JPH06207320A - Biodegradable conjugate short fiber and its nonwoven fabric - Google Patents

Biodegradable conjugate short fiber and its nonwoven fabric

Info

Publication number
JPH06207320A
JPH06207320A JP2067193A JP2067193A JPH06207320A JP H06207320 A JPH06207320 A JP H06207320A JP 2067193 A JP2067193 A JP 2067193A JP 2067193 A JP2067193 A JP 2067193A JP H06207320 A JPH06207320 A JP H06207320A
Authority
JP
Japan
Prior art keywords
biodegradable
melting point
thermoplastic polymer
polymer component
biodegradable thermoplastic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2067193A
Other languages
Japanese (ja)
Other versions
JP3264720B2 (en
Inventor
Masatsugu Mochizuki
政嗣 望月
Yoshihiro Kan
喜博 冠
Shuji Takahashi
修治 高橋
Koji Inagaki
孝司 稲垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=12033670&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH06207320(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP2067193A priority Critical patent/JP3264720B2/en
Publication of JPH06207320A publication Critical patent/JPH06207320A/en
Application granted granted Critical
Publication of JP3264720B2 publication Critical patent/JP3264720B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To obtain biodegradable conjugate short fibers having biodegradability, excellent mechanical strength and dimensional stability, improved thermal adhesion, capable of providing nonwoven fabric useful as a material for sanitary material and a material related to life. CONSTITUTION:Biodegradable conjugate short fibers comprises a core part composed of a high-melting biodegradable thermoplastic polymer component and a sheath part composed of a biodegradable thermoplastic polymer component having a melting point lower than that of the polymer. Nonwoven fabric is made of the biodegradable conjugate short fibers comprising a core part composed of a high-melting biodegradable thermoplastic polymer component and a sheath part composed of a biodegradable thermoplastic polymer component having a melting point lower than that of the polymer wherein the constituent fibers are partially thermally bonded mutually or interlaced in a three- dimensional way.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は,生分解性を有し,機械
的強度と寸法安定性が優れ,柔軟性に富み,しかも熱接
着性を有する不織布を得るのに好適な複合短繊維及びそ
の不織布に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a composite staple fiber suitable for obtaining a non-woven fabric having biodegradability, excellent mechanical strength and dimensional stability, rich flexibility, and thermal adhesion. It relates to the non-woven fabric.

【0002】[0002]

【従来の技術】従来から,乾式法あるいは溶液浸漬法に
より得られるビスコースレーヨン短繊維不織布,湿式ス
パンボンド法により得られるキユプラレーヨン長繊維不
織布やビスコースレーヨン長繊維不織布,キチンやアテ
ロコラーゲン等の天然物の化学繊維からなる不織布,コ
ツトンからなるスパンレース不織布等,種々の生分解性
不織布が知られている。しかしながら,これら従来の生
分解性不織布は,不織布の構成素材自体の機械的強度が
低くかつ親水性であるため吸水・湿潤時の機械的強度低
下が著しい,乾燥・湿潤の繰り返し時に収縮が大きく寸
法安定性が劣る,また,柔軟性が劣る,さらに,素材自
体が非熱可塑性であるため熱接着性を有しない等,種々
の問題を有していた。
2. Description of the Related Art Conventionally, viscose rayon short fiber non-woven fabric obtained by a dry method or a solution dipping method, Kyupra rayon long fiber non-woven fabric obtained by a wet spun bond method, viscose rayon long fiber non-woven fabric, chitin, atelocollagen, etc. Various biodegradable non-woven fabrics such as non-woven fabrics made of natural chemical fibers and spunlace non-woven fabrics made of Kotton are known. However, these conventional biodegradable non-woven fabrics have a low mechanical strength of the constituent material of the non-woven fabric and are hydrophilic, so that the mechanical strength is significantly decreased when they are absorbed by water and wet. There are various problems such as poor stability, poor flexibility, and lack of thermal adhesiveness because the material itself is non-thermoplastic.

【0003】[0003]

【発明が解決しようとする課題】本発明は,前記問題を
解決し,生分解性を有し,機械的強度と寸法安定性が優
れ,柔軟性に富み,しかも熱接着性を有する不織布を得
るのに好適な複合短繊維及びその不織布を提供しようと
するものである。
DISCLOSURE OF THE INVENTION The present invention solves the above problems, and obtains a non-woven fabric having biodegradability, excellent mechanical strength and dimensional stability, rich flexibility, and thermal adhesiveness. The present invention is intended to provide a composite staple fiber and a nonwoven fabric thereof suitable for use in

【0004】[0004]

【課題を解決するための手段】本発明者らは,前記問題
を解決すべく鋭意検討の結果,本発明に到達した。すな
わち,本発明は,芯部が高融点の生分解性熱可塑性重合
体成分からなり,鞘部が前記重合体より低融点の生分解
性熱可塑性重合体成分からなる生分解性複合短繊維を要
旨とするものである。また,本発明は,芯部が高融点の
生分解性熱可塑性重合体成分からなり,鞘部が前記重合
体より低融点の生分解性熱可塑性重合体成分からなる生
分解性複合短繊維から構成され,かつ構成繊維同士が部
分的に熱接着されていることを特徴とする不織布を要旨
とするものである。さらに,本発明は,芯部が高融点の
生分解性熱可塑性重合体成分からなり,鞘部が前記重合
体より低融点の生分解性熱可塑性重合体成分からなる生
分解性複合短繊維から構成され,かつ構成繊維同士が三
次元的に交絡されていることを特徴とする不織布を要旨
とするものである。
The present inventors have arrived at the present invention as a result of extensive studies to solve the above problems. That is, the present invention provides a biodegradable composite staple fiber having a core made of a high-melting biodegradable thermoplastic polymer component and a sheath made of a biodegradable thermoplastic polymer component having a lower melting point than the polymer. It is a summary. The present invention also provides a biodegradable composite staple fiber having a core made of a biodegradable thermoplastic polymer component having a high melting point and a sheath made of a biodegradable thermoplastic polymer component having a lower melting point than the polymer. The gist of the present invention is a non-woven fabric characterized in that the constituent fibers are partially heat-bonded to each other. Furthermore, the present invention provides a biodegradable composite staple fiber having a core made of a biodegradable thermoplastic polymer component having a high melting point and a sheath made of a biodegradable thermoplastic polymer component having a melting point lower than that of the polymer. The gist is a non-woven fabric which is characterized in that the constituent fibers are three-dimensionally entangled with each other.

