporation).
M-40S), made of a material blended with an anti-aging agent and carbon for imparting conductivity, and having a melting point of 124 ° C.
It is. The semiconducting shrinkable tube 21 is formed by expanding a thin pipe extruded by an extruder after cross-linking the shape of the thin pipe by irradiation with radiation and storing the shape of the thin pipe. After the semiconducting shrink tube 21 was shrunk by heating, the thickness of the tip was formed into a smooth taper shape by shaving glass. In addition, as the shrink tube 22 for smoothing treatment, heat resistance,
A Teflon-shrinkable tube (for example, GF series manufactured by Gunze Co., Ltd.) having a smooth inner surface is used.

【0014】上記実施例において、150℃×1hrの
加熱処理の過程では、まずケーブル絶縁体5(融点10
3℃)表面が100℃を越えると軟化をし始め、103
℃付近になると溶融する。この際に、区間L2 において
は半導電収縮チューブ21の内面の、区間L2 を除くL
3 の区間においては平滑化処理用収縮チューブ22の内
面のそれぞれの平滑性が外周に巻回されている押さえテ
ープ23の圧力によって転写され、ケーブル絶縁体5の
表面の平滑化処理がなされる。さらに温度が上昇し、半
導電収縮チューブ21部分の温度がその融点である12
4℃を越えると、半導電収縮チューブ21の内面が溶融
し、ケーブル絶縁体5と接着する。
In the above embodiment, in the course of the heat treatment at 150 ° C. × 1 hour, first, the cable insulator 5 (melting point 10
3 ° C) When the surface exceeds 100 ° C, it begins to soften and 103
It melts around ℃. At this time, in the section L 2 , the inner surface of the semiconductive shrinkable tube 21 has a length L excluding the section L 2.
In the section 3 , the smoothness of each inner surface of the smoothing contraction tube 22 is transferred by the pressure of the pressing tape 23 wound around the outer periphery, and the surface of the cable insulator 5 is smoothed. The temperature further rises, and the temperature of the semiconductive shrinkable tube 21 is the melting point 12.
If the temperature exceeds 4 ° C., the inner surface of the semiconductive shrinkable tube 21 melts and adheres to the cable insulator 5.

【0015】所定の加熱が終了したのち、自然冷却し、
加熱ヒーター25、押さえテープ23、平滑化処理用収
縮チューブ22を除去し、CCD カメラを用いた自動検査
装置にてケーブル絶縁体5表面の異物、傷の検査を実施
した。その結果、異物、傷は検出できず、ケーブル絶縁
体の表面、半導電層の表面は平滑に仕上がっていた。
After the predetermined heating is completed, it is cooled naturally,
The heater 25, the pressing tape 23, and the shrink tube 22 for smoothing were removed, and the surface of the cable insulator 5 was inspected for foreign substances and scratches by an automatic inspection apparatus using a CCD camera. As a result, no foreign matter or scratch could be detected, and the surface of the cable insulator and the surface of the semiconductive layer were finished smoothly.

【0016】次に、このように平滑化処理したケーブル
端末に試験用の終端接続部を組み立て、交流による電気
破壊試験を実施したところ、610KV、12hrの耐
電圧試験をパスした。さらに50KV/1hrのステッ
プで昇圧したところ、最終的には、ゴムストレスコーン
とケーブルの界面ではなく、1010KV、10min
にてエポキシ絶縁ユニットとゴムストレスコーンの界面
で破壊した。破壊電圧は平滑化処理と外部半導電層のモ
ールドを分けて実施していた従来工法によるプレハブ型
接続部の破壊値(860KV〜1060KV)と同等で
あり、本工法による接続部の耐電圧特性が従来工法によ
る接続部の特性となんら遜色無く、良好であることが確
認された。
Next, a test terminal connection was assembled to the cable terminal thus smoothed, and an AC electric breakdown test was performed. As a result, a withstand voltage test of 610 KV and 12 hr was passed. When the pressure was further increased in steps of 50 KV / 1 hr, finally, the pressure was not 1010 KV, 10 min, not at the interface between the rubber stress cone and the cable.
At the interface between the epoxy insulation unit and the rubber stress cone. The breakdown voltage is equal to the breakdown value (860 KV to 1060 KV) of the prefabricated connection part by the conventional method, which is performed separately for the smoothing process and the mold of the external semiconductive layer. It was confirmed that the characteristics were as good as the characteristics of the connection part by the conventional method.

