JPH0265611A - Technique of molded joint of cable - Google Patents

Technique of molded joint of cable

Info

Publication number
JPH0265611A
JPH0265611A JP63216042A JP21604288A JPH0265611A JP H0265611 A JPH0265611 A JP H0265611A JP 63216042 A JP63216042 A JP 63216042A JP 21604288 A JP21604288 A JP 21604288A JP H0265611 A JPH0265611 A JP H0265611A
Authority
JP
Japan
Prior art keywords
inner electrode
cable
insulator
resin
tape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63216042A
Other languages
Japanese (ja)
Other versions
JPH061937B2 (en
Inventor
Muneharu Isaka
井坂 宗晴
Susumu Takahashi
享 高橋
Kohei Makino
牧野 幸平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP63216042A priority Critical patent/JPH061937B2/en
Publication of JPH0265611A publication Critical patent/JPH0265611A/en
Publication of JPH061937B2 publication Critical patent/JPH061937B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To improve adhesion by winding the inside electrode of an outer semi-conductive layer through a resin tape composed of same or identical material to the base resin composing the inside electrode then thermally fusing the entirety of joint and molding. CONSTITUTION:Outer semi-conductive layers 7, 8 splitted into two are formed on the outer circumference of an insulator 6. The inside electrode 7a of one outer semi-conducting layer 7 is placed at the inside then the outer electrode 8a of the other semi-conductive layer 8 is lapped thereon through a predetermined insulation gap. At this time, a resin tape 10 composed of same material as the base resin composing the inside electrode 7a is wound around the inside electrode 7a. Then a stop tape is applied on the outer semi-conductive layers 7, 8 thereafter a yet-crosslinked or insufficiently cross-linked insulator 6 and the outer semi-conductive layer 7, 8 are fusion molded and cross-linked to the final stage. By such arrangement, a high breakdown-proof voltage can be achieved.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、モールドジヨイント工法に係り、特に、外部
半導電層の2分割された電極のうち、内側電極の接着性
に改良を加え、耐破壊電圧の向上を図った工法に関する
ものである。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a mold joint construction method, and in particular improves the adhesiveness of the inner electrode of the two divided electrodes of the outer semiconducting layer. This relates to a construction method that aims to improve breakdown voltage.

〈従来の技術〉 ケーブル、例えばC■ケーブルのモールドジヨイント部
では、一般に外部半導電層が設けられるわけであるが、
この外部半導電層にあっては、ジヨイント部の全長に渡
って一連に連続されるものと、適宜部分で周方向に沿っ
て2分割され、互いの端部が絶縁してランプ状に重ねら
れるものがある。
<Prior Art> Generally, an external semiconducting layer is provided at the mold joint of a cable, such as a C■ cable.
This external semiconducting layer is either continuous over the entire length of the joint or divided into two parts along the circumferential direction at appropriate points, which are overlapped in a ramp shape with their ends insulated. There is something.

このような2分割方式を採用する理由は、電磁誘導によ
って生じるシースの電位上昇およびシース回路損失を低
減することにある。
The reason for adopting such a two-division method is to reduce the potential rise in the sheath caused by electromagnetic induction and the sheath circuit loss.

〈発明が解決しようとする課題〉 ところが、このような分割構造をとると、外部半導電層
の端部に、電界集中等のストレスが集中し易くなるため
、端部組成物材料の選定、形状成形等には細心の注意が
必要とされ、端部の構成が耐破壊電圧の向上に重要な位
置を占めてくる。
<Problems to be Solved by the Invention> However, when such a divided structure is adopted, stress such as electric field concentration tends to be concentrated at the edges of the external semiconducting layer, so it is difficult to select and shape the edge composition material. Careful attention must be paid to molding, etc., and the configuration of the end portions plays an important role in improving breakdown voltage.

現に、本発明者等の試験、研究による上、外部半導電層
の端部、特にモールド時、内側に入る内側電極端部に微
小剥離等によるボイドが発生したリ、あるいは形状変形
により突起や尖形部等ができたりすると、これに起因し
て、電気破壊が容易に起こることが判った。詩に、近年
、Cvケーフルにおいては、急速に高電圧化されつつあ
るため、この点の改善は強く望まれている。
In fact, based on the tests and research conducted by the present inventors, it has been found that voids are generated at the edges of the outer semiconducting layer, especially at the edge of the inner electrode that goes inside during molding, due to micro-peeling, etc., or protrusions or sharp points are formed due to shape deformation. It has been found that if a shape or the like is formed, electrical breakdown easily occurs due to this. In recent years, the voltage of Cv cables has been rapidly increasing, so improvement in this respect is strongly desired.

そこで、本発明者等がより一層深く検討したところ、外
部半導電層の内側電極端部の接着性を一層向上させる技
術として、この内側電極に用いられるベース樹脂と同材
質(同一または同種の材質)の樹脂テープを、この内側
電極を囲むような形で巻き込み、その後、ジヨイント全
体を加熱融着モールドさせると、接着性の優れたジヨイ
シトができることを見出した。
Therefore, the inventors of the present invention conducted a deeper study and found that a technique for further improving the adhesion of the inner electrode end of the outer semiconducting layer was made by using the same material (same or similar material) as the base resin used for this inner electrode. ) was wound around the inner electrode, and then the entire joint was heat-fused and molded, it was discovered that a joint with excellent adhesiveness could be obtained.

本発明は、このようにな観点に立ってなされたものであ
る。
The present invention has been made from this viewpoint.

〈課題を解決するための手段及びその作用〉か\る本発
明の特徴とする点は、モールド樹脂絶縁体の外周に被覆
される外部半導電層が周方向に沿って2分割され、一方
の端部が内側に入り、この上に他方の端部が一定の絶縁
間隔を保ちながらラップ状に重ねられるケーブルのモー
ルドジゴイント部において、前記外部半導電層の内側電
極を、当該内側電極Gこ用いられるベース樹脂と同一ま
たは同種の材質からなる樹脂テープで囲む形で巻き込み
、その後、ジヨイント部全体を加熱溶融させてモールド
するケーブルのモールドジヨイント工法にある。
<Means for Solving the Problems and Their Effects> The feature of the present invention is that the external semiconductive layer coated on the outer periphery of the molded resin insulator is divided into two along the circumferential direction, and one The inner electrode of the outer semiconducting layer is connected to the inner electrode G at the molded joint part of the cable, on which the end part goes inside and the other end part is overlapped in a lap shape while maintaining a constant insulation interval. A cable mold joint construction method involves wrapping the cable in a resin tape made of the same or similar material as the base resin used, and then heating and melting the entire joint part to mold it.

本発明で使用される外部半導電層の組成物としては、エ
チレン−エチルアクリレート共重合体(EEA) 、エ
チレン酢酸ビニル共重合体(EVA)、エチレン−アク
リル酸共重合体(EAA)等のベース樹脂に、カーボン
や金属等の導電性粉末、および若干の架橋剤、例えばジ
クミルパーオキサイド(DCP) 、2.5−ジメチル
−2,5ジ(t−ブチルパーオキシ)ヘキシン−3,2
゜5−ジメチル−2,5−ジ(t−ブチルパーオキシ)
ヘキサン等を添加してなるものが挙げられる。
The composition of the outer semiconductive layer used in the present invention includes bases such as ethylene-ethyl acrylate copolymer (EEA), ethylene-vinyl acetate copolymer (EVA), and ethylene-acrylic acid copolymer (EAA). In the resin, conductive powder such as carbon or metal, and some crosslinking agents such as dicumyl peroxide (DCP), 2,5-dimethyl-2,5-di(t-butylperoxy)hexyne-3,2
゜5-dimethyl-2,5-di(t-butylperoxy)
Examples include those made by adding hexane or the like.

そして、これらの各成分の配合量は、使用する材料にも
よるが、ベース樹脂100型番部に対して、導電性粉末
10〜70重量部、架橋剤0.2〜1重量部程とし、何
れにしても、外部半導電層としてモールド樹脂絶縁体上
に被覆された際に、そのゲル分率(110°Cのキシレ
ン中に24時間浸漬したときの抽出法による)が、10
〜50%の範囲になるように調整するとよい。なぜなら
ば、ゲル分率カ月O%未満ではモールド樹脂絶縁体との
接着性は良好であるが、架橋度が不十分のため、形状保
持性が悪く、端部が漬れる等して、突起や尖形部が生じ
易く、電気破壊の原因となるからである。また、ゲル分
率が50%を越えるようになると、十分な架橋度により
形状保持性は強化されるが、モールド樹脂絶縁体との接
着性が悪化して、端部に微小剥離等によるボイドが発生
し易く、やはり電気破壊の原因となるからである。
The amount of each of these components to be blended is approximately 10 to 70 parts by weight of the conductive powder and 0.2 to 1 part by weight of the crosslinking agent for 100 parts of the base resin, although it depends on the materials used. However, when coated on a molded resin insulator as an external semiconducting layer, its gel fraction (according to the extraction method when immersed in xylene at 110°C for 24 hours) is 10
It is advisable to adjust it to a range of ~50%. This is because when the gel fraction is less than 0%, the adhesion to the molded resin insulator is good, but the degree of crosslinking is insufficient, so the shape retention is poor, the edges are dipped, etc., and protrusions and This is because sharp portions are likely to form, causing electrical breakdown. In addition, when the gel fraction exceeds 50%, the shape retention is strengthened due to a sufficient degree of crosslinking, but the adhesion with the molded resin insulator deteriorates, causing voids at the edges due to micro-peeling, etc. This is because it is easy to occur and can cause electrical breakdown.

また、上記外部半導電層の内側電極に巻き込む樹脂テー
プは、内側電極を絶縁体と良好に接着させるための界面
接着補強用のテープであり、その材質としては、外部半
導電層と同一または同種の材質からなるものを使用する
。この材質の選定により、良好な接着性が得られる。
In addition, the resin tape wrapped around the inner electrode of the outer semiconductive layer is a tape for reinforcing interfacial adhesion to ensure good adhesion of the inner electrode to the insulator, and its material is the same or of the same type as the outer semiconductive layer. Use materials made of By selecting this material, good adhesion can be obtained.

次に、本発明工法の具体的な一例を、第1図により説明
する。
Next, a specific example of the construction method of the present invention will be explained with reference to FIG.

図において、F、Fは互いに接続されるケーブル、Jは
そのジョンイト部である。
In the figure, F and F are cables that are connected to each other, and J is a joint portion thereof.

本発明工法では、上記ケーブルF、  Fの接続しよう
とする両接続端部分の被覆部(絶縁体等)22を削り取
り(ベンジンリング処理)、口出しし、両扉体1,1部
分を筒状等の金属製圧着スリーフ3に両側から挿入し、
この後、この圧着スリーブ3を押し潰して、先ず、導体
接続を行う。
In the construction method of the present invention, the covering portions (insulators, etc.) 22 of the connecting ends of the cables F and F to be connected are scraped off (benzine ring treatment) and exposed, and both door bodies 1 are formed into a cylindrical shape or the like. Insert it into the metal crimp sleeve 3 from both sides,
After this, the crimp sleeve 3 is crushed and conductor connections are first made.

次に、この接続部分に、例えば半導電性テープを巻き、
加熱溶融させて架橋させ、架橋法のモールド内部半導電
層4を形成する。勿論、このモールド内部半導電層4は
ケーブルF、  F側の内部半導電層5,5と接続処理
する。
Next, wrap a semiconductive tape around this connection, for example.
The mold is melted and crosslinked by heating to form a semiconductive layer 4 inside the mold using the crosslinking method. Of course, this mold internal semiconductive layer 4 is connected to the cable F and the internal semiconductive layers 5, 5 on the F side.

この後、この部分に、例えば未架橋の架橋剤入り組成物
テープを巻き付けて、絶縁体6を形成する。また、この
絶縁体6の形成にあったでは、このテープ巻きの他に、
この部分に、例えば、押出モールド金型をセットし、通
常の方法で、モールド樹脂を絶縁体6として押し出して
形成してもよい この絶縁体6の外周には、半導電性テープを巻き付けた
り、半導電性モールドチューブを取付けたりして、2分
割された外部半導電性層7.8を形成する。この際、一
方の外部半導電性層7の内側電極7aは内側に入れ、こ
の上に他方の外部半導電性層8の外側電極8aを一定間
隔の絶縁を保ちなからラップ状に重ね合わせる。
Thereafter, an insulator 6 is formed by wrapping, for example, an uncrosslinked composition tape containing a crosslinking agent around this portion. In addition to this tape wrapping, in forming the insulator 6,
For example, an extrusion mold may be set in this part and the molded resin may be extruded as the insulator 6 using a normal method.A semiconductive tape may be wrapped around the outer periphery of the insulator 6. A semiconductive molded tube is attached to form a two-part outer semiconductive layer 7.8. At this time, the inner electrode 7a of one outer semiconductive layer 7 is placed inside, and the outer electrode 8a of the other outer semiconductive layer 8 is overlapped thereon in a lap shape while maintaining insulation at a constant interval.

このとき、第2図に示したように、モールド外部半導電
性層7、特に、内側電極7a部分のモールド樹脂との界
面接着力を向上させる目的で、この内側電jf41aに
用いられるベース樹脂と同材質(同一または同種の材質
)の樹脂テープ10をこの内側電極7aを囲むような形
で巻き込む。
At this time, as shown in FIG. 2, in order to improve the interfacial adhesion between the mold outer semiconductive layer 7, especially the inner electrode 7a portion, and the mold resin, the base resin used for the inner electrode 41a is A resin tape 10 made of the same material (same or similar type of material) is wound around the inner electrode 7a.

この樹脂テープ10による囲み方は、特に問わないが、
例えば、次のような方法により行うことができる。
The method of enclosing with this resin tape 10 is not particularly limited, but
For example, this can be done by the following method.

すなわち、既に架橋剤入りポリエチレンテープ等の巻き
込みによりモールド形状に形成された絶縁体6上の一方
(第1図中、右寄り)に、例えば、−枚目の樹脂テープ
10を周方向に1/2ラツプで巻き込み、この上に外部
半導電性層7の内側電極7aが来るように当該外部半導
電性層7の半導電性モールドチューブを取付ける。次に
、この上から二枚目の樹脂テープ10を、やはり1/2
ラツプで巻き込み、上記内側電極7aの上側に被せると
共に、上記−枚目の樹脂テープ10に重ね合わせる。こ
の後、絶縁体6をなす架橋剤入りポリエチレンテープ等
を所定厚さまで巻き込み、最後に外部半導電性N8の半
導電性モールド樹脂部分を取付け、その外部電極8aを
丁度上記内側電極7a上に重ね合わせればよい。また、
上記二枚目の樹脂テープ10だけを1/2ランプで巻き
込む方法でもよい。
That is, for example, a −th sheet of resin tape 10 is placed 1/2 in the circumferential direction on one side (on the right side in FIG. 1) of the insulator 6, which has already been formed into a mold shape by wrapping polyethylene tape containing a crosslinking agent, etc. The semiconductive mold tube of the external semiconductive layer 7 is attached so that the inner electrode 7a of the external semiconductive layer 7 is placed on top of this. Next, apply the second resin tape 10 from the top to 1/2
Wrap it up and cover it over the inner electrode 7a, and overlap it with the -th resin tape 10. After this, polyethylene tape containing a crosslinking agent, etc., which forms the insulator 6, is rolled up to a predetermined thickness, and finally, the semiconductive molded resin part of the external semiconductive N8 is attached, and the external electrode 8a is placed exactly on the inner electrode 7a. Just match it. Also,
It is also possible to wrap only the second resin tape 10 with a 1/2 lamp.

そして、この内側電極7aの先端形状は、好ましくは、
第2図に示すように外側に滑らかな面取りを施すとよい
。勿論、これらの外部半導電N7゜8もケーブルF、 
 F側の外部半導電層9.9と接続処理する。
The tip shape of this inner electrode 7a is preferably as follows:
It is best to provide a smooth chamfer on the outside as shown in Figure 2. Of course, these external semiconducting N7゜8 cables F,
Connection processing is performed with the external semiconducting layer 9.9 on the F side.

このようにして形成された外部半導電層7,8上には、
さらに、抑えテープで抑え巻きし、その後、モールド用
の金型をセットし、例えば、6Kg/cm2の窒素ガス
加圧下で180°C13時間の加圧加熱により、上記未
架橋ないし架橋不十分な絶縁体6および外部半導電N7
,8部分を溶融モールドさせ、最終的な架橋度(ゲル分
率60〜85%)まで導く。なお、外部半導電層7,8
部分の最終的な架橋は、絶縁体6のモールド樹脂部分か
らの架橋剤の移行により行われる。
On the outer semiconducting layers 7 and 8 formed in this way,
Further, the uncrosslinked or insufficiently crosslinked insulation is wrapped with a restraining tape, and then a molding die is set and heated under pressure at 180°C for 13 hours under a nitrogen gas pressure of 6 kg/cm2. Body 6 and external semiconducting N7
, 8 parts are melt-molded to reach the final degree of crosslinking (gel fraction 60-85%). Note that the outer semiconducting layers 7 and 8
The final crosslinking of the part takes place by migration of the crosslinking agent from the molded resin part of the insulator 6.

また、このモールドの際、外部半導電性層7゜8、特に
内側電極7aは、上述したゲル分率(10〜50%)の
組成物になると共に、上下が当該外部半導電性層7と同
材質の樹脂テープ10で囲まれているため、この樹脂テ
ープ10が内側電極7aと強固に接着されると同時に、
絶縁体6中に一種のアンカーとして埋設される形となる
ため1、絶縁体6とも極めて良好に接着され、かつ窒素
ガス加圧下でも、形崩れすることがない。従って、ボイ
ドの発生や、突起、尖形部等の発生もなく、結果として
、高い耐破壊電圧が得られるようになる。
In addition, during this molding, the outer semiconductive layer 7°8, especially the inner electrode 7a, has a composition with the above-mentioned gel fraction (10 to 50%), and the upper and lower sides are the same as the outer semiconductive layer 7. Since it is surrounded by the resin tape 10 made of the same material, this resin tape 10 is firmly adhered to the inner electrode 7a, and at the same time,
Since it is buried in the insulator 6 as a kind of anchor, it is bonded to the insulator 6 extremely well and does not lose its shape even under nitrogen gas pressure. Therefore, there is no generation of voids, protrusions, sharp parts, etc., and as a result, a high breakdown voltage can be obtained.

〈実施例〉 第1表に示したように、内側電極組成と界面接着補強用
の樹脂テープとの組合せにより、本発明の条件を満たす
モールドジヨイント工法(実施例■〜■)と本発明の条
件を満たさないモールドジヨイント工法(比較例■〜■
)を実施した。
<Example> As shown in Table 1, the combination of the inner electrode composition and the resin tape for reinforcing interfacial adhesion resulted in the mold joint construction method (Examples ■ to ■) satisfying the conditions of the present invention and the method of the present invention. Mold joint construction method that does not meet the conditions (comparative example ■~■
) was carried out.

ここで、用いたケーブルはC■ケーブル(154KV、
1200mm”)であった。
Here, the cable used is C■ cable (154KV,
1200mm”).

上記各モールドジヨイント工法によるジヨイント部につ
いて、交流破壊電圧値を調べた。この試験はl工法につ
き2試料づつ行った。その結果は、上記第1表に併記し
た。
AC breakdown voltage values were investigated for the joint parts formed by each of the above mold joint construction methods. This test was conducted on two samples per construction method. The results are also listed in Table 1 above.

上記第1表から、本発明実施例■〜■の場合、高い交流
破壊電圧値が得られ、しかも破壊箇所が外部半導電層の
内側電極先端以外であることが多かった。これに対して
、比較例■〜■のように界面接着補強用樹脂テープがな
い場合には、交流破壊電圧値も低く、内側電極先端部分
で破壊の起こる頻度が高いことが判る。
From Table 1 above, high AC breakdown voltage values were obtained in Examples 1 to 2 of the present invention, and the breakdown location was often other than the tip of the inner electrode of the outer semiconducting layer. On the other hand, when there is no resin tape for reinforcing interfacial adhesion as in Comparative Examples (1) to (2), the AC breakdown voltage value is also low, and it can be seen that breakdown occurs frequently at the tip of the inner electrode.

〈発明の効果〉 以上の説明から明らかなように本発明によれば、外部半
導電層の内側電極を界面接着補強用の樹脂テープで囲っ
ているため、この内側電極と絶縁体との接着性が大幅に
改善、向上され、微小剥離等によるボイドや形状変形に
よる突起、尖形部等の発生が最小限に押さえれられ、電
気特性に優れたケーブルのモールドジヨイント工法を得
ることができる。
<Effects of the Invention> As is clear from the above description, according to the present invention, since the inner electrode of the outer semiconducting layer is surrounded by the resin tape for reinforcing interfacial adhesion, the adhesiveness between the inner electrode and the insulator is improved. It is possible to obtain a mold joint construction method for cables with excellent electrical properties, and the occurrence of voids due to micro-peeling, protrusions, sharp parts, etc. due to shape deformation can be minimized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係るケーブルのモールドジヨイント工
法の一実施例を示した概略断面図、第2図は第1図の工
法で用いる外部半導電層の内側電極の一例を示した拡大
断面図である。 図中、 F、F・・・ケーブル、 J・・・・・ジヨイント部、 l、■・・・導体、 2.2・・・被覆部(絶縁体)、 3・・・・・圧着スリーフ、 4・・・・・内部半導電層、 6・・・・・モールド樹脂絶縁体、 7.8・・・外部半導電層、 7a・・・・内側電極、 8a・・・・外側電極、 10・・・・樹脂テープ、
Fig. 1 is a schematic cross-sectional view showing one embodiment of the cable mold joint construction method according to the present invention, and Fig. 2 is an enlarged cross-sectional view showing an example of the inner electrode of the outer semiconducting layer used in the construction method of Fig. 1. It is a diagram. In the figure, F, F...cable, J...joint part, l, ■...conductor, 2.2...sheathing part (insulator), 3...crimping sleeve, 4...Inner semiconducting layer, 6...Mold resin insulator, 7.8...Outer semiconducting layer, 7a...Inner electrode, 8a...Outer electrode, 10 ...resin tape,

Claims (1)

【特許請求の範囲】[Claims]  モールド樹脂絶縁体の外周に被覆される外部半導電層
が周方向に沿って2分割され、一方の端部が内側に入り
、この上に他方の端部が一定の絶縁間隔を保ちながらラ
ップ状に重ねられるケーブルのモールドジョイント部に
おいて、前記外部半導電層の内側電極を、当該内側電極
に用いられるベース樹脂と同一または同種の材質からな
る樹脂テープで囲む形で巻き込み、その後、ジョイント
部全体を加熱溶融させてモールドすることを特徴とする
ケーブルのモールドジョイント工法。
The outer semiconducting layer that covers the outer periphery of the molded resin insulator is divided into two parts along the circumferential direction, one end goes inside, and the other end is wrapped in a lap shape while maintaining a constant insulation interval. At the molded joint part of the cable that is overlapped with the cable, the inner electrode of the outer semiconductive layer is wrapped in a resin tape made of the same or similar material as the base resin used for the inner electrode, and then the entire joint part is wrapped. A cable mold joint construction method characterized by heating and melting and molding.
JP63216042A 1988-08-30 1988-08-30 Cable mold joint construction method Expired - Lifetime JPH061937B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63216042A JPH061937B2 (en) 1988-08-30 1988-08-30 Cable mold joint construction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63216042A JPH061937B2 (en) 1988-08-30 1988-08-30 Cable mold joint construction method

Publications (2)

Publication Number Publication Date
JPH0265611A true JPH0265611A (en) 1990-03-06
JPH061937B2 JPH061937B2 (en) 1994-01-05

Family

ID=16682367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63216042A Expired - Lifetime JPH061937B2 (en) 1988-08-30 1988-08-30 Cable mold joint construction method

Country Status (1)

Country Link
JP (1) JPH061937B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109239542A (en) * 2018-08-21 2019-01-18 博侃电气(合肥)有限公司 A kind of method of mineral insulated cable proof voltage detection

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5736732U (en) * 1980-08-11 1982-02-26

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5736732U (en) * 1980-08-11 1982-02-26

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109239542A (en) * 2018-08-21 2019-01-18 博侃电气(合肥)有限公司 A kind of method of mineral insulated cable proof voltage detection

Also Published As

Publication number Publication date
JPH061937B2 (en) 1994-01-05

Similar Documents

Publication Publication Date Title
JPH0265611A (en) Technique of molded joint of cable
JPH0546163B2 (en)
JP2840837B2 (en) Cable mold joint method
JPH1141779A (en) Connection part for cross-linked polyethylene insulated power cable
JP3014542B2 (en) Method of connecting crosslinked rubber / plastic insulated power cable and electric field relaxation tape used therefor
JPH0214275Y2 (en)
JP2639649B2 (en) Method of forming connection part of power cable
JP2000299920A (en) Jointed part of crosslinked polyethylene-insulated power cable
JPH02237418A (en) Mold joint technique of cable
JPS5854837Y2 (en) cable end
JPH021776Y2 (en)
JPH0124856Y2 (en)
JP2789583B2 (en) Forming method of cable connection
JPH02155416A (en) Molded joint method of cable
JPS6116754Y2 (en)
JPS5832214Y2 (en) Connection part of cross-linked polyethylene insulated cable
JPH0419766B2 (en)
JPS59198817A (en) Crosslinked rubber and plastic insulated cable connector
JP2000059976A (en) Crosslinked polyethylene insulator type connective portion of power cables
JPS647466B2 (en)
JPH0199428A (en) Dc cable connector
JP2000115977A (en) Taping winding type linear connected part
JPS5854566B2 (en) Construction method of insulation reinforcement part of plastic insulated power cable
JPH11205991A (en) Power cable connection part
JPS6041526B2 (en) How to form an insulating tape-wrapped connection part