【0005】次に,本発明を詳細に説明する。本発明に
おける生分解性熱可塑性重合体とは,生分解性を有する
熱可塑性の脂肪族ポリエステル系重合体であり,例え
ば,ポリ(α−ヒドロキシ酸)のようなポリグリコール
酸やポリ乳酸からなる重合体またはこれらの共重合体
が,また,ポリ(ε−カプロラクトン),ポリ(β−プ
ロピオラクトン)のようなポリ(ω−ヒドロキシアルカ
ノエート)が,さらに,ポリ−3−ヒドロキシプロピオ
ネート,ポリ−3−ヒドロキシブチレート,ポリ−3−
ヒドロキシカプロレート,ポリ−3−ヒドロキシヘプタ
ノエート,ポリ−3−ヒドロキシオクタノエート及びこ
れらとポリ−3−ヒドロキシバリレートやポリ−4−ヒ
ドロキシブチレートとの共重合体のようなポリ(β−ヒ
ドロキシアルカノエート)が挙げられる。またグリコー
ルとジカルボン酸の縮重合体からなるものとして,例え
ば,ポリエチレンオキサレート,ポリエチレンサクシネ
ート,ポリエチレンアジペート,ポリエチレンアゼレー
ト,ポリブチレンオキサレート,ポリブチレンサクシネ
ート,ポリブチレンアジペート,ポリブチレンセバケー
ト,ポリヘキサメチレンセバケート,ポリネオペンチル
オキサレートまたはこれらの共重合体が挙げられる。さ
らに前記脂肪族ポリエステルと,ポリカプラミド(ナイ
ロン6),ポリテトラメチレンアジパミド(ナイロン4
6),ポリヘキサメチレンアジパミド(ナイロン6
6),ポリウンデカナミド(ナイロン11),ポリラウ
ロラクタミド(ナイロン12)のような脂肪族ポリアミ
ドとの共縮重合体である脂肪族ポリエステルアミド系共
重合体が挙げられる。本発明においては,生分解性を有
する熱可塑性重合体として前述した以外の熱可塑性重合
体であっても,それが生分解性を有するものであれば用
いることができる。なお,本発明においては,前述した
ところの生分解性を有する熱可塑性重合体に,必要に応
じて,例えば艶消し剤,顔料,光安定剤,熱安定剤,酸
化防止剤等の各種添加剤を本発明の効果を損なわない範
囲内で添加することができる。
Next, the present invention will be described in detail. The biodegradable thermoplastic polymer in the present invention is a thermoplastic aliphatic polyester polymer having biodegradability, and is made of polyglycolic acid or polylactic acid such as poly (α-hydroxy acid). Polymers or their copolymers, poly (ω-hydroxyalkanoates) such as poly (ε-caprolactone), poly (β-propiolactone), and poly-3-hydroxypropionate , Poly-3-hydroxybutyrate, poly-3-
Poly (s) such as hydroxycaprolate, poly-3-hydroxyheptanoate, poly-3-hydroxyoctanoate and copolymers thereof with poly-3-hydroxyvalerate and poly-4-hydroxybutyrate. β-hydroxyalkanoate). Examples of the polycondensate of glycol and dicarboxylic acid include polyethylene oxalate, polyethylene succinate, polyethylene adipate, polyethylene azelate, polybutylene oxalate, polybutylene succinate, polybutylene adipate, polybutylene sebacate, Examples thereof include polyhexamethylene sebacate, polyneopentyl oxalate, and copolymers thereof. Furthermore, the aliphatic polyester, polycapramide (nylon 6), polytetramethylene adipamide (nylon 4)
6), polyhexamethylene adipamide (nylon 6
6), polyundecanamid (nylon 11), polylaurolactamide (nylon 12), and the like aliphatic polyester amide-based copolymers which are copolycondensates with aliphatic polyamides. In the present invention, a thermoplastic polymer other than those described above can be used as the biodegradable thermoplastic polymer as long as it has biodegradability. In the present invention, in addition to the above-mentioned biodegradable thermoplastic polymer, various additives such as matting agents, pigments, light stabilizers, heat stabilizers, and antioxidants may be added as necessary. Can be added within a range that does not impair the effects of the present invention.

【0006】本発明における前記生分解性を有する熱可
塑性重合体からなる複合短繊維は,前記重合体の内から
選択された融点を3℃以上かつ150℃以下異にする2
種の重合体成分から構成されるもので,芯部が高融点の
生分解性熱可塑性重合体成分からなり,かつ鞘部が前記
重合体より低融点の生分解性熱可塑性重合体成分からな
るごとく前記両重合体成分が配された同心芯鞘型の複合
形態を有するように接合されたものである。この複合短
繊維において,前記両重合体成分の融点差が3℃未満で
あると得られた繊維を用いて不織ウエブを作製しこれに
加熱処理を施して不織布とするに際して低融点の重合体
成分のみならず高融点の重合体成分も軟化溶融するため
好ましくなく,したがって本発明においては,前記融点
差を3℃以上好ましくは5℃以上さらに好ましくは10
℃以上とする。一方,前記融点差が150℃を超えると
両重合体成分の融点差が余りにも大きく異なるため両重
合体を用いて複合紡糸をするに際して紡糸ノズルパツク
内において紡糸温度の制御が困難となるため好ましくな
い。なお,本発明においては,前記鞘部の生分解性を有
する熱可塑性重合体成分として融点60℃以上好ましく
は80℃以上さらに好ましくは100℃以上のものを採
用すると,この鞘部を有する短繊維を用いて不織布とし
たとき不織布に一定の耐熱性を具備させることができて
好ましい。この複合短繊維においては,複合比すなわち
芯部の重合体成分に対する鞘部の重合体成分の重量比を
1/5〜5/1とするのがよい。芯部の重合体成分1に
対し鞘部の重合体成分の比が5を超えると短繊維の強度
が低下したり,あるいはこの短繊維を用いて得られる不
織布が硬くなって風合いが悪化したりするため,一一
方,芯部の重合体成分5に対し鞘部の重合体成分の比が
1未満であるとこの短繊維維を用い繊維間を熱接着させ
て得た不織布がその構成繊維間の熱接着部において強度
低下を生じるため,いずれも好ましくなく,したがって
本発明においては,前記複合比を1/5〜5/1好まし
くは1/2〜2/1とする。
In the present invention, the composite staple fiber made of the biodegradable thermoplastic polymer has a melting point selected from the polymers different from 3 ° C. to 150 ° C. 2
Consisting of two polymer components, the core consisting of a high melting point biodegradable thermoplastic polymer component, and the sheath consisting of a lower melting point biodegradable thermoplastic polymer component As described above, they are joined so as to have a concentric core-sheath type composite form in which the both polymer components are arranged. In this composite short fiber, a non-woven polymer is produced when a nonwoven web is prepared by using the fiber obtained when the difference in melting point between the two polymer components is less than 3 ° C. and heat-treated to form a nonwoven fabric. Not only the component but also the high melting point polymer component softens and melts, which is not preferable. Therefore, in the present invention, the melting point difference is 3 ° C. or more, preferably 5 ° C. or more, more preferably 10 ° C. or more.
℃ or above. On the other hand, if the difference in melting point exceeds 150 ° C., the difference in melting point between both polymer components will be too different, and it will be difficult to control the spinning temperature in the spinning nozzle pack when composite spinning is performed using both polymers. . In the present invention, when a thermoplastic polymer component having a biodegradability of the sheath has a melting point of 60 ° C. or higher, preferably 80 ° C. or higher, more preferably 100 ° C. or higher, short fibers having this sheath are used. When a non-woven fabric is prepared by using, the non-woven fabric can have a certain heat resistance, which is preferable. In this composite short fiber, the composite ratio, that is, the weight ratio of the polymer component in the sheath to the polymer component in the core is preferably 1/5 to 5/1. When the ratio of the polymer component in the core portion to the polymer component in the sheath portion exceeds 5, the strength of the short fibers decreases, or the nonwoven fabric obtained by using the short fibers becomes hard and the texture deteriorates. Therefore, on the other hand, when the ratio of the polymer component of the core portion to the polymer component of the core portion is less than 1, the nonwoven fabric obtained by thermally bonding the fibers using the short fiber is a constituent fiber. Any of them is not preferable because the strength is lowered in the heat-bonded portion between them. Therefore, in the present invention, the composite ratio is 1/5 to 5/1, preferably 1/2 to 2/1.

