JPH06192954A - Extra fine fiber non-woven fabric and its production - Google Patents

Extra fine fiber non-woven fabric and its production

Info

Publication number
JPH06192954A
JPH06192954A JP4359558A JP35955892A JPH06192954A JP H06192954 A JPH06192954 A JP H06192954A JP 4359558 A JP4359558 A JP 4359558A JP 35955892 A JP35955892 A JP 35955892A JP H06192954 A JPH06192954 A JP H06192954A
Authority
JP
Japan
Prior art keywords
web
polymer
woven fabric
fiber
melt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4359558A
Other languages
Japanese (ja)
Inventor
敏 ▲かせ▼谷
Satoshi Kaseya
Nobuo Noguchi
信夫 野口
Nobuo Mimasa
伸夫 見正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP4359558A priority Critical patent/JPH06192954A/en
Publication of JPH06192954A publication Critical patent/JPH06192954A/en
Pending legal-status Critical Current

Links

Landscapes

  • Nonwoven Fabrics (AREA)

Abstract

PURPOSE:To provide the extra fine fiber non-woven fabric excellent in mechanical characteristics, dimensional stability and flexibility by spinning a fiber-forming thermoplastic polymer by a melt-blown method, drawing and cooling the spun polymer into fine fibers with the flow of a high pressure gas, accumulating the fine fibers on a moving collecting surface, and subsequently three-dimensionally interlacing the collected fine fibers with a high pressure fluid. CONSTITUTION:A fiber-forming thermoplastic polymer such as polypropylene, polycaproamide or polyethylene terephthalate is spun by a melt-blown method. The spun polymer flow is drawn and divided into fine fibers through the flow of a high pressure gas having a temperature higher 20-50 deg.C than the melting point of the polymer, cooled and accumulated on a moving collecting surface as extra fine fibers having an average fiber diameter of 0.1-10mum to form a web. The web is treated with the column-like flows of high pressure water from the upper side of the web to interlace the fibers with each other into a three-dimensional structure. The interlaced product is subjected to the squeezing-out of excessive water with a mangle, and subsequently dried to provide the extra fine fiber non-woven fabric having a a tensile strength of <=20g/5cm per metsuke (unit weight) on the elongation of 10% and a compression bending resistance of <=0.5g per metsuke.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は,機械的特性,寸法安定
性,柔軟性が優れ,産業資材用や衣料用の素材として好
適な極細繊維不織布と,それを効率良く製造する方法に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrafine fiber nonwoven fabric having excellent mechanical properties, dimensional stability and flexibility, which is suitable as a material for industrial materials and clothing, and a method for efficiently producing the same. is there.

【0002】[0002]

【従来の技術】従来から,通常の繊維形成性熱可塑性合
成重合体を用いメルトブローン法により製造された極細
繊維不織布が知られている。メルトブローン法とは,溶
融紡糸口金が溶融ポリマを吐出すると同時に高温の高圧
空気流により溶融紡出されたポリマ流を牽引・細化して
極細繊維を得る方法で,例えばインダストリアル アン
ド エンジニアリング ケミストリの第48卷第8号第
1342〜1346頁(1956年)にはメルトブロー
ン法の基本的な装置及び方法が開示されており,このメ
ルトブローン法は,極めて細い繊維を得ることができる
ため各種の素材を得るに関して適用されている。しかし
ながら,このメルトブローン法により得られた極細繊維
不織布は,各種の生活関連素材や産業資材用素材として
広範に用いられているものの,機械的特性が劣るという
問題を有していた。一方,通常の繊維形成性熱可塑性合
成重合体を用いメルトブローン法により製造された極細
繊維不織布に熱エンボスローラを用いて構成繊維間に部
分熱圧着処理を施すことにより,不織布の機械的特性を
向上させ得ることが知られている。しかしながら,この
熱エンボスローラを用いて構成繊維間に部分熱圧着処理
を施して得た不織布は,機械的特性は向上するものの,
柔軟性が損なわれるという問題を有していた。
2. Description of the Related Art An ultrafine fiber nonwoven fabric manufactured by a melt blown method using a usual fiber-forming thermoplastic synthetic polymer has been conventionally known. The melt-blown method is a method in which a melt-spinning die discharges a molten polymer and at the same time draws and thins a polymer stream melt-spun by a high-temperature high-pressure air stream to obtain ultrafine fibers. For example, Industrial and Engineering Chemistry No. 48 No. 8, pp. 1342 to 1346 (1956) discloses a basic apparatus and method of the melt blown method. The melt blown method is applicable to obtain various raw materials because extremely fine fibers can be obtained. Has been done. However, although the ultrafine fiber non-woven fabric obtained by the melt blown method is widely used as various life-related materials and materials for industrial materials, it has a problem of poor mechanical properties. On the other hand, the mechanical properties of the non-woven fabric are improved by subjecting the ultra-fine fiber non-woven fabric produced by the melt blown method using the ordinary fiber-forming thermoplastic synthetic polymer to the partial thermocompression bonding between the constituent fibers using the hot embossing roller. It is known that this can be done. However, although the non-woven fabric obtained by partially thermocompressing the constituent fibers using this hot embossing roller has improved mechanical properties,
There was a problem that flexibility was impaired.

【0003】[0003]

【発明が解決しようとする課題】本発明は,前記問題を
解決し,機械的特性,寸法安定性,柔軟性が優れ,産業
資材用や衣料用の素材として好適な極細繊維不織布と,
それを効率良く製造することができる方法を提供しよう
とするものである。
DISCLOSURE OF THE INVENTION The present invention solves the above-mentioned problems and is excellent in mechanical properties, dimensional stability and flexibility, and is an ultrafine fiber nonwoven fabric suitable as a material for industrial materials and clothing, and
It is intended to provide a method capable of efficiently manufacturing the same.

【0004】[0004]

【課題を解決するための手段】本発明者らは前記問題を
解決すべく鋭意検討の結果,本発明に到達した。すなわ
ち,本発明は,繊維形成性熱可塑性合成重合体からなる
平均繊維径が0.1〜10.0μmの極細繊維から構成
され,構成繊維同士が三次元的に交絡し,10%伸長時
の引張応力が目付け当り20g/5cm以下で,かつ目
付け当りの圧縮剛軟度が0.5g以下であることを特徴
とする極細繊維不織布,を要旨とするものである。ま
た,本発明は,メルトブローン法により極細繊維不織布
を製造するに際し,繊維形成性熱可塑性合成重合体を溶
融紡出し,溶融紡出されたポリマ流を溶融温度より20
〜50℃高い温度の高圧空気流により牽引・細化し,冷
却した後,移動する捕集面上に捕集・堆積させてウエブ
とし,次いで得られたウエブに高圧液体流処理を施して
構成繊維同士を三次元的に交絡させることを特徴とする
極細繊維不織布の製造方法,を要旨とするものである。
The present inventors have arrived at the present invention as a result of intensive studies to solve the above problems. That is, the present invention comprises ultrafine fibers having a fiber-forming thermoplastic synthetic polymer and an average fiber diameter of 0.1 to 10.0 μm. A gist of an ultrafine fiber non-woven fabric having a tensile stress of 20 g / 5 cm or less per unit weight and a compression rigidity of 0.5 g or less per unit weight. Further, in the present invention, in producing an ultrafine fiber nonwoven fabric by the melt blown method, a fiber-forming thermoplastic synthetic polymer is melt-spun, and the melt-spun polymer stream is melted at a temperature not lower than 20 ° C.
〜50 ℃ Draw and web by high pressure air flow at high temperature, cool and cool, then collect and deposit on moving moving collecting surface to make web, and then apply high pressure liquid flow treatment to the obtained web The gist is a method for producing an ultrafine fiber nonwoven fabric, which is characterized by intertwining three-dimensionally with each other.

【0005】次に,本発明を詳細に説明する。本発明に
おける繊維形成性熱可塑性合成重合体とは,いわゆる繊
維形成性を有するポリオレフイン系重合体,ポリアミド
系重合体あるいはポリエステル系重合体である。ポリオ
レフイン系重合体としては,炭素原子数2〜18の脂肪
族α−モノオレフイン,例えばエチレン,プロピレン,
ブテン−1,ペンテン−1,3−メチルブテン−1,ヘ
キセン−1,オクテン−1,ドデセン−1,オクタデセ
ン−1からなるホモポリオレフイン重合体が挙げられ
る。この脂肪族α−モノオレフインは,他のエチレン系
不飽和モノマ,例えばブタジエン,イソプレン,ペンタ
ジエン−1・3,スチレン,α−メチルスチレンのよう
な類似のエチレン系不飽和モノマが共重合されたポリオ
レフイン系共重合体であってもよい。また,ポリエチレ
ン系重合体の場合には,エチレンに対してプロピレン,
ブテン−1,ヘキセン−1,オクテン−1又は類似の高
級α−オレフインが10重量%以下共重合されたもので
あってもよく,ポリプロピレン系重合体の場合には,プ
ロピレンに対してエチレン又は類似の高級α−オレフイ
ンが10重量%以下共重合されたものであってもよい
が,前記これらの共重合物の共重合率が前記重量%を超
えると共重合体の融点が低下し,これらの共重合体を用
いて得た不織布を高温条件下で使用したときに,機械的
特性や寸法安定性が低下するので好ましくない。
Next, the present invention will be described in detail. The fiber-forming thermoplastic synthetic polymer in the present invention is a polyolefin polymer, a polyamide polymer or a polyester polymer having a so-called fiber forming property. Examples of the polyolefin polymer include aliphatic α-monoolefins having 2 to 18 carbon atoms, such as ethylene, propylene,
A homopolyolefin polymer composed of butene-1, pentene-1,3-methylbutene-1, hexene-1, octene-1, dodecene-1, octadecene-1 can be mentioned. This aliphatic α-monoolefin is a polyolefin in which other ethylenically unsaturated monomers are copolymerized with similar ethylenically unsaturated monomers such as butadiene, isoprene, pentadiene-1.3, styrene, and α-methylstyrene. It may be a system copolymer. In the case of a polyethylene-based polymer, ethylene is propylene,
Butene-1, hexene-1, octene-1, or a similar higher α-olefin may be copolymerized in an amount of 10% by weight or less. In the case of a polypropylene-based polymer, it may be ethylene or similar to propylene. The higher α-olefin may be copolymerized in an amount of 10% by weight or less, but when the copolymerization rate of these copolymers exceeds the above% by weight, the melting point of the copolymer decreases, When a nonwoven fabric obtained by using the copolymer is used under high temperature conditions, mechanical properties and dimensional stability are deteriorated, which is not preferable.

【0006】ポリアミド系重合体としては,ポリイミノ
−1−オキソテトラメチレン(ナイロン4),ポリテト
ラメチレンアジパミド(ナイロン46),ポリカプラミ
ド(ナイロン6),ポリヘキサメチレンアジパミド(ナ
イロン66),ポリウンデカナミド(ナイロン11),
ポリラウロラクタミド(ナイロン12),ポリメタキシ
レンアジパミド,ポリパラキシリレンデカナミド,ポリ
ビスシクロヘキシルメタンデカナミド又はこれらのモノ
マを構成単位とするポリアミド系共重合体が挙げられ
る。特に,ポリテトラメチレンアジパミドの場合,ポリ
テトラメチレンアジパミドにポリカプラミドやポリヘキ
サメチレンアジパミド,ポリウンデカメチレンテレフタ
ラミド等の他のポリアミド成分が30モル%以下共重合
されたポリテトラメチレンアジパミド系共重合体であっ
てもよい。前記他のポリアミド成分の共重合率が30モ
ル%を超えると共重合体の融点が低下し,不織布を高温
条件下で使用したときに機械的特性や寸法安定性が低下
するので好ましくない。
Polyamide polymers include polyimino-1-oxotetramethylene (nylon 4), polytetramethylene adipamide (nylon 46), polycapramide (nylon 6), polyhexamethylene adipamide (nylon 66), Polyundecanamid (nylon 11),
Examples thereof include polylaurolactamide (nylon 12), polymethaxylene adipamide, polyparaxylylene decanamide, polybiscyclohexylmethane decanamide, or a polyamide-based copolymer having these monomers as a constituent unit. Particularly, in the case of polytetramethylene adipamide, polytetramethylene adipamide is a polycapramide, polyhexamethylene adipamide, polyundecamethylene terephthalamide, or other polyamidopolyamide copolymerized by 30 mol% or less. It may be a tetramethylene adipamide-based copolymer. When the copolymerization rate of the other polyamide component exceeds 30 mol%, the melting point of the copolymer is lowered, and mechanical properties and dimensional stability are lowered when the nonwoven fabric is used under high temperature conditions, which is not preferable.

【0007】ポリエステル系重合体としては,テレフタ
ル酸,イソフタル酸,ナフタリン−2・6−ジカルボン
酸等の芳香族ジカルボン酸あるいはアジピン酸,セバチ
ン酸等の脂肪族ジカルボン酸又はこれらのエステル類を
酸成分とし,かつエチレングリコール,ジエチレングリ
コール,1・4−ブタジオール,ネオペンチルグリコー
ル,シクロヘキサン−1・4−ジメタノール等のジオー
ル化合物をエステル成分とするホモポリエステル重合体
あるいは共重合体が挙げられる。なお,これらのポリエ
ステル系重合体には,パラオキシ安息香酸,5−ソジウ
ムスルホイソフタール酸,ポリアルキレングリコール,
ペンタエリスススリトール,ビスフエノールA等が添加
あるいは共重合されていてもよい。
As the polyester polymer, an aromatic dicarboxylic acid such as terephthalic acid, isophthalic acid, naphthalene-2,6-dicarboxylic acid, or an aliphatic dicarboxylic acid such as adipic acid or sebacic acid, or an ester thereof is used as an acid component. And a homopolyester polymer or copolymer containing a diol compound such as ethylene glycol, diethylene glycol, 1,4-butadiol, neopentyl glycol, cyclohexane-1,4-dimethanol as an ester component. In addition, these polyester-based polymers include paraoxybenzoic acid, 5-sodium sulfoisophthalic acid, polyalkylene glycol,
Pentaeryththritol, bisphenol A, etc. may be added or copolymerized.

【0008】また,本発明において,繊維形成性熱可塑
性重合体には,前記の熱可塑性重合体をそれぞれ紡糸性
を損なわない範囲内でブレンドして用いることもでき
る。例えば2種の相異なるポリアミド系重合体をブレン
ドして用いてもよく,ポリエステル系重合体とポリオレ
フイン系重合体とをブレンドして用いてもよい。特に,
後者の場合には,溶融紡出直後で未配向かつ低結晶性の
ポリエステル成分の収縮を抑制することができて好まし
い。なお,本発明において,前記繊維形成性熱可塑性重
合体には,必要に応じて,例えば艶消し剤,顔料,防炎
剤,消臭剤,光安定剤,熱安定剤,酸化防止剤等の各種
添加剤を本発明の効果を損なわない範囲内で添加するこ
とができる。
In the present invention, the above-mentioned thermoplastic polymer may be blended with the fiber-forming thermoplastic polymer within a range not impairing the spinnability. For example, two different polyamide polymers may be blended and used, or a polyester polymer and a polyolefin polymer may be blended and used. In particular,
In the latter case, the shrinkage of the unoriented and low crystalline polyester component immediately after melt spinning can be suppressed, which is preferable. In the present invention, the fiber-forming thermoplastic polymer may contain, for example, a matting agent, a pigment, a flameproofing agent, a deodorant, a light stabilizer, a heat stabilizer, an antioxidant, etc., if necessary. Various additives can be added within a range that does not impair the effects of the present invention.

【0009】本発明における前記ポリオレフイン系重合
体からなる極細繊維は,平均繊維径が0.1〜10.0
μmのものであり,平均繊維径が0.1μm未満である
と製糸性が低下し,一方,平均繊維径が10.0μmを
超えると得られたウエブの風合いが硬くなって柔軟性に
富む不織布を得ることができず,いずれも好ましくな
い。
The ultrafine fibers made of the polyolefin polymer in the present invention have an average fiber diameter of 0.1 to 10.0.
If the average fiber diameter is less than 0.1 μm, the spinnability is deteriorated. On the other hand, if the average fiber diameter exceeds 10.0 μm, the obtained web has a hard texture and is highly flexible. Cannot be obtained, and neither is preferable.

【0010】本発明における前記極細繊維からなる不織
布は,構成繊維同士が三次元的に交絡し,かつ10%伸
長時の引張応力が目付け当り20g/5cm以下のもの
である。この三次元的交絡とは,公知のいわゆる高圧液
体流処理により形成されるものであって,これにより不
織布としての形態が保持される。この不織布では,メル
トブローン法の製糸工程で紡出繊維間に必然的に生じる
融着部が高圧液体流の作用力により破壊され,繊維間に
十分な三次元交絡が形成されるため,熱圧着部位が存在
しなくても十分な機械的特性と寸法安定性を有する。そ
して,この不織布では,メルトブローン法により得られ
た極細繊維からなり,しかも前記極細繊維同士が高圧液
体流処理により三次元的に交絡した構造を有するため,
10%伸長時の引張応力が目付け当り20g/5cm以
下で,かつ目付け当りの圧縮剛軟度が0.5g以下とい
う極めて柔軟性に富むものとなるのである。
The nonwoven fabric composed of the ultrafine fibers in the present invention is one in which the constituent fibers are three-dimensionally entangled with each other, and the tensile stress at 10% elongation is 20 g / 5 cm or less per unit weight. This three-dimensional entanglement is formed by a known so-called high-pressure liquid flow treatment, whereby the shape of the nonwoven fabric is maintained. In this non-woven fabric, the fused portion that is inevitably generated between spun fibers in the melt-blown spinning process is destroyed by the action of the high-pressure liquid flow, and a sufficient three-dimensional entanglement is formed between the fibers. Has sufficient mechanical properties and dimensional stability even in the absence of And, since this non-woven fabric is composed of ultrafine fibers obtained by the melt blown method and has a structure in which the ultrafine fibers are three-dimensionally entangled by the high pressure liquid flow treatment,
The tensile stress at 10% elongation is 20 g / 5 cm or less per unit weight, and the compression stiffness per unit weight is 0.5 g or less, which is extremely flexible.

【0011】本発明における前記極細繊維からなる不織
布は,公知のいわゆるメルトブローン法により効率良く
製造することができる。すなわち,ポリオレフイン系重
合体をメルトブローン法で溶融紡出し,溶融紡出された
ポリマ流を溶融温度より20〜50℃高い温度の高圧空
気流により牽引・細化し,冷却した後,移動する捕集面
上に捕集・堆積させてウエブとし,次いで得られたウエ
ブに高圧液体流処理を施して構成繊維同士を三次元的に
交絡させるのである。本発明の製造方法においては,繊
維形成性熱可塑性合成重合体として前述したような溶融
紡出が可能でかつ繊維形成性を有するものを採用する。
メルトブローン法で溶融紡出するに際し,溶融紡出され
たポリマ流を牽引・細化する高圧空気流は,その温度を
ポリマ流の溶融温度より20〜50℃高い温度とし,こ
の温度がポリマ流の溶融温度より+20℃未満であると
繊維構造の形成時に細化が不十分で極細繊維の形成が困
難となり,一方,この温度がポリマ流の溶融温度より+
50℃を超えると得られた不織布の機械的特性が低下し
たり,極端な場合には紡出繊維が高圧空気流により吹き
飛ばされて短繊維化し,いずれも好ましくない。
The non-woven fabric made of the ultrafine fibers in the present invention can be efficiently produced by a known so-called melt blown method. That is, a polyolefin polymer is melt-spun by a melt blown method, and the melt-spun polymer stream is drawn / thinned by a high-pressure air stream at a temperature 20 to 50 ° C higher than the melting temperature, cooled, and then moved to a collecting surface. The web is obtained by collecting and depositing it on the top, and then the obtained web is subjected to a high-pressure liquid flow treatment to entangle the constituent fibers three-dimensionally. In the production method of the present invention, a fiber-forming thermoplastic synthetic polymer that can be melt-spun as described above and has fiber-forming properties is used.
During melt-spinning by the melt blown method, the high-pressure air stream that pulls and thins the melt-spun polymer stream has a temperature 20 to 50 ° C. higher than the melting temperature of the polymer stream. If the temperature is less than + 20 ° C from the melting temperature, it becomes difficult to form ultrafine fibers when the fiber structure is formed, and on the other hand, this temperature is higher than the melting temperature of the polymer flow.
If the temperature exceeds 50 ° C., the mechanical properties of the obtained nonwoven fabric are deteriorated, and in an extreme case, the spun fiber is blown off by the high-pressure air flow to become a short fiber, which is not preferable.

【0012】高圧液体流処理を施すに際しては,公知の
方法を採用することができる。例えば,孔径が0.05
〜1.0mm特に0.1〜0.4mmの噴射孔を多数配
列した装置を用い,噴射圧力が5〜150kg/cm2
Gの高圧液体を前記噴射孔から噴射する方法がある。噴
射孔の配列は,ウエブの進行方向と直交する方向に列状
に配列する。この処理は,ウエブの片面あるいは両面の
いずれに施してもよいが,特に片面処理の場合には,噴
射孔を複数列に配列し噴射圧力を前段階で低く後段階で
高くして処理を施すと,均一で緻密な交絡形態と均一な
地合いを有する不織布を得ることができる。高圧液体と
しては,水あるいは温水を用いるのが一般的である。噴
射孔とウエブとの間の距離は,1〜15cmとするのが
よい。この距離が1cm未満であるとウエブの地合いが
乱れ,一方,この距離が15cmを超えると液体流がウ
エブに衝突した時の衝撃力が低下し三次元的な交絡が十
分に施されず,いずれも好ましくない。この高圧液体流
処理は,連続工程あるいは別工程のいずれであってもよ
い。この高圧液体流処理により不織布の構成繊維同士が
三次元的に交絡するのであり,この交絡度の調整は高圧
液体流処理における噴射孔の構造,液体流の圧力と流量
等の諸条件により可能であるが,これら条件の他に,ウ
エブ形成工程の条件によっても可能である。すなわち,
メルトブローン法において紡糸口金から溶融紡出された
ポリマ流を高圧空気流で牽引・細化し,冷却した後,移
動する捕集面上に捕集・堆積させてウエブとするに際
し,紡糸口金と捕集面との間の距離に比例して交絡度は
変化し,例えばこの距離を大きくするにしたがいウエブ
を構成する繊維の自由度が増大して高圧液体流処理の効
果が発揮され易くなって交絡度が増大するのであり,し
たがって,この距離を調整することにより前記交絡度の
調整をすることができるのである。そして,この高圧液
体流処理により得られた不織布は,メルトブローン法に
より得られた極細繊維から構成されと共に前記極細繊維
同士が高圧液体流処理により三次元的に交絡した構造を
有するため,10%伸長時の引張応力が目付け当り20
g/5cm以下で,かつ目付け当りの圧縮剛軟度が0.
5g以下という極めて優れた柔軟性を具備することにな
るのである。なお,高圧液体流処理を施すに際し,ウエ
ブを担持するスクリーンのメツシユあるいは織組織を適
宜変更することにより,不織布の組織あるいは柄を変更
することもできる。
In performing the high pressure liquid flow treatment, a known method can be adopted. For example, if the pore size is 0.05
~ 1.0mm, especially 0.1 ~ 0.4mm using a device with a large number of injection holes arranged, the injection pressure 5 ~ 150kg / cm 2
There is a method of ejecting the G high-pressure liquid from the ejection hole. The injection holes are arranged in rows in a direction orthogonal to the direction of travel of the web. This treatment may be performed on one side or both sides of the web. In particular, in the case of one-side treatment, the injection holes are arranged in a plurality of rows and the injection pressure is lowered in the front stage and increased in the rear stage. As a result, it is possible to obtain a non-woven fabric having a uniform and dense entangled form and a uniform texture. Generally, water or hot water is used as the high-pressure liquid. The distance between the injection hole and the web is preferably 1 to 15 cm. When this distance is less than 1 cm, the texture of the web is disturbed, while when this distance exceeds 15 cm, the impact force when the liquid flow collides with the web is reduced and the three-dimensional entanglement is not sufficiently performed. Is also not preferable. This high pressure liquid flow treatment may be either a continuous process or a separate process. By this high-pressure liquid flow treatment, the constituent fibers of the non-woven fabric are entangled three-dimensionally, and the degree of entanglement can be adjusted depending on various conditions such as the structure of the injection holes in the high-pressure liquid flow treatment, and the pressure and flow rate of the liquid flow. However, in addition to these conditions, it is also possible under the conditions of the web forming process. That is,
In the melt blown method, the polymer stream melt-spun from the spinneret is drawn and thinned by a high-pressure air stream, cooled, and then collected and deposited on a moving collecting surface to form a web, which is then collected with the spinneret. The degree of entanglement changes in proportion to the distance from the surface. For example, as this distance is increased, the degree of freedom of the fibers that make up the web increases, and the effect of high-pressure liquid flow treatment becomes more likely to be exhibited. Therefore, the degree of confounding can be adjusted by adjusting this distance. The non-woven fabric obtained by this high-pressure liquid flow treatment is composed of ultrafine fibers obtained by the melt blown method and has a structure in which the ultrafine fibers are three-dimensionally entangled by the high-pressure liquid flow treatment. Tensile stress is 20 per unit weight
g / 5 cm or less, and the compression stiffness per unit weight is 0.
It has extremely excellent flexibility of 5 g or less. When performing the high-pressure liquid flow treatment, the structure or handle of the non-woven fabric can be changed by appropriately changing the mesh or woven structure of the screen carrying the web.

【0013】高圧液体流処理を施した後,ウエブから過
剰水分を除去し,次いで,乾燥・熱処理して最終製品と
する。この過剰水分を除去するに際しては公知の方法を
採用することができ,例えばマングルロール等の絞り装
置を用いて過剰水分をある程度除去する。また,乾燥を
するに際しても公知の方法を採用することができ,例え
ば連続熱風乾燥機等の乾燥装置を用いて残余の水分を除
去する。さらに,熱処理をするに際しては,連続熱風乾
燥機等の乾燥装置を用いた乾熱処理の他に,必要に応じ
て湿熱処理としてもよい。なお,乾燥・熱処理における
温度と時間等の条件を選択するに際しては,単なる水分
除去にとどまらず必要に応じて不織布に適度の収縮を許
容するように選択することもできる。
After the high-pressure liquid flow treatment, excess moisture is removed from the web, which is then dried and heat-treated to obtain a final product. A known method can be adopted for removing the excess water, and the excess water is removed to some extent by using a squeezing device such as a mangle roll. Further, a known method can be adopted for the drying, and the residual water content is removed by using a drying device such as a continuous hot air dryer. Furthermore, when performing the heat treatment, besides the dry heat treatment using a drying device such as a continuous hot air dryer, a wet heat treatment may be performed if necessary. When selecting the conditions such as temperature and time in the drying / heat treatment, it is possible to select not only simple water removal but also allow an appropriate shrinkage of the nonwoven fabric as required.

【0014】[0014]

【実施例】次に,実施例に基づき本発明を具体的に説明
するが,本発明は,これらの実施例によって何ら限定さ
れるものではない。実施例において,各特性値の測定を
次の方法により実施した。 融点(℃):パーキンエルマ社製示差走査型熱量計DS
C−2型を用い,昇温速度20℃/分の条件で測定し,
得られた融解吸熱曲線において極値を与える温度を融点
とした。 メルトフローレート値(g/10分):ASTM D1
238(L)に記載の方法に準じて測定した。 相対粘度1:ポリカプラミド重合体(ナイロン6重合
体)の相対粘度を,96%硫酸100ccに試料1gを
溶解し,温度25℃の条件で常法により測定して求め
た。 相対粘度2:ポリエチレンテレフタレート重合体の相対
粘度を,フエノールと四塩化エタンの等重量溶液を溶媒
とし,この溶媒100ccに試料0.5gを溶解し,温
度20℃の条件で常法により測定して求めた。 平均繊維径(μm):試料の電子顕微鏡写真を撮影して
求めた。 引張強力(kg)及び引張伸度(%):JIS−L−1
096Aに記載の方法に準じて測定した。すなわち,試
料長が10cm,試料幅が5cmの試料片10点を作成
し,各試料片毎に不織布の経方向について定速伸長型引
張試験機(東洋ボールドウイン社製テンシロンUTM−
4−1−100)を用い引張速度10cm/分で伸長
し,得られた切断時荷重値(kg)の平均値を引張強力
(kg),切断時伸長率(%)の平均値を引張伸度
(%)とした。 目付け当りの圧縮剛軟度(g):JIS−L−1096
に記載のストリツプ法に準じて測定した。すなわち,試
料長が10cm,試料幅が5cmの試料片5点を作成
し,各試料片毎にそれぞれ横方向に曲げて円筒体とし,
その端部を接合して圧縮剛軟度測定用試料とし,各測定
用試料毎に縦方向について定速伸長型引張試験機(東洋
ボールドウイン社製テンシロンUTM−4−1−10
0)を用い圧縮速度5cm/分で圧縮し,得られた最大
荷重(g)を試料片の目付け(g/m2 )で除した値の
平均値を目付け当りの圧縮剛軟度(g)とした。
EXAMPLES Next, the present invention will be specifically described based on examples, but the present invention is not limited to these examples. In the examples, each characteristic value was measured by the following method. Melting point (℃): Differential scanning calorimeter DS manufactured by Perkin Elma
Using a C-2 type, the measurement is performed at a temperature rising rate of 20 ° C./min,
The temperature that gives the extreme value in the obtained melting endothermic curve was taken as the melting point. Melt flow rate value (g / 10 minutes): ASTM D1
It was measured according to the method described in 238 (L). Relative viscosity 1: The relative viscosity of the polycapramide polymer (nylon 6 polymer) was determined by dissolving 1 g of the sample in 100 cc of 96% sulfuric acid and measuring the temperature at 25 ° C. by a conventional method. Relative viscosity 2: The relative viscosity of the polyethylene terephthalate polymer was measured by an ordinary method at a temperature of 20 ° C. using a solvent of equal weight solution of phenol and ethane tetrachloride as a solvent and dissolving 0.5 g of a sample. I asked. Average fiber diameter (μm): Obtained by taking an electron micrograph of the sample. Tensile strength (kg) and tensile elongation (%): JIS-L-1
It was measured according to the method described in 096A. That is, 10 sample pieces having a sample length of 10 cm and a sample width of 5 cm were prepared, and a constant speed extension type tensile tester (Tensilon UTM-made by Toyo Baldwin Co., Ltd.
4-1-100) and stretching at a tensile speed of 10 cm / min, the obtained tensile load (kg) is the tensile strength (kg), and the average tensile elongation (%) is the tensile elongation. The degree (%). Compression stiffness per unit weight (g): JIS-L-1096
It was measured according to the strip method described in. That is, five sample pieces having a sample length of 10 cm and a sample width of 5 cm were prepared, and each sample piece was bent laterally to form a cylindrical body,
The end portions are joined to form a sample for measuring compression stiffness, and a constant speed extension type tensile tester (Tensilon UTM-4-1-10, manufactured by Toyo Baldwin Co., Ltd.) is used for each measurement sample in the longitudinal direction.
0) was used for compression at a compression rate of 5 cm / min, and the maximum load (g) obtained was divided by the unit weight (g / m 2 ) of the sample piece to obtain the average value of the compression stiffness per unit weight (g). And

【0015】実施例1 融点が160℃,メルトフローレート値が400g/1
0分のポリプロピレン重合体チツプを用い,メルトブロ
ーン法により不織布を製造した。すなわち,前記重合体
チツプを溶融し,これを紡糸口金から紡糸温度280
℃,単孔吐出量0.2g/分で紡出し,溶融紡出された
ポリマ流を高圧空気流により牽引・細化した。この高圧
空気流として温度320℃,圧力1.4kg/cm2
加熱空気を用いた。牽引・細化に引き続き,ポリマ流を
冷却し繊維に形成した後,紡糸口金から20cm離れた
位置に配設されかつ速度6.7m/分で移動する金網製
ベルト上に捕集・堆積させてウエブとした。次いで,得
られたウエブを100メツシユの金網上に載置し,これ
に水付与装置を用いて水を付与した後,高圧液体流処理
を施して構成繊維同士を三次元的に交絡させた。高圧液
体流処理として,孔径0.12mmの噴射孔が孔間隔
0.6mmで3群配列で配設された高圧柱状水流処理装
置を用い,水圧30kg/cm2 の条件でウエブの上方
8cmの位置から柱状水流を作用させた。なお,この処
理は,ウエブの表裏から各々3回施した。次いで,得ら
れた処理ウエブからマングルロールを用いて過剰水分を
除去した後,ウエブに熱風乾燥機を用い温度98℃の条
件で乾燥処理を施し,不織布を得た。得られた不織布の
特性を表1に示す。本発明の不織布は,表1から明らか
なように機械的特性,柔軟性が優れたものであった。
Example 1 Melting point: 160 ° C. Melt flow rate: 400 g / 1
A non-woven fabric was produced by a melt blown method using a 0-minute polypropylene polymer chip. That is, the polymer chip is melted, and is melted from the spinneret at a spinning temperature of 280
The polymer flow spun at a single-hole discharge rate of 0.2 g / min at ℃ was drawn and thinned by a high-pressure air flow. As the high-pressure air stream, heated air having a temperature of 320 ° C. and a pressure of 1.4 kg / cm 2 was used. Following drawing and thinning, the polymer stream was cooled and formed into fibers, which were then collected and deposited on a wire mesh belt which was placed 20 cm away from the spinneret and moved at a speed of 6.7 m / min. The web. Next, the obtained web was placed on a wire mesh of 100 mesh, water was applied to the web using a water applicator, and then high pressure liquid flow treatment was performed to entangle the constituent fibers three-dimensionally. As the high-pressure liquid flow treatment, a high-pressure columnar water flow treatment device in which injection holes having a hole diameter of 0.12 mm were arranged in a three-group arrangement with a hole interval of 0.6 mm was used, and a position 8 cm above the web was placed under a water pressure of 30 kg / cm 2. A columnar water stream was made to act. This treatment was performed three times from the front and back of the web. Next, after removing excess water from the obtained treated web by using a mangle roll, the web was dried at a temperature of 98 ° C. using a hot air dryer to obtain a nonwoven fabric. The characteristics of the obtained non-woven fabric are shown in Table 1. As is clear from Table 1, the nonwoven fabric of the present invention had excellent mechanical properties and flexibility.

【0016】実施例2 実施例1で得た高圧液体流処理を施す前の不織ウエブを
36メツシユの金網上に載置し,これに水付与装置を用
いて水を付与した後,水圧を40kg/cm2とした以
外は実施例1と同様にして,不織布を得た。得られた不
織布の特性を表1に示す。本発明の不織布は,表1から
明らかなように機械的特性,柔軟性が優れ,しかも開孔
模様を有しものであった。
Example 2 The non-woven web obtained in Example 1 before being subjected to the high-pressure liquid flow treatment was placed on a wire mesh of 36 mesh, water was applied thereto by using a water applicator, and then water pressure was applied. A non-woven fabric was obtained in the same manner as in Example 1 except that 40 kg / cm 2 was used. The characteristics of the obtained non-woven fabric are shown in Table 1. As is clear from Table 1, the non-woven fabric of the present invention had excellent mechanical properties and flexibility, and also had an open pattern.

【0017】実施例3 融点が214℃,相対粘度1が2.4のポリカプラミド
重合体(ナイロン6重合体)チツプを用い,メルトブロ
ーン法により不織布を製造した。すなわち,前記重合体
チツプを溶融し,これを紡糸口金から紡糸温度320
℃,単孔吐出量0.2g/分で紡出し,溶融紡出された
ポリマ流を高圧空気流により牽引・細化した。この高圧
空気流として温度350℃,圧力1.6kg/cm2
加熱空気を用いた。牽引・細化に引き続き,ポリマ流を
冷却し繊維に形成した後,紡糸口金から25cm離れた
位置に配設されかつ速度6.7m/分で移動する金網製
ベルト上に捕集・堆積させてウエブとした。次いで,得
られたウエブを100メツシユの金網上に載置し,これ
に水付与装置を用いて水を付与した後,高圧液体流処理
を施して構成繊維同士を三次元的に交絡させた。高圧液
体流処理として,孔径0.12mmの噴射孔が孔間隔
0.6mmで3群配列で配設された高圧柱状水流処理装
置を用い,水圧40kg/cm2 の条件でウエブの上方
8cmの位置から柱状水流を作用させた。なお,この処
理は,ウエブの表裏から各々3回施した。次いで,得ら
れた処理ウエブからマングルロールを用いて過剰水分を
除去した後,ウエブに熱風乾燥機を用い温度98℃の条
件で乾燥処理を施し,不織布を得た。得られた不織布の
特性を表1に示す。本発明の不織布は,表1から明らか
なように機械的特性,柔軟性が優れたものであった。
Example 3 A non-woven fabric was produced by a melt blown method using a polycapramide polymer (nylon 6 polymer) chip having a melting point of 214 ° C. and a relative viscosity of 2.4. That is, the polymer chip is melted and the spinning temperature is set to 320 from the spinneret.
The polymer flow spun at a single-hole discharge rate of 0.2 g / min at ℃ was drawn and thinned by a high-pressure air flow. As the high-pressure air stream, heated air having a temperature of 350 ° C. and a pressure of 1.6 kg / cm 2 was used. Following drawing and thinning, the polymer stream was cooled and formed into fibers, which were then collected and deposited on a wire mesh belt which was placed 25 cm away from the spinneret and moved at a speed of 6.7 m / min. The web. Next, the obtained web was placed on a wire mesh of 100 mesh, water was applied to the web using a water applicator, and then high pressure liquid flow treatment was performed to entangle the constituent fibers three-dimensionally. As the high-pressure liquid flow treatment, a high-pressure columnar water flow treatment device in which injection holes with a hole diameter of 0.12 mm were arranged in a three-group arrangement with a hole interval of 0.6 mm was used, and the position 8 cm above the web was set under a water pressure of 40 kg / cm 2. A columnar water stream was made to act. This treatment was performed three times from the front and back of the web. Next, after removing excess water from the obtained treated web by using a mangle roll, the web was dried at a temperature of 98 ° C. using a hot air dryer to obtain a nonwoven fabric. The characteristics of the obtained non-woven fabric are shown in Table 1. As is clear from Table 1, the nonwoven fabric of the present invention had excellent mechanical properties and flexibility.

【0018】実施例4 融点が260℃,相対粘度2が1.24のポリエチレン
テレフタレート重合体チツプを用い,メルトブローン法
により不織布を製造した。すなわち,前記重合体チツプ
を溶融し,これを紡糸口金から紡糸温度350℃,単孔
吐出量0.2g/分で紡出し,溶融紡出されたポリマ流
を高圧空気流により牽引・細化した。この高圧空気流と
して温度380℃,圧力1.2kg/cm2 の加熱空気
を用いた。牽引・細化に引き続き,ポリマ流を冷却し繊
維に形成した後,紡糸口金から15cm離れた位置に配
設されかつ速度6.7m/分で移動する金網製ベルト上
に捕集・堆積させてウエブとした。次いで,得られたウ
エブを100メツシユの金網上に載置し,これに水付与
装置を用いて水を付与した後,高圧液体流処理を施して
構成繊維同士を三次元的に交絡させた。高圧液体流処理
として,孔径0.12mmの噴射孔が孔間隔0.6mm
で3群配列で配設された高圧柱状水流処理装置を用い,
水圧40kg/cm2 の条件でウエブの上方8cmの位
置から柱状水流を作用させた。なお,この処理は,ウエ
ブの表裏から各々3回施した。次いで,得られた処理ウ
エブからマングルロールを用いて過剰水分を除去した
後,ウエブに熱風乾燥機を用い温度98℃の条件で乾燥
処理を施し,不織布を得た。得られた不織布の特性を表
1に示す。本発明の不織布は,表1から明らかなように
機械的特性,柔軟性が優れたものであった。
Example 4 A non-woven fabric was produced by a melt blown method using a polyethylene terephthalate polymer chip having a melting point of 260 ° C. and a relative viscosity of 1.24. That is, the polymer chip was melted, spun from the spinneret at a spinning temperature of 350 ° C., single hole discharge rate of 0.2 g / min, and the melt spun polymer stream was drawn and thinned by a high-pressure air stream. . As the high-pressure air stream, heated air having a temperature of 380 ° C. and a pressure of 1.2 kg / cm 2 was used. Following drawing and thinning, the polymer stream was cooled to form fibers, which were then collected and deposited on a wire mesh belt which was placed 15 cm away from the spinneret and moved at a speed of 6.7 m / min. The web. Next, the obtained web was placed on a wire mesh of 100 mesh, water was applied to the web using a water applicator, and then high pressure liquid flow treatment was performed to entangle the constituent fibers three-dimensionally. As a high-pressure liquid flow treatment, injection holes with a hole diameter of 0.12 mm have a hole spacing of 0.6 mm.
Using a high-pressure columnar water stream treatment device arranged in three groups
A columnar water stream was applied from a position 8 cm above the web under a water pressure of 40 kg / cm 2 . This treatment was performed three times from the front and back of the web. Next, after removing excess water from the obtained treated web by using a mangle roll, the web was dried at a temperature of 98 ° C. using a hot air dryer to obtain a nonwoven fabric. The characteristics of the obtained non-woven fabric are shown in Table 1. As is clear from Table 1, the nonwoven fabric of the present invention had excellent mechanical properties and flexibility.

【0019】比較実施例1 メルトフローレート値を60g/10分,紡糸温度を3
20℃,溶融紡出されたポリマ流を温度360℃,圧力
2.1kg/cm2 の加熱高圧空気流により牽引・細化
したこと,水圧60kg/cm2 の条件でウエブの上方
30cmの位置から柱状水流を作用させたこと以外は実
施例1と同様にして,不織布を得た。溶融紡出されたポ
リマ流を加熱高圧空気流により牽引・細化するに際し,
ポリマの重合度が高過ぎるために製糸工程において溶融
紡糸口金面でのポリマ玉が頻繁に発生して製糸性が低下
し,重合度が高過ぎるため加熱空気の温度と圧力を高め
ても極細繊維を形成することが困難であった。また,得
られた不織布の特性を表1に示す。得られた不織布は,
表1から明らかなように構成繊維同士の交絡が不十分な
ため機械的特性が劣り,しかも柔軟性も劣り,実用に供
することが困難なものであった。
Comparative Example 1 Melt flow rate value was 60 g / 10 minutes, spinning temperature was 3
The polymer stream melt-spun at 20 ° C. was drawn and thinned by a heated high-pressure air stream at a temperature of 360 ° C. and a pressure of 2.1 kg / cm 2 , from a position 30 cm above the web under the condition of a water pressure of 60 kg / cm 2. A non-woven fabric was obtained in the same manner as in Example 1 except that a columnar water flow was applied. In drawing and thinning the melt-spun polymer stream by the heated high-pressure air stream,
Since the polymerization degree of the polymer is too high, polymer balls are frequently generated on the surface of the melt-spinning spinneret during the yarn making process, and the spinnability is deteriorated. Was difficult to form. Table 1 shows the characteristics of the obtained non-woven fabric. The resulting non-woven fabric is
As is clear from Table 1, the intertwining of the constituent fibers was insufficient, resulting in poor mechanical properties and poor flexibility, making it difficult to put into practical use.

【0020】比較例1 実施例1で得た高圧液体流処理を施す前の不織ウエブを
評価した。得られた不織ウエブの特性を表1に示す。こ
の不織ウエブは,表1から明らかなように機械的特性,
柔軟性が劣ったものであった。
Comparative Example 1 The nonwoven web obtained in Example 1 before the high pressure liquid stream treatment was evaluated. The properties of the resulting nonwoven web are shown in Table 1. This non-woven web has mechanical properties as shown in Table 1,
It was inferior in flexibility.

【0021】比較例2 実施例1で得た高圧液体流処理を施す前の不織ウエブ
に,温度が110℃で圧接面積率が14.2%の熱エン
ボスローラを用いて部分熱圧着処理を施した。得られた
不織布の特性を表1に示す。得られた不織布は,表1か
ら明らかなように機械的特性は優れるものの,柔軟性が
劣ったものであった。
Comparative Example 2 The non-woven web obtained in Example 1 before being subjected to the high-pressure liquid flow treatment was subjected to a partial thermocompression treatment using a hot embossing roller having a temperature of 110 ° C. and a pressure contact area ratio of 14.2%. gave. The characteristics of the obtained non-woven fabric are shown in Table 1. As is clear from Table 1, the obtained nonwoven fabric had excellent mechanical properties but poor flexibility.

【0022】[0022]

【表1】 [Table 1]

【0023】[0023]

【発明の効果】本発明の極細繊維不織布は,繊維形成性
熱可塑性合成重合体からなる平均繊維径が0.1〜1
0.0μmの極細繊維から構成され,構成繊維同士が三
次元的に交絡し,10%伸長時の引張応力が目付け当り
20g/5cm以下で,かつ目付け当りの圧縮剛軟度が
0.5g以下のものであって,機械的特性,寸法安定
性,柔軟性が優れ,産業資材用や衣料用の素材として好
適である。また,本発明の極細繊維不織布の製造方法に
よれば,前記不織布を効率良く製造することができる。
The ultrafine fiber nonwoven fabric of the present invention has an average fiber diameter of 0.1 to 1 composed of a fiber-forming thermoplastic synthetic polymer.
It is composed of ultrafine fibers of 0.0μm, the constituent fibers are entangled three-dimensionally, the tensile stress at 10% elongation is 20g / 5cm or less per unit weight, and the compression stiffness per unit weight is 0.5g or less. It has excellent mechanical properties, dimensional stability and flexibility, and is suitable as a material for industrial materials and clothing. Further, according to the method for producing an ultrafine fiber nonwoven fabric of the present invention, the nonwoven fabric can be efficiently produced.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 繊維形成性熱可塑性合成重合体からなる
平均繊維径が0.1〜10.0μmの極細繊維から構成
され,構成繊維同士が三次元的に交絡し,10%伸長時
の引張応力が目付け当り20g/5cm以下で,かつ目
付け当りの圧縮剛軟度が0.5g以下であることを特徴
とする極細繊維不織布。
1. A microfiber composed of a fiber-forming thermoplastic synthetic polymer and having an average fiber diameter of 0.1 to 10.0 μm, wherein the constituent fibers are three-dimensionally entangled with each other and stretched at 10% elongation. A microfiber nonwoven fabric having a stress of 20 g / 5 cm or less per unit weight and a compression stiffness of 0.5 g or less per unit weight.
【請求項2】 メルトブローン法により極細繊維不織布
を製造するに際し,繊維形成性熱可塑性合成重合体を溶
融紡出し,溶融紡出されたポリマ流を溶融温度より20
〜50℃高い温度の高圧空気流により牽引・細化し,冷
却した後,移動する捕集面上に捕集・堆積させてウエブ
とし,次いで得られたウエブに高圧液体流処理を施して
構成繊維同士を三次元的に交絡させることを特徴とする
極細繊維不織布の製造方法。
2. When producing an ultrafine fiber non-woven fabric by the melt blown method, a fiber-forming thermoplastic synthetic polymer is melt-spun, and the melt-spun polymer stream is melted at a temperature not lower than 20.
〜50 ℃ Draw and web by high pressure air flow at high temperature, cool and cool, then collect and deposit on moving moving collecting surface to make web, and then apply high pressure liquid flow treatment to the obtained web A method for producing an ultrafine fiber non-woven fabric, which comprises entangled three-dimensionally with each other.
JP4359558A 1992-12-24 1992-12-24 Extra fine fiber non-woven fabric and its production Pending JPH06192954A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4359558A JPH06192954A (en) 1992-12-24 1992-12-24 Extra fine fiber non-woven fabric and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4359558A JPH06192954A (en) 1992-12-24 1992-12-24 Extra fine fiber non-woven fabric and its production

Publications (1)

Publication Number Publication Date
JPH06192954A true JPH06192954A (en) 1994-07-12

Family

ID=18465121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4359558A Pending JPH06192954A (en) 1992-12-24 1992-12-24 Extra fine fiber non-woven fabric and its production

Country Status (1)

Country Link
JP (1) JPH06192954A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010005431A (en) * 2003-06-30 2010-01-14 Procter & Gamble Co Article containing nanofiber produced from low energy process
CN102168346A (en) * 2006-10-18 2011-08-31 聚合物集团公司 Process and apparatus for producing sub-micron fibers, and nonwovens and articles containing same
US8395016B2 (en) 2003-06-30 2013-03-12 The Procter & Gamble Company Articles containing nanofibers produced from low melt flow rate polymers
US8487156B2 (en) 2003-06-30 2013-07-16 The Procter & Gamble Company Hygiene articles containing nanofibers
US9464369B2 (en) 2004-04-19 2016-10-11 The Procter & Gamble Company Articles containing nanofibers for use as barriers
CN106048890A (en) * 2016-07-07 2016-10-26 诺斯贝尔化妆品股份有限公司 Manufacturing method of ultrafine fiber mask fabric
US9663883B2 (en) 2004-04-19 2017-05-30 The Procter & Gamble Company Methods of producing fibers, nonwovens and articles containing nanofibers from broad molecular weight distribution polymers
CN108866668A (en) * 2018-05-28 2018-11-23 泽塔纳米科技(苏州)有限公司 A kind of nano flame-retardant fiber and preparation method thereof
WO2019031286A1 (en) * 2017-08-10 2019-02-14 株式会社クラレ Melt blown nonwoven fabric, laminate using same, melt blown nonwoven fabric production method and melt blowing apparatus

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010005431A (en) * 2003-06-30 2010-01-14 Procter & Gamble Co Article containing nanofiber produced from low energy process
US10206827B2 (en) 2003-06-30 2019-02-19 The Procter & Gamble Company Hygiene articles containing nanofibers
US8395016B2 (en) 2003-06-30 2013-03-12 The Procter & Gamble Company Articles containing nanofibers produced from low melt flow rate polymers
US8487156B2 (en) 2003-06-30 2013-07-16 The Procter & Gamble Company Hygiene articles containing nanofibers
US8835709B2 (en) 2003-06-30 2014-09-16 The Procter & Gamble Company Articles containing nanofibers produced from low melt flow rate polymers
US9138359B2 (en) 2003-06-30 2015-09-22 The Procter & Gamble Company Hygiene articles containing nanofibers
US9663883B2 (en) 2004-04-19 2017-05-30 The Procter & Gamble Company Methods of producing fibers, nonwovens and articles containing nanofibers from broad molecular weight distribution polymers
US9464369B2 (en) 2004-04-19 2016-10-11 The Procter & Gamble Company Articles containing nanofibers for use as barriers
CN102168346A (en) * 2006-10-18 2011-08-31 聚合物集团公司 Process and apparatus for producing sub-micron fibers, and nonwovens and articles containing same
CN106048890A (en) * 2016-07-07 2016-10-26 诺斯贝尔化妆品股份有限公司 Manufacturing method of ultrafine fiber mask fabric
WO2019031286A1 (en) * 2017-08-10 2019-02-14 株式会社クラレ Melt blown nonwoven fabric, laminate using same, melt blown nonwoven fabric production method and melt blowing apparatus
CN110998006A (en) * 2017-08-10 2020-04-10 株式会社可乐丽 Melt-blown nonwoven fabric, laminate using same, method for producing melt-blown nonwoven fabric, and melt-blowing apparatus
JPWO2019031286A1 (en) * 2017-08-10 2020-09-17 株式会社クラレ Melt blown non-woven fabric, laminate using it, manufacturing method of melt blown non-woven fabric and melt blow device
US11440289B2 (en) 2017-08-10 2022-09-13 Kuraray Co., Ltd. Melt blown nonwoven fabric, laminate using same, melt blown nonwoven fabric production method and melt blowing apparatus
CN108866668A (en) * 2018-05-28 2018-11-23 泽塔纳米科技(苏州)有限公司 A kind of nano flame-retardant fiber and preparation method thereof
CN108866668B (en) * 2018-05-28 2021-02-19 泽塔纳米科技(苏州)有限公司 Nano flame-retardant fiber and preparation method thereof

Similar Documents

Publication Publication Date Title
EP0933459B1 (en) Staple fiber non-woven fabric and process for producing the same
JP3264719B2 (en) Biodegradable composite long-fiber nonwoven fabric
JPH03294558A (en) Interlaced non-woven fabric and production thereof
JPH06207323A (en) Biodegradable latent-crimping conjugate filament and nonwoven fabric made of the filament
JP4134829B2 (en) Nanofiber mixed yarn
JPH06207320A (en) Biodegradable conjugate short fiber and its nonwoven fabric
JPH06192954A (en) Extra fine fiber non-woven fabric and its production
JP3948781B2 (en) Short fiber nonwoven fabric and method for producing the same
JPH10331063A (en) Composite nonwoven fabric and its production
JPH0673654A (en) Polyamide ultrafine fiber non-woven fabric and its production
JPH06192953A (en) Polyolefin extra fine fiber non-woven fabric and its production
JPH06212550A (en) Ultra-fine polypropylene fiber nonwoven web and its production
JPH07138863A (en) Polyester ultrafine fiber nonwoven web and its production
JPH10280262A (en) Nonwoven fabric and its production
JPH1161618A (en) Ultrafine fiber nonwoven fabric and its production
JP4453179B2 (en) Split fiber and fiber molded body using the same
JPH05140849A (en) Flexible nonwoven fabric and its production
JP4026279B2 (en) Split type composite fiber and fiber molded body using the same
JPH0673652A (en) Polyamide ultrafine fiber non-woven fabric and its production
JPH06158507A (en) Perforated interlaced ultra-fine fiber nonwoven fabric and its production
JPH10280258A (en) Nonwoven fabric and its production
JPH1121752A (en) Composite nonwoven fabric and its production
JPH09195155A (en) Nonwoven fabric for hook-and-loop fastener and its production
JPH10273870A (en) Composite non-woven fabric and its production
JPH0673653A (en) Polyamide ultrafine fiber non-woven fabric