【0017】(実施例2)ベースポリマーに高密度ポリ
エチレン(日石化学AJ-5410 :融点123℃)を用い、
これに老化防止剤と導電性カーボンをブレンドした半導
電組成による半導電収縮チューブを製造し、実施例1と
同様な方法でプレハブ型接続部を形成した。半導電収縮
チューブ21の先端部21aは、外側からの押さえ巻き
により均等な圧力を内側に生ずるように、あらかじめ工
場で図2に示すようなテーパ形状に成形しておく。これ
により、加熱収縮後に実施例1に示すようなケーブル上
での半導電収縮チューブ21の先端部21aの削り作業
が不要になり、削りかすによる異物が付着したり、ケー
ブル絶縁体を傷つけたりするリスクを避けることがで
き、より信頼性の高い接続部を提供することが出来る。
Example 2 Using high density polyethylene (Nisseki Chemical AJ-5410: melting point 123 ° C.) as a base polymer,
A semiconductive shrinkable tube having a semiconductive composition obtained by blending an antioxidant and conductive carbon was manufactured, and a prefabricated connection was formed in the same manner as in Example 1. The tip portion 21a of the semiconductive shrinkable tube 21 is preliminarily formed into a tapered shape as shown in FIG. 2 at a factory so that a uniform pressure is generated inside by press-winding from the outside. This eliminates the need for shaving the distal end portion 21a of the semiconductive shrinkable tube 21 on the cable as shown in Example 1 after heat shrinkage, resulting in attachment of foreign matter due to shavings and damage to the cable insulator. Risks can be avoided and a more reliable connection can be provided.

【0018】なお、以上の実施例は工事現場での施工に
つき説明したが、予め工場にて平滑化処理を施し、現場
にてプレハブ組み立てを行ってもいいことは勿論であ
る。
Although the above embodiment has been described with respect to the construction at the construction site, it is a matter of course that the prefabricated assembly may be performed at the factory after performing a smoothing process at the factory.

【0019】[0019]

【発明の効果】以上説明したように、本発明の請求項1
によれば、架橋ポリエチレン絶縁電力ケーブルの端部に
露出させたケーブル絶縁体表面に、該絶縁体より高い融
点を有し、且つ、内面が平滑な半導電収縮チューブを端
面から所定間隔おいて被覆し、次いで、前記半導電収縮
チューブ上を含む露出絶縁体上に前記半導電収縮チュー
ブより高い融点を有し、且つ内側が平滑な平滑化処理用
収縮チューブを被覆し、次いで、前記平滑化処理用収縮
チューブを押圧した状態で、前記半導電収縮チューブの
融点以上に加熱することによって平滑化処理を施して
後、前記平滑化処理用収縮チューブを除去し、次いで、
前記平滑化処理を施した部分にストレスコーンを圧接す
るため、外部半導電層(本発明では、半導電収縮チュー
ブに当たる)の現場施工と、ケーブル絶縁体平滑化処理
が一回の加熱処理で一括処理できるので、従来の平滑化
(鏡面)処理→半導電層作成の2工程が1工程で済み作
業時間の短縮が図れる。さらに、加熱処理後にケーブル
絶縁体の表面の検査を行うだけでよく、検査時間の短縮
化も図ることが出来、線路建設期間の大幅な短縮を実現
することが出来るという優れた効果がある。また、請求
項2によれば、半導電収縮チューブの少なくとも片方の
先端部の厚さがテーパー処理されているので、ケーブル
上での半導電収縮チューブの切削作業がなくなり、信頼
性が向上するという効果がある。
As described above, according to the first aspect of the present invention,
According to this, the surface of the cable insulator exposed at the end of the crosslinked polyethylene insulated power cable is covered with a semiconductive shrink tube having a higher melting point than the insulator and having a smooth inner surface at a predetermined distance from the end surface. Then, a smoothing shrink tube having a higher melting point than the semi-conductive shrink tube and having a smooth inside is coated on the exposed insulator including the semi-conductive shrink tube, and then the smoothing process is performed. In the state where the shrinkable tube is pressed, after performing a smoothing treatment by heating to the melting point of the semiconductive shrinkable tube or higher, the smoothing shrinkable tube is removed,
Since the stress cone is pressed against the portion subjected to the smoothing process, the on-site construction of the outer semiconductive layer (which corresponds to the semiconductive shrink tube in the present invention) and the cable insulator smoothing process are performed in one heating process. Since processing can be performed, two steps of conventional smoothing (mirror surface) processing → preparation of a semiconductive layer are completed in one step, and the working time can be reduced. Furthermore, it is only necessary to inspect the surface of the cable insulator after the heat treatment, and it is possible to shorten the inspection time, which has an excellent effect that the time required for constructing the track can be significantly shortened. According to the second aspect, since the thickness of at least one end of the semiconductive shrinkable tube is tapered, there is no need to cut the semiconductive shrinkable tube on the cable, and the reliability is improved. effective.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明にかかる架橋ポリエチレン絶縁電力ケー
ブルのプレハブ型接続部を形成する手順を示す一実施例
の説明図である。
FIG. 1 is an explanatory view of one embodiment showing a procedure for forming a prefabricated connection portion of a crosslinked polyethylene insulated power cable according to the present invention.

【図2】半導電収縮チューブの縦断面図である。FIG. 2 is a longitudinal sectional view of a semiconductive shrinkable tube.

【図3】従来の架橋ポリエチレン絶縁電力ケーブルのプ
レハブ型接続部の縦断面図である。
FIG. 3 is a longitudinal sectional view of a prefabricated connection portion of a conventional crosslinked polyethylene insulated power cable.

【図4】上記架橋ポリエチレン絶縁電力ケーブルのプレ
ハブ型接続部の要部縦断面図である。
FIG. 4 is a longitudinal sectional view of a main part of a prefabricated connection portion of the crosslinked polyethylene insulated power cable.

【符号の説明】[Explanation of symbols]

1 ケーブル 5 ケーブル絶縁体 10 外部半導電層 21 半導電収縮チューブ 21a 先端部 22 平滑化処理用収縮チューブ 23 押さえテープ 24 サーモカップル 25 加熱ヒーター 26 断熱層 DESCRIPTION OF SYMBOLS 1 Cable 5 Cable insulator 10 External semiconductive layer 21 Semiconductive shrinkable tube 21a Tip 22 Shrinkage tube for smoothing treatment 23 Pressing tape 24 Thermocouple 25 Heater 26 Heat insulating layer

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平6−339208(JP,A) 特開 平4−368410(JP,A) 実開 平6−44336(JP,U) 実開 平5−11732(JP,U) (58)調査した分野(Int.Cl.7,DB名) H02G 15/08 H02G 1/14 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-6-339208 (JP, A) JP-A-4-368410 (JP, A) JP 6-44336 (JP, U) JP 5 11732 (JP, U) (58) Field surveyed (Int. Cl. 7 , DB name) H02G 15/08 H02G 1/14