【0007】本発明における前記複合短繊維は,その単
繊維繊度が1.0〜20デニールのものであり,単繊維
繊度が1.0デニール未満であるとカードウエブを作成
するに際してのカード通過性が劣り,一方,単繊維繊度
が20デニールを超えるとこの短繊維を用いて得られる
不織布が粗硬な地合いの粗いものとなってその品位が劣
るため,いずれも好ましくない。
The composite short fibers in the present invention have a monofilament fineness of 1.0 to 20 denier, and if the monofilament fineness is less than 1.0 denier, the card passing property in producing a card web is improved. On the other hand, when the single fiber fineness exceeds 20 denier, the nonwoven fabric obtained by using the short fibers has a rough and rough texture and is inferior in quality.

【0008】本発明における不織布は,前記複合短繊維
から構成され,かつ構成繊維同士が部分的に熱接着され
ているものであり,また,前記複合短繊維から構成さ
れ,かつ構成繊維同士が三次元的に交絡されているもの
である。この部分的熱接着は公知の熱接着処理により形
成されるものであり,また,この三次元的な交絡は公知
のいわゆる高圧液体流処理により形成されるものであっ
て,これらの部分的熱接着あるいは三次元的な交絡によ
り不織布としての形態が保持され,しかも不織布に優れ
た機械的強度と寸法安定性が発現される。
The nonwoven fabric of the present invention is composed of the above-mentioned composite short fibers, and the constituent fibers are partially heat-bonded to each other. Further, the nonwoven fabric is composed of the above-mentioned composite short fibers and the constituent fibers are tertiary. It is originally entangled. This partial thermal bonding is formed by a known thermal bonding process, and the three-dimensional entanglement is formed by a known so-called high pressure liquid flow process. Alternatively, the shape of the nonwoven fabric is maintained by three-dimensional entanglement, and the nonwoven fabric exhibits excellent mechanical strength and dimensional stability.

【0009】本発明における前記複合短繊維からなる不
織布は,その目付けが20g/m2以上のものであるの
が好ましい。この不織布において,目付けが20g/m
2 未満であると不織布製造時にハンドリング性が劣り,
特に目付けが10g/m2 未満であると不織布自体の強
度が低く,また不織布の地合いが粗くなるなどその品位
が劣り,あるいは不織布を作成するに際しての生産性が
低下したりするため,好ましくない。
The nonwoven fabric made of the above-mentioned composite short fibers in the present invention preferably has a basis weight of 20 g / m 2 or more. This non-woven fabric has a basis weight of 20 g / m
If it is less than 2 , the handling property is poor at the time of manufacturing the nonwoven fabric,
Particularly, when the basis weight is less than 10 g / m 2 , the strength of the non-woven fabric itself is low, the texture of the non-woven fabric is rough and the quality thereof is inferior, or the productivity at the time of producing the non-woven fabric is decreased, which is not preferable.

【0010】本発明における前記短繊維は,次のような
方法により効率良く製造することができる。すなわち,
常法により,生分解性を有する前記熱可塑性重合体の内
から選択された融点を3℃以上かつ150℃以下異にす
る2種の重合体を溶融複合紡出し,紡出糸条を冷却空気
流又は冷却水を用いて冷却した後に一旦巻き取って未延
伸長繊維糸条とし,あるいは一旦巻き取ることなく連続
して,これに1段又は2段以上で冷延伸又は熱延伸を施
し,得られた延伸長繊維糸条に例えばスタツフイングボ
ツクスを用いて所定の機械捲縮を付与した後,あるいは
加熱収縮処理により所定の捲縮を付与した後,所定長に
切断することにより得ることができる。溶融紡出に際し
ての紡糸温度は,用いる重合体の融点や重合度による
が,通常は120〜300℃とするのが望ましい。紡糸
温度が120℃未満であると重合体の溶融押出しが困難
となり,一方,紡糸温度が300℃を超えると重合体の
熱分解が著しくなって高強度の繊維を得ることができ
ず,いずれも好ましくない。未延伸長繊維糸条に延伸を
施すに際しての全延伸倍率は,目的とする短繊維の強度
水準によるが,通常は2.0〜4.0倍とし,これによ
り3.0g/デニール以上の引張強度を有する短繊維を
得ることができる。
The short fibers in the present invention can be efficiently produced by the following method. That is,
By a conventional method, two polymers having different melting points selected from the biodegradable thermoplastic polymers having a melting point of 3 ° C. or more and 150 ° C. or less are melt-composite-spun and the spun yarn is cooled with air. After being cooled with running water or cooling water, it is once wound into an unstretched long fiber yarn, or continuously without being wound once, and subjected to cold stretching or hot stretching in one or more stages to obtain It can be obtained by, for example, applying a predetermined mechanical crimp to the drawn long-fiber yarn by using a stuffing box, or applying a predetermined crimp by heat shrinkage treatment, and then cutting it into a predetermined length. . The spinning temperature at the time of melt spinning depends on the melting point and the degree of polymerization of the polymer to be used, but is usually preferably 120 to 300 ° C. If the spinning temperature is less than 120 ° C, it will be difficult to melt-extrude the polymer, while if the spinning temperature exceeds 300 ° C, the thermal decomposition of the polymer will be so remarkable that high strength fiber cannot be obtained. Not preferable. The total draw ratio for drawing the undrawn long-fiber yarn depends on the strength level of the target short fiber, but is usually 2.0 to 4.0 times, and the total draw ratio is 3.0 g / denier or more. Short fibers having strength can be obtained.

【0011】本発明における前記短繊維からなる不織布
は,公知のいわゆる短繊維法により効率良く製造するこ
とができる。すなわち,常法により,生分解性を有する
前記熱可塑性重合体の内から選択された融点を3℃以上
かつ150℃以下異にする2種の重合体を溶融複合紡出
し,紡出糸条を冷却した後に延伸を施し,得られた延伸
長繊維糸条に所定の捲縮を付与した後,所定長に切断し
て短繊維とし,次いで得られた短繊維を原綿とし,梳綿
機を用いてカーデイングしてカードウエブを作成し,得
られたカードウエブに熱接着処理を施して構成繊維同士
を部分的に熱接着させることにより得ることができる。
あるいは,得られたカードウエブに高圧液体流処理を施
して構成繊維同士を三次元的に交絡させることにより得
ることができる。
The non-woven fabric made of the short fibers in the present invention can be efficiently produced by a known so-called short fiber method. That is, according to a conventional method, two polymers having different melting points selected from the biodegradable thermoplastic polymers having a melting point of 3 ° C. or more and 150 ° C. or less are melt-composited and spun into a spun yarn. After cooling, the drawn long-fiber yarn is given a crimp, and then cut into a predetermined length to obtain short fibers. The obtained short fibers are used as raw cotton and a carding machine is used. Carding to produce a card web, and the resulting card web is heat-bonded to partially bond the constituent fibers to each other.
Alternatively, it can be obtained by subjecting the obtained card web to a high-pressure liquid flow treatment so that the constituent fibers are three-dimensionally entangled.

【0012】ウエブに部分的な熱接着処理を施すに際し
ては,公知の方法を採用することができる。例えば,ウ
エブを加熱されたエンボスローラと表面が平滑な金属ロ
ーラ等とからなるローラ間に通す方法,熱風乾燥装置を
用いる方法あるいは超音波融着装置を用いる方法であ
る。加熱されたエンボスローラを用いてエンボスパター
ン部に存在する繊維同士を部分的に熱接着させる場合,
エンボスローラの圧接面積率を5〜50%とし,この圧
接面積率が5%未満であると点状融着区域が少なく不織
布の機械的強度が低下し,また良好な寸法安定性を得る
ことができず,一方,この圧接面積率が50%を超える
と不織布が硬直化して柔軟性が損なわれ,いずれも好ま
しくない。また,ローラ温度を通常は前記鞘部を構成す
る低融点の熱可塑性重合体の融点より5〜50℃程度低
い温度とするのがよく,この温度を適宜選択することに
より繊維間の接着力が高く,すなわち機械的強度と寸法
安定性が優れ,しかも柔軟性に富む不織布を得ることが
できる。熱エンボスローラを用いる場合のエンボスパタ
ーンはその圧接面積率が5〜50%の範囲内であれば特
に限定されるものではなく,丸型,楕円型,菱型,三角
型,T字型,井型等,任意の形状でよい。また,熱風乾
燥装置を用いて繊維の交差部位で繊維同士を部分的に熱
接着させる場合,処理温度をその処理時間にもよるが,
通常は前記鞘部を構成する低融点の熱可塑性重合体の融
点以上かつ高融点の熱可塑性重合体の融点より10℃程
度低い温度の範囲内とするのがよい。なお,これらの,
例えば熱エンボスローラ,熱風乾燥装置あるいは超音波
融着装置を用いる部分的熱接着処理は,連続工程あるい
は別工程のいずれであってもよい。
A publicly known method can be used for partially heat-bonding the web. For example, there is a method of passing a web between rollers that include a heated embossing roller and a metal roller having a smooth surface, a method of using a hot air drying device, or a method of using an ultrasonic fusing device. When the fibers existing in the embossed pattern part are partially heat-bonded by using the heated embossing roller,
The pressure contact area ratio of the embossing roller is set to 5 to 50%, and if the pressure contact area ratio is less than 5%, the mechanical strength of the non-woven fabric is reduced and the dimensional stability is reduced. On the other hand, if the pressure contact area ratio exceeds 50%, the nonwoven fabric becomes rigid and the flexibility is impaired, which is not preferable. Further, the roller temperature is usually set to a temperature about 5 to 50 ° C. lower than the melting point of the low melting point thermoplastic polymer forming the sheath portion. By appropriately selecting this temperature, the adhesive force between fibers can be improved. It is possible to obtain a non-woven fabric that is high, that is, excellent in mechanical strength and dimensional stability, and highly flexible. The embossing pattern when using the heat embossing roller is not particularly limited as long as the pressure contact area ratio is within the range of 5 to 50%, and is round, elliptical, rhombic, triangular, T-shaped, well. Any shape such as a mold may be used. When the fibers are partially heat-bonded at the crossing points of the fibers using a hot air dryer, the treatment temperature depends on the treatment time,
Usually, it is preferable to set the temperature within the range of not less than the melting point of the low melting point thermoplastic polymer constituting the sheath and about 10 ° C. lower than the melting point of the high melting point thermoplastic polymer. In addition, these,
For example, the partial heat-bonding treatment using a hot embossing roller, a hot air dryer or an ultrasonic fusing device may be either a continuous process or a separate process.

【0013】ウエブに高圧液体流処理を施すに際して
は,公知の方法を採用することができる。例えば,孔径
が0.05〜1.0mm,特に0.1〜0.4mmの噴
射孔を多数配列した装置を用い,噴射圧力が5〜150
kg/cm2 Gの高圧液体を前記噴射孔から噴射する方
法がある。噴射孔の配列は,ウエブの進行方向と直交す
る方向に列状に配列する。この処理は,ウエブの片面あ
るいは両面のいずれに施してもよいが,特に片面処理の
場合には,噴射孔を複数列に配列し噴射圧力を前段階で
低く後段階で高くして処理を施すと,均一で緻密な交絡
形態と均一な地合いを有する不織布を得ることができ
る。高圧液体としては,水あるいは温水を用いるのが一
般的である。噴射孔とウエブとの間の距離は,1〜15
cmとするのがよい。この距離が1cm未満であるとウ
エブの地合いが乱れ,一方,この距離が15cmを超え
ると液体流がウエブに衝突した時の衝撃力が低下し三次
元的な交絡が十分に施されず,いずれも好ましくない。
この高圧液体流処理は,連続工程あるいは別工程のいず
れであってもよい。高圧液体流処理を施した後,ウエブ
から過剰水分を除去する。この過剰水分を除去するに際
しては,公知の方法を採用することができる。例えば,
マングルロール等の絞り装置を用いて過剰水分をある程
度除去し,引き続き連続熱風乾燥機等の乾燥装置を用い
て残余の水分を除去するのである。
When the web is subjected to the high pressure liquid flow treatment, a known method can be adopted. For example, using a device in which a large number of injection holes having a hole diameter of 0.05 to 1.0 mm, particularly 0.1 to 0.4 mm are arranged, the injection pressure is 5 to 150 mm.
There is a method of ejecting a high-pressure liquid of kg / cm 2 G from the ejection hole. The injection holes are arranged in rows in a direction orthogonal to the direction of travel of the web. This treatment may be performed on one side or both sides of the web. In particular, in the case of one-side treatment, the injection holes are arranged in a plurality of rows and the injection pressure is lowered in the front stage and increased in the rear stage. As a result, it is possible to obtain a non-woven fabric having a uniform and dense entangled form and a uniform texture. Generally, water or hot water is used as the high-pressure liquid. The distance between the injection hole and the web is 1 to 15
It is good to have cm. When this distance is less than 1 cm, the texture of the web is disturbed, while when this distance exceeds 15 cm, the impact force when the liquid flow collides with the web is reduced and the three-dimensional entanglement is not sufficiently performed. Is also not preferable.
This high pressure liquid flow treatment may be either a continuous process or a separate process. After the high pressure liquid stream treatment, excess moisture is removed from the web. A known method can be adopted for removing the excess water. For example,
Excessive water is removed to some extent using a squeezing device such as a mangle roll, and then residual water is removed using a drying device such as a continuous hot air dryer.

【0014】[0014]

【実施例】次に,実施例に基づき本発明を具体的に説明
するが,本発明は,これらの実施例によって何ら限定さ
れるものではない。実施例において,各特性値の測定を
次の方法により実施した。 融点(℃):パーキンエルマ社製示差走査型熱量計DS
C−2型を用い,昇温速度20℃/分の条件で測定し,
得られた融解吸熱曲線において極値を与える温度を融点
とした。 メルトフローレート値(g/10分):ASTM D1
238(L)に記載の方法に準じて測定した。 短繊維の引張強度(g/デニール):JIS−L−10
13に記載の方法に準じて測定した。 不織布のKGSM引張強力(kg):JIS−L−10
96Aに記載の方法に準じて測定した。すなわち,試料
長が10cm,試料幅が5cmの試料片10点を作成
し,各試料片毎に不織布の縦方向について,定速伸長型
引張試験機(東洋ボールドウイン社製テンシロンUTM
−4−1−100)を用い,引張速度10cm/分で伸
長し,得られた切断時荷重値(kg)の平均値を目付け
100g/m2 当りに換算してKGSM引張強力(k
g)とした。
EXAMPLES Next, the present invention will be specifically described based on examples, but the present invention is not limited to these examples. In the examples, each characteristic value was measured by the following method. Melting point (℃): Differential scanning calorimeter DS manufactured by Perkin Elma
Using a C-2 type, the measurement is performed at a temperature rising rate of 20 ° C./min,
The temperature that gives the extreme value in the obtained melting endothermic curve was taken as the melting point. Melt flow rate value (g / 10 minutes): ASTM D1
It was measured according to the method described in 238 (L). Short fiber tensile strength (g / denier): JIS-L-10
It was measured according to the method described in 13. Nonwoven fabric KGSM tensile strength (kg): JIS-L-10
It was measured according to the method described in 96A. That is, 10 sample pieces having a sample length of 10 cm and a sample width of 5 cm were prepared, and a constant speed extension type tensile tester (Tensilon UTM manufactured by Toyo Baldwin Co., Ltd.) was used for each sample piece in the longitudinal direction of the nonwoven fabric.
4-1-100) was used for elongation at a tensile speed of 10 cm / min, and the average value of the load values (kg) at cutting obtained was converted per unit weight per 100 g / m 2 of KGSM tensile strength (k).
g).

【0015】実施例1 融点が102℃でメルトフローレート値が5g/10分
のポリエチレンサクシネート重合体を鞘部の低融点成
分,融点が118℃でメルトフローレート値が5g/1
0分のポリブチレンサクシネート重合体を芯部の高融点
成分とし,これら両重合体を溶融し,孔径0.5mmの
複合紡糸孔を36孔有する紡糸口金を通して紡糸温度2
30℃かつ複合比(重量比)1/1の条件で同心芯鞘型
に溶融複合紡出し,紡出糸条を温度が20℃の冷却空気
流を用いて冷却した後,油剤を付与し,巻取り速度10
00m/分で一旦巻取って未延伸糸条を得た。次いで,
得られた未延伸糸条に全延伸倍率を3.8として温度6
0℃の加熱ロールを用いて1段熱延伸を施し,得られた
延伸糸条にスタツフイングボツクスを用いて17個/2
5mmの機械捲縮を付与し,長さ51mmに切断して,
単繊維繊度が2.0デニールの同心芯鞘型複合短繊維の
綿を得た。得られた複合短繊維は,引張強力が4.1g
/デニールで,実用上十分な機械的強度を有するもので
あった。また,この短繊維を2カ月間土中に埋設した後
取り出して観察したところ,繊維としての形態を消失し
ており,優れた生分解性を有することが認められた。
Example 1 A polyethylene succinate polymer having a melting point of 102 ° C. and a melt flow rate value of 5 g / 10 min was used as a low melting point component of the sheath portion, and the melting flow rate value was 5 g / 1 at a melting point of 118 ° C.
A 0-minute polybutylene succinate polymer was used as the high melting point component of the core, both polymers were melted, and the spinning temperature was passed through a spinneret having 36 composite spinning holes with a hole diameter of 0.5 mm.
Melt composite spinning into a concentric core-sheath type at a temperature of 30 ° C. and a compounding ratio (weight ratio) of 1/1, cooling the spun yarn using a cooling air flow having a temperature of 20 ° C., and then applying an oil agent, Winding speed 10
It was once wound at 00 m / min to obtain an undrawn yarn. Then,
The total draw ratio of the obtained unstretched yarn was set to 3.8 and the temperature was adjusted to 6
One-stage hot drawing was performed using a heating roll at 0 ° C., and the resulting drawn yarn was used with a stuffing box to 17 pieces / 2.
Apply 5mm mechanical crimp, cut into 51mm length,
A concentric core-sheath type composite short fiber cotton having a single fiber fineness of 2.0 denier was obtained. The obtained composite short fiber has a tensile strength of 4.1 g.
/ Denier and had practically sufficient mechanical strength. Further, when the short fibers were buried in soil for 2 months and then taken out and observed, it was found that the form of the fibers disappeared and that they had excellent biodegradability.

【0016】実施例2 実施例1で得られた前記短繊維綿を原綿とし,梳綿機を
用いてカーデイングして目付けが38g/m2 のカード
ウエブを作成し,得られたカードウエブを温度が100
℃に加熱されかつ圧接面積率が15%のエンボスロール
と同温度の平滑ロール間に通して繊維同士を部分的に熱
接着させ,不織布を得た。得られた不織布は,KGSM
引張強力が縦方向10.8kg/5cm,横方向6.9
kg/5cmで,機械的強度と寸法安定性が優れたもの
であった。また,この不織布を2カ月間土中に埋設した
後取り出して観察したところ,不織布としての形態を消
失しており,優れた生分解性を有することが認められ
た。
Example 2 The short fiber cotton obtained in Example 1 was used as raw cotton and carded using a carding machine to prepare a card web having a basis weight of 38 g / m 2 , and the obtained card web was heated at a temperature of Is 100
The fibers were partially heat-bonded to each other by passing them between an embossing roll heated to ℃ and a pressing area ratio of 15% and a smooth roll at the same temperature to obtain a nonwoven fabric. The resulting nonwoven fabric is KGSM
Tensile strength is 10.8kg / 5cm in the longitudinal direction and 6.9 in the lateral direction.
The mechanical strength and dimensional stability were excellent at kg / 5 cm. Further, when this non-woven fabric was embedded in soil for 2 months and then taken out and observed, it was confirmed that the non-woven fabric had lost its morphology and had excellent biodegradability.

【0017】実施例3 実施例1で得られた前記短繊維綿を原綿とし,梳綿機を
用いてカーデイングして目付けが38g/m2 のカード
ウエブを作成し,得られたカードウエブを80メツシユ
の金網上に載置し高圧液体流処理を施して構成繊維同士
を三次元的に交絡させた。高圧液体流処理として,孔径
0.12mmの噴射孔が孔間隔0.6mmで3群配列で
配設された高圧柱状水流処理装置を用い,水圧60kg
/cm2の条件で,ウエブの上方から柱状水流を作用さ
せた。なお,この処理は,ウエブの表裏から各々3回施
した。次いで,得られた処理ウエブからマングルロール
を用いて過剰水分を除去した後,ウエブに熱風乾燥機を
用い温度70℃の条件で乾燥処理を施し,不織布を得
た。得られた不織布は,KGSM引張強力が縦方向1
2.0kg/5cm,横方向8.1kg/5cmで,機
械的強度と寸法安定性が優れ,しかも柔軟性に富むもの
であった。また,この不織布を2カ月間土中に埋設した
後取り出して観察したところ,不織布としての形態を消
失しており,優れた生分解性を有することが認められ
た。
Example 3 The short fiber cotton obtained in Example 1 was used as raw cotton and carded using a carding machine to prepare a card web having a basis weight of 38 g / m 2 , and the obtained card web was 80 The fibers were placed on a mesh net of mesh and subjected to a high-pressure liquid flow treatment to entangle the constituent fibers three-dimensionally. As the high-pressure liquid flow treatment, a high-pressure columnar water flow treatment device in which injection holes having a hole diameter of 0.12 mm are arranged in a three-group arrangement with a hole interval of 0.6 mm is used, and the water pressure is 60 kg.
A columnar water stream was applied from above the web under the condition of / cm 2 . This treatment was performed three times from the front and back of the web. Then, after removing excess water from the obtained treated web using a mangle roll, the web was dried at a temperature of 70 ° C. using a hot air dryer to obtain a nonwoven fabric. The resulting nonwoven fabric has a KGSM tensile strength of 1 in the machine direction.
It was 2.0 kg / 5 cm and transversely 8.1 kg / 5 cm, and was excellent in mechanical strength and dimensional stability, and was also highly flexible. Further, when this non-woven fabric was embedded in soil for 2 months and then taken out and observed, it was confirmed that the non-woven fabric had lost its morphology and had excellent biodegradability.

【0018】[0018]

【発明の効果】本発明の生分解性複合短繊維は,芯部が
高融点の生分解性熱可塑性重合体成分からなり,かつ鞘
部が前記重合体より低融点の生分解性熱可塑性重合体成
分からなるものであって,生分解性を有し,機械的強度
と寸法安定性が優れ,柔軟性に富み,しかも優れた熱接
着性を有する不織布を得るのに好適である。そして,こ
の複合短繊維を用いてなる不織布は,前述したような優
れた特性を有し,おむつや生理用品等の衛生材料用素
材,使い捨ておしぼりやワイピングクロス,パツプ材の
基布,家庭用又は業務用の生塵補集袋その他廃棄物処理
材等の生活関連材用素材として好適である。しかも,こ
の不織布は,その使用後に微生物が多数存在する環境例
えば土中又は水中に放置すると最終的には完全に分解消
失するため自然環境保護の観点からも有益であり,ある
いは,例えば堆肥化して肥料とする等再利用を図ること
もできるため資源の再利用の観点からも有益である。
The biodegradable composite staple fiber of the present invention comprises a biodegradable thermoplastic polymer component having a high melting point in the core portion and a melting point lower than that of the polymer in the sheath portion. It is composed of a coalescing component and is suitable for obtaining a nonwoven fabric having biodegradability, excellent mechanical strength and dimensional stability, rich flexibility, and excellent thermal adhesiveness. The non-woven fabric using this composite short fiber has the above-mentioned excellent properties and is a material for sanitary materials such as diapers and sanitary products, disposable towels, wiping cloths, base cloths for pad materials, household or It is suitable as a material for daily life-related materials such as dust collection bags for business use and other waste treatment materials. Moreover, this non-woven fabric is useful from the viewpoint of protecting the natural environment because it eventually decomposes and disappears completely if left in an environment where many microorganisms are present, such as soil or water, after use, or, for example, by composting. Since it can be reused as fertilizer, it is useful from the viewpoint of resource reuse.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 稲垣 孝司 京都府宇治市宇治小桜23番地ユニチカ株式 会社中央研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Koji Inagaki 23 Uji Kozakura, Uji City, Kyoto Prefecture Unitika Central Research Institute

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 芯部が高融点の生分解性熱可塑性重合体
成分からなり,鞘部が前記重合体より低融点の生分解性
熱可塑性重合体成分からなる生分解性複合短繊維。
1. A biodegradable composite staple fiber comprising a core portion made of a biodegradable thermoplastic polymer component having a high melting point and a sheath portion made of a biodegradable thermoplastic polymer component having a melting point lower than that of the polymer.
【請求項2】 芯部が高融点の生分解性熱可塑性重合体
成分からなり,鞘部が前記重合体より低融点の生分解性
熱可塑性重合体成分からなる生分解性複合短繊維から構
成され,かつ構成繊維同士が部分的に熱接着されている
ことを特徴とする不織布。
2. A biodegradable composite staple fiber whose core comprises a high melting point biodegradable thermoplastic polymer component and whose sheath comprises a biodegradable thermoplastic polymer component having a lower melting point than said polymer. And the constituent fibers are partially heat-bonded to each other.
【請求項3】 芯部が高融点の生分解性熱可塑性重合体
成分からなり,鞘部が前記重合体より低融点の生分解性
熱可塑性重合体成分からなる生分解性複合短繊維から構
成され,かつ構成繊維同士が三次元的に交絡されている
ことを特徴とする不織布。
3. A biodegradable composite staple fiber whose core comprises a high melting point biodegradable thermoplastic polymer component and whose sheath comprises a biodegradable thermoplastic polymer component having a lower melting point than said polymer. And the constituent fibers are three-dimensionally entangled with each other.
【請求項4】 生分解性熱可塑性重合体が,脂肪族ポリ
エステル系重合体あるいは脂肪族ポリエステルアミド系
共重合体であることを特徴とする請求項1記載の生分解
性複合短繊維。
4. The biodegradable composite staple fiber according to claim 1, wherein the biodegradable thermoplastic polymer is an aliphatic polyester polymer or an aliphatic polyesteramide copolymer.
【請求項5】 生分解性熱可塑性重合体が,脂肪族ポリ
エステル系重合体あるいは脂肪族ポリエステルアミド系
共重合体であることを特徴とする請求項2又は3記載の
不織布。
5. The nonwoven fabric according to claim 2 or 3, wherein the biodegradable thermoplastic polymer is an aliphatic polyester polymer or an aliphatic polyesteramide copolymer.
JP2067193A 1993-01-12 1993-01-12 Biodegradable composite short fiber non-woven fabric Expired - Fee Related JP3264720B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2067193A JP3264720B2 (en) 1993-01-12 1993-01-12 Biodegradable composite short fiber non-woven fabric

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2067193A JP3264720B2 (en) 1993-01-12 1993-01-12 Biodegradable composite short fiber non-woven fabric

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2001027586A Division JP2001248021A (en) 2001-02-05 2001-02-05 Biodegradable conjugate staple fiber

Publications (2)

Publication Number Publication Date
JPH06207320A true JPH06207320A (en) 1994-07-26
JP3264720B2 JP3264720B2 (en) 2002-03-11

Family

ID=12033670

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2067193A Expired - Fee Related JP3264720B2 (en) 1993-01-12 1993-01-12 Biodegradable composite short fiber non-woven fabric

Country Status (1)

Country Link
JP (1) JP3264720B2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06264343A (en) * 1993-03-11 1994-09-20 Toyobo Co Ltd Biodegradable fiber aggregate for agricultural use
JPH06264344A (en) * 1993-03-11 1994-09-20 Toyobo Co Ltd Biodegradable fiber aggregate for hygienic use
US5698322A (en) * 1996-12-02 1997-12-16 Kimberly-Clark Worldwide, Inc. Multicomponent fiber
US5910545A (en) * 1997-10-31 1999-06-08 Kimberly-Clark Worldwide, Inc. Biodegradable thermoplastic composition
US6194483B1 (en) 1998-08-31 2001-02-27 Kimberly-Clark Worldwide, Inc. Disposable articles having biodegradable nonwovens with improved fluid management properties
US6195975B1 (en) 1997-08-28 2001-03-06 Belmont Textile Machinery Co., Inc. Fluid-jet false-twisting method and product
US6197860B1 (en) 1998-08-31 2001-03-06 Kimberly-Clark Worldwide, Inc. Biodegradable nonwovens with improved fluid management properties
US6201068B1 (en) 1997-10-31 2001-03-13 Kimberly-Clark Worldwide, Inc. Biodegradable polylactide nonwovens with improved fluid management properties
US6268434B1 (en) 1997-10-31 2001-07-31 Kimberly Clark Worldwide, Inc. Biodegradable polylactide nonwovens with improved fluid management properties
US6306782B1 (en) 1997-12-22 2001-10-23 Kimberly-Clark Worldwide, Inc. Disposable absorbent product having biodisintegratable nonwovens with improved fluid management properties
US6309988B1 (en) 1997-12-22 2001-10-30 Kimberly-Clark Worldwide, Inc. Biodisintegratable nonwovens with improved fluid management properties
US6500897B2 (en) 2000-12-29 2002-12-31 Kimberly-Clark Worldwide, Inc. Modified biodegradable compositions and a reactive-extrusion process to make the same
US6544455B1 (en) 1997-12-22 2003-04-08 Kimberly-Clark Worldwide, Inc. Methods for making a biodegradable thermoplastic composition
US6552124B2 (en) 2000-12-29 2003-04-22 Kimberly-Clark Worldwide, Inc. Method of making a polymer blend composition by reactive extrusion
US6579934B1 (en) 2000-12-29 2003-06-17 Kimberly-Clark Worldwide, Inc. Reactive extrusion process for making modifiied biodegradable compositions
US6890989B2 (en) 2001-03-12 2005-05-10 Kimberly-Clark Worldwide, Inc. Water-responsive biodegradable polymer compositions and method of making same
US7053151B2 (en) 2000-12-29 2006-05-30 Kimberly-Clark Worldwide, Inc. Grafted biodegradable polymer blend compositions

