JPH06192954A - Extra fine fiber non-woven fabric and its production - Google Patents

Extra fine fiber non-woven fabric and its production

Info

Publication number
JPH06192954A
JPH06192954A JP4359558A JP35955892A JPH06192954A JP H06192954 A JPH06192954 A JP H06192954A JP 4359558 A JP4359558 A JP 4359558A JP 35955892 A JP35955892 A JP 35955892A JP H06192954 A JPH06192954 A JP H06192954A
Authority
JP
Japan
Prior art keywords
high pressure
polymer
fiber
woven fabric
web
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4359558A
Other languages
Japanese (ja)
Inventor
敏 ▲かせ▼谷
Satoshi Kaseya
Nobuo Mimasa
Nobuo Noguchi
伸夫 見正
信夫 野口
Original Assignee
Unitika Ltd
ユニチカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd, ユニチカ株式会社 filed Critical Unitika Ltd
Priority to JP4359558A priority Critical patent/JPH06192954A/en
Publication of JPH06192954A publication Critical patent/JPH06192954A/en
Application status is Pending legal-status Critical

Links

Abstract

PURPOSE: To provide the extra fine fiber non-woven fabric excellent in mechanical characteristics, dimensional stability and flexibility by spinning a fiber-forming thermoplastic polymer by a melt-blown method, drawing and cooling the spun polymer into fine fibers with the flow of a high pressure gas, accumulating the fine fibers on a moving collecting surface, and subsequently three-dimensionally interlacing the collected fine fibers with a high pressure fluid.
CONSTITUTION: A fiber-forming thermoplastic polymer such as polypropylene, polycaproamide or polyethylene terephthalate is spun by a melt-blown method. The spun polymer flow is drawn and divided into fine fibers through the flow of a high pressure gas having a temperature higher 20-50°C than the melting point of the polymer, cooled and accumulated on a moving collecting surface as extra fine fibers having an average fiber diameter of 0.1-10μm to form a web. The web is treated with the column-like flows of high pressure water from the upper side of the web to interlace the fibers with each other into a three-dimensional structure. The interlaced product is subjected to the squeezing-out of excessive water with a mangle, and subsequently dried to provide the extra fine fiber non-woven fabric having a a tensile strength of ≤20g/5cm per metsuke (unit weight) on the elongation of 10% and a compression bending resistance of ≤0.5g per metsuke.
COPYRIGHT: (C)1994,JPO&Japio

Description

【発明の詳細な説明】 DETAILED DESCRIPTION OF THE INVENTION

【0001】 [0001]

【産業上の利用分野】本発明は,機械的特性,寸法安定性,柔軟性が優れ,産業資材用や衣料用の素材として好適な極細繊維不織布と,それを効率良く製造する方法に関するものである。 BACKGROUND OF THE INVENTION This invention, mechanical properties, dimensional stability, flexibility excellent, a suitable microfibrous non-woven fabric as a material for industrial materials for, clothing, relates to a method of it efficiently produced is there.

【0002】 [0002]

【従来の技術】従来から,通常の繊維形成性熱可塑性合成重合体を用いメルトブローン法により製造された極細繊維不織布が知られている。 Heretofore, microfibrous non-woven fabric is known which is produced by melt-blown method using a conventional fiber-forming thermoplastic synthetic polymers. メルトブローン法とは,溶融紡糸口金が溶融ポリマを吐出すると同時に高温の高圧空気流により溶融紡出されたポリマ流を牽引・細化して極細繊維を得る方法で,例えばインダストリアル アンド エンジニアリング ケミストリの第48卷第8号第1342〜1346頁(1956年)にはメルトブローン法の基本的な装置及び方法が開示されており,このメルトブローン法は,極めて細い繊維を得ることができるため各種の素材を得るに関して適用されている。 The melt-blown method, in a way that melt spinneret to obtain a molten spun been the polymer stream traction-thinning to microfine fibers by high pressure air stream of hot at the same time discharging a molten polymer, for example of Industrial and Engineering Chemistry 48 Certificates apply in relation to No. 8 pp 1342 to 1346 (1956) discloses a basic apparatus and method meltblowing, the meltblown method, to obtain a variety of materials it is possible to obtain a very fine fibers It is. しかしながら,このメルトブローン法により得られた極細繊維不織布は,各種の生活関連素材や産業資材用素材として広範に用いられているものの,機械的特性が劣るという問題を有していた。 However, microfibrous non-woven fabric obtained by the melt blown method, although widely used as various lifestyle-related materials and industrial materials for material, there is a problem that the mechanical properties are poor. 一方,通常の繊維形成性熱可塑性合成重合体を用いメルトブローン法により製造された極細繊維不織布に熱エンボスローラを用いて構成繊維間に部分熱圧着処理を施すことにより,不織布の機械的特性を向上させ得ることが知られている。 On the other hand, by applying the partial thermocompression bonding process between constituent fibers using a heat embossing roller superfine fiber nonwoven fabric produced by melt-blown method using a conventional fiber-forming thermoplastic synthetic polymers, improve the mechanical properties of the nonwoven fabric it is known that can be. しかしながら,この熱エンボスローラを用いて構成繊維間に部分熱圧着処理を施して得た不織布は,機械的特性は向上するものの, However, non-woven fabric obtained by applying the partial thermocompression bonding process between component fibers using the heat embossing rollers, although the mechanical characteristics are improved,
柔軟性が損なわれるという問題を有していた。 Flexibility had the problem of impaired.

【0003】 [0003]

【発明が解決しようとする課題】本発明は,前記問題を解決し,機械的特性,寸法安定性,柔軟性が優れ,産業資材用や衣料用の素材として好適な極細繊維不織布と, [SUMMARY OF THE INVENTION The present invention is to solve the above problems, and mechanical properties, dimensional stability, flexibility good, preferred ultrafine fiber nonwoven fabric as a material for industrial materials and clothing,
それを効率良く製造することができる方法を提供しようとするものである。 It is intended to provide a method it can be manufactured efficiently.