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 架橋ポリエチレン絶縁電力ケーブルの端
部に露出させたケーブル絶縁体表面に、該絶縁体より高
い融点を有し、且つ、内面が平滑な半導電収縮チューブ
を端面から所定間隔おいて被覆し、次いで、前記半導電
収縮チューブ上を含む露出絶縁体上に前記半導電収縮チ
ューブより高い融点を有し、且つ内側が平滑な平滑化処
理用収縮チューブを被覆し、次いで、前記平滑化処理用
収縮チューブを押圧した状態で、前記半導電収縮チュー
ブの融点以上に加熱することによって平滑化処理を施し
て後、前記平滑化処理用収縮チューブを除去し、次い
で、前記平滑化処理を施した部分にストレスコーンを圧
接することを特徴とする架橋ポリエチレン絶縁電力ケー
ブルのプレハブ型接続部の形成方法。
1. A semiconductive shrinkable tube having a melting point higher than that of an insulator and having a smooth inner surface is provided at a predetermined distance from the end surface on the surface of the cable insulator exposed at the end of the crosslinked polyethylene insulated power cable. Coating, and then coating a smoothing shrink tube having a higher melting point than the semi-conductive shrink tube and having a smooth inside on the exposed insulator including on the semi-conductive shrink tube, and then applying the smoothing In a state where the processing shrink tube is pressed, the smoothing process is performed by heating the melting point of the semiconductive shrink tube to a temperature equal to or higher than the melting point of the semi-conductive shrink tube. Thereafter, the smoothing process shrink tube is removed, and then the smoothing process is performed. A method for forming a prefabricated connection part of a cross-linked polyethylene insulated power cable, comprising: pressing a stress cone against a set part.
【請求項2】 半導電収縮チューブの少なくとも片方の
先端部の厚さがテーパー処理されていることを特徴とす
る請求項1記載の架橋ポリエチレン絶縁電力ケーブルの
プレハブ型接続部の形成方法。
2. A method for forming a prefabricated connection part of a crosslinked polyethylene insulated power cable according to claim 1, wherein the thickness of at least one end of the semiconductive shrinkable tube is tapered.
JP04976995A 1995-03-09 1995-03-09 Method of forming prefabricated connection of crosslinked polyethylene insulated power cable Expired - Fee Related JP3243142B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04976995A JP3243142B2 (en) 1995-03-09 1995-03-09 Method of forming prefabricated connection of crosslinked polyethylene insulated power cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04976995A JP3243142B2 (en) 1995-03-09 1995-03-09 Method of forming prefabricated connection of crosslinked polyethylene insulated power cable

Publications (2)

Publication Number Publication Date
JPH08251793A JPH08251793A (en) 1996-09-27
JP3243142B2 true JP3243142B2 (en) 2002-01-07

Family

ID=12840386

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04976995A Expired - Fee Related JP3243142B2 (en) 1995-03-09 1995-03-09 Method of forming prefabricated connection of crosslinked polyethylene insulated power cable

Country Status (1)

Country Link
JP (1) JP3243142B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3043436A4 (en) * 2013-09-05 2017-04-12 CYG Electric Co. Ltd. Manufacturing process of molding stress control module for cross-linked polyethylene insulation cable body terminal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3043436A4 (en) * 2013-09-05 2017-04-12 CYG Electric Co. Ltd. Manufacturing process of molding stress control module for cross-linked polyethylene insulation cable body terminal

Also Published As

Publication number Publication date
JPH08251793A (en) 1996-09-27

Similar Documents

Publication Publication Date Title
US3777048A (en) Molding process for splicing cable and product formed thereby
JP3243142B2 (en) Method of forming prefabricated connection of crosslinked polyethylene insulated power cable
JP3014501B2 (en) Method of manufacturing tubular insulating block for power cable connection
JPH11262127A (en) Terminal processing method for prefabricated connector of crosslinked polyethylene insulated power cable
JP3013730B2 (en) Cable processing method at connection part for CV cable
JP3171657B2 (en) Cable connection end
JP3042535B2 (en) Method of forming cross-linked polyethylene insulated power cable connection
JPH09130952A (en) Prefab joint for crosslinked polyethylene insulated power cable
JP3139719B2 (en) Connection method of cross-linked polyethylene insulated power cable
JP3014542B2 (en) Method of connecting crosslinked rubber / plastic insulated power cable and electric field relaxation tape used therefor
JPH09284943A (en) Method for extrusion mold joint of bridgeable polyethylene cable
JP2789583B2 (en) Forming method of cable connection
JPH07236216A (en) Mold joint for crosslinked polyethylene cable with sheath separation and jointing method
JP2864184B2 (en) Surface finishing method of cable insulation at the connection end of cross-linked polyethylene insulated cable
JP2818666B2 (en) Rubber plastic power cable
JP3014502B2 (en) Insulation block for power cable connection and connection method using it
JPH02142312A (en) Formation of insulator at joint of power cable
JP2639649B2 (en) Method of forming connection part of power cable
JP2618489B2 (en) Connection method of plastic insulated power cable
JP4309077B2 (en) CV cable mold heating tube and CV cable terminal processing method.
JP2000152453A (en) Power cable end processing method
JP2000299920A (en) Jointed part of crosslinked polyethylene-insulated power cable
CN117317775A (en) Hot melting manufacturing method for intermediate joint of copper core power cable
JP2840837B2 (en) Cable mold joint method
JPS6122531B2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081019

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091019

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091019

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101019

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111019

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees