JPH0673654A - Polyamide ultrafine fiber non-woven fabric and its production - Google Patents

Polyamide ultrafine fiber non-woven fabric and its production

Info

Publication number
JPH0673654A
JPH0673654A JP4253944A JP25394492A JPH0673654A JP H0673654 A JPH0673654 A JP H0673654A JP 4253944 A JP4253944 A JP 4253944A JP 25394492 A JP25394492 A JP 25394492A JP H0673654 A JPH0673654 A JP H0673654A
Authority
JP
Japan
Prior art keywords
polymer
woven fabric
temperature
web
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4253944A
Other languages
Japanese (ja)
Inventor
Fumio Matsuoka
文夫 松岡
Nobuo Noguchi
信夫 野口
Hiroshi Nishimura
弘 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP4253944A priority Critical patent/JPH0673654A/en
Publication of JPH0673654A publication Critical patent/JPH0673654A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide the non-woven fabric excellent in mechanical characteristics, heat resistance, dimensional stability and flexibility, and suitable not only as a raw material for conventional clothes but also especially as a raw material for industrial materials. CONSTITUTION:This polyamide ultrafine non-woven fabric is composed of ultrafine fibers comprising a polytetramethylene adipamide polymer having a relative viscosity of 2.6-4.0 and having an average fiber diameter of 0.1-8.0mum, and has a dry heat shrinkage degree of <=20% at a temperature of 160 deg.C, the composed fibers being three-dimensionally interlaced with each other.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は,機械的特性,耐熱性,
寸法安定性,柔軟性が優れ,特に産業資材用素材として
好適なポリアミド系極細繊維不織布と,それを効率良く
製造する方法に関するものである。
BACKGROUND OF THE INVENTION The present invention relates to mechanical properties, heat resistance,
The present invention relates to a polyamide-based ultrafine fiber nonwoven fabric which has excellent dimensional stability and flexibility and is particularly suitable as a material for industrial materials, and a method for efficiently producing the same.

【0002】[0002]

【従来の技術】従来から,ポリカプラミドやポリヘキサ
メチレンアジパミド重合体を用いメルトブローン法によ
り製造したポリアミド系極細繊維不織布が知られてお
り,この不織布は,タフネス,耐摩耗性,耐アルカリ性
等が優れているところから,各種の産業資材用素材とし
て広範に用いられている。ところで,近年,産業資材用
途では,熱的及び/又は機械的に過酷な使用条件に耐え
る特性を具備する素材が要求されてきた。しかしなが
ら,前記のポリアミド系極細繊維不織布は,タフネス,
耐摩耗性,耐アルカリ性等が優れているものの,耐熱
性,寸法安定性の面で不十分なものであった。
2. Description of the Related Art Conventionally, polyamide-based ultrafine fiber non-woven fabric manufactured by melt blown method using polycapramide or polyhexamethylene adipamide polymer has been known, and this non-woven fabric has toughness, abrasion resistance, alkali resistance, etc. Since it is excellent, it is widely used as a material for various industrial materials. By the way, in recent years, in industrial material applications, there has been a demand for a material having a property of withstanding a severely thermally and / or mechanically used condition. However, the polyamide-based ultrafine fiber non-woven fabric has a toughness,
Although it had excellent wear resistance and alkali resistance, it was insufficient in terms of heat resistance and dimensional stability.

【0003】[0003]

【発明が解決しようとする課題】本発明は,前記問題を
解決し,機械的特性,耐熱性,寸法安定性,柔軟性が優
れ,特に産業資材用素材として好適なポリアミド系極細
繊維不織布と,それを効率良く製造することができる方
法を提供しようとするものである。
DISCLOSURE OF THE INVENTION The present invention solves the above-mentioned problems, and has excellent mechanical properties, heat resistance, dimensional stability, and flexibility, and a polyamide-based ultrafine fiber nonwoven fabric particularly suitable as a material for industrial materials, It is intended to provide a method capable of efficiently manufacturing the same.

【0004】[0004]

【課題を解決するための手段】本発明者らは,前記問題
を解決すべく鋭意検討の結果,本発明に到達した。すな
わち,本発明は,相対粘度が2.6〜4.0のポリテト
ラメチレンアジパミド系重合体からなる平均繊維径が
0.1〜8.0μmの極細繊維から構成され,温度16
0℃時の乾熱収縮率が20%以下であり,かつ構成繊維
同士が三次元的に交絡していることを特徴とするポリア
ミド系極細繊維不織布,を要旨とするものである。ま
た,本発明は,メルトブローン法によりポリアミド系極
細繊維不織布を製造するに際し,重合体として相対粘度
が2.6〜4.0のポリテトラメチレンアジパミド系重
合体を用い,溶融紡出されたポリマ流を溶融温度より2
0〜50℃高い温度の高圧空気流により牽引・細化し,
冷却した後,移動する捕集面上に捕集・堆積させてウエ
ブとし,次いで得られたウエブに高圧液体流処理を施し
て構成繊維同士を三次元的に交絡させることを特徴とす
るポリアミド系極細繊維不織布の製造方法,を要旨とす
るものである。
The present inventors have arrived at the present invention as a result of extensive studies to solve the above problems. That is, the present invention comprises ultrafine fibers having an average fiber diameter of 0.1 to 8.0 μm and made of a polytetramethylene adipamide polymer having a relative viscosity of 2.6 to 4.0 and a temperature of 16
It is a gist of a polyamide-based ultrafine fiber non-woven fabric, which has a dry heat shrinkage ratio of 20% or less at 0 ° C. and constituent fibers are three-dimensionally entangled. Further, in the present invention, when a polyamide-based ultrafine fiber nonwoven fabric is produced by the melt blown method, a polytetramethyleneadipamide-based polymer having a relative viscosity of 2.6 to 4.0 is used as a polymer and melt-spun. Polymer flow from melting temperature to 2
The high-pressure air flow of 0 to 50 ℃ higher temperature pulls and thins it,
After cooling, it is collected and deposited on a moving collecting surface to form a web, and then the obtained web is subjected to a high-pressure liquid flow treatment so that the constituent fibers are entangled three-dimensionally with each other. The gist of the present invention is a method for manufacturing an ultrafine fiber nonwoven fabric.