【0004】 [0004]

【課題を解決するための手段】本発明者らは前記問題を解決すべく鋭意検討の結果,本発明に到達した。 Means for Solving the Problems The present inventors have conducted extensive studies results to solve the above problems, have reached the present invention. すなわち,本発明は,繊維形成性熱可塑性合成重合体からなる平均繊維径が0.1〜10.0μmの極細繊維から構成され,構成繊維同士が三次元的に交絡し,10%伸長時の引張応力が目付け当り20g/5cm以下で,かつ目付け当りの圧縮剛軟度が0.5g以下であることを特徴とする極細繊維不織布,を要旨とするものである。 That is, the present invention has an average fiber diameter made of fiber-forming thermoplastic synthetic polymer is 0.1~10.0μm is composed of ultrafine fibers, the fibers constituting each other three-dimensionally entangled, at 10% elongation tensile stress below basis weight per 20 g / 5 cm, and compressive stiffness per basis weight is to the gist of the microfibrous non-woven fabric, which is characterized in that less than 0.5 g. また,本発明は,メルトブローン法により極細繊維不織布を製造するに際し,繊維形成性熱可塑性合成重合体を溶融紡出し,溶融紡出されたポリマ流を溶融温度より20 Further, the present invention, upon producing a microfibrous non-woven fabric by melt blown method, a fiber-forming thermoplastic synthetic polymer melts spun, melt spun a polymer flow than the melting temperature 20
〜50℃高い温度の高圧空気流により牽引・細化し,冷却した後,移動する捕集面上に捕集・堆積させてウエブとし,次いで得られたウエブに高圧液体流処理を施して構成繊維同士を三次元的に交絡させることを特徴とする極細繊維不織布の製造方法,を要旨とするものである。 Led-thinning by to 50 ° C. higher temperatures the high pressure air stream, after cooling, was collected and accumulated on a collecting surface to move the webs, then the resulting structure is subjected to high pressure liquid stream treatment fiber web the method of producing superfine fiber nonwoven fabric, characterized in that to three-dimensionally entangled with each other, the one in which the subject matter.

【0005】次に,本発明を詳細に説明する。 [0005] The present invention will now be described in detail. 本発明における繊維形成性熱可塑性合成重合体とは,いわゆる繊維形成性を有するポリオレフイン系重合体,ポリアミド系重合体あるいはポリエステル系重合体である。 The fiber-forming thermoplastic synthetic polymer in the present invention, polyolefin-based polymers having a so-called fiber-forming, a polyamide-based polymer or a polyester polymer. ポリオレフイン系重合体としては,炭素原子数2〜18の脂肪族α−モノオレフイン,例えばエチレン,プロピレン, The polyolefin-based polymer, aliphatic 2 to 18 carbon atoms α- Monoorefuin, such as ethylene, propylene,
ブテン−1,ペンテン−1,3−メチルブテン−1,ヘキセン−1,オクテン−1,ドデセン−1,オクタデセン−1からなるホモポリオレフイン重合体が挙げられる。 Butene-1, pentene-1,3-methylbutene-1, hexene-1, octene-1, dodecene-1, and a homopolymer polio reflex in polymer consisting of octadecene-1. この脂肪族α−モノオレフインは,他のエチレン系不飽和モノマ,例えばブタジエン,イソプレン,ペンタジエン−1・3,スチレン,α−メチルスチレンのような類似のエチレン系不飽和モノマが共重合されたポリオレフイン系共重合体であってもよい。 The aliphatic α- Monoorefuin the other ethylenically unsaturated monomers, such as butadiene, isoprene, pentadiene -1-3, styrene and similar ethylenically unsaturated monomers such as α- methylstyrene copolymerized polyolefin it may be a system copolymer. また,ポリエチレン系重合体の場合には,エチレンに対してプロピレン, In the case of a polyethylene-based polymer, propylene of the ethylene,
ブテン−1,ヘキセン−1,オクテン−1又は類似の高級α−オレフインが10重量%以下共重合されたものであってもよく,ポリプロピレン系重合体の場合には,プロピレンに対してエチレン又は類似の高級α−オレフインが10重量%以下共重合されたものであってもよいが,前記これらの共重合物の共重合率が前記重量%を超えると共重合体の融点が低下し,これらの共重合体を用いて得た不織布を高温条件下で使用したときに,機械的特性や寸法安定性が低下するので好ましくない。 Butene-1, hexene-1, may be one octene-1 or similar higher α- olefins is copolymerized 10 wt% or less, in the case of a polypropylene-based polymer, ethylene or similar relative propylene luxury α- olefins may be one that is copolymerized 10 wt% or less, but the melting point of the copolymer copolymerization ratio of these copolymer exceeds the weight percent is reduced, these the nonwoven fabric obtained by using the copolymer when used under high temperature conditions, the mechanical properties and dimensional stability decreases undesirably.

【0006】ポリアミド系重合体としては,ポリイミノ−1−オキソテトラメチレン(ナイロン4),ポリテトラメチレンアジパミド(ナイロン46),ポリカプラミド(ナイロン6),ポリヘキサメチレンアジパミド(ナイロン66),ポリウンデカナミド(ナイロン11), [0006] As the polyamide-based polymer, polyimino-1-oxo-tetramethylene (nylon 4), polytetramethylene adipamide (nylon 46), polycapramide (nylon 6), polyhexamethylene adipamide (nylon 66), polyundecamethylene cyanamide (nylon 11),
ポリラウロラクタミド(ナイロン12),ポリメタキシレンアジパミド,ポリパラキシリレンデカナミド,ポリビスシクロヘキシルメタンデカナミド又はこれらのモノマを構成単位とするポリアミド系共重合体が挙げられる。 Polylaurolactam lactamide (nylon 12), poly adipamide, poly-para-xylylene deca cyanamide, polyamide copolymer containing poly biscyclohexylmethane dec cyanamide or structural units of these monomers thereof. 特に,ポリテトラメチレンアジパミドの場合,ポリテトラメチレンアジパミドにポリカプラミドやポリヘキサメチレンアジパミド,ポリウンデカメチレンテレフタラミド等の他のポリアミド成分が30モル%以下共重合されたポリテトラメチレンアジパミド系共重合体であってもよい。 In particular, in the case of polytetramethylene adipamide, polytetramethylene adipamide in polycapramide and polyhexamethylene adipamide, other polyamide component, such as poly undecamethylene terephthalamide is copolymerized than 30 mole% poly it may be tetramethylene adipamide copolymer. 前記他のポリアミド成分の共重合率が30モル%を超えると共重合体の融点が低下し,不織布を高温条件下で使用したときに機械的特性や寸法安定性が低下するので好ましくない。 Unfavorable wherein the copolymerization ratio of another polyamide component is lowered the melting point of the copolymer exceeds 30 mol%, the mechanical properties and dimensional stability decreases when using non-woven fabric in hot conditions.

【0007】ポリエステル系重合体としては,テレフタル酸,イソフタル酸,ナフタリン−2・6−ジカルボン酸等の芳香族ジカルボン酸あるいはアジピン酸,セバチン酸等の脂肪族ジカルボン酸又はこれらのエステル類を酸成分とし,かつエチレングリコール,ジエチレングリコール,1・4−ブタジオール,ネオペンチルグリコール,シクロヘキサン−1・4−ジメタノール等のジオール化合物をエステル成分とするホモポリエステル重合体あるいは共重合体が挙げられる。 [0007] As the polyester-based polymer, terephthalic acid, isophthalic acid, naphthalene -2 · 6 aromatic dicarboxylic acid or adipic acid, such as dicarboxylic acids, aliphatic dicarboxylic acids or acid component of these esters such as sebacic acid and, and ethylene glycol, diethylene glycol, 1-4-butanediol, neopentyl glycol, homopolymers polyester polymer or copolymer cyclohexane -1-4-dimethanol and the like of the diol compound and the ester components. なお,これらのポリエステル系重合体には,パラオキシ安息香酸,5−ソジウムスルホイソフタール酸,ポリアルキレングリコール, Incidentally, these polyester-based polymer, p-hydroxybenzoic acid, 5-sodium sulfo isophthalate tar acids, polyalkylene glycols,
ペンタエリスススリトール,ビスフエノールA等が添加あるいは共重合されていてもよい。 Pentaerythritol scan Sri torr, it may be bisphenol A or the like is added or copolymerized.

【0008】また,本発明において,繊維形成性熱可塑性重合体には,前記の熱可塑性重合体をそれぞれ紡糸性を損なわない範囲内でブレンドして用いることもできる。 Further, in the present invention, the fiber-forming thermoplastic polymer may be blended the thermoplastic polymer within the range not impairing the spinning property, respectively. 例えば2種の相異なるポリアミド系重合体をブレンドして用いてもよく,ポリエステル系重合体とポリオレフイン系重合体とをブレンドして用いてもよい。 For example may be blended two different polyamide-based polymer, it may be blended with polyester polymer and polyolefin polymer. 特に, In particular,
後者の場合には,溶融紡出直後で未配向かつ低結晶性のポリエステル成分の収縮を抑制することができて好ましい。 In the latter case, preferably it is possible to suppress the unoriented and low-crystalline polyester component shrinkage immediately after melt spinning. なお,本発明において,前記繊維形成性熱可塑性重合体には,必要に応じて,例えば艶消し剤,顔料,防炎剤,消臭剤,光安定剤,熱安定剤,酸化防止剤等の各種添加剤を本発明の効果を損なわない範囲内で添加することができる。 In the present invention, the fiber-forming thermoplastic polymer, optionally, for example, matting agents, pigments, flameproofing agents, deodorants, light stabilizers, heat stabilizers, such as antioxidants various additives may be added within a range that does not impair the effects of the present invention.

【0009】本発明における前記ポリオレフイン系重合体からなる極細繊維は,平均繊維径が0.1〜10.0 [0009] ultrafine fibers composed of the polyolefin-based polymer in the present invention have an average fiber diameter of 0.1 to 10.0
μmのものであり,平均繊維径が0.1μm未満であると製糸性が低下し,一方,平均繊維径が10.0μmを超えると得られたウエブの風合いが硬くなって柔軟性に富む不織布を得ることができず,いずれも好ましくない。 μm are of an average fiber diameter is reduced spinnability is less than 0.1 [mu] m, whereas, non-woven fabric having an average fiber diameter of high flexibility harder texture of the web obtained with more than 10.0μm can not be obtained, either case is not preferable.

【0010】本発明における前記極細繊維からなる不織布は,構成繊維同士が三次元的に交絡し,かつ10%伸長時の引張応力が目付け当り20g/5cm以下のものである。 Nonwoven fabric made of the microfine fibers in [0010] the present invention, entangled component fibers each other three-dimensionally, and at 10% elongation of tensile stress are: basis weight per 20 g / 5 cm. この三次元的交絡とは,公知のいわゆる高圧液体流処理により形成されるものであって,これにより不織布としての形態が保持される。 And the three-dimensional entanglement, be one that is formed by a known so-called high-pressure liquid jet treatment, thereby the form of the nonwoven fabric is maintained. この不織布では,メルトブローン法の製糸工程で紡出繊維間に必然的に生じる融着部が高圧液体流の作用力により破壊され,繊維間に十分な三次元交絡が形成されるため,熱圧着部位が存在しなくても十分な機械的特性と寸法安定性を有する。 In this nonwoven fabric, since the fused portion which inevitably occurs between spun fibers reeling step of the melt-blown method is destroyed by the action force of the high pressure liquid stream, sufficient three-dimensional entanglement is formed between the fibers, thermal bonding sites there may not be present with sufficient mechanical properties and dimensional stability. そして,この不織布では,メルトブローン法により得られた極細繊維からなり,しかも前記極細繊維同士が高圧液体流処理により三次元的に交絡した構造を有するため, Then, in the nonwoven fabric made of ultrafine fibers obtained by melt-blown method, and since having a three-dimensionally entangled structure by the ultra-fine fibers is high-pressure liquid jet treatment,
10%伸長時の引張応力が目付け当り20g/5cm以下で,かつ目付け当りの圧縮剛軟度が0.5g以下という極めて柔軟性に富むものとなるのである。 10% elongation at a tensile stress less basis weight per 20 g / 5 cm, and compressive stiffness per basis weight is become as rich in very flexible hereinafter 0.5 g.

【0011】本発明における前記極細繊維からなる不織布は,公知のいわゆるメルトブローン法により効率良く製造することができる。 [0011] nonwoven fabric made of the microfine fiber in the present invention can be efficiently produced by a known so-called melt-blown method. すなわち,ポリオレフイン系重合体をメルトブローン法で溶融紡出し,溶融紡出されたポリマ流を溶融温度より20〜50℃高い温度の高圧空気流により牽引・細化し,冷却した後,移動する捕集面上に捕集・堆積させてウエブとし,次いで得られたウエブに高圧液体流処理を施して構成繊維同士を三次元的に交絡させるのである。 That is, collecting surface to melt spinning a polyolefin-based polymer with a melt blown method, the molten spun the polymer flow traction, and thinning by 20 to 50 ° C. higher temperatures the high pressure air stream from the melting temperature, after cooling, to move by collecting and deposited on the web, then the resulting is of entangling the constituent fibers to each other three-dimensionally by performing high pressure liquid jet treatment to the web. 本発明の製造方法においては,繊維形成性熱可塑性合成重合体として前述したような溶融紡出が可能でかつ繊維形成性を有するものを採用する。 In the production method of the present invention employs those melt spun as described above as a fiber-forming thermoplastic synthetic polymer having a possible and fiber-forming properties.
メルトブローン法で溶融紡出するに際し,溶融紡出されたポリマ流を牽引・細化する高圧空気流は,その温度をポリマ流の溶融温度より20〜50℃高い温度とし,この温度がポリマ流の溶融温度より+20℃未満であると繊維構造の形成時に細化が不十分で極細繊維の形成が困難となり,一方,この温度がポリマ流の溶融温度より+ Upon melting spun in melt-blown method, high pressure air flow to lead-thinning melt spun has been polymer flow, and the temperature 20 to 50 ° C. higher temperature than the melting temperature of the polymer stream, the temperature of the polymer stream formation thinning is insufficient ultrafine fibers during formation of the fiber structure is + 20 below ℃ than the melting temperature becomes difficult, whereas, this temperature is above the melting temperature of the polymer stream +
50℃を超えると得られた不織布の機械的特性が低下したり,極端な場合には紡出繊維が高圧空気流により吹き飛ばされて短繊維化し,いずれも好ましくない。 Lowered the mechanical properties of the resulting nonwoven fabric exceeds 50 ° C., in an extreme case to fiber shortening blown away spun fibers by high pressure air flow, either case is not preferable.

【0012】高圧液体流処理を施すに際しては,公知の方法を採用することができる。 [0012] In performing high pressure liquid stream treatment can be a known method. 例えば,孔径が0.05 For example, a pore size of 0.05
〜1.0mm特に0.1〜0.4mmの噴射孔を多数配列した装置を用い,噴射圧力が5〜150kg/cm 2 ~1.0mm particular using the apparatus arranging a large number of injection holes of 0.1 to 0.4 mm, injection pressure 5~150kg / cm 2
Gの高圧液体を前記噴射孔から噴射する方法がある。 There is a method of injecting a high pressure fluid G from the injection holes. 噴射孔の配列は,ウエブの進行方向と直交する方向に列状に配列する。 Sequence of the injection hole is arranged in rows in a direction perpendicular to the traveling direction of the web. この処理は,ウエブの片面あるいは両面のいずれに施してもよいが,特に片面処理の場合には,噴射孔を複数列に配列し噴射圧力を前段階で低く後段階で高くして処理を施すと,均一で緻密な交絡形態と均一な地合いを有する不織布を得ることができる。 This treatment may be applied to any one side or both sides of the web, but especially in the case of a single-sided process, subjected to high and the process in the post stage low sequence to injection pressure injection holes in a plurality of lines in the previous step When, it is possible to obtain a nonwoven fabric having a uniform and dense entanglement morphology and uniform texture. 高圧液体としては,水あるいは温水を用いるのが一般的である。 The high-pressure liquid, use water or hot water are common. 噴射孔とウエブとの間の距離は,1〜15cmとするのがよい。 The distance between the injection holes and the web is preferably set to 1~15Cm. この距離が1cm未満であるとウエブの地合いが乱れ,一方,この距離が15cmを超えると液体流がウエブに衝突した時の衝撃力が低下し三次元的な交絡が十分に施されず,いずれも好ましくない。 This distance is web formation is disturbed as less than 1 cm, whereas, the liquid flow when this distance exceeds 15cm is impact force is reduced three-dimensional entanglement when impinging on the web without being sufficiently applied, any not preferable. この高圧液体流処理は,連続工程あるいは別工程のいずれであってもよい。 The high-pressure liquid jet treatment may be either a continuous process or another process. この高圧液体流処理により不織布の構成繊維同士が三次元的に交絡するのであり,この交絡度の調整は高圧液体流処理における噴射孔の構造,液体流の圧力と流量等の諸条件により可能であるが,これら条件の他に,ウエブ形成工程の条件によっても可能である。 By this high-pressure liquid jet treatment is than structure fibers of the nonwoven fabric is entangled three-dimensionally, the adjustment of the confounding degree possible depending on the conditions of pressure and flow rate, etc. of the structure, the liquid flow of the injection hole in the high-pressure liquid jet treatment there is, in addition to these conditions, it is also possible depending on the conditions of the web forming process. すなわち, That is,
メルトブローン法において紡糸口金から溶融紡出されたポリマ流を高圧空気流で牽引・細化し,冷却した後,移動する捕集面上に捕集・堆積させてウエブとするに際し,紡糸口金と捕集面との間の距離に比例して交絡度は変化し,例えばこの距離を大きくするにしたがいウエブを構成する繊維の自由度が増大して高圧液体流処理の効果が発揮され易くなって交絡度が増大するのであり,したがって,この距離を調整することにより前記交絡度の調整をすることができるのである。 The polymer stream is melt-spun from the spinneret in meltblowing led-thinning at high pressure air stream, after cooling, when is collected and accumulated on a collecting surface to move the webs, collecting spinneret in proportion to the distance between the surfaces confounding degree varies, for example, entanglement degree is likely to be exhibited an effect of high-pressure liquid jet treatment freedom of the fibers constituting the web is increased according to increase this distance There is than increased, therefore, than it is possible to adjust the confounding degree by adjusting the distance. そして,この高圧液体流処理により得られた不織布は,メルトブローン法により得られた極細繊維から構成されと共に前記極細繊維同士が高圧液体流処理により三次元的に交絡した構造を有するため,10%伸長時の引張応力が目付け当り20 Then, the nonwoven fabric obtained by the high pressure liquid stream treatment, because it has the ultrafine fibers together consists ultrafine fiber obtained by melt-blown method is three-dimensionally entangled by high pressure liquid stream treatment structure, 10% elongation per tensile stress is the basis weight of the time 20
g/5cm以下で,かつ目付け当りの圧縮剛軟度が0. g / 5cm or less, and the compression stiffness per weight per unit area 0.
5g以下という極めて優れた柔軟性を具備することになるのである。 5g is becoming be provided with a very good flexibility below. なお,高圧液体流処理を施すに際し,ウエブを担持するスクリーンのメツシユあるいは織組織を適宜変更することにより,不織布の組織あるいは柄を変更することもできる。 Incidentally, when subjected to high pressure liquid stream treatment, by appropriately changing the screen mesh screen or weave carrying the web, it is possible to change the non-woven fabric of the tissue or handle.

【0013】高圧液体流処理を施した後,ウエブから過剰水分を除去し,次いで,乾燥・熱処理して最終製品とする。 [0013] After having been subjected to high-pressure liquid jet treatment to remove excess moisture from the web, then dried and heat treated to the final product. この過剰水分を除去するに際しては公知の方法を採用することができ,例えばマングルロール等の絞り装置を用いて過剰水分をある程度除去する。 The excess water can adopts a known method when removing, to some extent to remove excess moisture with a diaphragm device, such as, for example, a mangle roll. また,乾燥をするに際しても公知の方法を採用することができ,例えば連続熱風乾燥機等の乾燥装置を用いて残余の水分を除去する。 In other instances, well-known methods also when the drying can be employed, for example, to remove residual water using a drying apparatus such as a continuous hot-air dryer. さらに,熱処理をするに際しては,連続熱風乾燥機等の乾燥装置を用いた乾熱処理の他に,必要に応じて湿熱処理としてもよい。 Further, when the heat treatment is in addition to the dry heat treatment using a drying apparatus such as a continuous hot-air dryer may be wet heat treatment as needed. なお,乾燥・熱処理における温度と時間等の条件を選択するに際しては,単なる水分除去にとどまらず必要に応じて不織布に適度の収縮を許容するように選択することもできる。 Incidentally, in selecting the conditions of temperature and time, etc. in the drying and heat treatment may also be selected to allow adequate shrinkage nonwoven as necessary not only mere water removal.

【0014】 [0014]

【実施例】次に,実施例に基づき本発明を具体的に説明するが,本発明は,これらの実施例によって何ら限定されるものではない。 EXAMPLES Next, the present invention is specifically described based on Examples, but the present invention is not intended to be limited to these examples. 実施例において,各特性値の測定を次の方法により実施した。 In Example, the measurement of each property value was performed by the following methods. 融点(℃):パーキンエルマ社製示差走査型熱量計DS Mp (° C.): Perkin Elmer Co. differential scanning calorimeter DS
C−2型を用い,昇温速度20℃/分の条件で測定し, With C-2 type, measured at a Atsushi Nobori rate of 20 ° C. / min condition,
得られた融解吸熱曲線において極値を与える温度を融点とした。 In the obtained melting endothermic curve temperature giving an extreme value was taken as the melting point. メルトフローレート値(g/10分):ASTM D1 The melt flow rate value (g / 10 min): ASTM D1
238(L)に記載の方法に準じて測定した。 It was measured according to the method described in 238 (L). 相対粘度1:ポリカプラミド重合体(ナイロン6重合体)の相対粘度を,96%硫酸100ccに試料1gを溶解し,温度25℃の条件で常法により測定して求めた。 Relative Viscosity 1: polycapramide polymer relative viscosity (nylon 6 Polymer), a sample was dissolved 1g of 96% sulfuric acid 100 cc, it was determined by measuring by an ordinary method at a temperature of 25 ° C.. 相対粘度2:ポリエチレンテレフタレート重合体の相対粘度を,フエノールと四塩化エタンの等重量溶液を溶媒とし,この溶媒100ccに試料0.5gを溶解し,温度20℃の条件で常法により測定して求めた。 Relative viscosity 2: The relative viscosity of the polyethylene terephthalate polymer, an equal weight solution of phenol and tetrachloroethane as a solvent, the sample 0.5g is dissolved in the solvent 100 cc, as measured by a conventional method at a temperature of 20 ° C. I was determined. 平均繊維径(μm):試料の電子顕微鏡写真を撮影して求めた。 Average fiber diameter ([mu] m): was determined by taking an electron micrograph of the sample. 引張強力(kg)及び引張伸度(%):JIS−L−1 Tensile strength (kg) and tensile elongation (%): JIS-L-1
096Aに記載の方法に準じて測定した。 It was measured according to the method described in 096A. すなわち,試料長が10cm,試料幅が5cmの試料片10点を作成し,各試料片毎に不織布の経方向について定速伸長型引張試験機(東洋ボールドウイン社製テンシロンUTM− That is, the sample length is 10 cm, the sample width is to create a sample piece 10 of 5 cm, a constant extension rate type tensile tester for the warp direction of the nonwoven fabric in each test piece (made by Toyo Baldwin Co. Tensilon UTM-
4−1−100)を用い引張速度10cm/分で伸長し,得られた切断時荷重値(kg)の平均値を引張強力(kg),切断時伸長率(%)の平均値を引張伸度(%)とした。 4-1-100) extended at a rate 10 cm / min pull with a strong tension the average value of the obtained cut when the load value (kg) (kg), the breaking elongation of the average of (%) Tensile elongation It was the degree (%). 目付け当りの圧縮剛軟度(g):JIS−L−1096 Compression stiffness per mass per unit area (g): JIS-L-1096
に記載のストリツプ法に準じて測定した。 It was measured in accordance with the strips method described in. すなわち,試料長が10cm,試料幅が5cmの試料片5点を作成し,各試料片毎にそれぞれ横方向に曲げて円筒体とし, That is, the sample length is 10 cm, the sample width is to create a sample piece 5 points 5 cm, a cylindrical body bent laterally respectively for each sample piece,
その端部を接合して圧縮剛軟度測定用試料とし,各測定用試料毎に縦方向について定速伸長型引張試験機(東洋ボールドウイン社製テンシロンUTM−4−1−10 And its end samples for compressive stiffness measured by bonding, constant extension rate type tensile tester in the vertical direction for each sample for each measurement (Toyo Baldwin Co., Ltd. Tensilon UTM-4-1-10
0)を用い圧縮速度5cm/分で圧縮し,得られた最大荷重(g)を試料片の目付け(g/m 2 )で除した値の平均値を目付け当りの圧縮剛軟度(g)とした。 0) is compressed at a compression speed 5 cm / min using a resulting maximum load (g) of specimen basis weight (g / m 2) compressive stiffness of basis weight per an average value of the value obtained by dividing (g) and the.

【0015】実施例1 融点が160℃,メルトフローレート値が400g/1 [0015] Example 1 melting point 160 ° C., a melt flow rate value is 400 g / 1
0分のポリプロピレン重合体チツプを用い,メルトブローン法により不織布を製造した。 With 0 minutes polypropylene polymer chips were produced nonwoven fabric melt-blown method. すなわち,前記重合体チツプを溶融し,これを紡糸口金から紡糸温度280 That is, the polymer chips were melted, spun at 280 it from the spinneret
℃,単孔吐出量0.2g/分で紡出し,溶融紡出されたポリマ流を高圧空気流により牽引・細化した。 ° C., was spun at a single hole discharge rate 0.2 g / min, the melt spun has been polymer flow was comminuted traction-by high pressure air stream. この高圧空気流として温度320℃,圧力1.4kg/cm 2の加熱空気を用いた。 Temperature 320 ° C. As the high pressure air stream, was used heated air pressure 1.4 kg / cm 2. 牽引・細化に引き続き,ポリマ流を冷却し繊維に形成した後,紡糸口金から20cm離れた位置に配設されかつ速度6.7m/分で移動する金網製ベルト上に捕集・堆積させてウエブとした。 Following the traction-thinning, after forming into fibers to cool the polymer stream and collecting and depositing the wire mesh belt moving at disposed at a position away 20cm from the spinneret and the speed 6.7 m / min and the web. 次いで,得られたウエブを100メツシユの金網上に載置し,これに水付与装置を用いて水を付与した後,高圧液体流処理を施して構成繊維同士を三次元的に交絡させた。 Then, placing the resulting web on the 100 mesh screen wire mesh and this after applying the water using a water application device, entangling the constituent fibers to each other three-dimensionally by performing high pressure liquid jet treatment. 高圧液体流処理として,孔径0.12mmの噴射孔が孔間隔0.6mmで3群配列で配設された高圧柱状水流処理装置を用い,水圧30kg/cm 2の条件でウエブの上方8cmの位置から柱状水流を作用させた。 As the high pressure liquid stream treatment, using high pressure columnar water stream treatment apparatus ejecting pores with a pore diameter of 0.12mm is arranged in three groups arranged at hole spacing 0.6 mm, the position of the web of the upper 8cm under conditions of water pressure 30kg / cm 2 from was allowed to act columnar water flow. なお,この処理は,ウエブの表裏から各々3回施した。 This process was performed three times each from the front and back of the web. 次いで,得られた処理ウエブからマングルロールを用いて過剰水分を除去した後,ウエブに熱風乾燥機を用い温度98℃の条件で乾燥処理を施し,不織布を得た。 Then, after removing the excess water using a mangle roll from the resulting treated web, a drying treatment at a temperature of 98 ° C. using a hot air dryer web, woven fabric was obtained. 得られた不織布の特性を表1に示す。 The characteristics of the obtained nonwoven fabric are shown in Table 1. 本発明の不織布は,表1から明らかなように機械的特性,柔軟性が優れたものであった。 Nonwoven fabric of the present invention were those mechanical properties As apparent from Table 1, the flexibility was excellent.

【0016】実施例2 実施例1で得た高圧液体流処理を施す前の不織ウエブを36メツシユの金網上に載置し,これに水付与装置を用いて水を付与した後,水圧を40kg/cm 2とした以外は実施例1と同様にして,不織布を得た。 [0016] and placed on a wire mesh of nonwoven web 36 mesh screen prior to applying the high pressure liquid stream treatment obtained in Example 1, after applying the water using a water application device to the hydraulic except that the 40 kg / cm 2 in the same manner as in example 1, to obtain a nonwoven fabric. 得られた不織布の特性を表1に示す。 The characteristics of the obtained nonwoven fabric are shown in Table 1. 本発明の不織布は,表1から明らかなように機械的特性,柔軟性が優れ,しかも開孔模様を有しものであった。 Non-woven fabric of the present invention, the mechanical properties As is apparent from Table 1, the flexibility good, yet were those having an aperture pattern.

【0017】実施例3 融点が214℃,相対粘度1が2.4のポリカプラミド重合体(ナイロン6重合体)チツプを用い,メルトブローン法により不織布を製造した。 [0017] Example 3 a melting point of 214 ° C., a relative viscosity 1 with polycapramide polymer (nylon 6 Polymer) chips of 2.4, to produce a nonwoven fabric by a melt blown method. すなわち,前記重合体チツプを溶融し,これを紡糸口金から紡糸温度320 That is, the polymer chips were melted, spinning temperature 320 it from the spinneret
℃,単孔吐出量0.2g/分で紡出し,溶融紡出されたポリマ流を高圧空気流により牽引・細化した。 ° C., was spun at a single hole discharge rate 0.2 g / min, the melt spun has been polymer flow was comminuted traction-by high pressure air stream. この高圧空気流として温度350℃,圧力1.6kg/cm 2の加熱空気を用いた。 Temperature 350 ° C. As the high pressure air stream, was used heated air pressure 1.6 kg / cm 2. 牽引・細化に引き続き,ポリマ流を冷却し繊維に形成した後,紡糸口金から25cm離れた位置に配設されかつ速度6.7m/分で移動する金網製ベルト上に捕集・堆積させてウエブとした。 Following the traction-thinning, after forming into fibers to cool the polymer stream and collecting and depositing the wire mesh belt moving at disposed at a position away 25cm from the spinneret and the speed 6.7 m / min and the web. 次いで,得られたウエブを100メツシユの金網上に載置し,これに水付与装置を用いて水を付与した後,高圧液体流処理を施して構成繊維同士を三次元的に交絡させた。 Then, placing the resulting web on the 100 mesh screen wire mesh and this after applying the water using a water application device, entangling the constituent fibers to each other three-dimensionally by performing high pressure liquid jet treatment. 高圧液体流処理として,孔径0.12mmの噴射孔が孔間隔0.6mmで3群配列で配設された高圧柱状水流処理装置を用い,水圧40kg/cm 2の条件でウエブの上方8cmの位置から柱状水流を作用させた。 As the high pressure liquid stream treatment, using high pressure columnar water stream treatment apparatus ejecting pores with a pore diameter of 0.12mm is arranged in three groups arranged at hole spacing 0.6 mm, the position of the web of the upper 8cm under conditions of pressure 40 kg / cm 2 from was allowed to act columnar water flow. なお,この処理は,ウエブの表裏から各々3回施した。 This process was performed three times each from the front and back of the web. 次いで,得られた処理ウエブからマングルロールを用いて過剰水分を除去した後,ウエブに熱風乾燥機を用い温度98℃の条件で乾燥処理を施し,不織布を得た。 Then, after removing the excess water using a mangle roll from the resulting treated web, a drying treatment at a temperature of 98 ° C. using a hot air dryer web, woven fabric was obtained. 得られた不織布の特性を表1に示す。 The characteristics of the obtained nonwoven fabric are shown in Table 1. 本発明の不織布は,表1から明らかなように機械的特性,柔軟性が優れたものであった。 Nonwoven fabric of the present invention were those mechanical properties As apparent from Table 1, the flexibility was excellent.

【0018】実施例4 融点が260℃,相対粘度2が1.24のポリエチレンテレフタレート重合体チツプを用い,メルトブローン法により不織布を製造した。 [0018] Example 4 a melting point of 260 ° C., a relative viscosity of 2 using polyethylene terephthalate polymer chips of 1.24, was prepared nonwoven fabric melt-blown method. すなわち,前記重合体チツプを溶融し,これを紡糸口金から紡糸温度350℃,単孔吐出量0.2g/分で紡出し,溶融紡出されたポリマ流を高圧空気流により牽引・細化した。 That is, melting the polymer chips, which spinning temperature 350 ° C. through a spinneret, spun in a single hole discharge rate 0.2 g / min, the melt spun has been polymer flow was comminuted traction-by the high pressure air flow . この高圧空気流として温度380℃,圧力1.2kg/cm 2の加熱空気を用いた。 Temperature 380 ° C. As the high pressure air stream, was used heated air pressure 1.2 kg / cm 2. 牽引・細化に引き続き,ポリマ流を冷却し繊維に形成した後,紡糸口金から15cm離れた位置に配設されかつ速度6.7m/分で移動する金網製ベルト上に捕集・堆積させてウエブとした。 Following the traction-thinning, after forming into fibers to cool the polymer stream and collecting and depositing the wire mesh belt moving at disposed at a position away 15cm from the spinneret and the speed 6.7 m / min and the web. 次いで,得られたウエブを100メツシユの金網上に載置し,これに水付与装置を用いて水を付与した後,高圧液体流処理を施して構成繊維同士を三次元的に交絡させた。 Then, placing the resulting web on the 100 mesh screen wire mesh and this after applying the water using a water application device, entangling the constituent fibers to each other three-dimensionally by performing high pressure liquid jet treatment. 高圧液体流処理として,孔径0.12mmの噴射孔が孔間隔0.6mm As high-pressure liquid jet treatment, the injection hole is hole spacing 0.6mm with a pore diameter of 0.12mm
で3群配列で配設された高圧柱状水流処理装置を用い, In a high pressure columnar water stream treatment apparatus which is arranged in 3 groups sequence,
水圧40kg/cm 2の条件でウエブの上方8cmの位置から柱状水流を作用させた。 It allowed to act columnar water stream from the position of the web of the upper 8cm under conditions of pressure 40 kg / cm 2. なお,この処理は,ウエブの表裏から各々3回施した。 This process was performed three times each from the front and back of the web. 次いで,得られた処理ウエブからマングルロールを用いて過剰水分を除去した後,ウエブに熱風乾燥機を用い温度98℃の条件で乾燥処理を施し,不織布を得た。 Then, after removing the excess water using a mangle roll from the resulting treated web, a drying treatment at a temperature of 98 ° C. using a hot air dryer web, woven fabric was obtained. 得られた不織布の特性を表1に示す。 The characteristics of the obtained nonwoven fabric are shown in Table 1. 本発明の不織布は,表1から明らかなように機械的特性,柔軟性が優れたものであった。 Nonwoven fabric of the present invention were those mechanical properties As apparent from Table 1, the flexibility was excellent.

【0019】比較実施例1 メルトフローレート値を60g/10分,紡糸温度を3 [0019] 60 g / 10 min Comparative Example 1 Melt flow rate value, the spinning temperature 3
20℃,溶融紡出されたポリマ流を温度360℃,圧力2.1kg/cm 2の加熱高圧空気流により牽引・細化したこと,水圧60kg/cm 2の条件でウエブの上方30cmの位置から柱状水流を作用させたこと以外は実施例1と同様にして,不織布を得た。 20 ° C., a temperature 360 ° C. The melt spun has been polymer stream, it has traction-thinning by heating high pressure air flow pressure 2.1 kg / cm 2, from the position of the web of the upper 30cm under conditions of pressure 60 kg / cm 2 except that by applying a columnar water stream in the same manner as in example 1, to obtain a nonwoven fabric. 溶融紡出されたポリマ流を加熱高圧空気流により牽引・細化するに際し, Upon pulling-thinning by heating the high pressure air flow melt spun has been polymer stream,
ポリマの重合度が高過ぎるために製糸工程において溶融紡糸口金面でのポリマ玉が頻繁に発生して製糸性が低下し,重合度が高過ぎるため加熱空気の温度と圧力を高めても極細繊維を形成することが困難であった。 For the polymerization degree of the polymer is too high occurring polymer ball frequently in the melt spinneret face in yarn-making process and reduced spinnability, ultrafine fibers also increases the temperature and pressure of the heated air for the degree of polymerization is too high it is difficult to form. また,得られた不織布の特性を表1に示す。 Further, Table 1 shows the properties of the resulting nonwoven fabric. 得られた不織布は, The resulting non-woven fabric,
表1から明らかなように構成繊維同士の交絡が不十分なため機械的特性が劣り,しかも柔軟性も劣り,実用に供することが困難なものであった。 Entangling the constituent fibers to each other in Table 1 As is apparent inferior mechanical properties due to insufficient, yet flexibility inferior were those difficult for practical use.

【0020】比較例1 実施例1で得た高圧液体流処理を施す前の不織ウエブを評価した。 [0020] was evaluated nonwoven web before being subjected to high pressure liquid stream treatment obtained in Comparative Example 1 Example 1. 得られた不織ウエブの特性を表1に示す。 Characteristics of the resulting nonwoven webs shown in Table 1. この不織ウエブは,表1から明らかなように機械的特性, The nonwoven web is mechanical properties As apparent from Table 1,
柔軟性が劣ったものであった。 It was those that flexibility was inferior.

【0021】比較例2 実施例1で得た高圧液体流処理を施す前の不織ウエブに,温度が110℃で圧接面積率が14.2%の熱エンボスローラを用いて部分熱圧着処理を施した。 [0021] Nonwoven web before being subjected to high pressure liquid stream treatment obtained in Comparative Example 2 Example 1, the temperature is pressed area ratio at 110 ° C. is a partial thermocompression bonding process with 14.2% of the heat embossing rollers gave. 得られた不織布の特性を表1に示す。 The characteristics of the obtained nonwoven fabric are shown in Table 1. 得られた不織布は,表1から明らかなように機械的特性は優れるものの,柔軟性が劣ったものであった。 The resulting nonwoven fabric, though excellent in mechanical properties As is apparent from Table 1, were those flexibility is inferior.

【0022】 [0022]

【表1】 [Table 1]

【0023】 [0023]

【発明の効果】本発明の極細繊維不織布は,繊維形成性熱可塑性合成重合体からなる平均繊維径が0.1〜1 [Effect of the Invention] microfibrous non-woven fabric of the present invention have an average fiber diameter made of fiber-forming thermoplastic synthetic polymer 0.1
0.0μmの極細繊維から構成され,構成繊維同士が三次元的に交絡し,10%伸長時の引張応力が目付け当り20g/5cm以下で,かつ目付け当りの圧縮剛軟度が0.5g以下のものであって,機械的特性,寸法安定性,柔軟性が優れ,産業資材用や衣料用の素材として好適である。 Consists microfine fibers of 0.0Myuemu, configuration fibers are entangled three-dimensionally, with 10% elongation at a tensile stress less basis weight per 20 g / 5 cm, and compressive stiffness per basis weight less 0.5g be those of the mechanical properties, dimensional stability, flexibility good, it is suitable as a material for industrial materials and garments. また,本発明の極細繊維不織布の製造方法によれば,前記不織布を効率良く製造することができる。 According to the manufacturing method of microfibrous non-woven fabric of the present invention, it is possible to efficiently produce the nonwoven fabric.

Claims (2)

    【特許請求の範囲】 [The claims]
  1. 【請求項1】 繊維形成性熱可塑性合成重合体からなる平均繊維径が0.1〜10.0μmの極細繊維から構成され,構成繊維同士が三次元的に交絡し,10%伸長時の引張応力が目付け当り20g/5cm以下で,かつ目付け当りの圧縮剛軟度が0.5g以下であることを特徴とする極細繊維不織布。 The average fiber diameter consisting of 1. A fiber-forming thermoplastic synthetic polymer is composed of ultrafine fibers of 0.1~10.0Myuemu, constituent fibers to each other three-dimensionally entangled, tensile at 10% elongation microfibrous non-woven fabric that stress below basis weight per 20 g / 5 cm, and the compression stiffness per basis weight is equal to or less than 0.5 g.
  2. 【請求項2】 メルトブローン法により極細繊維不織布を製造するに際し,繊維形成性熱可塑性合成重合体を溶融紡出し,溶融紡出されたポリマ流を溶融温度より20 Upon wherein producing microfibrous non-woven fabric by melt blown method, a fiber-forming thermoplastic synthetic polymer melts spun, melt spun a polymer flow than the melting temperature 20
    〜50℃高い温度の高圧空気流により牽引・細化し,冷却した後,移動する捕集面上に捕集・堆積させてウエブとし,次いで得られたウエブに高圧液体流処理を施して構成繊維同士を三次元的に交絡させることを特徴とする極細繊維不織布の製造方法。 Led-thinning by to 50 ° C. higher temperatures the high pressure air stream, after cooling, was collected and accumulated on a collecting surface to move the webs, then the resulting structure is subjected to high pressure liquid stream treatment fiber web method for producing a microfibrous non-woven fabric, characterized in that to three-dimensionally entangled with each other.
JP4359558A 1992-12-24 1992-12-24 Extra fine fiber non-woven fabric and its production Pending JPH06192954A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4359558A JPH06192954A (en) 1992-12-24 1992-12-24 Extra fine fiber non-woven fabric and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4359558A JPH06192954A (en) 1992-12-24 1992-12-24 Extra fine fiber non-woven fabric and its production

Publications (1)

Publication Number Publication Date
JPH06192954A true JPH06192954A (en) 1994-07-12

Family

ID=18465121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4359558A Pending JPH06192954A (en) 1992-12-24 1992-12-24 Extra fine fiber non-woven fabric and its production

Country Status (1)

Country Link
JP (1) JPH06192954A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010005431A (en) * 2003-06-30 2010-01-14 Procter & Gamble Co Article containing nanofiber produced from low energy process
CN102168346A (en) * 2006-10-18 2011-08-31 聚合物集团公司 Process and apparatus for producing sub-micron fibers, and nonwovens and articles containing same
US8395016B2 (en) 2003-06-30 2013-03-12 The Procter & Gamble Company Articles containing nanofibers produced from low melt flow rate polymers
US8487156B2 (en) 2003-06-30 2013-07-16 The Procter & Gamble Company Hygiene articles containing nanofibers
US9464369B2 (en) 2004-04-19 2016-10-11 The Procter & Gamble Company Articles containing nanofibers for use as barriers
CN106048890A (en) * 2016-07-07 2016-10-26 诺斯贝尔化妆品股份有限公司 Manufacturing method of ultrafine fiber mask fabric
US9663883B2 (en) 2004-04-19 2017-05-30 The Procter & Gamble Company Methods of producing fibers, nonwovens and articles containing nanofibers from broad molecular weight distribution polymers
WO2019031286A1 (en) * 2017-08-10 2019-02-14 株式会社クラレ Melt blown nonwoven fabric, laminate using same, melt blown nonwoven fabric production method and melt blowing apparatus

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010005431A (en) * 2003-06-30 2010-01-14 Procter & Gamble Co Article containing nanofiber produced from low energy process
US8395016B2 (en) 2003-06-30 2013-03-12 The Procter & Gamble Company Articles containing nanofibers produced from low melt flow rate polymers
US8487156B2 (en) 2003-06-30 2013-07-16 The Procter & Gamble Company Hygiene articles containing nanofibers
US8835709B2 (en) 2003-06-30 2014-09-16 The Procter & Gamble Company Articles containing nanofibers produced from low melt flow rate polymers
US9138359B2 (en) 2003-06-30 2015-09-22 The Procter & Gamble Company Hygiene articles containing nanofibers
US10206827B2 (en) 2003-06-30 2019-02-19 The Procter & Gamble Company Hygiene articles containing nanofibers
US9464369B2 (en) 2004-04-19 2016-10-11 The Procter & Gamble Company Articles containing nanofibers for use as barriers
US9663883B2 (en) 2004-04-19 2017-05-30 The Procter & Gamble Company Methods of producing fibers, nonwovens and articles containing nanofibers from broad molecular weight distribution polymers
CN102168346A (en) * 2006-10-18 2011-08-31 聚合物集团公司 Process and apparatus for producing sub-micron fibers, and nonwovens and articles containing same
CN106048890A (en) * 2016-07-07 2016-10-26 诺斯贝尔化妆品股份有限公司 Manufacturing method of ultrafine fiber mask fabric
WO2019031286A1 (en) * 2017-08-10 2019-02-14 株式会社クラレ Melt blown nonwoven fabric, laminate using same, melt blown nonwoven fabric production method and melt blowing apparatus

Similar Documents

Publication Publication Date Title
EP1264024B1 (en) Multicomponent apertured nonwoven
JP3262803B2 (en) Melt-spun multicomponent thermoplastic continuous filaments, then the formed product, and forming method therefor
US6548431B1 (en) Melt spun polyester nonwoven sheet
US6506873B1 (en) Degradable polymer fibers; preparation product; and, methods of use
US5993714A (en) Method of making low density microfiber nonwoven fabric
CN1263902C (en) Meltblown nonwoven fabric forming method
US20020192449A1 (en) Aliphatic polyester microfibers, microfibrillated articles and use thereof
RU2149931C1 (en) Fastened thermoplastic polymer fiber and nonwoven material made therefrom
US7947359B2 (en) High tenacity nonwoven fabric
JP2825514B2 (en) Oriented meltblown fibers, its production method and its web
EP0409581B1 (en) Hot-melt-adhesive, micro-fiber-generating conjugate fibers and a woven or non-woven fabric using the same
EP0796940B1 (en) Water jet intertwined nonwoven cloth and method of manufacturing the same
KR100462734B1 (en) Process for Producing Fine Fibers and Fabrics Thereof
JP2577977B2 (en) Stretchable nonwoven fabric and a method of manufacturing the same
CA2458746C (en) Stretchable nonwoven web and method therefor
CN1227400C (en) Composite nonwoven sheet material
DE69822827T2 (en) Process for making hetero-component and ply-nonwoven materials
US6436855B1 (en) Hydrophilic fiber and non-woven fabric, and processed non-woven products made therefrom
US3833708A (en) Immiscible polymer products and processes
US4310594A (en) Composite sheet structure
EP0814189B1 (en) Bulky nonwoven fabric and method for producing the same
US6583075B1 (en) Dissociable multicomponent fibers containing a polyacrylonitrile polymer component
EP0933459B2 (en) Staple fiber non-woven fabric and process for producing the same
CA2274771C (en) Nonwoven process and apparatus
CN1190535C (en) Meltblown web of polyethylene glycol terephthalate with low characteristic viscosity and molecular weight