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3711409B2 (en) * 1993-03-11 2005-11-02 東洋紡績株式会社 Biodegradable agricultural fiber assembly
JPH06264344A (en) * 1993-03-11 1994-09-20 Toyobo Co Ltd Biodegradable fiber aggregate for hygienic use
JPH06264343A (en) * 1993-03-11 1994-09-20 Toyobo Co Ltd Biodegradable fiber aggregate for agricultural use
JP3735734B2 (en) * 1993-03-11 2006-01-18 東洋紡績株式会社 Biodegradable sanitary fiber assembly
US5698322A (en) * 1996-12-02 1997-12-16 Kimberly-Clark Worldwide, Inc. Multicomponent fiber
US6195975B1 (en) 1997-08-28 2001-03-06 Belmont Textile Machinery Co., Inc. Fluid-jet false-twisting method and product
US5910545A (en) * 1997-10-31 1999-06-08 Kimberly-Clark Worldwide, Inc. Biodegradable thermoplastic composition
US6201068B1 (en) 1997-10-31 2001-03-13 Kimberly-Clark Worldwide, Inc. Biodegradable polylactide nonwovens with improved fluid management properties
US6207755B1 (en) 1997-10-31 2001-03-27 Kimberly-Clark Worldwide, Inc. Biodegradable thermoplastic composition
US6211294B1 (en) 1997-10-31 2001-04-03 Fu-Jya Tsai Multicomponent fiber prepared from a thermoplastic composition
US6268434B1 (en) 1997-10-31 2001-07-31 Kimberly Clark Worldwide, Inc. Biodegradable polylactide nonwovens with improved fluid management properties
US6475418B1 (en) 1997-10-31 2002-11-05 Kimberly-Clark Worldwide, Inc. Methods for making a thermoplastic composition and fibers including same
US6544455B1 (en) 1997-12-22 2003-04-08 Kimberly-Clark Worldwide, Inc. Methods for making a biodegradable thermoplastic composition
US6306782B1 (en) 1997-12-22 2001-10-23 Kimberly-Clark Worldwide, Inc. Disposable absorbent product having biodisintegratable nonwovens with improved fluid management properties
US6309988B1 (en) 1997-12-22 2001-10-30 Kimberly-Clark Worldwide, Inc. Biodisintegratable nonwovens with improved fluid management properties
US6245831B1 (en) 1998-08-31 2001-06-12 Kimberly-Clark Worldwide, Inc. Disposable articles having biodegradable nonwovens with improved fluid management properties
US6197860B1 (en) 1998-08-31 2001-03-06 Kimberly-Clark Worldwide, Inc. Biodegradable nonwovens with improved fluid management properties
US6194483B1 (en) 1998-08-31 2001-02-27 Kimberly-Clark Worldwide, Inc. Disposable articles having biodegradable nonwovens with improved fluid management properties
US6500897B2 (en) 2000-12-29 2002-12-31 Kimberly-Clark Worldwide, Inc. Modified biodegradable compositions and a reactive-extrusion process to make the same
US6552124B2 (en) 2000-12-29 2003-04-22 Kimberly-Clark Worldwide, Inc. Method of making a polymer blend composition by reactive extrusion
US6579934B1 (en) 2000-12-29 2003-06-17 Kimberly-Clark Worldwide, Inc. Reactive extrusion process for making modifiied biodegradable compositions
US7053151B2 (en) 2000-12-29 2006-05-30 Kimberly-Clark Worldwide, Inc. Grafted biodegradable polymer blend compositions
US6890989B2 (en) 2001-03-12 2005-05-10 Kimberly-Clark Worldwide, Inc. Water-responsive biodegradable polymer compositions and method of making same

Also Published As

Publication number Publication date
JP3264720B2 (en) 2002-03-11

Similar Documents

Publication Publication Date Title
JPH06207324A (en) Biodegradable conjugate filament and nonwoven fabric made of the filament
JPH06207320A (en) Biodegradable conjugate short fiber and its nonwoven fabric
JP3247176B2 (en) Biodegradable latently crimpable composite filament and nonwoven fabric thereof
JPH08260320A (en) Nonwoven fabric comprising biodegradable conjugate short fiber
JP2002061060A (en) Nonwoven fabric and finished article of nonwoven fabric
JP3247177B2 (en) Biodegradable latently crimpable composite short fiber and nonwoven fabric thereof
JPH0734369A (en) Biodegradable filament non-woven fabric
JPH10331063A (en) Composite nonwoven fabric and its production
JP3652003B2 (en) Non-woven fabric for biodegradable surface fastener and method for producing the same
JPH06200457A (en) Biodegradable short fiber non-woven fabric
JPH1161618A (en) Ultrafine fiber nonwoven fabric and its production
JPH06200458A (en) Biodegradable short fiber non-woven fabric
JP3262430B2 (en) Method for producing biodegradable laminated nonwoven structure
JP2001248021A (en) Biodegradable conjugate staple fiber
JP3135054B2 (en) Method for producing stretchable nonwoven fabric
JPH101855A (en) Biodegradable short fiber nonwoven fabric and its production
JP3259936B2 (en) Laminated nonwoven fabric and method for producing the same
JP2000017558A (en) Ultrafine staple-containing composite nonwoven fabric and its production
JPH10325064A (en) Biodegradable nonwoven fabric with excellent stretching property and its production
JPH07125128A (en) Biodegradable nonwoven laminate
JP4117915B2 (en) Biodegradable nonwoven fabric and method for producing the same
JP2001248020A (en) Biodegradable conjugate filament
JP3553722B2 (en) Biodegradable nonwoven fabric and method for producing the same
JPH11335957A (en) Composite nonwoven fabric containing ultrafine fiber and its production
JP3213460B2 (en) Method for producing biodegradable laminated nonwoven structure

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071228

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081228

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20091228

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20101228

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101228

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111228

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111228

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121228

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees