JPH02155416A - Molded joint method of cable - Google Patents

Molded joint method of cable

Info

Publication number
JPH02155416A
JPH02155416A JP30673788A JP30673788A JPH02155416A JP H02155416 A JPH02155416 A JP H02155416A JP 30673788 A JP30673788 A JP 30673788A JP 30673788 A JP30673788 A JP 30673788A JP H02155416 A JPH02155416 A JP H02155416A
Authority
JP
Japan
Prior art keywords
layer
electric field
edge part
cable
field relaxation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30673788A
Other languages
Japanese (ja)
Inventor
Muneharu Isaka
井坂 宗晴
Susumu Takahashi
享 高橋
Atsuo Aida
会田 温夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP30673788A priority Critical patent/JPH02155416A/en
Publication of JPH02155416A publication Critical patent/JPH02155416A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cable Accessories (AREA)

Abstract

PURPOSE:To make a withstand breakdown voltage higher by covering the inside edge part of a joint part, where one side edge part of an external semiconductor layer arranged on the inside and the other side edge part are piled in a lap-like manner while and insulated state is maintained, with an electric field relaxation layer by means of an admixture. CONSTITUTION:The edge part 7a of one side external semiconductive layer 7 is arranged on the inside and the edge part 8a of the other side external semiconductive layer 8 is overlapped upon said edge part 7a, with an electric field relaxation layer 10 between them. Said layer 10 is formed when a base material rubber, 100 pts.wt. plastics and 30-250 pts.wt. conductive zinc white are blended together. Said layers 7, 8 are pressed and wound from above by a tape 11 and melt-molded subsequently. In this manner, it is possible to obtain an high withstand breakdown voltage.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、モールドジヨイント工法に係り、特に、外部
半導電層の2分割された縁部の電界を緩和させ、耐破壊
電圧の向上を図った工法に関するものである。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a mold joint construction method, and particularly to a method for improving breakdown voltage by relaxing the electric field at the two-divided edge of an external semiconducting layer. This is related to the construction method that was developed.

〈従来の技術〉 ケーブル、例えばCvケーブルのモールドジヨイント部
では、一般に外部半導電層が設けられるわけであるが、
この外部半導電層あっては、ジヨイント部の全長に渡っ
て一連に連続されるものと、適宜部分で周方向に沿って
2分割され、互いの縁部が絶縁してラップ状に重ねられ
るものがある。
<Prior Art> Generally, an external semiconductive layer is provided at the mold joint part of a cable, for example, a Cv cable.
This external semiconductive layer may be continuous over the entire length of the joint, or it may be divided into two along the circumferential direction at appropriate points and overlapped in a lap shape with their edges insulated. There is.

このような2分割方式を採用する理由は、電磁誘導によ
って生じるシースの電界上昇およびシース回路損失を低
減させることにある。
The reason for adopting such a two-division system is to reduce the increase in electric field in the sheath caused by electromagnetic induction and the sheath circuit loss.

〈発明が解決しようとする課題〉 ところが、このような分割構造をとると、外部半導電層
の縁部に、電界集中等のストレスが集中し易くなるため
、縁部組成物材料の選定、形状成形等には細心の注意が
必要とされることはもとより、この電界ストレスをどの
ように緩和させるかが、耐破壊電圧の向上に重要な位置
を占めてくる。
<Problems to be Solved by the Invention> However, when such a divided structure is adopted, stress such as electric field concentration tends to be concentrated on the edge of the external semiconducting layer, so it is difficult to select the edge composition material and the shape. Not only does molding require careful attention, but how to alleviate this electric field stress plays an important role in improving breakdown voltage.

特に、近年、C■ケーブルにおいては、急速に高電圧化
されつつあるため、この点の改善は強く望まれている。
In particular, in recent years, the voltage of C■ cables has been rapidly increasing, so improvements in this respect are strongly desired.

そこで、本発明者等がより一層深く検討したところ、少
なくとも外部半導電層の内側縁部(外部内層半導電電極
先端)を、電界緩和層で覆うと、縁部の電界ストレスが
緩和され、破壊電圧の向上が可能であることを見出した
Therefore, the inventors conducted a deeper study and found that if at least the inner edge of the outer semiconducting layer (the tip of the outer inner layer semiconducting electrode) is covered with an electric field relaxation layer, the electric field stress at the edge will be alleviated, leading to destruction. We have found that it is possible to improve the voltage.

一方、このような電界緩和層の考え方は、ケーブル自体
の分野、例えばC■ケーブル等では、従来から採用され
ていたが、その際の混和物としては、一般に、基材樹脂
に、アセトヘエノンの如き有機物やカーボンブランク、
あるいは酸化チタンの如き金属酸化物を添加したものが
知られている(EPRr  Report  El−4
28,U。
On the other hand, the concept of such an electric field relaxation layer has long been adopted in the field of cables themselves, such as C cables, but the admixtures at that time are generally additives such as acetohenone in the base resin. organic matter and carbon blank,
Alternatively, it is known that metal oxides such as titanium oxide are added (EPRr Report El-4
28, U.

S、P、3885,085、第17回電気絶縁材料シン
ポジューム■−3等参照)。
S, P, 3885,085, 17th Electrical Insulating Materials Symposium ■-3, etc.).

しかし、上記有機物を添加したものにあっては、長年の
うちには拡散移行により濃度変化が生じ、これが原因で
特性の変化が起き易く、また、カーボンブランクの場合
には、電界強度の緩和に適当な体積抵抗率を示すものが
得難く、さらに混和物の色彩が半導電層部分と同色の黒
色であるため、半導電層との区別が難しく、接続等の端
末処理作業が大変であった。また、金属酸化物を添加し
た場合には、可なり大量に添加しないと、その効果が現
れず、この大量添加により物理的特性や機械的特性の低
下を招き、実用的ではなかった。
However, in the case of materials to which the above-mentioned organic substances have been added, concentration changes occur over many years due to diffusion transfer, which tends to cause changes in properties, and in the case of carbon blanks, it is difficult to It is difficult to obtain a material that exhibits a good volume resistivity, and furthermore, because the color of the mixture is black, the same color as the semiconducting layer, it is difficult to distinguish it from the semiconducting layer, making terminal processing such as connection difficult. Furthermore, when metal oxides are added, the effect will not be seen unless they are added in a fairly large amount, and this large amount of addition causes deterioration of physical properties and mechanical properties, making it impractical.

本発明は、このようにな従来の実情に鑑みてなされたも
ので、ケーブルのモールドジヨイント部に使用する上述
の電界緩和層の添加剤として、導電性亜鉛華に着目し、
完成されたものである。
The present invention has been made in view of the conventional situation, and focuses on conductive zinc white as an additive for the above-mentioned electric field relaxation layer used in the mold joint of the cable.
It is complete.

〈課題を解決するための手段及びその作用〉か\る本発
明の特徴とする点は、モールド樹脂絶縁体の外周に被覆
される外部半導電層が周方向に沿って2分割され、一方
の縁部が内側に入り、この上に他方の縁部が絶縁を保ち
ながらラップ状に重ねられるケーブルのモールドジヨイ
ント部において、少なくとも前記外部半導電層の内側縁
部(外部内層半導電電極先端)を、基材ゴム、プラスチ
ック100重量部に導電性亜鉛華30〜250重量部を
配合してなる混和物による電界緩和層で覆い、この後、
ジヨイント部全体を加熱熔融させてモールドするケーブ
ルのモールドジヨイント工法にある。
<Means for Solving the Problems and Their Effects> The feature of the present invention is that the external semiconductive layer coated on the outer periphery of the molded resin insulator is divided into two along the circumferential direction, and one At least the inner edge of the outer semiconductive layer (the tip of the outer inner layer semiconductive electrode) at the mold joint part of the cable where the edge goes inside and the other edge is overlapped in a lap shape while maintaining insulation. is covered with an electric field relaxation layer made of a mixture of base rubber, 100 parts by weight of plastic, and 30 to 250 parts by weight of conductive zinc white, and then,
This is a cable mold joint construction method in which the entire joint part is heated and melted to be molded.

上記電界緩和層において使用される基材のゴム、プラス
チックとしては、例えばエチレンプロピレンゴム、塩素
化ポリエチレンゴム、エチレン−酢酸ビニル共重合体(
EVA) 、ポリエチレン、架橋ポリエチレン、ポリプ
ロピレン、エチレン−エチルアクリレート共重合体(E
EA)、エチレン−α−オレフィンジエン共重合体等が
挙げられ、そして、電界緩和層の形成にあたっては、こ
れらの単独品や併用物の100重量部に、導電性亜鉛華
30〜250重量部を配合して作る。
Examples of the base rubber or plastic used in the electric field relaxation layer include ethylene propylene rubber, chlorinated polyethylene rubber, and ethylene-vinyl acetate copolymer (
EVA), polyethylene, crosslinked polyethylene, polypropylene, ethylene-ethyl acrylate copolymer (E
EA), ethylene-α-olefin diene copolymer, etc., and in forming the electric field relaxation layer, 30 to 250 parts by weight of conductive zinc white is added to 100 parts by weight of these alone or in combination. Mix and make.

ここで、導電性亜鉛華とは、酸化亜鉛に0.01〜5%
の酸化アルミニウムをドープし、粉末状態のま\で混合
し、還元雰囲気下で高温焼成したものである。このよう
にして製造した導電性亜鉛華は、一般に、200Kg/
cm”の加圧下で体積抵抗率が10310’Ω−cm以
下の値を示し、灰白色ないし白色を呈する。
Here, conductive zinc white refers to 0.01 to 5% zinc oxide.
It is doped with aluminum oxide, mixed in powder form, and fired at high temperature in a reducing atmosphere. The conductive zinc white produced in this way generally weighs 200 kg/
It exhibits a volume resistivity of 10,310' Ω-cm or less under a pressure of 10,310' Ω-cm, and exhibits a grayish-white to white color.

このような導電性亜鉛華の配合量を、ゴム、プラスチッ
クの基材100重量部に対して、30〜250重量部と
したのは、配合量が30重量部未満では電界緩和層とし
ての電気的特性が得られず、また250重量部を越える
と機械的特性が劣化し、かつ電気抵抗が低下し過ぎ電界
緩和効果がなくなるからである。そして、より好ましい
配合量としては、基材ゴム、プラスチックの種類により
多少の違いはあるものの、例えば基材プラスチックがポ
リエチレン等のような結晶性高分子の場合には、30〜
150重量部がよい。
The reason why the amount of conductive zinc white is set at 30 to 250 parts by weight per 100 parts by weight of the rubber or plastic base material is that if the amount is less than 30 parts by weight, it will not function as an electric field relaxation layer. If the amount exceeds 250 parts by weight, the mechanical properties will deteriorate and the electrical resistance will drop too much to lose the electric field relaxation effect. Although there are some differences depending on the type of base rubber and plastic, for example, when the base plastic is a crystalline polymer such as polyethylene, the more preferable blending amount is 30 to 30.
150 parts by weight is good.

また、この電界緩和層のゴム、プラスチックには、夫々
の電気的特性を損なわない範囲で、必要に応じて、架橋
剤、老化防止剤、滑剤等の加工助剤等を適宜添加するこ
とができる。
Furthermore, processing aids such as crosslinking agents, anti-aging agents, lubricants, etc. can be added to the rubber and plastic of this electric field relaxation layer as appropriate, within a range that does not impair their electrical properties. .

また、上記ジヨイント部の外部半導電層の組成物として
は、エチレン−エチルアクリレート共重合体(EEA)
 、エチレン酢酸ビニル共重合体(EVA)、エチレン
−アクリル酸共重合体(EAA)等のベース樹脂に、カ
ーボンや金属等の導電性粉末、および若干の架橋剤、例
えばジクミルパーオキサイド(DCP)、2.5−ジメ
チル−2,5−ジ(t−ブチルパーオキシ)ヘキシン−
3,2,5−ジメチル−2,5−ジ(t−ブチルパーオ
キシ)ヘキサン等を添加してなるものが挙げられる。そ
して、これらの各成分の配合量は、使用する材料にもよ
るが、ベース樹脂100重量部に対して、導電性粉末1
0〜70重量部、架橋剤0.2〜1重量部程とし、外部
半導電層としてモールド樹脂絶縁体上に被覆する。その
際のゲル分率(110℃のキシレン中に24時間浸漬し
たときの抽出法による)は、10〜50%の範囲に調整
するとよい。なぜならば、ゲル分率が10%未満ではモ
ールド樹脂絶縁体との接着性は良好であるが、架橋度が
不十分のため、形状保持性が悪く、縁部が潰れる等して
、突起や尖形部が生じ易く、電気破壊の原因となるから
であり、またゲル分率が50%を越えるようになると、
十分な架橋度により形状保持性は強化されるが、モール
ド樹脂!!縁体との接着性が悪化して、縁部に微小剥離
等によるボイドが発生し易く、やはり電気破壊の原因と
なるからである。
The composition of the external semiconductive layer of the joint portion is ethylene-ethyl acrylate copolymer (EEA).
, a base resin such as ethylene vinyl acetate copolymer (EVA), or ethylene-acrylic acid copolymer (EAA), conductive powder such as carbon or metal, and some crosslinking agent such as dicumyl peroxide (DCP). , 2,5-dimethyl-2,5-di(t-butylperoxy)hexyne-
Examples include those to which 3,2,5-dimethyl-2,5-di(t-butylperoxy)hexane and the like are added. The blending amount of each of these components depends on the materials used, but 1 part by weight of the conductive powder is added to 100 parts by weight of the base resin.
0 to 70 parts by weight, and 0.2 to 1 part by weight of the crosslinking agent, and coated on the molded resin insulator as an external semiconductive layer. The gel fraction at that time (based on the extraction method when immersed in xylene at 110° C. for 24 hours) is preferably adjusted to a range of 10 to 50%. This is because when the gel fraction is less than 10%, adhesion with the molded resin insulator is good, but the degree of crosslinking is insufficient, resulting in poor shape retention, resulting in crushed edges, protrusions, and sharp edges. This is because shapes are likely to occur and cause electrical breakdown, and if the gel fraction exceeds 50%,
Shape retention is enhanced by a sufficient degree of crosslinking, but mold resin! ! This is because the adhesion to the edge deteriorates, and voids are likely to occur at the edge due to minute peeling, etc., which also causes electrical breakdown.

次に、本発明工法の具体的な一例を、第1図により説明
する。
Next, a specific example of the construction method of the present invention will be explained with reference to FIG.

図において、F、Fは互いに接続されるケーブル、Jは
そのジョンイト部である。
In the figure, F and F are cables that are connected to each other, and J is a joint portion thereof.

本発明工法では、上記ケーブルF、Fの接続しようとす
る再接続端部分の被覆部(絶縁体等)2゜2を削り取り
(ベンジンリング処理)、口出しし、側導体1.1部分
を筒状等の金属製圧着スリーブ3に両側から挿入し、こ
の後、この圧着スリーブ3を押し潰して、先ず、導体接
続を行う。
In the construction method of the present invention, the covering part (insulator, etc.) 2.2 of the reconnection end part of the cables F and F to be connected is scraped off (benzine ring treatment) and exposed, and the side conductor 1.1 part is shaped into a cylindrical shape. The conductor is inserted into a metal crimp sleeve 3 from both sides, and then the crimp sleeve 3 is crushed to connect the conductor.

次に、この接続部分に、例えば半導電性テープを巻き、
加熱溶融させて架橋させ、架橋済の内部半導電層4を形
成する。勿論、この内部半導電層4はケーブルF、  
F側の内部半導電層5,5と接続処理する。
Next, wrap a semiconductive tape around this connection, for example.
The material is heated and melted to be crosslinked to form a crosslinked internal semiconductive layer 4. Of course, this internal semiconducting layer 4 is connected to the cable F,
Connection processing is performed with the internal semiconducting layers 5, 5 on the F side.

この後、この部分に、例えば未架橋の架橋剤入り組成物
テープを巻き付けて、絶縁体6を形成する。また、この
絶縁体6の形成にあったては、このテープ巻きの他に、
この部分に、例えば、押出モールド金型をセットし、通
常の方法で、モールド樹脂を絶縁体6として押し出して
形成してもよい。
Thereafter, an insulator 6 is formed by wrapping, for example, an uncrosslinked composition tape containing a crosslinking agent around this portion. In addition to this tape wrapping, when forming the insulator 6,
For example, an extrusion mold may be set in this portion, and molded resin may be extruded as the insulator 6 using a normal method.

この絶縁体6の外周には、半導電性テープを巻き付け、
2分割された外部半導電性層7.8を形成する。この際
、一方の外部半導電性層7の縁部7aは内側に入れ、こ
の上に他方の外部半導電性118の縁部8aを、電界緩
和層10を介在させながら、ラップ状に重ね合わせる。
A semiconductive tape is wrapped around the outer periphery of this insulator 6,
A two-part outer semiconductive layer 7.8 is formed. At this time, the edge 7a of one of the outer semiconductive layers 7 is placed inside, and the edge 8a of the other outer semiconductive layer 118 is overlapped thereon in a lap shape with the electric field relaxation layer 10 interposed therebetween. .

この電界緩和層10は、上述したように基材ゴム、プラ
スチック100重量部に導電性亜鉛華30〜250重量
部を配合してなるものである。
As described above, this electric field relaxation layer 10 is made by blending 30 to 250 parts by weight of conductive zinc white with 100 parts by weight of base rubber or plastic.

そして、これらの外部半導電層7,8はケーブルF、F
側の外部半導電N9.9と接続処理する。
These outer semiconducting layers 7 and 8 are connected to cables F and F.
Connect to the external semi-conducting N9.9 on the side.

このようにして形成された外部半導電N7,8上には、
さらに、抑えテープ11で抑え巻きし、その後、モール
ド用の金型をセットし、例えば、6Kg/cm”の窒素
ガス加圧下で180°C23時間の加圧加熱により、上
記未架橋ないし架橋不十分な絶縁体6、外部半導電層7
.8部分および電界緩和層10部分を溶融モールドさせ
る。
On the external semiconducting conductors N7 and 8 formed in this way,
Further, it is wrapped with a restraining tape 11, and then a molding die is set, and the uncrosslinked or insufficiently crosslinked insulator 6, outer semiconducting layer 7
.. 8 portions and 10 portions of the electric field relaxation layer are melt-molded.

このモールドの際、外部半導電性層7の内側縁部7aは
、電界緩和層10の存在(被覆)により、当該縁部7a
の電界ストレスが良好に緩和され、この結果として、高
い耐破壊電圧が得られるようになる。
During this molding, the inner edge 7a of the outer semiconductive layer 7 is
As a result, a high breakdown voltage can be obtained.

〈実施例〉 第1表に示した各配合のコンパウンド(実施例I〜■、
比較例I〜■)により、120℃で厚さ0.1mm、中
100mmのテープ状に押し出し、スレツタ−にて巾2
0mmの電界緩和テープとした。
<Example> Compounds of each composition shown in Table 1 (Examples I~■,
Comparative Examples I~■) were extruded at 120°C into a tape shape with a thickness of 0.1 mm and a medium size of 100 mm, and a width of 2
An electric field relaxation tape of 0 mm was used.

一方、接続しようとするC■ケーブル(154Kv、1
200mm” )(7)接続端部分の被覆部(絶縁体等
)を円錐形状に削り取り(ペンシリング処理)、口出し
し、導体同士を圧着スリーブで接続し、この後、半導電
性テープを巻き、内部半導電層を形成し、加熱によりテ
ープモールドを行った。
On the other hand, the C cable (154Kv, 1
200mm”) (7) Scrape off the covering (insulator, etc.) at the connection end into a conical shape (penciling process), connect the conductors with a crimp sleeve, then wrap semiconductive tape, An internal semiconductive layer was formed and tape molded by heating.

次に、絶縁体部分に相当する架橋剤入りポリエチレンテ
ープをモールド形状に巻き付け、さらに、この上の適宜
部分、例えば上述の第1図に示したように、ジヨイント
部の右端寄りに、前述したパイプ状の内側縁部を取付け
、その上から架橋剤入りの半導電性EEAテープを左方
向に巻き付けて一方の外部半導電層を形成すると共に、
上記パイプ状の内側縁部の上(上記第1図の右上部分)
に、前述の電界緩和テープを巻き付けて、電界緩和層を
形成した。
Next, a polyethylene tape containing a cross-linking agent corresponding to the insulator part is wrapped around the mold shape, and then the above-mentioned pipe is wrapped around the appropriate part of the tape, for example, near the right end of the joint part, as shown in Figure 1 above. Attach the inner edge of the shape, and wrap a semiconductive EEA tape containing a crosslinking agent in the left direction from above to form one outer semiconductive layer,
Above the inner edge of the pipe shape (upper right part of Figure 1 above)
The above-mentioned electric field relaxation tape was wrapped around it to form an electric field relaxation layer.

この後、この内側縁部および電界緩和層の上に、一部ラ
ップさせて同じく架橋剤入りの半導電性EEAテープを
右方向の円錐部分に巻き付けて他方の外部半導電層を形
成した。
Thereafter, on the inner edge and the electric field relaxation layer, a semiconductive EEA tape containing a crosslinking agent was wrapped around the conical part in the right direction in a partially wrapped manner to form the other outer semiconductive layer.

そして、さらに、この上に、例えばテフロンテープを抑
えテープとして巻き付け、窒素ガス加圧下で加熱してモ
ールド架橋させた。
Further, a Teflon tape, for example, was wrapped thereon as a restraining tape, and the mold was cross-linked by heating under nitrogen gas pressure.

このようにして作成されたジヨイント部について、交流
破壊電圧値および破壊箇所を調べたことろ、第2表の如
き結果を得た。
The AC breakdown voltage value and breakdown location of the joint portion thus prepared were investigated, and the results shown in Table 2 were obtained.

第   2   表 上記第2表から、本発明実施例品の場合、高い交流破壊
電圧値が得られ、しかも破壊箇所が外部半導電層の内側
縁部以外で起こっており、内側縁部での耐破壊電圧の向
上が確認された。これに対して、比較例品の場合は、交
流破壊電圧値も低く、かつその破壊が内側縁部先端から
起こっているケースが多いことが判る。
Table 2 From Table 2 above, in the case of the example products of the present invention, a high AC breakdown voltage value was obtained, and the breakdown occurred at a location other than the inner edge of the outer semiconducting layer, and the durability at the inner edge was low. An improvement in breakdown voltage was confirmed. On the other hand, in the case of comparative example products, the AC breakdown voltage value is also low, and it can be seen that the breakdown occurs in many cases from the tip of the inner edge.

〈発明の効果〉 以上の説明から明らかなように本発明によれば、外部半
導電層の2分割されたモールドジヨイント部において、
外部半導電層の内側縁部(外部内層半導電電極先端)を
、ゴム、プラスチックに導電性亜鉛華を添加してなる電
界緩和層で覆うため、縁部の電界ストレスが効果的に緩
和され、電気特性に優れたケーブルのモールドジヨイン
ト工法を得ることができる。
<Effects of the Invention> As is clear from the above description, according to the present invention, in the two-divided mold joint part of the external semiconducting layer,
Since the inner edge of the outer semiconductive layer (the tip of the outer inner layer semiconductive electrode) is covered with an electric field relaxation layer made of rubber or plastic with conductive zinc white added, the electric field stress at the edge is effectively alleviated. A cable mold joint construction method with excellent electrical properties can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係るケーブルのモールドジヨイント工
法の一実施例を示した概略断面図である。 図中、 F、F・・・ケーブル、 J・・・・・ジヨイント部、 1、  l・・・導体、 2.2 3 ・ ・ 4 ・ ・ 6 ・ ・ 7.8 7 a ・ 8 a ・ 10 ・ 11  ・ 被覆部(絶縁体)、 圧着スリーブ、 内部半導電層、 モールド樹脂絶縁体、 外部半導電層、 内側縁部、 外側縁部、 電界緩和層、 抑えテープ、
FIG. 1 is a schematic cross-sectional view showing an embodiment of the cable mold joint construction method according to the present invention. In the diagram, F, F...cable, J...joint part, 1, l...conductor, 2.2 3 ・ ・ 4 ・ ・ 6 ・ ・ 7.8 7 a ・ 8 a ・ 10・ 11 ・ Covering part (insulator), crimp sleeve, inner semiconducting layer, molded resin insulator, outer semiconducting layer, inner edge, outer edge, electric field relaxation layer, suppressing tape,

Claims (1)

【特許請求の範囲】[Claims] モールド樹脂絶縁体の外周に被覆される外部半導電層が
周方向に沿って2分割され、一方の縁部が内側に入り、
この上に他方の縁部が絶縁を保ちながらラップ状に重ね
られるケーブルのモールドジョイント部において、少な
くとも前記外部半導電層の内側縁部を、基材ゴム、プラ
スチック100重量部に導電性亜鉛華30〜250重量
部を配合してなる混和物による電界緩和層で覆い、この
後、ジョイント部全体を加熱溶融させてモールドするこ
とを特徴とするケーブルのモールドジョイント工法。
The outer semiconducting layer coated on the outer periphery of the molded resin insulator is divided into two along the circumferential direction, one edge is inside,
At the molded joint part of the cable, on which the other edge is overlapped in a lap shape while maintaining insulation, at least the inner edge of the outer semiconductive layer is coated with 30 parts by weight of conductive zinc white on 100 parts by weight of base rubber and plastic. A cable mold joint construction method characterized in that the cable is covered with an electric field relaxation layer made of a mixture containing up to 250 parts by weight, and then the entire joint part is heated and melted and molded.
JP30673788A 1988-12-03 1988-12-03 Molded joint method of cable Pending JPH02155416A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30673788A JPH02155416A (en) 1988-12-03 1988-12-03 Molded joint method of cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30673788A JPH02155416A (en) 1988-12-03 1988-12-03 Molded joint method of cable

Publications (1)

Publication Number Publication Date
JPH02155416A true JPH02155416A (en) 1990-06-14

Family

ID=17960696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30673788A Pending JPH02155416A (en) 1988-12-03 1988-12-03 Molded joint method of cable

Country Status (1)

Country Link
JP (1) JPH02155416A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000115976A (en) * 1998-09-29 2000-04-21 Furukawa Electric Co Ltd:The Taping winding type linear connected part

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000115976A (en) * 1998-09-29 2000-04-21 Furukawa Electric Co Ltd:The Taping winding type linear connected part

Similar Documents

Publication Publication Date Title
US3793476A (en) Insulated conductor with a strippable layer
US3925597A (en) Electrical conductors with strippable insulation and method of making the same
JPH10283851A (en) Direct current power cable and its connection part
JPH04106B2 (en)
JPH02155416A (en) Molded joint method of cable
JP3428388B2 (en) DC cable
JPH1141779A (en) Connection part for cross-linked polyethylene insulated power cable
JPS6130367B2 (en)
JPH09231839A (en) Direct current cable
JPH0546163B2 (en)
JP3777958B2 (en) Cross-linked polyethylene insulated power cable suitable for recycling
JPH02237418A (en) Mold joint technique of cable
JP2840837B2 (en) Cable mold joint method
JPH01243305A (en) Electrically insulated cable
JPH0641543B2 (en) Semi-conductive resin composition
JP3244255B2 (en) Semiconductive resin composition
JPH0696625A (en) Rubber/plastic insulated electric power cable, connecting portion therefor, and manufacture thereof
JPH0127398Y2 (en)
JPH061937B2 (en) Cable mold joint construction method
JPS61235444A (en) Semiconductive resin composition
JPH0481283B2 (en)
JPH0689612A (en) Rubber/plastic insulated power cable and connection part thereof and manufacture thereof
JPH0132602B2 (en)
JPH10321043A (en) Dc cable
JPS6123734B2 (en)