【0005】次に,本発明を詳細に説明する。本発明に
おけるポリテトラメチレンアジパミド系重合体とは,主
としてポリテトラメチレンアジパミドからなる重合体で
あり,ポリテトラメチレンアジパミドにポリカプラミド
やポリヘキサメチレンアジパミド,ポリウンデカメチレ
ンテレフタラミド等の他のポリアミド成分が30モル%
以下共重合されたポリテトラメチレンアジパミド系共重
合体,あるいはブレンドされたブレンド物であってもよ
い。前記他のポリアミド成分の共重合率あるいはブレン
ド率が30モル%を超えると,共重合体あるいはブレン
ド物の融点が低下し,不織布を高温条件下で使用したと
きに機械的特性や寸法安定性が低下するので好ましくな
い。本発明におけるポリテトラメチレンアジパミド系重
合体は,相対粘度が2.6〜4.0のものであり,相対
粘度が2.6未満であると不織布の強力が著しく低下す
るので,一方,相対粘度が4.0を超えると重合度が高
すぎるために製糸性が低下して極細繊維の形成が困難と
なり,しかも繊維形成に要するエネルギが大となるの
で,いずれも好ましくない。なお,本発明において,ポ
リテトラメチレンアジパミド系重合体には,必要に応じ
て,例えば艶消し剤,顔料,光安定剤,熱安定剤,酸化
防止剤等の各種添加剤を本発明の効果を損なわない範囲
内で添加することができる。
Next, the present invention will be described in detail. The polytetramethylene adipamide-based polymer in the present invention is a polymer mainly composed of polytetramethylene adipamide. Polytetramethylene adipamide is added to polycapramide, polyhexamethylene adipamide, polyundecamethylene terephthalate. 30 mol% of other polyamide components such as phthalamide
The polytetramethylene adipamide-based copolymer copolymerized below or a blended product may be used. If the copolymerization rate or the blending rate of the other polyamide component exceeds 30 mol%, the melting point of the copolymer or the blend lowers, and the mechanical properties and dimensional stability of the nonwoven fabric when used under high temperature conditions are reduced. It is not preferable because it decreases. The polytetramethylene adipamide-based polymer of the present invention has a relative viscosity of 2.6 to 4.0, and if the relative viscosity is less than 2.6, the strength of the nonwoven fabric is significantly reduced. If the relative viscosity exceeds 4.0, the degree of polymerization is too high, so that the spinnability deteriorates and it becomes difficult to form ultrafine fibers, and the energy required for fiber formation becomes large. In the present invention, the polytetramethylene adipamide-based polymer may be added with various additives such as a matting agent, a pigment, a light stabilizer, a heat stabilizer, and an antioxidant, if necessary. It can be added within a range that does not impair the effect.

【0006】本発明における前記ポリテトラメチレンア
ジパミド系重合体からなる極細繊維は,平均繊維径が
0.1〜8.0μmのものであり,平均繊維径が0.1
μm未満であると製糸性が低下し,一方,平均繊維径が
8.0μmを超えると得られたウエブの風合いが硬くな
って柔軟性に富む不織布を得ることができず,いずれも
好ましくない。
The ultrafine fibers made of the polytetramethylene adipamide polymer in the present invention have an average fiber diameter of 0.1 to 8.0 μm and an average fiber diameter of 0.1.
If it is less than μm, the spinnability is deteriorated, while if the average fiber diameter exceeds 8.0 μm, the texture of the obtained web becomes hard and a flexible nonwoven fabric cannot be obtained, which is not preferable.

【0007】本発明における前記極細繊維からなる不織
布は,温度160℃時の乾熱収縮率が20%以下のもの
である。ポリテトラメチレンアジパミド系重合体からな
る繊維は,ポリカプラミドやポリヘキサメチレンアジパ
ミド重合体からなる繊維と同様,繊維の配向が上昇する
にしたがいその収縮率も上昇する傾向にあるが,ポリカ
プラミドやポリヘキサメチレンアジパミドの場合ほどに
その上昇の程度は高くない。すなわち,ポリテトラメチ
レンアジパミド重合体に他のポリアミド成分を30モル
%を超え共重合あるいはブレンドしたとき,繊維の配向
が上昇するにしたがいその収縮率が大きく上昇し,得ら
れた不織布の用途は極めて限定されることになる。これ
に対し,本発明の不織布は,前述した特定のポリテトラ
メチレンアジパミド系重合体からなる繊維から構成され
るため収縮率が抑制され,温度160℃時の乾熱収縮率
が20%以下となって寸法安定性が優れ,しかも前記ポ
リテトラメチレンアジパミド系重合体からなる繊維から
構成されるため従来のポリカプラミドやポリヘキサメチ
レンアジパミド重合体からなる繊維の場合に比べ耐熱性
が優れ,したがって,産業資材用素材として広範に適用
可能となる。
The nonwoven fabric composed of the ultrafine fibers in the present invention has a dry heat shrinkage of 20% or less at a temperature of 160 ° C. Fibers made of polytetramethylene adipamide-based polymer tend to increase in shrinkage as the fiber orientation increases, similar to fibers made of polycapramide or polyhexamethylene adipamide polymer. The degree of increase is not as high as that of polyhexamethylene adipamide. That is, when the polytetramethylene adipamide polymer is copolymerized or blended with another polyamide component in an amount of more than 30 mol%, the shrinkage rate greatly increases as the fiber orientation increases, and the resulting non-woven fabric is used. Will be extremely limited. On the other hand, since the nonwoven fabric of the present invention is composed of the fibers made of the above-mentioned specific polytetramethylene adipamide polymer, the shrinkage rate is suppressed, and the dry heat shrinkage rate at a temperature of 160 ° C. is 20% or less. And has excellent dimensional stability, and since it is composed of fibers made of the polytetramethylene adipamide polymer, it has a heat resistance higher than that of fibers made of conventional polycapramide or polyhexamethylene adipamide polymer. Excellent, therefore, it can be widely applied as a material for industrial materials.

【0008】本発明における前記極細繊維からなる不織
布は,構成繊維同士が三次元的に交絡しているものであ
る。この三次元的交絡とは,公知のいわゆる高圧液体流
処理により形成されるものであって,これにより不織布
としての形態が保持される。
The nonwoven fabric made of the ultrafine fibers in the present invention is one in which constituent fibers are three-dimensionally entangled. This three-dimensional entanglement is formed by a known so-called high-pressure liquid flow treatment, whereby the shape of the nonwoven fabric is maintained.

【0009】本発明における前記極細繊維からなる不織
布は,公知のいわゆるメルトブローン法により効率良く
製造することができる。すなわち,相対粘度が2.6〜
4.0のポリテトラメチレンアジパミド系重合体を用い
メルトブローン法で溶融紡出し,溶融紡出されたポリマ
流を溶融温度より20〜50℃高い温度の高圧空気流に
より牽引・細化し,冷却した後,移動する捕集面上に捕
集・堆積させてウエブとし,次いで得られたウエブに高
圧液体流処理を施して構成繊維同士を三次元的に交絡さ
せるのである。メルトブローン法で溶融紡出するに際
し,溶融紡出されたポリマ流を牽引・細化する高圧空気
流は,その温度をポリマ流の溶融温度より20〜50℃
高い温度とし,この温度がポリマ流の溶融温度より+2
0℃未満であると製糸性が低下して極細繊維の形成が困
難となり,一方,この温度がポリマ流の溶融温度より+
50℃を超えると重合体の分解により紡糸口金の吐出孔
が経時的に汚れて操業性が低下し,いずれも好ましくな
い。高圧液体流処理を施すに際しては,公知の方法を採
用することができる。例えば,孔径が0.05〜1.0
mm特に0.1〜0.4mmの噴射孔を多数配列した装
置を用い,噴射圧力が5〜150kg/cm2 Gの高圧
液体を前記噴射孔から噴射する方法がある。噴射孔の配
列は,ウエブの進行方向と直交する方向に列状に配列す
る。この処理は,ウエブの片面あるいは両面のいずれに
施してもよいが,特に片面処理の場合には,噴射孔を複
数列に配列し噴射圧力を前段階で低く後段階で高くして
処理を施すと,均一で緻密な交絡形態と均一な地合いを
有する不織布を得ることができる。高圧液体としては,
水あるいは温水を用いるのが一般的である。噴射孔とウ
エブとの間の距離は,1〜15cmとするのがよい。こ
の距離が1cm未満であるとウエブの地合いが乱れ,一
方,この距離が15cmを超えると液体流がウエブに衝
突した時の衝撃力が低下し三次元的な交絡が十分に施さ
れず,いずれも好ましくない。この高圧液体流処理は,
連続工程あるいは別工程のいずれであってもよい。な
お,高圧液体流処理を施すに際し,ウエブを担持するス
クリーンのメツシユあるいは織組織を適宜変更すること
により,不織布の組織あるいは柄を変更することもでき
る。
The non-woven fabric composed of the ultrafine fibers in the present invention can be efficiently produced by a known so-called melt blown method. That is, the relative viscosity is 2.6 to
Melt-spun by melt-blown method using 4.0 polytetramethylene adipamide-based polymer, and melt-spun polymer stream is drawn / thinned by high-pressure air stream at 20-50 ° C higher than melting temperature and cooled. After that, it is collected and deposited on the moving collecting surface to form a web, and then the obtained web is subjected to a high-pressure liquid flow treatment to entangle the constituent fibers three-dimensionally. During melt spinning by the melt blown method, the temperature of the high-pressure air stream that pulls and thins the melt-spun polymer stream is 20 to 50 ° C higher than the melting temperature of the polymer stream.
Higher temperature, which is +2 above the melting temperature of polymer flow
If the temperature is lower than 0 ° C, the spinnability is deteriorated and it becomes difficult to form ultrafine fibers. On the other hand, this temperature is +
If it exceeds 50 ° C., the discharge holes of the spinneret become dirty due to the decomposition of the polymer and the operability is deteriorated, which is not preferable. A well-known method can be adopted when performing the high-pressure liquid flow treatment. For example, if the pore size is 0.05-1.0
mm, particularly a device in which a large number of injection holes of 0.1 to 0.4 mm are arranged, there is a method of injecting a high pressure liquid having an injection pressure of 5 to 150 kg / cm 2 G from the injection holes. The injection holes are arranged in rows in a direction orthogonal to the direction of travel of the web. This treatment may be performed on one side or both sides of the web. In particular, in the case of one-side treatment, the injection holes are arranged in a plurality of rows and the injection pressure is lowered in the front stage and increased in the rear stage. As a result, it is possible to obtain a non-woven fabric having a uniform and dense entangled form and a uniform texture. As a high pressure liquid,
It is common to use water or warm water. The distance between the injection hole and the web is preferably 1 to 15 cm. When this distance is less than 1 cm, the texture of the web is disturbed, while when this distance exceeds 15 cm, the impact force when the liquid flow collides with the web is reduced and the three-dimensional entanglement is not sufficiently performed. Is also not preferable. This high pressure liquid flow treatment
It may be either a continuous process or a separate process. When performing the high-pressure liquid flow treatment, the structure or handle of the nonwoven fabric can be changed by appropriately changing the mesh or woven structure of the screen carrying the web.

【0010】高圧液体流処理を施した後,ウエブから過
剰水分を除去する。この過剰水分を除去するに際して
は,公知の方法を採用することができる。例えば,マン
グルロール等の絞り装置を用いて過剰水分をある程度除
去し,引き続き連続熱風乾燥機等の乾燥装置を用いて残
余の水分を除去するのである。
After performing the high pressure liquid flow treatment, excess moisture is removed from the web. A known method can be adopted for removing the excess water. For example, a squeezing device such as a mangle roll is used to remove excess water to some extent, and then a drying device such as a continuous hot air dryer is used to remove the remaining water.

【0011】[0011]

【実施例】次に,実施例に基づき本発明を具体的に説明
するが,本発明は,これらの実施例によって何ら限定さ
れるものではない。実施例において,各特性値の測定を
次の方法により実施した。 融点(℃):パーキンエルマ社製示差走査型熱量計DS
C−2型を用い,昇温速度20℃/分の条件で測定し,
得られた融解吸熱曲線において極値を与える温度を融点
とした。 相対粘度:96%硫酸100ccに試料1gを溶解し,
温度25℃の条件で常法により測定した。 平均繊維径(μm):試料の電子顕微鏡写真を撮影して
求めた。 引張強力(kg)及び引張伸度(%):JIS−L−1
096Aに記載の方法に準じて測定した。すなわち,試
料長が10cm,試料幅が5cmの試料片10点を作成
し,各試料片毎に不織布の経方向について,定速伸長型
引張試験機(東洋ボールドウイン社製テンシロンUTM
−4−1−100)を用い,引張速度10cm/分で伸
長し,得られた切断時荷重値(kg)の平均値を引張強
力(kg),切断時伸長率(%)の平均値を引張伸度
(%)とした。 乾熱収縮率(%):試料長と試料幅が各々25cmの試
料片複数点を作成し,熱風乾燥器を用いて各試料片に温
度160℃,処理時間5分の条件で熱処理を施した。こ
の際,熱処理前試料片の面積S1 と熱処理後試料片の面
積S2 を求め,得られたS1 及びS2 から次式(1)に
より算出した値の平均値を乾熱収縮率(%)とした。 乾熱収縮率(%)=〔1−(S2 /S1 )〕×100・・・・・・・(1) 柔軟性:JIS−L−1096に記載のハンドルオメー
タ法に準じ,スリツト幅1cmの条件で測定した。
EXAMPLES Next, the present invention will be specifically described based on examples, but the present invention is not limited to these examples. In the examples, each characteristic value was measured by the following method. Melting point (℃): Differential scanning calorimeter DS manufactured by Perkin Elma
Using a C-2 type, the measurement is performed at a temperature rising rate of 20 ° C./min,
The temperature that gives the extreme value in the obtained melting endothermic curve was taken as the melting point. Relative viscosity: Dissolve 1g of sample in 100cc of 96% sulfuric acid,
It was measured by a conventional method under the condition of a temperature of 25 ° C. Average fiber diameter (μm): Obtained by taking an electron micrograph of the sample. Tensile strength (kg) and tensile elongation (%): JIS-L-1
It was measured according to the method described in 096A. That is, 10 sample pieces having a sample length of 10 cm and a sample width of 5 cm were prepared, and a constant speed elongation type tensile tester (Tensilon UTM manufactured by Toyo Baldwin Co., Ltd.) was used for each sample piece in the warp direction of the nonwoven fabric.
-4-1-100) was used to stretch at a tensile speed of 10 cm / min, and the average value of the load values (kg) at break obtained was the tensile strength (kg) and the average value of the elongation at break (%). The tensile elongation (%) was used. Dry heat shrinkage (%): A plurality of sample pieces each having a sample length and a sample width of 25 cm were prepared, and each sample piece was heat-treated using a hot air dryer at a temperature of 160 ° C. for a treatment time of 5 minutes. . At this time, the area S1 of the sample piece before heat treatment and the area S2 of the sample piece after heat treatment were obtained, and the average value of the values calculated by the following equation (1) from the obtained S1 and S2 was taken as the dry heat shrinkage rate (%). . Dry heat shrinkage (%) = [1- (S2 / S1)] × 100 ... (1) Flexibility: 1 cm slit width according to the handle odometer method described in JIS-L-1096. It was measured under the conditions.

【0012】実施例1 融点が295℃,相対粘度が2.90のポリテトラメチ
レンアジパミド重合体チツプを用い,メルトブローン法
により不織布を製造した。すなわち,前記重合体チツプ
を溶融し,これをダイから紡糸温度340℃,単孔吐出
量0.2g/分で紡出し,溶融紡出されたポリマ流を高
圧空気流により牽引・細化した。この高圧空気流として
温度370℃,圧力2.9kg/cm2 の加熱空気を用
いた。牽引・細化に引き続き,ポリマ流を冷却し繊維に
形成した後,ダイから50cm離れた位置に配設されか
つ速度6.7m/分で移動する金網製ベルト上に捕集・
堆積させてウエブとした。次いで,得られたウエブを7
8メツシユの金網上に載置し高圧液体流処理を施して構
成繊維同士を三次元的に交絡させた。高圧液体流処理と
して,孔径0.12mmの噴射孔が孔間隔0.6mmで
3群配列で配設された高圧柱状水流処理装置を用い,水
圧80kg/cm2 の条件で,ウエブの上方80mmの
位置から柱状水流を作用させた。なお,この処理は,ウ
エブの表裏から各々3回施した。次いで,得られた処理
ウエブからマングルロールを用いて過剰水分を除去した
後,ウエブに熱風乾燥機を用い温度98℃の条件で乾燥
処理を施し,不織布を得た。得られた不織布の特性を表
1に示す。本発明の不織布は,表1から明らかなように
機械的特性,寸法安定性,柔軟性が優れ,しかも耐熱性
も優れたものであった。
Example 1 A non-woven fabric was produced by a melt blown method using a polytetramethylene adipamide polymer chip having a melting point of 295 ° C. and a relative viscosity of 2.90. That is, the polymer chip was melted, spun from a die at a spinning temperature of 340 ° C. and a single hole discharge rate of 0.2 g / min, and the melt spun polymer stream was drawn and thinned by a high-pressure air stream. As this high-pressure air stream, heated air having a temperature of 370 ° C. and a pressure of 2.9 kg / cm 2 was used. Following drawing and thinning, the polymer stream was cooled and formed into fibers, which were then collected on a wire mesh belt placed 50 cm away from the die and moving at a speed of 6.7 m / min.
It was deposited into a web. Then, the obtained web is 7
It was placed on a wire mesh of 8 mesh and subjected to high-pressure liquid flow treatment to entangle the constituent fibers three-dimensionally. As the high-pressure liquid flow treatment, a high-pressure columnar water flow treatment device in which injection holes with a hole diameter of 0.12 mm were arranged in a three-group arrangement with a hole interval of 0.6 mm was used. Water pressure of 80 kg / cm 2 A columnar water stream was applied from the position. This treatment was performed three times from the front and back of the web. Next, after removing excess water from the obtained treated web by using a mangle roll, the web was dried at a temperature of 98 ° C. using a hot air dryer to obtain a nonwoven fabric. The characteristics of the obtained non-woven fabric are shown in Table 1. As is clear from Table 1, the non-woven fabric of the present invention was excellent in mechanical properties, dimensional stability, flexibility and heat resistance.

【0013】実施例2 ポリテトラメチレンアジパミドにポリカプラミドを5重
量%共重合した,融点が287℃,相対粘度が2.80
のポリテトラメチレンアジパミド系共重合体チツプを溶
融し,これをダイから紡糸温度330℃,単孔吐出量
0.2g/分で紡出し,溶融紡出されたポリマ流を温度
360℃,圧力2.8kg/cm2 の加熱高圧空気流に
より牽引・細化し,ポリマ流を冷却し繊維に形成した
後,ダイから60cm離れた位置に配設されかつ速度
6.7m/分で移動する金網製ベルト上に捕集・堆積さ
せてウエブとし,次いで,得られたウエブを金網上に載
置し高圧液体流処理を施して構成繊維同士を三次元的に
交絡させた。高圧液体流処理として,実施例1で用いた
ものと同じ高圧柱状水流処理装置を用い,同条件で柱状
水流を作用させた。なお,この処理は,ウエブの表裏か
ら各々3回施した。次いで,得られた処理ウエブからマ
ングルロールを用いて過剰水分を除去した後,実施例1
と同様にして,不織布を得た。得られた不織布の特性を
表1に示す。本発明の不織布は,表1から明らかなよう
に機械的特性,寸法安定性,柔軟性が優れ,しかも耐熱
性も優れたものであった。
Example 2 5% by weight of polycapramide was copolymerized with polytetramethylene adipamide. The melting point was 287 ° C. and the relative viscosity was 2.80.
Of the polytetramethylene adipamide-based copolymer is melted and spun from a die at a spinning temperature of 330 ° C. with a single hole discharge rate of 0.2 g / min. The melt spun polymer stream is heated at a temperature of 360 ° C. A wire mesh that is placed 60 cm away from the die and moves at a speed of 6.7 m / min after it has been drawn and thinned by a heated high-pressure air flow with a pressure of 2.8 kg / cm 2 to cool the polymer flow to form fibers. A web was obtained by collecting and accumulating on a belt made of a belt, and then the obtained web was placed on a wire net and subjected to a high-pressure liquid flow treatment to entangle the constituent fibers three-dimensionally. As the high-pressure liquid stream treatment, the same high-pressure columnar water stream treatment apparatus as that used in Example 1 was used, and the columnar water stream was made to act under the same conditions. This treatment was performed three times from the front and back of the web. Then, after removing excess water from the obtained treated web using mangle rolls, Example 1
A nonwoven fabric was obtained in the same manner as in. The characteristics of the obtained non-woven fabric are shown in Table 1. As is clear from Table 1, the non-woven fabric of the present invention was excellent in mechanical properties, dimensional stability, flexibility and heat resistance.

【0014】実施例3 相対粘度を3.30,紡糸温度を345℃,溶融紡出さ
れたポリマ流を温度380℃,圧力3.0kg/cm2
の加熱高圧空気流により牽引・細化した以外は実施例2
と同様にして,不織布を得た。得られた不織布の特性を
表1に示す。本発明の不織布は,表1から明らかなよう
に機械的特性,寸法安定性,柔軟性が優れ,しかも耐熱
性も優れたものであった。
Example 3 Relative viscosity 3.30, spinning temperature 345 ° C., melt spun polymer stream at temperature 380 ° C., pressure 3.0 kg / cm 2.
Example 2 except that it was pulled / thinned by the heated high-pressure air stream of
A nonwoven fabric was obtained in the same manner as in. The characteristics of the obtained non-woven fabric are shown in Table 1. As is clear from Table 1, the non-woven fabric of the present invention was excellent in mechanical properties, dimensional stability, flexibility and heat resistance.

【0015】比較実施例1 相対粘度を4.20,紡糸温度を370℃,溶融紡出さ
れたポリマ流を温度400℃,圧力3.4kg/cm2
の加熱高圧空気流により牽引・細化した以外は実施例2
と同様にして,不織布を得た。溶融紡出されたポリマ流
を加熱高圧空気流により牽引・細化するに際し,相対粘
度が高過ぎるため加熱空気の温度と圧力を高めても極細
繊維を形成することが困難であった。また,得られた不
織布の特性を表1に示す。得られた不織布は,表1から
明らかなように機械的特性と柔軟性が共に劣り,しかも
紡糸温度が高いため黄変しており,実用に供することが
困難なものであった。
Comparative Example 1 Relative viscosity 4.20, spinning temperature 370 ° C., melt spun polymer stream at temperature 400 ° C., pressure 3.4 kg / cm 2.
Example 2 except that it was pulled / thinned by the heated high-pressure air stream of
A nonwoven fabric was obtained in the same manner as in. When the melt-spun polymer stream was pulled and thinned by the heated high-pressure air stream, it was difficult to form ultrafine fibers even if the temperature and pressure of the heated air were increased because the relative viscosity was too high. Table 1 shows the characteristics of the obtained non-woven fabric. As is clear from Table 1, the obtained non-woven fabric was inferior in both mechanical properties and flexibility, and was yellowing due to the high spinning temperature, making it difficult to put into practical use.

【0016】比較実施例2 融点が210℃,相対粘度が2.80のポリカプラミド
重合体チツプを用い,メルトブローン法により不織布を
製造した。すなわち,前記重合体チツプを溶融し,これ
をダイから紡糸温度270℃,単孔吐出量0.2g/分
で紡出し,溶融紡出されたポリマ流を高圧空気流により
牽引・細化した。この高圧空気流として温度310℃,
圧力2.7kg/cm2 の加熱空気を用いた。牽引・細
化に引き続き,ポリマ流を冷却し繊維に形成した後,ダ
イから70cm離れた位置に配設されかつ速度6.7m
/分で移動する金網製ベルト上に捕集・堆積させてウエ
ブとし,次いで,得られたウエブを金網上に載置し高圧
液体流処理を施して構成繊維同士を三次元的に交絡させ
た。高圧液体流処理として,実施例1で用いたものと同
じ高圧柱状水流処理装置を用い,同条件で柱状水流を作
用させた。次いで,得られた処理ウエブからマングルロ
ールを用いて過剰水分を除去した後,実施例1と同様に
して,不織布を得た。得られた不織布の特性を表1に示
す。得られた不織布は,表1から明らかなように実施例
1で得られた不織布と比べ機械的特性と柔軟性は共に遜
色のないものであるものの,寸法安定性が劣り,高温条
件下での使用に適さないものであった。
Comparative Example 2 A non-woven fabric was produced by a melt blown method using a polycapramide polymer chip having a melting point of 210 ° C. and a relative viscosity of 2.80. That is, the polymer chip was melted, spun from a die at a spinning temperature of 270 ° C. and a single hole discharge rate of 0.2 g / min, and the melt spun polymer stream was drawn and thinned by a high-pressure air stream. This high pressure air flow has a temperature of 310 ° C,
Heated air having a pressure of 2.7 kg / cm 2 was used. Following drawing and thinning, the polymer stream was cooled and formed into fibers, which were then placed 70 cm away from the die and at a speed of 6.7 m.
A web was made by collecting and depositing it on a wire mesh belt moving at a speed of 1 / min. Then, the obtained web was placed on the wire mesh and subjected to high-pressure liquid flow treatment to entangle the constituent fibers three-dimensionally. . As the high-pressure liquid stream treatment, the same high-pressure columnar water stream treatment apparatus as that used in Example 1 was used, and the columnar water stream was made to act under the same conditions. Then, after removing excess water from the obtained treated web by using mangle rolls, a nonwoven fabric was obtained in the same manner as in Example 1. The characteristics of the obtained non-woven fabric are shown in Table 1. As is clear from Table 1, the obtained non-woven fabric was comparable to the non-woven fabric obtained in Example 1 in both mechanical properties and flexibility, but was inferior in dimensional stability and under high temperature conditions. It was not suitable for use.

【0017】[0017]

【表1】 [Table 1]

【0018】[0018]

【発明の効果】本発明のポリアミド系極細繊維不織布
は,相対粘度が2.6〜4.0のポリテトラメチレンア
ジパミド系重合体からなる平均繊維径が0.1〜8.0
μmの極細繊維から構成され,温度160℃時の乾熱収
縮率が20%以下であり,かつ構成繊維同士が三次元的
に交絡しているものであって,機械的特性,耐熱性,寸
法安定性,柔軟性が優れ,従来の衣料用素材のみなら
ず,特に産業資材用素材として好適である。また,本発
明のポリアミド系極細繊維不織布の製造方法によれば,
前記不織布を効率良く製造することができる。
INDUSTRIAL APPLICABILITY The polyamide ultrafine fiber nonwoven fabric of the present invention has an average fiber diameter of 0.1 to 8.0 made of a polytetramethylene adipamide polymer having a relative viscosity of 2.6 to 4.0.
It consists of ultrafine fibers of μm, the dry heat shrinkage at temperature of 160 ℃ is 20% or less, and the constituent fibers are three-dimensionally entangled. Mechanical properties, heat resistance, and size. It has excellent stability and flexibility, and is suitable not only as a conventional material for clothing but also as a material for industrial materials. Further, according to the method for producing a polyamide-based ultrafine fiber nonwoven fabric of the present invention,
The nonwoven fabric can be efficiently manufactured.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 相対粘度が2.6〜4.0のポリテトラ
メチレンアジパミド系重合体からなる平均繊維径が0.
1〜8.0μmの極細繊維から構成され,温度160℃
時の乾熱収縮率が20%以下であり,かつ構成繊維同士
が三次元的に交絡していることを特徴とするポリアミド
系極細繊維不織布。
1. An average fiber diameter of a polytetramethylene adipamide polymer having a relative viscosity of 2.6 to 4.0 and an average fiber diameter of 0.1.
Consists of 1-8.0 μm ultrafine fibers, temperature 160 ℃
A polyamide-based ultrafine fiber non-woven fabric, which has a dry heat shrinkage of 20% or less and has three-dimensionally entangled constituent fibers.
【請求項2】 メルトブローン法によりポリアミド系極
細繊維不織布を製造するに際し,重合体として相対粘度
が2.6〜4.0のポリテトラメチレンアジパミド系重
合体を用い,溶融紡出されたポリマ流を溶融温度より2
0〜50℃高い温度の高圧空気流により牽引・細化し,
冷却した後,移動する捕集面上に捕集・堆積させてウエ
ブとし,次いで得られたウエブに高圧液体流処理を施し
て構成繊維同士を三次元的に交絡させることを特徴とす
るポリアミド系極細繊維不織布の製造方法。
2. A melt-spun polymer produced by using a polytetramethylene adipamide-based polymer having a relative viscosity of 2.6 to 4.0 as a polymer when producing a polyamide-based ultrafine fiber nonwoven fabric by the melt blown method. Flow from melting temperature to 2
The high-pressure air flow of 0 to 50 ℃ higher temperature pulls and thins it,
After cooling, it is collected and deposited on a moving collecting surface to form a web, and then the obtained web is subjected to a high-pressure liquid flow treatment so that the constituent fibers are entangled three-dimensionally with each other. Method for manufacturing ultrafine fiber nonwoven fabric.
JP4253944A 1992-08-27 1992-08-27 Polyamide ultrafine fiber non-woven fabric and its production Pending JPH0673654A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4253944A JPH0673654A (en) 1992-08-27 1992-08-27 Polyamide ultrafine fiber non-woven fabric and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4253944A JPH0673654A (en) 1992-08-27 1992-08-27 Polyamide ultrafine fiber non-woven fabric and its production

Publications (1)

Publication Number Publication Date
JPH0673654A true JPH0673654A (en) 1994-03-15

Family

ID=17258165

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4253944A Pending JPH0673654A (en) 1992-08-27 1992-08-27 Polyamide ultrafine fiber non-woven fabric and its production

Country Status (1)

Country Link
JP (1) JPH0673654A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996002694A1 (en) * 1994-07-18 1996-02-01 Cerex Advanced Fabrics, L.P. Spunbonded nonwoven nylon fabrics
US7576305B2 (en) 2006-09-22 2009-08-18 Catem Gmbh & Co. Kg Heat-generating element of a heating device
US7676144B2 (en) 2005-09-23 2010-03-09 Catem Gmbh & Co. Kg Heat-generating element of a heating device
US7777161B2 (en) 2005-09-23 2010-08-17 Catem Gmbh & Co. Kg Heat-generating element of a heating device
JP2019518148A (en) * 2016-06-10 2019-06-27 アセンド・パフォーマンス・マテリアルズ・オペレーションズ・リミテッド・ライアビリティ・カンパニーAscend Performance Materials Operations Llc Solution-spun polyamide nanofiber non-woven fabric
US11813477B2 (en) 2017-02-19 2023-11-14 Soliton, Inc. Selective laser induced optical breakdown in biological medium
US11857212B2 (en) 2016-07-21 2024-01-02 Soliton, Inc. Rapid pulse electrohydraulic (EH) shockwave generator apparatus with improved electrode lifetime

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996002694A1 (en) * 1994-07-18 1996-02-01 Cerex Advanced Fabrics, L.P. Spunbonded nonwoven nylon fabrics
US7676144B2 (en) 2005-09-23 2010-03-09 Catem Gmbh & Co. Kg Heat-generating element of a heating device
US7777161B2 (en) 2005-09-23 2010-08-17 Catem Gmbh & Co. Kg Heat-generating element of a heating device
US7576305B2 (en) 2006-09-22 2009-08-18 Catem Gmbh & Co. Kg Heat-generating element of a heating device
JP2019518148A (en) * 2016-06-10 2019-06-27 アセンド・パフォーマンス・マテリアルズ・オペレーションズ・リミテッド・ライアビリティ・カンパニーAscend Performance Materials Operations Llc Solution-spun polyamide nanofiber non-woven fabric
US11857212B2 (en) 2016-07-21 2024-01-02 Soliton, Inc. Rapid pulse electrohydraulic (EH) shockwave generator apparatus with improved electrode lifetime
US11813477B2 (en) 2017-02-19 2023-11-14 Soliton, Inc. Selective laser induced optical breakdown in biological medium

Similar Documents

Publication Publication Date Title
BRPI0714681A2 (en) heat resistant non woven cloth
JP3247176B2 (en) Biodegradable latently crimpable composite filament and nonwoven fabric thereof
CN102341536A (en) Production method for filament non-woven fabric
JP6793238B2 (en) Polyamide fiber manufacturing method
CN107206299A (en) Bag filter filter cloth and its manufacture method and bag filter
JPH06207320A (en) Biodegradable conjugate short fiber and its nonwoven fabric
JPH0673654A (en) Polyamide ultrafine fiber non-woven fabric and its production
JPH06192954A (en) Extra fine fiber non-woven fabric and its production
TWI428484B (en) Split-type composite fiber containing polyacetal, fiber formed body using the same, and product
JP3110566B2 (en) Method for producing polypropylene-based nonwoven fabric
JP7176850B2 (en) Sea-island composite fiber bundle
JPH06192953A (en) Polyolefin extra fine fiber non-woven fabric and its production
JP3150217B2 (en) Biodegradable short fiber non-woven fabric
JPH10331063A (en) Composite nonwoven fabric and its production
JPH0673652A (en) Polyamide ultrafine fiber non-woven fabric and its production
JPH07138863A (en) Polyester ultrafine fiber nonwoven web and its production
JPH06212550A (en) Ultra-fine polypropylene fiber nonwoven web and its production
JP3247177B2 (en) Biodegradable latently crimpable composite short fiber and nonwoven fabric thereof
JPH0673653A (en) Polyamide ultrafine fiber non-woven fabric
JP7416330B1 (en) Electret melt-blown nonwoven fabric and air filter media made using the same
JPH01201567A (en) Production of bulky spun-bond nonwoven fabric
JPH0782646A (en) Nonwoven fabric composed of combined filament
JPH0765263B2 (en) Open nonwoven fabric
JP2640279B2 (en) Toughened nonwoven fabric and method for producing the same
JP5149118B2 (en) Cotton swab