JPH101855A - Biodegradable short fiber nonwoven fabric and its production - Google Patents

Biodegradable short fiber nonwoven fabric and its production

Info

Publication number
JPH101855A
JPH101855A JP8127969A JP12796996A JPH101855A JP H101855 A JPH101855 A JP H101855A JP 8127969 A JP8127969 A JP 8127969A JP 12796996 A JP12796996 A JP 12796996A JP H101855 A JPH101855 A JP H101855A
Authority
JP
Japan
Prior art keywords
melting point
point component
fiber
nonwoven fabric
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8127969A
Other languages
Japanese (ja)
Inventor
Koichi Nagaoka
孝一 長岡
Shigetaka Nishimura
重孝 西村
Keiko Sakota
恵子 迫田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP8127969A priority Critical patent/JPH101855A/en
Publication of JPH101855A publication Critical patent/JPH101855A/en
Pending legal-status Critical Current

Links

Landscapes

  • Biological Depolymerization Polymers (AREA)
  • Multicomponent Fibers (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce the subject fabric having required biodegradability, excellent in mechanical properties, also excellent in the cooling tendency, spinnability and drawability of delivered constituent yarns, and having heat-sealing function. SOLUTION: This biodegradable nonwoven fabric is made up of alternately laminating-type conjugate short fibers each made up from a high-melting component A consisting of a biodegradable 1st aliphatic polyester and a low-melting component B consisting of a biodegradable 2nd aliphatic polyester lower in melting point than the component A. Each of the conjugate short fibers has such structure that both the high-melting and low-melting components A and B are divided, respectively, and alternately laminated on the cross-section, and also lie continuous in the direction of fiber axis and are exposed onto the fiber surface.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、生分解性能を有す
るとともに、製造の際の良好な製糸性を有する生分解性
短繊維不織布およびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a biodegradable short-fiber nonwoven fabric having biodegradability and good thread-forming properties during production, and a method for producing the same.

【0002】[0002]

【従来の技術】従来から、生分解性不織布としては、例
えば乾式法あるいは溶液浸漬法により得られるビスコー
ス短繊維不織布、湿式法により得られるキュプラレーヨ
ン長繊維不織布やビスコースレーヨン長繊維不織布、キ
チンやコラーゲンのような天然物の化学繊維からなる不
織布、コットンからなるスパンレース不織布等が知られ
ている。しかしながら、これらの生分解性不織布は機械
的強度が低くかつ親水性であるため、吸水・湿潤の時の
機械的強度の低下が著しい。さらに、これらの不織布は
非熱可塑性であることから、熱成形性を有さず加工性に
劣るものであった。
2. Description of the Related Art Conventionally, biodegradable nonwoven fabrics include, for example, viscose short fiber nonwoven fabric obtained by dry method or solution immersion method, cupra rayon long fiber nonwoven fabric or viscose rayon long fiber nonwoven fabric obtained by wet method, chitin Nonwoven fabrics made of natural synthetic fibers such as collagen and collagen, and spunlace nonwoven fabrics made of cotton are known. However, since these biodegradable nonwoven fabrics have low mechanical strength and are hydrophilic, the mechanical strength at the time of water absorption / wetting is remarkably reduced. Furthermore, since these nonwoven fabrics are non-thermoplastic, they have no thermoformability and are inferior in workability.

【0003】このような問題を解決する生分解性不織布
としては、特開平5−93318号公報または特開平5
−195407号公報に、生分解性を有する熱可塑性重
合体を用いた不織布が開示されている。しかし、これら
においては、紡出糸条の冷却性および可紡性、延伸性に
劣り、しかも熱圧接工程等において全融タイプとなるの
で得られた不織布の機械的特性および柔軟性に劣るもの
であった。
As a biodegradable nonwoven fabric which solves such a problem, Japanese Patent Application Laid-Open No. 5-93318 or Japanese Patent Application Laid-Open No.
JP-195407 discloses a nonwoven fabric using a biodegradable thermoplastic polymer. However, in these, the spun yarn is inferior in the cooling property, spinnability, and stretchability, and is inferior in mechanical properties and flexibility of the obtained nonwoven fabric because it becomes a full-melt type in a hot pressing process and the like. there were.

【0004】生分解性不織布の製造工程においてこのよ
うな問題が生じるのは、一般的に生分解性を有する重合
体の融点および結晶化温度が低く、しかも結晶化速度が
遅いことに起因する。すなわち、紡糸口金より吐出され
た紡出糸条の冷却、捲取工程において、糸条間に密着が
発生し、均整度に劣る未延伸糸しか得ることができず、
続く延伸工程で糸切れが発生したり、延伸が可能であっ
ても機械的特性に劣る短繊維しか得ることができないこ
ととなる。そして、このような短繊維からなる不織布は
機械的特性および地合いに劣るものとなる。
[0004] Such a problem occurs in the process of producing a biodegradable nonwoven fabric because, in general, a polymer having biodegradability has a low melting point and a low crystallization temperature and a low crystallization rate. That is, in the cooling of the spun yarn discharged from the spinneret, in the winding step, adhesion occurs between the yarns, and only an undrawn yarn inferior in uniformity can be obtained,
In the subsequent drawing step, yarn breakage occurs, or even if drawing is possible, only short fibers having poor mechanical properties can be obtained. And the nonwoven fabric which consists of such a short fiber becomes inferior to a mechanical characteristic and formation.

【0005】また、従来の生分解性短繊維においては、
一般にその繊維横断面は単一型、単一中空型あるいは芯
鞘複合型であり、一構成成分のみが繊維の全表面を被覆
している。従って、融点及び結晶化温度の比較的高い生
分解性重合体を用いて紡出糸条の冷却性及び可紡性、延
伸性を重視すると、得られる不織布の分解性能に劣るこ
ととなり、逆に、融点及び結晶化温度の比較的低い生分
解重合体を用いて生分解性能を重視すると、紡出糸条の
冷却性および可紡性、延伸性に劣る結果となる。
In conventional biodegradable short fibers,
In general, the cross section of the fiber is a single type, a single hollow type or a composite core-sheath type, and only one component covers the entire surface of the fiber. Accordingly, if the cooling property and spinnability of the spun yarn are emphasized using a biodegradable polymer having a relatively high melting point and crystallization temperature, the resulting nonwoven fabric will be inferior in decomposition performance, and conversely, When biodegradation performance is emphasized using a biodegradable polymer having a relatively low melting point and crystallization temperature, the spun yarn has poor cooling, spinnability and stretchability.

【0006】[0006]

【発明が解決しようとする課題】本発明は、このような
問題を解決するもので、生分解性にすぐれるとともに、
製造の際の紡出糸条の冷却性および可紡性、延伸性に優
れ、かつ熱接着機能を有する生分解性短繊維不織布及び
その製造方法を提供しようとするものである。
SUMMARY OF THE INVENTION The present invention solves such a problem and is excellent in biodegradability.
An object of the present invention is to provide a biodegradable short-fiber nonwoven fabric having excellent cooling property, spinnability, and stretchability of a spun yarn at the time of production and having a heat bonding function, and a method for producing the same.

【0007】[0007]

【課題を解決するための手段】この目的を達成するため
本発明は、以下の構成を要旨とするものである。 (1)生分解性を有する第1の脂肪族ポリエステルから
なる高融点成分とこの高融点成分よりも融点の低い生分
解性を有する第2の脂肪族ポリエステルからなる低融点
成分とで形成される複合短繊維からなり、この複合短繊
維は、それぞれ複数の高融点成分と低融点成分とが繊維
横断面において交互に積層され、しかも高融点成分およ
び低融点成分が繊維軸方向に連続するとともに繊維表面
に露出していることを特徴とする生分解性短繊維不織
布。
In order to achieve this object, the present invention has the following features. (1) Formed from a high melting point component composed of a first aliphatic polyester having biodegradability and a low melting point component composed of a second aliphatic polyester having a lower melting point than the high melting point component. The composite staple fiber comprises a plurality of high-melting point components and a plurality of low-melting point components alternately laminated in the fiber cross section. A biodegradable short-fiber nonwoven fabric, which is exposed on the surface.

【0008】(2)生分解性を有する第1の脂肪族ポリ
エステルからなる高融点成分とこの高融点成分よりも融
点の低い生分解性を有する第2の脂肪族ポリエステルか
らなる低融点成分とを用いて、それぞれ複数の高融点成
分と低融点成分とが繊維横断面において交互に積層さ
れ、しかも高融点成分および低融点成分が繊維軸方向に
連続するとともに繊維表面に露出する交互積層型複合繊
維を溶融紡出し、次いで紡出された糸条を延伸し、得ら
れた延伸糸条に機械捲縮を付与した後に所定長に切断し
て短繊維となし、この短繊維をカーディングすることに
より短繊維ウエブを形成し、この短繊維ウエブを所定の
形態に保持させることを特徴とする生分解性短繊維不織
布の製造方法。
(2) A high melting point component composed of a first aliphatic polyester having biodegradability and a low melting point component composed of a second aliphatic polyester having a lower melting point than the high melting point component. A plurality of high-melting-point components and low-melting-point components are alternately laminated in the cross section of the fiber, and the high-melting-point component and the low-melting-point component are continuous in the fiber axis direction and are exposed on the fiber surface. By melt-spinning, then drawing the spun yarn, applying mechanical crimp to the obtained drawn yarn, cutting it into a predetermined length to form short fibers, and carding the short fibers. A method for producing a biodegradable short fiber nonwoven fabric, comprising forming a short fiber web and holding the short fiber web in a predetermined form.

【0009】本発明によれば、不織布を構成する短繊維
の繊維横断面において、それぞれ複数の高融点成分と低
融点成分とが交互に積層された状態で配置されており、
しかもこの高融点成分と低融点成分とが繊維軸方向に連
続するとともに繊維表面に露出していることから、生分
解性能には劣るが冷却性、可紡性および延伸性に優れる
高融点成分を細分化するとともに、冷却性、可紡性およ
び延伸性には劣るが生分解性能に優れる低融点成分を細
分化することができる。これにより、冷却性、可紡性、
延伸性および生分解性のいずれにも優れる不織布を得る
ことができるのである。
According to the present invention, a plurality of high-melting-point components and low-melting-point components are alternately arranged in a cross section of the short fibers constituting the nonwoven fabric.
Moreover, since the high melting point component and the low melting point component are continuous in the fiber axis direction and are exposed on the fiber surface, the high melting point component, which is inferior in biodegradability but excellent in cooling, spinnability and stretchability, is used. Along with being finely divided, a low-melting point component which is inferior in cooling property, spinnability and stretchability but excellent in biodegradability can be finely divided. This allows for cooling, spinnability,
A nonwoven fabric excellent in both stretchability and biodegradability can be obtained.

【0010】[0010]

【発明の実施の形態】まず、本発明の生分解性短繊維不
織布を構成する短繊維について説明する。本発明におい
て適用される短繊維は、生分解性を有する第1の脂肪族
ポリエステルからなる高融点成分とこの高融点成分より
も融点の低い生分解性を有する第2の脂肪族ポリエステ
ルからなる低融点成分とから形成される複合短繊維であ
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS First, the short fibers constituting the non-woven biodegradable nonwoven fabric of the present invention will be described. The short fiber applied in the present invention is composed of a high melting point component composed of a first aliphatic polyester having biodegradability and a low melting point composed of a second aliphatic polyester having a biodegradability having a lower melting point than the high melting point component. It is a conjugate short fiber formed from a melting point component.

【0011】高融点成分および低融点成分を構成する第
1および第2の生分解性脂肪族ポリエステルとしては、
例えば、ポリグリコール酸やポリ乳酸のようなポリ(α
−ヒドロキシ酸)またはこれらを構成する繰り返し単位
要素による共重合体が挙げられる。また、ポリ(ε−カ
プロラクトン)、ポリ(β−プロピオラクトン)のよう
なポリ(ω−ヒドロキシアルカノエート)が、さらに、
ポリ−3−ヒドロキシプロピオネート、ポリ−3−ヒド
ロキシブチレート、ポリ−3−ヒドロキシカプロエー
ト、ポリ−3−ヒドロキシヘプタノエート、ポリ−3−
ヒドロキシオクタノエートのようなポリ(β−ヒドロキ
シアルカノエート)およびこれらを構成する繰り返し単
位要素とポリ−3−ヒドロキシバリレートやポリ−4−
ヒドロキシブチレートを構成する繰り返し単位要素との
共重合体が挙げられる。また、ジオールとジカルボン酸
の縮重合体からなるものとして、例えば、ポリエチレン
オキサレート、ポリエチレンサクシネート、ポリエチレ
ンアジペート、ポリエチレンアゼテート、ポリブチレン
オキサレート、ポリブチレンサクシネート、ポリブチレ
ンアジペート、ポリブチレンセバケート、ポリヘキサメ
チレンセバケート、ポリネオペンチルオキサレートまた
はこれらを構成する繰り返し単位要素による共重合体が
挙げられる。また、これらの脂肪族ポリエステルを複数
ブレンドして用いることもできる。以上の脂肪族ポリエ
ステルのなかでは、製糸性および生分解性能の観点か
ら、ポリブチレンサクシネート、ポリエチレンサクシネ
ートならびにポリブチレンアジペートが特に好ましく、
さらに特にブチレンサクシネートを主繰り返し単位とし
てこれにエチレンサクシネートあるいはブチレンアジペ
ートを共重合せしめた共重合ポリエステルが好適であ
る。本発明においては、以上の脂肪族ポリエステルの中
から選択された2種の重合体のうち、融点が高い方の重
合体を高融点成分とし、融点が低い方の重合体を低融点
成分とする。
The first and second biodegradable aliphatic polyesters constituting the high melting point component and the low melting point component include:
For example, poly (α) such as polyglycolic acid and polylactic acid
-Hydroxy acids) or copolymers composed of repeating unit elements constituting them. In addition, poly (ω-hydroxyalkanoate) such as poly (ε-caprolactone) and poly (β-propiolactone) further includes
Poly-3-hydroxypropionate, poly-3-hydroxybutyrate, poly-3-hydroxycaproate, poly-3-hydroxyheptanoate, poly-3-
Poly (β-hydroxyalkanoates) such as hydroxyoctanoate, and the repeating unit elements constituting them, and poly-3-hydroxyvalerate and poly-4-
A copolymer with a repeating unit element constituting hydroxybutyrate is exemplified. Further, as the one consisting of a condensation polymer of a diol and a dicarboxylic acid, for example, polyethylene oxalate, polyethylene succinate, polyethylene adipate, polyethylene acetate, polybutylene oxalate, polybutylene succinate, polybutylene adipate, polybutylene sebacate , Polyhexamethylene sebacate, polyneopentyl oxalate, or copolymers composed of repeating units constituting these. Further, a plurality of these aliphatic polyesters can be blended and used. Among the above aliphatic polyesters, polybutylene succinate, polyethylene succinate and polybutylene adipate are particularly preferred from the viewpoints of spinnability and biodegradability.
More particularly, a copolymerized polyester obtained by copolymerizing ethylene succinate or butylene adipate with butylene succinate as a main repeating unit is preferable. In the present invention, of the two types of polymers selected from the above aliphatic polyesters, the polymer having a higher melting point is a high melting point component, and the polymer having a lower melting point is a low melting point component. .

【0012】ところで、脂肪族ポリエステルは一般に、
融点が高い程、紡出糸条の冷却性および可紡性、延伸性
には優れるものの、結晶化度が高いため生分解性能には
劣り、逆に、融点が低い程、紡出糸条の冷却性および可
紡性、延伸性には劣るものの、結晶化度が低いため生分
解性能には優れる。例えば、繊維横断面が比較的融点の
高い高融点成分単相の場合には、製糸性および不織布化
には優れるものの、目標とする生分解性能を得ることが
できない。一方、繊維横断面が比較的融点の低い低融点
成分単相の場合には、溶融紡糸に際し紡出糸条の冷却性
に劣り不織布を得ることができない。
By the way, aliphatic polyesters are generally
The higher the melting point, the better the cooling, spinnability, and stretchability of the spun yarn, but the higher the crystallinity, the poorer the biodegradability. Conversely, the lower the melting point, the better the spun yarn. Although inferior in cooling, spinnability and stretchability, it has excellent biodegradability due to low crystallinity. For example, in the case where the fiber cross section is a single phase of a high melting point component having a relatively high melting point, the desired biodegradability cannot be obtained although the spinning property and the formation of a nonwoven fabric are excellent. On the other hand, when the fiber cross section is a single phase of a low melting point component having a relatively low melting point, the spun yarn is inferior in the cooling property during melt spinning, and a nonwoven fabric cannot be obtained.

【0013】本発明によれば、後述のように、繊維横断
面において生分解性能には劣るが冷却性および可紡性、
延伸性に優れる高融点成分を細分化するとともに、紡出
糸条の冷却性および可紡性、延伸性には劣るが生分解性
能に優れる低融点成分を細分化し、この細分化した両成
分を繊維横断面において交互に積層させることにより、
紡出糸条の冷却性および可紡性、延伸性と生分解性能と
のいずれにも優れる不織布を得ることができるのであ
る。
According to the present invention, as described below, the biodegradability is inferior in the cross section of the fiber, but the cooling property and spinnability,
Along with subdividing the high-melting-point component with excellent stretchability, the low-melting-point component, which is inferior in the cooling and spinnability and stretchability of the spun yarn but has excellent biodegradability, is subdivided. By alternately laminating in the fiber cross section,
It is possible to obtain a nonwoven fabric excellent in all of the cooling property and spinnability, stretchability and biodegradability of the spun yarn.

【0014】従って、本発明においては、高融点成分と
低融点成分との融点差を5℃以上とすることが好まし
く、さらに好ましくは10℃以上とするのが良い。高融
点成分と低融点成分との融点差が5℃未満であると、繊
維横断面が単相の場合のような全融タイプに近づくた
め、後述の繊維横断面とすることにより紡出糸条の冷却
性および可紡性、延伸性と生分解性能とのいずれをも満
足させるという本発明の効果を発揮することができな
い。
Therefore, in the present invention, the difference in melting point between the high melting point component and the low melting point component is preferably 5 ° C. or more, more preferably 10 ° C. or more. If the difference in melting point between the high melting point component and the low melting point component is less than 5 ° C., the fiber cross section approaches a full fusion type as in the case of a single phase. Cannot satisfy the cooling effect, spinnability, stretchability and biodegradability of the present invention.

【0015】このことから、高融点成分として、ポリブ
チレンサクシネートを用い、低融点成分として、ブチレ
ンサクシネートの共重合量比が70〜90モル%となる
ようにブチレンサクシネートにエチレンサクシネートあ
るいはブチレンアジペートを共重合せしめた共重合ポリ
エステルを用いることが好ましい。ブチレンサクシネー
トの共重合量比が70モル%未満であると、生分解性能
には優れるものの、紡出糸条の冷却性および可紡性、延
伸性に劣り、目的とする短繊維が得られないこととな
る。逆に、90モル%を超えると、紡出糸条の冷却性お
よび可紡性、延伸性には優れるものの、生分解性能に劣
り本発明の目的とするものでなくなる。
[0015] From this fact, polybutylene succinate is used as the high melting point component, and ethylene succinate or butylene succinate is used as the low melting point component such that the copolymerization ratio of butylene succinate is 70 to 90 mol%. It is preferable to use a copolymerized polyester obtained by copolymerizing butylene adipate. If the copolymerization ratio of butylene succinate is less than 70 mol%, the biodegradability is excellent, but the cooling property, spinnability and stretchability of the spun yarn are poor, and the desired short fiber can be obtained. It will not be. Conversely, if it exceeds 90 mol%, the spun yarn has excellent cooling properties, spinnability and stretchability, but is inferior in biodegradability and is not the object of the present invention.

【0016】なお、本発明において、高融点成分および
低融点成分に適用される前述の脂肪族ポリエステルは、
数平均分子量が約20,000以上、好ましくは40,
000以上、さらに好ましくは60,000以上のもの
が、製糸性および得られる糸条の特性の点で良い。ま
た、重合度を高めるために少量のジイソシアネートやテ
トラカルボン酸二無水物などで鎖延長したものでも良
い。
In the present invention, the above-mentioned aliphatic polyester applied to the high melting point component and the low melting point component includes:
The number average molecular weight is about 20,000 or more, preferably 40,
Those having a molecular weight of 000 or more, more preferably 60,000 or more are good in terms of the spinning properties and the properties of the obtained yarn. Further, in order to increase the degree of polymerization, a chain extended with a small amount of diisocyanate or tetracarboxylic dianhydride may be used.

【0017】また、本発明においては、前述の高融点成
分および低融点成分の両方またはいずれか一方に、必要
に応じて、例えば艶消し剤、顔料、光安定剤、酸化防止
剤を本発明の効果を損なわない範囲内で添加することが
できる。
In the present invention, for example, a matting agent, a pigment, a light stabilizer and an antioxidant may be added to both or one of the high melting point component and the low melting point component, if necessary. It can be added within a range that does not impair the effect.

【0018】特に、本発明において適用される短繊維に
おいては、その構成成分のうちの少なくとも低融点成分
中に結晶核剤が添加されていることが好ましい。結晶核
剤を添加することにより、溶融紡出後に固化しにくい低
結晶性の重合体であっても、紡出糸条間に密着が発生す
るのを防止することができる。
In particular, in the short fibers used in the present invention, it is preferable that a nucleating agent is added to at least the low melting point component among the constituent components. Addition of a nucleating agent can prevent adhesion between spun yarns even for a low-crystalline polymer that is hard to solidify after melt spinning.

【0019】ここで、結晶核剤としては、粉末状の無機
物で、かつ溶融液に溶解したりするものでなければ特に
制限をうけないが、タルク、炭酸カルシウム、酸化チタ
ン、窒化ホウ素、シリカゲル、酸化マグネシウムなどが
通常用いられ、これらの中でも特に、タルクまたは酸化
チタンまたはこれらの混合物が好適に用いられる。
Here, the crystal nucleating agent is not particularly limited as long as it is not a powdered inorganic substance and does not dissolve in a melt, but talc, calcium carbonate, titanium oxide, boron nitride, silica gel, Magnesium oxide or the like is usually used, and among them, talc, titanium oxide or a mixture thereof is particularly preferably used.

【0020】また、結晶核剤は、高融点成分中への結晶
核剤の添加量をQA (重量%)とし、低融点成分中への
結晶核剤の添加量をQB (重量%)としたときに、
(1)式および(2)式を満足するように添加されてい
ることが好ましい。 [(ΔTA +ΔTB)/100]−2 /3 ≦QA +QB ≦[(ΔTA +ΔTB)/100]+4 …(1) QA ≦QB …(2) 但し、ΔTA =高融点成分の融点−高融点成分の結晶化
温度≧35 ΔTB =低融点成分の融点−低融点成分の結晶化温度≧
35 結晶核剤の全添加量QA +QB (重量%)が(1)式で
定義された上限を超えると、紡出糸条の冷却効果は高い
ものの、製糸性が低下するとともに得られた短繊維ひい
ては不織布の機械的性能が劣り好ましくない。逆に、結
晶核剤の全添加量QA +QB (重量%)が(1)式で定
義された下限より低くなると、紡出糸条の冷却性が低下
して紡出糸条間に密着が発生し、目標とする不織布を得
ることが困難となる。また、高融点成分中への結晶核剤
の添加量QA (重量%)が、低融点成分中への結晶核剤
の添加量QB (重量%)よりも多くなると、高融点成分
の冷却性はさらに向上するが、低融点成分の冷却性が低
くなり、これによって紡出糸条間に密着が発生しやすく
なるため好ましくない。
As for the nucleating agent, the amount of the nucleating agent added to the high melting point component was QA (% by weight) and the amount of the nucleating agent added to the low melting point component was QB (% by weight). sometimes,
It is preferable that it is added so as to satisfy the formulas (1) and (2). [(ΔTA + ΔTB) / 100] −2 / 3 ≦ QA + QB ≦ [(ΔTA + ΔTB) / 100] +4 (1) QA ≦ QB (2) where ΔTA = melting point of high melting point component−high melting point component Crystallization temperature ≧ 35 ΔTB = melting point of low melting point component−crystallization temperature of low melting point component ≧
If the total amount of the crystal nucleating agent QA + QB (% by weight) exceeds the upper limit defined by the formula (1), the spun yarn has a high cooling effect, but the spinnability is reduced and the obtained short fibers are obtained. As a result, the mechanical performance of the nonwoven fabric is inferior, which is not preferable. Conversely, if the total amount of the crystal nucleating agent QA + QB (% by weight) is lower than the lower limit defined by the formula (1), the cooling property of the spun yarn is reduced, and adhesion between the spun yarns occurs. Then, it becomes difficult to obtain the target nonwoven fabric. Also, when the addition amount QA (% by weight) of the nucleating agent in the high melting point component is larger than the addition amount QB (% by weight) of the nucleating agent in the low melting point component, the cooling property of the high melting point component is reduced. Although it is further improved, the cooling property of the low-melting point component is lowered, and this is not preferable because adhesion between spun yarns is likely to occur.

【0021】ところで、(1)式において、ΔTは各成
分の融点と結晶化温度との差であるが、製糸工程におい
ては、このΔTが小さいほうが紡出糸条の冷却性は向上
する。本発明の重合体において、ΔTは通常35以上と
大きくなるが、結晶核剤を添加することにより効果的に
紡出糸条の冷却を促進することができるのである。
In the formula (1), ΔT is the difference between the melting point and the crystallization temperature of each component. In the spinning process, the smaller the ΔT, the better the cooling of the spun yarn. In the polymer of the present invention, ΔT is usually as large as 35 or more. However, the cooling of the spun yarn can be effectively promoted by adding a nucleating agent.

【0022】また、本発明において、高融点成分および
低融点成分の粘度は特に限定しないが、高融点成分の粘
度が低融点成分の粘度より低い方が好ましい。これは、
一般に熱可塑性樹脂の複合紡糸においては低粘度成分が
高粘度成分を被覆しようとする力が働くことに起因す
る。すなわち、本発明においては、生分解性能には劣る
ものの高結晶化度を有する高融点成分を低粘度にするこ
とにより、繊維表面における低融点成分セグメントの露
出比率を減少させ、紡出糸条の密着を防止し、さらに可
紡性、延伸性を良化させることができるのである。しか
し、あまりにも低粘度にすると、高融点成分が低融点成
分セグメントの大部分を被覆してしまう結果となるの
で、密着は良化できるものの生分解性能が劣ることとな
り、本発明の目的とするものではない。
In the present invention, the viscosities of the high melting point component and the low melting point component are not particularly limited, but the viscosity of the high melting point component is preferably lower than that of the low melting point component. this is,
Generally, in composite spinning of a thermoplastic resin, this is because a low-viscosity component acts to cover a high-viscosity component. That is, in the present invention, by lowering the viscosity of the high melting point component having a high degree of crystallinity, which is inferior in biodegradability, the exposure ratio of the low melting point component segment on the fiber surface is reduced, and the spun yarn is removed. Adhesion can be prevented and spinnability and stretchability can be improved. However, if the viscosity is too low, the high melting point component will cover most of the low melting point component segment, so that the adhesion can be improved but the biodegradation performance is inferior, and the object of the present invention. Not something.

【0023】従って、本発明で適用する重合体のメルト
フローレート値(以降、MFR値と記す)は、高融点成
分が20〜70g/10分であり、低融点成分が15〜
50g/10分であることが好ましい。但し、本発明に
おけるMFR値は、ASTM−D−1238(E)記載
の方法に準じて測定したものである。高融点成分のMF
R値が20g/10分未満および/または低融点成分の
MFR値が15g/10分未満であると、あまりにも高
粘度であるため、紡出糸条の細化がスムーズに行われず
操業性を損なう結果となり、しかも得られる繊維は太繊
度で均斉度に劣るものとなる。逆に、高融点成分のMF
R値が70g/10分および/または低融点成分のMF
R値が50g/10分を超えると、あまりにも低粘度で
あるため、複合断面が不安定となるばかりか、紡糸工程
において糸切れが発生し操業性を損なうとともに、得ら
れる不織布の機械的特性が劣る結果となる。これらの理
由により、高融点成分のMFR値は25〜65g/10
分、低融点成分のMFR値は18〜45g/10分であ
ることがさらに好ましい。
Accordingly, the melt flow rate value (hereinafter referred to as MFR value) of the polymer applied in the present invention is 20 to 70 g / 10 min for the high melting point component and 15 to 70 g / 10 min for the low melting point component.
It is preferably 50 g / 10 minutes. However, the MFR value in the present invention is measured according to the method described in ASTM-D-1238 (E). MF of high melting point component
When the R value is less than 20 g / 10 min and / or the MFR value of the low melting point component is less than 15 g / 10 min, the spun yarn is not smoothened smoothly because the viscosity is too high, resulting in poor operability. As a result, the resulting fibers have a large fineness and poor uniformity. Conversely, MF of high melting point component
MF with R value of 70 g / 10 min and / or low melting point component
If the R value exceeds 50 g / 10 minutes, the viscosity is so low that not only the composite cross section becomes unstable, but also yarn breakage occurs in the spinning process, impairing operability and mechanical properties of the obtained nonwoven fabric. Is inferior. For these reasons, the MFR value of the high melting point component is 25 to 65 g / 10
More preferably, the low melting point component has an MFR value of 18 to 45 g / 10 minutes.

【0024】次に、本発明に適用される複合短繊維の繊
維横断面形状について説明する。本発明の交互積層型複
合断面においては、それぞれ複数の高融点成分と低融点
成分とが繊維横断面において交互に積層され、しかも高
融点成分および低融点成分が繊維軸方向に連続するとと
もに繊維表面に露出していることが必要である。それぞ
れ複数の高融点成分と低融点成分とが積層されているこ
とにより、例えば、低融点成分が冷却性、可紡性および
延伸性に劣る重合体であっても、隣接する高融点成分に
より紡出糸条の冷却性、可紡性および延伸性を向上でき
るのである。また、高融点成分が生分解性能に劣る重合
体であっても隣接する低融点成分の生分解性能が優れる
ため、経時的に低融点成分が分解すると高融点成分が繊
度がごく小さい薄片として取り残される状態となり、不
織布としての生分解性能に優れる結果となるのである。
また、高融点成分および低融点成分のいずれもが繊維軸
方向に連続していることが、繊維横断面の安定性、製糸
性および繊維の機械的特性を高めるために必要である。
また、前記両成分のいずれもが繊維表面に露出している
ことが、紡出糸条の冷却性、可紡性、延伸性の向上およ
び生分解性能の促進、制御のために必要である。
Next, the fiber cross-sectional shape of the conjugate short fiber applied to the present invention will be described. In the alternate lamination type composite section of the present invention, a plurality of high-melting point components and low-melting point components are alternately laminated in the cross section of the fiber, and the high melting point component and the low melting point component are continuous in the fiber axis direction and the fiber surface. Must be exposed. By laminating a plurality of high-melting-point components and low-melting-point components, for example, even if the low-melting-point component is a polymer inferior in cooling, spinnability and stretchability, it is spun by an adjacent high-melting-point component. It is possible to improve the cooling property, spinnability and stretchability of the spun yarn. In addition, even if the high melting point component is a polymer with poor biodegradability, the biodegradability of the adjacent low melting point component is excellent, so if the low melting point component decomposes over time, the high melting point component is left as a flake with very small fineness. This results in excellent biodegradability as a nonwoven fabric.
Further, it is necessary that both the high melting point component and the low melting point component are continuous in the fiber axis direction in order to enhance the stability of the fiber cross section, the spinning property, and the mechanical properties of the fiber.
In addition, it is necessary that both of the two components are exposed on the fiber surface in order to improve the cooling property, spinnability and stretchability of the spun yarn and to promote and control the biodegradability.

【0025】本発明に適用される複合短繊維の繊維横断
面において、高融点成分と低融点成分との積層数の合計
が4以上であり、かつ複合短繊維の単糸繊度が1.5〜
10デニールであることが必要である。積層数の合計が
4未満であると、紡出糸条の冷却性、可紡性、延伸性お
よび分解性能に劣ることとなる。すなわち、本発明の交
互積層断面において、個々の層が大きいほど、紡出糸条
の冷却性、可紡性、延伸性および分解性能には劣る結果
となるのである。しかも、積層数の合計は、複合短繊維
の繊度にもとづいて制御する必要がある。すなわち、
1.5 d(デニール)等の細繊度の場合には、積層数の
合計が多過ぎると、製糸工程中において断面形状が不安
定になるばかりか糸切れが発生し易くなるので、好まし
くない。逆に10d 等の太繊度の場合には、積層数の合
計が少な過ぎると、紡出糸条の冷却性および延伸性に劣
り、さらに各成分の片が大きくなるのであるから分解性
能が劣る結果となる。この理由により、積層数の合計が
4〜16であるのがさらに好ましい。この積層片の大き
さは、個々に異っていても良い。また複合短繊維の単糸
繊度が1.5d 未満であると、紡糸口金内の樹脂流動の
不安定さ、製糸工程における糸切れの多発、生産量の低
下、繊維断面形状の不安定さ等が生じるので、好ましく
ない。逆に、10d を越えると、紡出糸条の冷却性に劣
るとともに分解性能にも劣る結果となる。この理由によ
り、単糸繊度が2d 〜8d であるのがさらに好ましい。
In the fiber cross section of the conjugate short fiber applied to the present invention, the total number of laminations of the high melting point component and the low melting point component is 4 or more, and the single fiber fineness of the conjugate short fiber is 1.5 to 1.5.
It must be 10 denier. If the total number of layers is less than 4, the spun yarn is inferior in cooling property, spinnability, stretchability and decomposition performance. That is, in the alternate lamination section of the present invention, the larger the individual layers, the worse the cooling property, spinnability, stretchability and decomposition performance of the spun yarn. In addition, the total number of layers needs to be controlled based on the fineness of the conjugate short fibers. That is,
In the case of a fineness of 1.5 d (denier) or the like, it is not preferable that the total number of laminations is too large because not only the cross-sectional shape becomes unstable but also yarn breakage easily occurs during the yarn making process. Conversely, in the case of a fineness of 10d or the like, if the total number of laminations is too small, the cooling and stretching properties of the spun yarn are inferior, and since the size of each component is large, the decomposition performance is inferior. Becomes For this reason, the total number of layers is more preferably 4 to 16. The size of the laminated pieces may be individually different. Further, when the single fiber fineness of the conjugate short fiber is less than 1.5 d, instability of resin flow in the spinneret, frequent occurrence of yarn breakage in the spinning process, decrease in production amount, instability of fiber cross-sectional shape, etc. It is not preferable because it occurs. On the other hand, if it exceeds 10d, the spun yarn is inferior in cooling performance and poor in decomposition performance. For this reason, it is more preferable that the single yarn fineness is 2d to 8d.

【0026】本発明に適用される複合繊維は、高融点成
分/低融点成分の複合比が1/3〜3/1(重量比)で
あることが好ましい。複合比がこの範囲を外れると紡出
糸条の冷却性、可紡性、延伸性および生分解性能の全て
を併せて満足することができず、さらに、繊維横断面形
状の不安定さを誘発するため好ましくない。例えば、高
融点成分/低融点成分の複合比が1/3を超えると、生
分解性能には優れるものの、紡出糸条の冷却性、開繊性
には劣る結果となる。逆に、高融点成分/低融点成分の
複合比が3/1を超えると、紡出糸条の冷却性、開繊性
には優れるものの、生分解性能には劣る結果となる。さ
らに例えば、高融点成分が生分解性能に劣る重合体であ
れば、低融点成分の複合比を上げることにより生分解速
度を促進させることができる。この理由により、さらに
好ましくは1/2〜2/1(重量比)が良い。
The composite fiber applied to the present invention preferably has a composite ratio of the high melting point component / low melting point component of 1/3 to 3/1 (weight ratio). If the compounding ratio is out of this range, the cooling properties, spinnability, stretchability, and biodegradability of the spun yarn cannot all be satisfied, and further, instability of the fiber cross-sectional shape is induced. Is not preferred. For example, when the composite ratio of the high-melting-point component / low-melting-point component exceeds 1/3, the resulting biodegradability is excellent, but the cooling property and the opening property of the spun yarn are poor. Conversely, when the composite ratio of the high melting point component / the low melting point component exceeds 3/1, the spun yarn is excellent in the cooling property and the spreadability, but is inferior in the biodegradability. Further, for example, if the high melting point component is a polymer having poor biodegradability, the biodegradation rate can be promoted by increasing the composite ratio of the low melting point component. For this reason, the ratio is more preferably 1/2 to 2/1 (weight ratio).

【0027】次に、本発明の生分解性不織布の製造方法
について説明する。本発明の生分解性不織布の製造は、
通常の複合紡糸装置を用いて行なうことができる。ま
ず、前述したところの生分解性を有する脂肪族ポリエス
テルすなわち高融点成分としてポリブチレンサクシネー
ト、低融点成分としてブチレンサクシネートの共重合量
比が70〜90モル%であるブチレンサクシネートを主
繰り返し単位とした共重合ポリエステルを好適材料とし
てこれを別々に溶融し、高融点成分/低融点成分の複合
比が1/3〜3/1(重量比)となるように個別に計量
した後、前述の両成分の各セグメント数、単糸繊度を満
足する交互積層型の繊維横断面構造を形成可能な複合紡
糸口金より紡出糸条を吐出する。
Next, a method for producing the biodegradable nonwoven fabric of the present invention will be described. Production of the biodegradable nonwoven fabric of the present invention,
It can be carried out using an ordinary composite spinning device. First, the above-mentioned aliphatic polyester having biodegradability, that is, polybutylene succinate as a high-melting component and butylene succinate having a copolymerization ratio of butylene succinate as a low-melting component of 70 to 90 mol% are mainly repeated. The copolymerized polyester as a unit is melted separately as a suitable material, and individually weighed so that the composite ratio of the high melting point component / low melting point component becomes 1/3 to 3/1 (weight ratio). The spun yarn is discharged from a composite spinneret capable of forming an alternately laminated fiber cross-sectional structure that satisfies the number of segments of each component and the fineness of a single yarn.

【0028】このような交互積層型複合繊維を得るため
の紡糸口金の模式図を図1に示す。ここで1は中間プレ
ートであり、高融点成分の導入孔2と低融点成分の導入
孔3とを有する。4は口金で、この口金4は、導入孔
2、3より吐出された高融点成分と低融点成分とを部位
5で合流させて張り合わせることで、複合流を形成させ
る。そして、この張り合わされた複合流は、静止型混練
素子6を配設した誘導孔7に導入され、交互積層型複合
流として吐出孔8より紡出される。得られる複合繊維に
おける繊維断面での積層数は、静止型混練素子6の数に
より決定される。なお、交互積層型複合繊維を得るため
の紡糸口金は、このような構成のみに限定されるもので
はない。
FIG. 1 is a schematic view of a spinneret for obtaining such an alternately laminated conjugate fiber. Here, reference numeral 1 denotes an intermediate plate having an introduction hole 2 for a high melting point component and an introduction hole 3 for a low melting point component. Reference numeral 4 denotes a base. The base 4 joins the high-melting-point component and the low-melting-point component discharged from the introduction holes 2 and 3 at the portion 5 to form a composite flow. Then, the bonded composite flow is introduced into the guide hole 7 in which the stationary kneading element 6 is provided, and is spun from the discharge hole 8 as an alternately laminated composite flow. The number of layers in the fiber cross section of the obtained conjugate fiber is determined by the number of stationary kneading elements 6. The spinneret for obtaining the alternately laminated conjugate fibers is not limited to such a configuration.

【0029】図2、3、4は、本発明にもとづく交互積
層型複合繊維の断面構造を例示するものである。ここ
で、Aは高融点成分を示し、Bは低融点成分を示す。
FIGS. 2, 3, and 4 illustrate the cross-sectional structure of the alternately laminated conjugate fiber according to the present invention. Here, A indicates a high melting point component, and B indicates a low melting point component.

【0030】紡出した繊維は、公知の冷却装置にて冷却
する。次いで、引き取りロールにて未延伸糸として捲き
取り、この未延伸糸を周速の異なる延伸ロール間で所定
の延伸倍率で延伸を行う。ここで、延伸工程における延
伸ロール個数および延伸温度は適宜選択すれば良い。た
とえば、太繊度で延伸する場合には、延伸ロール個数を
多くし、さらに熱延伸することも必要である。次いで、
得られた延伸糸をスタッファーボックスにて捲縮を付与
した後、所定長に切断して短繊維を得ることができる。
なお、上述したのは、二工程法であるが、一工程法、即
ち未延伸糸を一旦捲き取ることなく連続して延伸するい
わゆるスピンドロー法で短繊維を得ることもできる。
The spun fibers are cooled by a known cooling device. Next, the undrawn yarn is wound up by a take-up roll, and the undrawn yarn is drawn at a predetermined draw ratio between drawing rolls having different peripheral speeds. Here, the number of stretching rolls and the stretching temperature in the stretching step may be appropriately selected. For example, when stretching is performed with a large fineness, it is necessary to increase the number of stretching rolls and further perform thermal stretching. Then
After the obtained drawn yarn is crimped by a stuffer box, it can be cut into a predetermined length to obtain short fibers.
Although the above-described method is a two-step method, short fibers can also be obtained by a one-step method, that is, a so-called spin draw method in which undrawn yarn is continuously drawn without being wound up.

【0031】また、本発明においては、前述のように、
用いる重合体の中に結晶核剤を添加することが好まし
い。これにより、溶融紡糸の際に紡出糸条の冷却性を向
上させることができるのである。結晶核剤の添加は重合
工程あるいは溶融工程で行うが、その際、得られる糸の
機械的性能および均斉度を向上させるため、できる限り
均一分散させておくことが好ましい。
In the present invention, as described above,
It is preferable to add a nucleating agent to the polymer used. Thereby, the cooling property of the spun yarn during the melt spinning can be improved. The nucleating agent is added in the polymerization step or the melting step. In this case, it is preferable to disperse the yarn as uniformly as possible in order to improve the mechanical performance and uniformity of the obtained yarn.

【0032】次いで、得られた短繊維をカード機により
カーデイングして所定目付の短繊維ウエブを作成する。
このウエブは、構成繊維の配列度合いによって、カード
機の進行方向に配列したパラレルウエブ、パラレルウエ
ブがクロスレイドされたウエブ、ランダムに配列したラ
ンダムウエブあるいは両者の中程度に配列したセミラン
ダムウエブのいずれであっても良い。特に、衣料用途に
用いられるものには不織布としての強力において、縦/
横強力比が概ね1/1となるカードウエブを使用するこ
とが好ましい。
Next, the obtained short fibers are carded by a card machine to prepare a short fiber web having a predetermined basis weight.
Depending on the degree of arrangement of the constituent fibers, the web may be any one of a parallel web arranged in the traveling direction of the card machine, a web in which the parallel webs are cross-laid, a random web arranged randomly, or a semi-random web arranged in the middle of both. It may be. In particular, for those used for clothing, the strength of
It is preferable to use a card web having a lateral strength ratio of approximately 1/1.

【0033】そして、作成された短繊維ウエブに低融点
成分の融点以下の温度による部分的な熱圧接処理または
三次元的交絡処理を施すことによって、短繊維ウエブに
所定の形態を保持させ、本発明の生分解性短繊維不織布
を得ることができるのである。
The short fiber web thus formed is subjected to a partial heat-pressing treatment or a three-dimensional entanglement treatment at a temperature not higher than the melting point of the low-melting point component, thereby maintaining the short fiber web in a predetermined form. The biodegradable short-fiber nonwoven fabric of the present invention can be obtained.

【0034】部分的な熱圧接処理により短繊維ウエブの
形態を保持させる場合、加熱されたエンボスロールと表
面が平滑な金属ロールとを用いて繊維どうしの間に点状
融着区域を形成する方法、あるいは超音波融着装置を用
いパターンロール上で超音波による高周波を印加してパ
ターン部の繊維どうしの間に点状融着区域を形成する方
法が採用される。ここで、部分的な熱圧接とは、構成繊
維間において、低融点成分同士が熱圧接されることでウ
エブの形態を保持し、少なくとも高融点成分同士は融着
されず構成繊維同士の完全融着を防止し得るような熱圧
接をいい、このような部分的熱圧接とすることにより、
所定の不織布形態を保持しつつ生分解性能および柔軟性
を発揮させることができる。
In the case of maintaining the form of a short fiber web by a partial hot pressing treatment, a method of forming a point fusion zone between fibers using a heated embossing roll and a metal roll having a smooth surface. Alternatively, a method is employed in which a high-frequency ultrasonic wave is applied on a pattern roll using an ultrasonic fusion device to form a point fusion area between fibers in the pattern portion. The term "partial thermal pressure welding" as used herein means that the low-melting-point components are hot-pressed between the constituent fibers to maintain the form of the web, and at least the high-melting-point components are not fused and the constituent fibers are completely fused. It refers to thermal pressure welding that can prevent wearing, and by making such partial thermal welding,
Biodegradability and flexibility can be exhibited while maintaining a predetermined nonwoven fabric form.

【0035】加熱されたエンボスロールを用いる場合、
ロールの表面温度すなわち加工温度は低融点成分の融点
以下の温度としなければならない。低融点成分の融点を
超えると、熱圧接装置に重合体が固着し操業性を著しく
損なうばかりか、不織布の風合いが硬くなり柔軟な不織
布が得られない。さらに好ましくは、加工温度は、低融
点成分の融点を(Tm)℃としたとき、(Tm−25)
℃〜(Tm)℃の範囲にあることが良い。
When using a heated embossing roll,
The surface temperature of the roll, that is, the processing temperature, must be lower than the melting point of the low melting point component. If the melting point of the low melting point component is exceeded, not only the polymer adheres to the heat-welding apparatus and the operability is remarkably impaired, but also the texture of the nonwoven fabric becomes hard and a flexible nonwoven fabric cannot be obtained. More preferably, the processing temperature is (Tm-25) when the melting point of the low melting point component is (Tm) ° C.
C. to (Tm) .degree. C.

【0036】超音波融着装置を用いる場合、周波数が約
20kHzの通常ホーンと呼称される超音波発振器と、
円周上に点状または帯状に凸状突起部を具備するパター
ンロールとからなる装置が採用される。前記超音波発振
器の下部に前記パターンロールが配設され、短繊維ウエ
ブを超音波発振器とパターンロールとの間に通すことに
より部分的に熱融着することができる。このパターンロ
ールに配設される凸状突起部は1列あるいは複数列であ
ってもよく、また、その配設が複数列の場合には、並列
あるいは千鳥型のいずれの配列でも良い。
When using an ultrasonic welding device, an ultrasonic oscillator called a normal horn having a frequency of about 20 kHz,
An apparatus comprising a pattern roll having a point-like or band-like convex protrusion on the circumference is employed. The pattern roll is disposed below the ultrasonic oscillator, and the short fiber web can be partially heat-sealed by passing the short fiber web between the ultrasonic oscillator and the pattern roll. The number of convex protrusions provided on the pattern roll may be one or more, and when the number of the protrusions is plural, any of parallel or staggered arrangement may be used.

【0037】なお、部分的な熱圧接処理は、連続工程あ
るいは別工程のいずれで行っても良い。また、熱圧接処
理については、前述の加熱されたエンボスロールあるい
は超音波融着装置のいずれを選択しても良いが、不織布
の使用用途に応じ、特に柔軟性が要求される医療・衛生
材料や拭き取り布などの一般生活関連材としては、超音
波融着装置を用いると、優れた性能を有する不織布を得
ることができる。
The partial heat-pressing treatment may be performed in either a continuous step or a separate step. Further, for the heat-pressing treatment, any of the above-described heated embossing roll or ultrasonic fusing device may be selected, but depending on the use application of the nonwoven fabric, a medical / hygiene material or the like which particularly requires flexibility is used. When an ultrasonic fusion device is used as a general living related material such as a wiping cloth, a nonwoven fabric having excellent performance can be obtained.

【0038】一方、本発明において短繊維ウエブを三次
元的交絡処理により不織布化する場合、加圧柱水流ある
いはニードルを用いた公知の方法を適用することができ
る。なお、三次元的交絡処理による場合は加熱すること
がないため、より柔軟性に優れた不織布が得られること
となる。
On the other hand, in the present invention, when the short fiber web is formed into a nonwoven fabric by a three-dimensional entanglement treatment, a known method using a pressurized column water flow or a needle can be applied. In the case of the three-dimensional confounding treatment, since heating is not performed, a nonwoven fabric having more excellent flexibility can be obtained.

【0039】[0039]

【実施例】次に、実施例に基づき本発明を具体的に説明
するが、本発明は、これらの実施例によって何ら限定さ
れるものではない。
Next, the present invention will be described in detail with reference to examples, but the present invention is not limited to these examples.

【0040】以下の実施例において、各物性値の測定は
次の方法により行った。
In the following examples, each physical property value was measured by the following method.

【0041】・メルトフローレート(MFR)値(g/
10分);ASTM−D−1238(E)に記載の方法
に準じて温度190℃で測定した。
Melt flow rate (MFR) value (g /
10 minutes); measured at a temperature of 190 ° C. according to the method described in ASTM-D-1238 (E).

【0042】・融点(℃);パーキンエルマ社製示差走
査型熱量計DSC−2型を用い、試料重量を5mg、昇
温速度を20℃/分として測定して得た融解吸熱曲線の
極値を与える温度を融点(℃)とした。
Melting point (° C.): extreme value of a melting endothermic curve obtained by using a differential scanning calorimeter DSC-2 manufactured by Perkin Elmer, measuring the sample weight at 5 mg and the heating rate at 20 ° C./min. Was given as the melting point (° C.).

【0043】・結晶化温度(℃);パーキンエルマ社製
示差走査型熱量計DSC−2型を用い、試料重量を5m
g、降温速度を20℃/分として測定して得た固化発熱
曲線の極値を与える温度を結晶化温度(℃)とした。
Crystallization temperature (° C.): Using a differential scanning calorimeter DSC-2 manufactured by PerkinElmer, and weighing a sample of 5 m
g, the crystallization temperature (° C.) was defined as the temperature at which the extreme value of the solidification heat generation curve obtained by measuring the temperature drop rate at 20 ° C./min.

【0044】・目付け(g/m2 );標準状態の試料か
ら試料長が10cm、試料幅が10cmの試料片10点
を作成し平衡水分にした後、各試料片の重量(g)を秤
量し、得られた値の平均値を単位面積当たりに換算し、
目付け(g/m2 )とした。
Weight per unit area (g / m 2 ): Ten sample pieces each having a sample length of 10 cm and a sample width of 10 cm were prepared from the sample in the standard condition, and the water content was equilibrated. Then, the weight (g) of each sample piece was weighed. And convert the average of the obtained values to unit area,
The basis weight (g / m 2 ) was used.

【0045】・冷却性;紡出糸条を目視して下記の4段
階にて評価した。 ◎;密着糸が認められない。 ○;密着糸がわずかではあるが認められる。
Cooling property: The spun yarn was visually observed and evaluated according to the following four grades. A: No cohesive yarn is observed. ;: A slight amount of cohesive yarn was observed.

【0046】 △;密着糸があり、繊維が一部集束している。 ×;大部分が密着している。Δ: Cohesive yarn is present, and fibers are partially bundled. X: Most adhered.

【0047】・可紡性;下記の2段階にて評価した。 ○;糸切れが発生せず、紡糸操業性が良好である。 ×;糸切れが多発し、紡糸操業性が不良である。Spinnability: Evaluated by the following two steps. ;: No yarn breakage, and good spinning operability. X: Thread breakage occurs frequently and spinning operability is poor.

【0048】・延伸性;下記の2段階にて評価した。 ○;延伸毛羽が発生せず、延伸操業性が良好である。 ×;延伸毛羽が多発し、延伸が不可能である。Stretchability: Evaluated by the following two steps. ;: No stretching fuzz is generated, and stretching operability is good. X: Stretching fuzz occurs frequently and stretching is impossible.

【0049】・強力(kg/2.5cm幅);JIS−
L−1096Aに記載の方法に準じて測定した。すなわ
ち、試料長が10cm、試料幅が2.5cmの試料片1
0点を作成し、試料片毎に不織布の縦方向について、定
速伸張型引張り試験機(東洋ボールドウイン社製テンシ
ロンUTM−4−1−100)を用いて、引張り速度1
0cm/分で伸張し、得られた切断時荷重値の平均値を
強力(kg/5.0cm幅)とした。
・ Strong (kg / 2.5cm width); JIS-
It was measured according to the method described in L-1096A. That is, a sample piece 1 having a sample length of 10 cm and a sample width of 2.5 cm
A zero point was created, and a tensile speed of 1 was set for each sample piece in the longitudinal direction of the nonwoven fabric using a constant-speed extension-type tensile tester (Tensilon UTM-4-1-100 manufactured by Toyo Baldwin Co., Ltd.).
It was stretched at 0 cm / min, and the average value of the obtained load values at cutting was defined as the strength (kg / 5.0 cm width).

【0050】・生分解性能;不織布を土中に埋設し、6
ヶ月後に取り出し、不織布がその形態を保持していない
場合、あるいは、その形態を保持していても強力が埋設
前の強力初期値に対して50%以下に低下している場
合、生分解性能が良好(;○)であるとし、強力が埋設
前の強力初期値に対して50%を超える場合、生分解性
能が不良(;×)であると評価した。 実施例1 高融点成分成分として、MFR値が30g/10分で融
点114℃、結晶化温度75℃のポリブチレンサクシネ
ートを、低融点成分として、MFR値が20g/10分
で融点99℃、結晶化温度49℃のブチレンサクシネー
ト/エチレンサクシネート=85/15モル%の共重合
体を用いて、交互積層型複合繊維を溶融紡出した。
Biodegradability: embedded non-woven fabric in soil, 6
If the nonwoven fabric does not retain its shape after a month, or if the strength is reduced to 50% or less of the initial strength value before embedding even if it retains its shape, the biodegradation performance is The biodegradability was evaluated as poor (; x) if the strength was more than 50% of the initial strength before embedding. Example 1 As a high melting point component, polybutylene succinate having an MFR value of 30 g / 10 min and a melting point of 114 ° C. and a crystallization temperature of 75 ° C., and a low melting point component having an MFR value of 20 g / 10 min and a melting point of 99 ° C. Using a copolymer of butylene succinate / ethylene succinate = 85/15 mol% at a crystallization temperature of 49 ° C., alternately laminated conjugate fibers were melt-spun.

【0051】すなわち、前記2成分を、高融点成分/低
融点成分の複合比が1/1(重量比)となるように個別
に計量した後、個別のエクストルーダ型溶融押出し機を
用いて温度180℃で溶融し、図2に示すような繊維横
断面(丸形、積層数合計8)となる紡糸口金を用い、単
孔吐出量1.23g/分で交互積層型複合繊維を溶融紡
出した。この紡出糸条を公知の冷却装置にて冷却した
後、捲取りロールにて捲取り速度が800m/分となる
ように引き取り、未延伸糸として捲取った。そして、こ
の未延伸糸条を複数本引き揃え、公知の延伸機にて延伸
倍率が3.6倍となるように延伸し、スタッフアーボッ
クスにて捲縮を付与し、その後に51mmの長さにカッ
トして、単糸繊度4.0デニールの短繊維を得た。
That is, the two components were individually weighed so that the composite ratio of the high-melting component / low-melting component was 1/1 (weight ratio), and then the temperature was adjusted to 180 using a separate extruder-type melt extruder. Using a spinneret having a fiber cross section (round shape, total number of laminations: 8) as shown in FIG. 2, which was melted at 0 ° C., alternately laminated conjugate fibers were melt-spun at a single hole discharge rate of 1.23 g / min. . After cooling the spun yarn with a known cooling device, the yarn was taken up by a winding roll so as to have a winding speed of 800 m / min, and wound up as an undrawn yarn. Then, a plurality of the undrawn yarns are aligned and drawn by a known drawing machine so that the drawing ratio becomes 3.6 times, crimped by a stuffer box, and then 51 mm in length. Then, short fibers having a single yarn fineness of 4.0 denier were obtained.

【0052】次いで、得られた短繊維をカーディングし
てウエブを形成し、このウエブを熱圧接して、目付けが
30g/m2 の生分解性短繊維不織布を得た。熱圧接条
件としては、面積が0.6mm2 の彫刻模様で圧接点密
度が20点/cm2 、圧接面積率が15%で配設された
熱エンボスロールと、表面が平滑な金属ロールとを用
い、熱圧接温度を95℃とした。このときの製糸操業
性、得られた不織布の物性、生分解性能を、表1に示
す。
Next, the obtained short fibers were carded to form a web, and the web was hot pressed to obtain a biodegradable short fiber nonwoven fabric having a basis weight of 30 g / m 2 . The hot pressing conditions were as follows: a hot embossing roll provided with an engraving pattern having an area of 0.6 mm 2 , a pressing contact density of 20 points / cm 2 , and a pressing area ratio of 15%, and a metal roll having a smooth surface. And the hot pressing temperature was 95 ° C. Table 1 shows the spinning operability, physical properties and biodegradability of the obtained nonwoven fabric at this time.

【0053】[0053]

【表1】 [Table 1]

【0054】実施例2 図2に示すような丸形の繊維横断面であるが、その積層
数合計を4とした。また紡糸口金の単孔吐出量を0.4
0g/分とした。また延伸倍率3.1倍で延伸し、かつ
繊維のカット長さを38mmとした。そして、それ以外
は実施例1と同一条件として、交互積層型複合短繊維を
製造した。得られた短繊維は単糸繊度が1.5デニール
であった。そして、この短繊維を実施例1と同じ条件で
ウエブ化し、かつ熱圧接を施して、目付けが30g/m
2 の生分解性不織布を得た。このときの製糸操業性、得
られた不織布の物性、生分解性能を、表1に示す。 実施例3 図2に示すような丸形の繊維横断面で、その積層数合計
を16とした。また紡糸口金の単孔吐出量を3.58g
/分とした。また延伸倍率4.2倍で延伸し、かつ繊維
のカット長さを101mmとした。そして、それ以外は
実施例1と同一条件として、交互積層型複合短繊維を製
造した。得られた短繊維は単糸繊度が10.0デニール
であった。そして、この短繊維を実施例1と同じ条件で
ウエブ化し、かつ熱圧接を施して、目付けが30g/m
2 の生分解性不織布を得た。このときの製糸操業性、得
られた不織布の物性、生分解性能を、表1に示す。 実施例4 実施例1と同一条件で、単糸繊度4.0デニールの交互
積層型複合短繊維を得た。また実施例1と同一条件で不
織ウエブ化を行った。そして、この不織ウエブを超音波
熱融着機を用いて部分熱圧接し、生分解性短繊維不織布
を得た。超音波融着に際しては、面積が0.6mm2
彫刻模様で圧接点密度が20点/cm2、圧接面積率が
15%で配設されたロールを用い、超音波の周波数を1
9.15kHzとした。このときの製糸操業性、得られ
た不織布の物性、生分解性能を、表1に示す。 実施例5 実施例1と同一条件にて、単糸繊度4.0デニールの多
層型複合短繊維を得た。また実施例1と同一条件で不織
ウエブ化を行った。そして、この不織ウエブを高圧液体
流処理装置を用いて不織布化した。すなわち、この短繊
維ウエブを移動速度20m/分で移動する70メッシュ
の金網上に載置して加圧液体流処理を施した。この加圧
液体流処理は、孔径0.12mmの噴射孔が孔間隔0.
6mmで一列に配された加圧液体流処理装置を用い、短
繊維ウエブの上方50mmの位置から2段階に分けて柱
状水流を作用させた。第1段階の処理では、水流の圧力
を30kg/cm2 Gとし、第2段階の処理では圧力を
70kg/cm2 Gとした。なお、第2段階の処理は、
まずウエブの表側から4回施した後にウエブを反転し、
裏側からも4回施した。次いで、得られた不織布からマ
ングルロールを用いて過剰水分を除去し、その後に熱風
乾燥機を用いて温度90℃の条件で乾燥を行い、繊維が
緻密に三次元交絡した目付けが30g/m2 の生分解性
短繊維不織布を得た。このときの製糸操業性、得られた
不織布の物性、生分解性能を、表1に示す。 実施例6 実施例1と同一の高融点成分および低融点成分を用い、
図3に示すような繊維横断面(中空、積層数合計8)と
なる紡糸口金を用い、単孔吐出量を1.13g/分、高
融点成分/低融点成分の複合比を1/1(重量比)とし
て、交互積層型複合繊維を溶融紡出した。その他の紡糸
条件は実施例1と同じとした。この紡出糸条を公知の冷
却装置にて冷却した後、実施例1と同一条件で捲き取っ
て、未延伸糸を得た。そして、この未延伸糸条を複数本
引き揃え、公知の延伸機にて延伸倍率が3.3倍となる
ように延伸し、スタッフアーボックスにて捲縮を付与
し、その後に51mmの長さにカットして、単糸繊度
4.0デニールの短繊維を得た。
Example 2 A cross section of a round fiber as shown in FIG. 2 was used. In addition, the single hole discharge amount of the spinneret is set to 0.4
0 g / min. The film was drawn at a draw ratio of 3.1 times, and the cut length of the fiber was 38 mm. The other conditions were the same as in Example 1 to produce alternately laminated conjugate short fibers. The obtained short fibers had a single yarn fineness of 1.5 denier. Then, the short fiber was formed into a web under the same conditions as in Example 1 and subjected to hot pressing to give a basis weight of 30 g / m 2.
Thus, a biodegradable nonwoven fabric of No. 2 was obtained. Table 1 shows the spinning operability, physical properties and biodegradability of the obtained nonwoven fabric at this time. Example 3 The total number of laminations was 16 in a round fiber cross section as shown in FIG. In addition, the single hole discharge amount of the spinneret is 3.58 g.
/ Min. The film was drawn at a draw ratio of 4.2 times, and the cut length of the fiber was 101 mm. The other conditions were the same as in Example 1 to produce alternately laminated conjugate short fibers. The obtained short fibers had a single yarn fineness of 10.0 denier. Then, the short fiber was formed into a web under the same conditions as in Example 1 and subjected to hot pressing to give a basis weight of 30 g / m 2.
Thus, a biodegradable nonwoven fabric of No. 2 was obtained. Table 1 shows the spinning operability, physical properties and biodegradability of the obtained nonwoven fabric at this time. Example 4 Under the same conditions as in Example 1, an alternately laminated conjugate short fiber having a single yarn fineness of 4.0 denier was obtained. A nonwoven web was formed under the same conditions as in Example 1. Then, the nonwoven web was partially heat-pressed using an ultrasonic heat fusion machine to obtain a biodegradable short fiber nonwoven fabric. At the time of ultrasonic welding, a roll provided with an engraved pattern having an area of 0.6 mm 2 , a press contact density of 20 points / cm 2 , and a press contact area ratio of 15% was used.
The frequency was set to 9.15 kHz. Table 1 shows the spinning operability, physical properties and biodegradability of the obtained nonwoven fabric at this time. Example 5 Under the same conditions as in Example 1, a multi-layer conjugate short fiber having a single yarn fineness of 4.0 denier was obtained. A nonwoven web was formed under the same conditions as in Example 1. Then, the nonwoven web was formed into a nonwoven fabric using a high-pressure liquid flow treatment device. That is, the short fiber web was placed on a 70-mesh wire net moving at a moving speed of 20 m / min and subjected to a pressurized liquid flow treatment. In this pressurized liquid flow treatment, the injection holes having a hole diameter of 0.12 mm have a hole interval of 0.1 mm.
A columnar water flow was applied in two stages from a position 50 mm above the short fiber web using a pressurized liquid flow treatment device arranged in a line at 6 mm. In the first stage treatment, the pressure of the water stream was 30 kg / cm 2 G, and in the second stage treatment, the pressure was 70 kg / cm 2 G. The processing of the second stage is as follows.
First, after the web is applied four times from the front side, the web is inverted,
It was applied four times from the back side. Next, excess water was removed from the obtained nonwoven fabric using a mangle roll, and then dried using a hot air drier at a temperature of 90 ° C., and the fabric was densely and three-dimensionally entangled to a weight of 30 g / m 2. Was obtained. Table 1 shows the spinning operability, physical properties and biodegradability of the obtained nonwoven fabric at this time. Example 6 Using the same high melting point component and low melting point component as in Example 1,
Using a spinneret having a fiber cross section as shown in FIG. 3 (hollow, total number of laminations: 8), the single-hole discharge amount was 1.13 g / min, and the composite ratio of the high melting point component / low melting point component was 1/1 ( (Weight ratio), alternately laminated conjugate fibers were melt-spun. Other spinning conditions were the same as in Example 1. After cooling the spun yarn with a known cooling device, it was wound up under the same conditions as in Example 1 to obtain an undrawn yarn. Then, a plurality of the undrawn yarns are drawn and aligned, drawn by a known drawing machine so that the drawing ratio becomes 3.3 times, crimped by a stuffer box, and then length of 51 mm. Then, short fibers having a single yarn fineness of 4.0 denier were obtained.

【0055】次いで、得られた短繊維をカーディングし
てウエブを形成し、このウエブを熱圧接して、目付けが
30g/m2 の生分解性不織布を得た。熱圧接条件は実
施例1と同じとした。このときの製糸操業性、得られた
不織布の物性、生分解性能を、表1に示す。 実施例7 実施例1と同一の高融点成分および低融点成分を用い、
図4に示すような繊維横断面(三葉、積層数合計8)と
なる紡糸口金を用い、単孔吐出量を1.16g/分、高
融点成分/低融点成分の複合比を1/1(重量比)とし
て、交互積層型複合繊維を溶融紡出した。その他の紡糸
条件は実施例1と同じとした。この紡出糸条を公知の冷
却装置にて冷却した後、実施例1と同一条件で捲き取っ
て、未延伸糸を得た。そして、この未延伸糸条を複数本
引き揃え、公知の延伸機にて延伸倍率が3.4倍となる
ように延伸し、スタッフアーボックスにて捲縮を付与
し、その後に51mmの長さにカットして、単糸繊度
4.0デニールの短繊維を得た。
Next, the obtained short fibers were carded to form a web, and the web was hot-pressed to obtain a biodegradable nonwoven fabric having a basis weight of 30 g / m 2 . The conditions of the heat pressing were the same as in Example 1. Table 1 shows the spinning operability, physical properties and biodegradability of the obtained nonwoven fabric at this time. Example 7 Using the same high melting point component and low melting point component as in Example 1,
Using a spinneret having a fiber cross section as shown in FIG. 4 (three leaves, total number of laminations: 8), the single hole discharge amount was 1.16 g / min, and the composite ratio of high melting point component / low melting point component was 1/1. As the weight ratio, alternately laminated conjugate fibers were melt-spun. Other spinning conditions were the same as in Example 1. After cooling the spun yarn with a known cooling device, it was wound up under the same conditions as in Example 1 to obtain an undrawn yarn. Then, a plurality of the undrawn yarns are aligned, drawn by a known drawing machine so that the drawing ratio becomes 3.4 times, and crimped by a stuffer box. Then, short fibers having a single yarn fineness of 4.0 denier were obtained.

【0056】次いで、得られた短繊維をカーディングし
てウエブを形成し、このウエブを熱圧接して、目付けが
30g/m2 の生分解性不織布を得た。熱圧接条件は実
施例1と同じとした。このときの製糸操業性、得られた
不織布の物性、生分解性能を、表1に示す。 実施例8 高融点成分として、実施例1と同一のポリブチレンサク
シネートを、低融点成分として、MFR値が20g/1
0分で融点94℃、結晶化温度48℃のブチレンサクシ
ネート/ブチレンアジペート=80/20(モル%)の
共重合ポリエステルを用いて、交互積層型複合繊維より
なる不織布を製造した。
Next, the obtained short fibers were carded to form a web, and the web was hot-pressed to obtain a biodegradable nonwoven fabric having a basis weight of 30 g / m 2 . The conditions of the heat pressing were the same as in Example 1. Table 1 shows the spinning operability, physical properties and biodegradability of the obtained nonwoven fabric at this time. Example 8 The same polybutylene succinate as in Example 1 was used as the high melting point component, and the MFR value was 20 g / 1 as the low melting point component.
A nonwoven fabric composed of alternately laminated conjugate fibers was manufactured using a butylene succinate / butylene adipate = 80/20 (mol%) copolymer polyester having a melting point of 94 ° C. and a crystallization temperature of 48 ° C. in 0 minutes.

【0057】すなわち、前記2成分を、高融点成分/低
融点成分の複合比が1/1(重量比)となるようにして
紡糸温度170℃で溶融し、図2に示すような繊維横断
面(丸形、積層数合計8)となる紡糸口金を用い、単孔
吐出量1.13g/分で交互積層型複合繊維を溶融紡出
した。この紡出糸条を公知の冷却装置にて冷却した後、
実施例1と同一条件で捲き取って、未延伸糸を得た。そ
して、この未延伸糸条を複数本引き揃え、公知の延伸機
にて延伸倍率が3.3倍となるように延伸し、スタッフ
アーボックスにて捲縮を付与し、その後に51mmの長
さにカットして、単糸繊度4.0デニールの短繊維を得
た。
That is, the two components are melted at a spinning temperature of 170 ° C. so that the composite ratio of the high melting point component / low melting point component becomes 1/1 (weight ratio), and the fiber cross section shown in FIG. Using a spinneret having a round shape and a total of 8 laminated layers, alternately laminated conjugate fibers were melt-spun at a single hole discharge rate of 1.13 g / min. After cooling the spun yarn with a known cooling device,
It was wound up under the same conditions as in Example 1 to obtain an undrawn yarn. Then, a plurality of the undrawn yarns are drawn and aligned, drawn by a known drawing machine so that the drawing ratio becomes 3.3 times, crimped by a stuffer box, and then length of 51 mm. Then, short fibers having a single yarn fineness of 4.0 denier were obtained.

【0058】次いで、得られた短繊維をカーディングし
てウエブを形成し、このウエブを熱圧接して、目付けが
30g/m2 の生分解性不織布を得た。熱圧接条件は、
熱圧接温度を87℃とし、それ以外は実施例1と同じと
した。このときの製糸操業性、得られた不織布の物性、
生分解性能を、表1に示す。 実施例9 実施例1と同一の高融点成分および低融点成分を用い、
図2に示すような繊維横断面(丸形、積層数合計8)と
なる紡糸口金を用い、単孔吐出量を1.35g/分、高
融点成分/低融点成分の複合比を1/1(重量比)とし
て、交互積層型複合繊維を溶融紡出した。この紡出糸条
を公知の冷却装置にて冷却した後、速度が800m/分
の捲き取りロールと、速度が3040m/分の延伸ロー
ルとの間で延伸倍率3.8倍にて熱延伸を行い、すなわ
ち、いわゆるスピンドロー法で延伸糸を得た。そして、
この延伸糸条を複数本引き揃え、スタッフアーボックス
にて捲縮を付与し、その後に51mmの長さにカットし
て、単糸繊度4.0デニールの短繊維を得た。
Then, the obtained short fibers were carded to form a web, and the web was hot-pressed to obtain a biodegradable nonwoven fabric having a basis weight of 30 g / m 2 . The heat welding conditions are
The heat welding temperature was set to 87 ° C., and the other conditions were the same as in Example 1. The yarn operability at this time, the physical properties of the obtained nonwoven fabric,
Table 1 shows the biodegradation performance. Example 9 Using the same high melting point component and low melting point component as in Example 1,
Using a spinneret having a fiber cross section as shown in FIG. 2 (round shape, total number of laminations: 8), the single-hole discharge amount was 1.35 g / min, and the composite ratio of the high melting point component / low melting point component was 1/1. As the weight ratio, alternately laminated conjugate fibers were melt-spun. After the spun yarn is cooled by a known cooling device, hot drawing is performed at a draw ratio of 3.8 times between a winding roll having a speed of 800 m / min and a drawing roll having a speed of 3040 m / min. In other words, a drawn yarn was obtained by a so-called spin draw method. And
A plurality of the drawn yarns were aligned and crimped in a stuffer box, and then cut to a length of 51 mm to obtain short fibers having a single yarn fineness of 4.0 denier.

【0059】次いで、得られた短繊維をカーディングし
てウエブを形成し、このウエブを熱圧接して、目付けが
30g/m2 の生分解性不織布を得た。熱圧接条件は実
施例1と同じとした。このときの製糸操業性、得られた
不織布の物性、生分解性能を、表1に示す。 実施例10 高融点成分および低融点成分に結晶核剤を添加したこと
および延伸倍率を3.5倍としたこと以外は実施例1と
同様にして、交互積層型複合繊維よりなる短繊維不織布
を製造した。すなわち、結晶核剤として、平均粒径が
1.0μmのタルク/酸化チタン=1/1(重量比)を
20重量%含有させたマスターバッチを高融点成分重合
体および低融点成分重合体ベースであらかじめ作成し、
このマスターバッチとそれに対応する重合体とをそれぞ
れブレンドして、高融点成分に添加する結晶核剤が0.
2重量%、低融点成分に添加する結晶核剤が1.0重量
%となるようにして原料とした。このときの製糸操業
性、得られた不織布の物性、生分解性能を、表1に示
す。 比較例1 実施例1と同一条件で、単糸繊度4デニールの交互積層
型複合繊維からなる短繊維不織ウエブを形成した。そし
て、このウエブを低融点成分の融点以上の105℃の加
工温度で熱圧接して、目付けが30g/m2 の生分解性
不織布を得た。このときの製糸操業性を表2に示す。
Next, the obtained short fibers were carded to form a web, and the web was hot-pressed to obtain a biodegradable nonwoven fabric having a basis weight of 30 g / m 2 . The conditions of the heat pressing were the same as in Example 1. Table 1 shows the spinning operability, physical properties and biodegradability of the obtained nonwoven fabric at this time. Example 10 In the same manner as in Example 1 except that a nucleating agent was added to the high-melting point component and the low-melting point component and the stretching ratio was set to 3.5, a short-fiber nonwoven fabric composed of alternately laminated conjugate fibers was prepared. Manufactured. That is, a masterbatch containing 20% by weight of talc / titanium oxide = 1/1 (weight ratio) having an average particle size of 1.0 μm as a crystal nucleating agent is based on a high melting point polymer and a low melting point polymer. Create in advance,
The masterbatch and the corresponding polymer are blended, and the nucleating agent to be added to the high melting point component is 0.1%.
The raw material was prepared such that the nucleating agent added to the low melting point component was 2% by weight and the nucleating agent was 1.0% by weight. Table 1 shows the spinning operability, physical properties and biodegradability of the obtained nonwoven fabric at this time. Comparative Example 1 Under the same conditions as in Example 1, a short-fiber nonwoven web composed of alternately laminated conjugate fibers having a single-fiber fineness of 4 denier was formed. Then, this web was hot-pressed at a processing temperature of 105 ° C. which was equal to or higher than the melting point of the low melting point component, to obtain a biodegradable nonwoven fabric having a basis weight of 30 g / m 2 . Table 2 shows the yarn operability at this time.

【0060】[0060]

【表2】 [Table 2]

【0061】比較例2 高融点成分として、実施例1と同一のポリブチレンサク
シネートを、低融点成分として、MFR値が20g/1
0分で融点84℃、結晶化温度22℃のブチレンサクシ
ネート/ブチレンアジペート=60/40(モル%)の
共重合ポリエステルを用いた。すなわち、ブチレンサク
シネート/ブチレンアジペートの共重合モル比を、本発
明における好ましい範囲から外れたものとした。
Comparative Example 2 The same polybutylene succinate as in Example 1 was used as the high melting point component, and the MFR value was 20 g / l as the low melting point component.
A copolymerized polyester of butylene succinate / butylene adipate = 60/40 (mol%) having a melting point of 84 ° C. and a crystallization temperature of 22 ° C. in 0 minutes was used. That is, the copolymerization molar ratio of butylene succinate / butylene adipate was out of the preferred range in the present invention.

【0062】そして、高融点成分/低融点成分の複合比
を1/1(重量比)として紡糸温度160℃で溶融し、
図2に示すような繊維横断面(丸形、積層数合計8)と
なる紡糸口金を用い、単孔吐出量1.23g/分で交互
積層型複合繊維を溶融紡出した。この紡出糸条を公知の
冷却装置にて冷却した後、捲取りロールにて捲取り速度
が800m/分となるように引き取り、未延伸糸として
捲取った。このときの製糸操業性を表2に示す。 比較例3 実施例1と同一の高融点成分および低融点成分を用い
た。しかし、紡糸口金は、本発明とは関係のない繊維断
面が丸い芯鞘型となるものを用いた。そして、高融点成
分が芯部となるとともに、低融点成分が鞘部になるよう
にして、両者の複合比を1/1(重量比)とし、単孔吐
出量1.23g/分で芯鞘型の複合繊維を溶融紡出し
た。その他の紡糸条件は比較例1と同じとした。
Then, the mixture was melted at a spinning temperature of 160 ° C. by setting the composite ratio of the high melting point component / low melting point component to 1/1 (weight ratio),
Using a spinneret having a fiber cross section as shown in FIG. 2 (round shape, total number of laminations: 8), alternately laminated conjugate fibers were melt-spun at a single hole discharge rate of 1.23 g / min. After cooling the spun yarn with a known cooling device, the yarn was taken up by a winding roll so as to have a winding speed of 800 m / min, and wound up as an undrawn yarn. Table 2 shows the yarn operability at this time. Comparative Example 3 The same high melting point component and low melting point component as in Example 1 were used. However, the spinneret used had a core-sheath type having a round fiber cross-section unrelated to the present invention. Then, the high melting point component becomes the core portion and the low melting point component becomes the sheath portion, the composite ratio of both is set to 1/1 (weight ratio), and the core-sheath is discharged at a single hole discharge rate of 1.23 g / min. The composite fibers of the mold were melt spun. Other spinning conditions were the same as in Comparative Example 1.

【0063】この紡出糸条を公知の冷却装置にて冷却し
た後、捲取りロールにて捲取り速度が800m/分とな
るように引き取り、未延伸糸として捲取った。このとき
の製糸操業性を表2に示す。 比較例4 実施例1と同一の高融点成分および低融点成分を用い
た。しかし、紡糸口金は、本発明とは関係のない繊維断
面が並列型(丸形、積層数合計2)となるものを用い
た。そして、両者の複合比を1/1(重量比)とし、単
孔吐出量1.23g/分で並列型複合繊維を溶融紡出し
た。その他の紡糸条件は比較例1と同じとした。
After the spun yarn was cooled by a known cooling device, it was taken up by a take-up roll at a winding speed of 800 m / min and wound up as an undrawn yarn. Table 2 shows the yarn operability at this time. Comparative Example 4 The same high melting point component and low melting point component as in Example 1 were used. However, the spinneret used was such that the fiber cross-section unrelated to the present invention had a parallel type (round shape, total number of laminations: 2). Then, the composite ratio of both was set to 1/1 (weight ratio), and the parallel composite fibers were melt-spun at a single hole discharge rate of 1.23 g / min. Other spinning conditions were the same as in Comparative Example 1.

【0064】この紡出糸条を公知の冷却装置にて冷却し
た後、捲取りロールにて捲取り速度が800m/分とな
るように引き取り、未延伸糸として捲取った。このとき
の製糸操業性を表2に示す。 比較例5 実施例1の高融点成分のみを用い、繊維断面が丸形にな
る紡糸口金を用いて、単相の不織布を製造した。すなわ
ち、この高融点成分を180℃で溶融し、単孔吐出量
1.30g/分の条件下で、単相型繊維を溶融紡出し
た。
After the spun yarn was cooled by a known cooling device, it was taken up by a take-up roll at a winding speed of 800 m / min and wound up as an undrawn yarn. Table 2 shows the yarn operability at this time. Comparative Example 5 A single-phase nonwoven fabric was produced using only the high melting point component of Example 1 and a spinneret having a round fiber cross section. That is, the high melting point component was melted at 180 ° C., and a single-phase fiber was melt-spun under the condition of a single hole discharge rate of 1.30 g / min.

【0065】この紡出糸条を公知の冷却装置にて冷却し
た後、捲取りロールにて捲取り速度が800m/分とな
るように引き取り、未延伸糸として捲取った。そして、
この未延伸糸条を複数本引き揃え、公知の延伸機にて延
伸倍率が3.8倍となるように延伸し、スタッファーボ
ックスにて捲縮を付与し、その後に51mmの長さにカ
ットして、単糸繊度4.0デニールの短繊維を得た。
After the spun yarn was cooled by a known cooling device, it was taken up by a take-up roll at a winding speed of 800 m / min and wound up as an undrawn yarn. And
A plurality of these undrawn yarns are drawn and aligned, drawn by a known drawing machine so that the draw ratio becomes 3.8 times, crimped in a stuffer box, and then cut into a length of 51 mm. As a result, short fibers having a single yarn fineness of 4.0 denier were obtained.

【0066】次いで、得られた短繊維をカーディングし
てウエブを形成し、このウエブを熱圧接して、目付けが
30g/m2 の生分解性不織布を得た。熱圧接条件は、
熱圧接温度を107℃とし、それ以外は実施例1と同じ
とした。このときの製糸操業性、得られた不織布の物
性、生分解性能を、表1に示す。 比較例6 実施例1の低融点成分のみを用い、繊維断面が丸形にな
る紡糸口金を用いて、単相の不織布を製造した。すなわ
ち、この高融点成分を170℃で溶融し、単孔吐出量
1.13g/分の条件下で、単相型繊維を溶融紡出し
た。
Then, the obtained short fibers were carded to form a web, and the web was hot-pressed to obtain a biodegradable nonwoven fabric having a basis weight of 30 g / m 2 . The heat welding conditions are
The heat welding temperature was 107 ° C., and the other conditions were the same as in Example 1. Table 1 shows the spinning operability, physical properties and biodegradability of the obtained nonwoven fabric at this time. Comparative Example 6 A single-phase nonwoven fabric was produced using only the low melting point component of Example 1 and a spinneret having a round fiber cross section. That is, the high melting point component was melted at 170 ° C., and a single-phase fiber was melt-spun under the condition of a single hole discharge rate of 1.13 g / min.

【0067】この紡出糸条を公知の冷却装置にて冷却し
た後、捲取りロールにて捲取り速度が800m/分とな
るように引き取り、未延伸糸として捲取った。このとき
の製糸操業性を表2に示す。
After the spun yarn was cooled by a known cooling device, it was taken up by a take-up roll at a winding speed of 800 m / min and wound up as an undrawn yarn. Table 2 shows the yarn operability at this time.

【0068】上述の表1より明らかなように、実施例1
で得られた不織布は、本発明にもとづく交互積層型複合
繊維を適用しているので、紡出糸条の冷却性、可紡性、
延伸性に優れ、また不織布の機械的性能に優れたもので
あった。また、この不織布を6か月間にわたって土中に
埋設し、その後に掘り出して観察したところ、不織布と
しての形態を保持しておらず、良好な生分解性を有する
ことが認められた。
As is clear from Table 1 above, Example 1
Since the nonwoven fabric obtained in the above uses the alternately laminated conjugate fiber based on the present invention, the cooling property of the spun yarn, spinnability,
The stretchability was excellent, and the mechanical performance of the nonwoven fabric was excellent. Further, when this nonwoven fabric was buried in the soil for 6 months, excavated and observed thereafter, it was confirmed that the nonwoven fabric did not retain its form and had good biodegradability.

【0069】実施例2では、実施例1のものよりも積層
数が少ないが繊度を小さくした交互積層複合型繊維を適
用しているので、実施例1の場合と同様に、紡出糸条の
冷却性、可紡性、延伸性に優れ、また不織布の機械的性
能に優れたものであった。また、不織布の生分解性も良
好であった。
In Example 2, an alternately laminated conjugate fiber having a smaller number of layers but a smaller fineness than that of Example 1 is used. It was excellent in cooling property, spinnability, stretchability, and mechanical properties of the nonwoven fabric. The biodegradability of the nonwoven fabric was also good.

【0070】実施例3では、実施例1のものよりも太繊
度であるが、積層数を多くした交互積層複合型繊維を適
用しているので、実施例1の場合と同様に、紡出糸条の
冷却性および延伸性に優れていた。不織布の機械的性能
は実施例1の場合よりもやや劣るものの、生分解性能に
ついては良好な結果が得られた。
In Example 3, although the fineness is larger than that in Example 1, the spun yarn is used in the same manner as in Example 1 since the alternately laminated conjugate fiber having a larger number of layers is applied. The cooling and stretching properties of the strip were excellent. Although the mechanical performance of the nonwoven fabric was slightly inferior to that of Example 1, good results were obtained for the biodegradation performance.

【0071】実施例4では、実施例1で得られたのと同
じウエブを超音波融着機を用いて一体化しているので、
機械的性能にやや劣るものの、実施例1の場合よりも柔
軟性に優れた不織布が得られた。また良好な生分解性を
有することが認められた。
In the fourth embodiment, the same web obtained in the first embodiment is integrated by using an ultrasonic welding machine.
Although the mechanical performance was slightly inferior, a nonwoven fabric having better flexibility than that of Example 1 was obtained. In addition, it was confirmed that it had good biodegradability.

【0072】実施例5では、実施例1で得られたのと同
じウエブを高圧液体流処理にて一体化しているので、機
械的性能にやや劣るものの、実施例1の場合よりも柔軟
性に優れた不織布が得られた。また良好な生分解性を有
することが認められた。
In the fifth embodiment, the same web as that obtained in the first embodiment is integrated by high-pressure liquid flow treatment, so that the mechanical performance is slightly inferior, but the flexibility is higher than that in the first embodiment. An excellent non-woven fabric was obtained. In addition, it was confirmed that it had good biodegradability.

【0073】実施例6では、実施例1のものと同じ高融
点成分および低融点成分を用い、かつ中空の交互積層断
面よりなる複合繊維を適用しているので、実施例1のも
のと同一繊度でありながら、さらに良好な生分解性を有
することが認められた。すなわち、得られた不織布を6
か月間にわたって土中に埋設し、その後に掘り出して観
察したところ、不織布としての形態を保持しておらず、
良好な生分解性を有することが認められた。
In Example 6, the same high melting point component and low melting point component as those in Example 1 were used, and a composite fiber having a hollow alternately laminated cross section was used. However, it was confirmed that the composition had better biodegradability. That is, the obtained nonwoven fabric is
When buried in the soil for months and dug out and observed, it did not retain its form as a nonwoven fabric,
Good biodegradability was observed.

【0074】実施例7では、実施例1のものと同じ高融
点成分および低融点成分を用い、かつ三葉の交互積層断
面よりなる複合繊維を適用しているので、実施例1のも
のと同一繊度でありながら、さらに良好な生分解性を有
することが認められた。
In Example 7, the same high melting point component and low melting point component as those of Example 1 were used, and a composite fiber having an alternately laminated cross section of three leaves was applied. It was recognized that it had a better biodegradability despite its fineness.

【0075】実施例8では、低融点成分において実施例
1の場合よりも共重合比が大きいが、その共重合量比は
本発明における好適な範囲内であり、また紡糸温度を低
下させ、交互積層型複合繊維を適用しているので、紡出
糸条の冷却性および延伸性は良好であった。得られた不
織布は、実施例1のものよりもやや機械的性能に劣るも
のの、さらに良好な生分解性を有することが認められ
た。
In Example 8, the copolymerization ratio of the low melting point component was higher than that of Example 1, but the copolymerization ratio was within the preferred range in the present invention. Since the laminated conjugate fiber was used, the cooling and stretching properties of the spun yarn were good. Although the obtained nonwoven fabric was slightly inferior in mechanical performance to that of Example 1, it was recognized that it had better biodegradability.

【0076】実施例9では、実施例1のものと同じ高融
点成分および低融点成分を用い、かつ未延伸糸としてい
ったん巻き取ることなく延伸を行う、いわゆるスピンド
ロー方式を採用したが、本発明にもとづく交互積層型複
合繊維を適用しているので、紡出糸条の冷却性および延
伸性が良好であり、また得られた不織布は機械的性能に
優れるとともに良好な生分解性を有することが認められ
た。
In the ninth embodiment, a so-called spin draw method is adopted, in which the same high-melting point component and the low-melting point component as those in the first embodiment are used, and the drawing is performed without winding once as an undrawn yarn. The spun yarn has good cooling and drawing properties, and the obtained nonwoven fabric has excellent mechanical performance and good biodegradability. Admitted.

【0077】実施例10では、重合体中に結晶核剤が入
っているので、紡出糸条の冷却性、可紡性、延伸性が、
実施例1よりもさらに良好であった。またこの不織布
は、機械的性能および生分解性にも優れるものであっ
た。
In Example 10, since the crystal nucleating agent is contained in the polymer, the cooling property, spinnability and stretchability of the spun yarn are as follows.
It was even better than in Example 1. This nonwoven fabric was also excellent in mechanical performance and biodegradability.

【0078】これに対し比較例1では、実施例1のもの
と同じウエブを、低融点成分の融点よりも高温の105
℃で熱融着させたので、エンボスロールにウエブが固着
して操業性を著しく損ない、目標とする不織布が得られ
なかった。
On the other hand, in Comparative Example 1, the same web as that of Example 1 was prepared by using 105 ° C. which was higher than the melting point of the low melting point component.
Since the heat-sealing was performed at ℃, the web adhered to the embossing roll, significantly impairing the operability, and the target nonwoven fabric could not be obtained.

【0079】比較例2では、低融点成分の共重合モル比
を本発明における好ましい範囲を超えたものとしたた
め、この低融点成分の融点および結晶化温度があまりに
も低く、本発明にもとづく交互積層型複合繊維としたに
もかかわらず、紡出糸条が互いに密着し、延伸性が悪化
して、目的とした不織布が得られなかった。
In Comparative Example 2, since the copolymerization molar ratio of the low melting point component was beyond the preferred range in the present invention, the melting point and the crystallization temperature of the low melting point component were too low, and the alternate lamination according to the present invention was carried out. The spun yarns adhered to each other in spite of using the conjugated fiber, and the stretchability was deteriorated, so that the intended nonwoven fabric could not be obtained.

【0080】比較例3では、実施例1の場合と同じ高融
点成分および低融点成分を用いたものの、繊維断面が本
発明とは関係のない芯鞘型であったので、また冷却性に
劣る低融点成分を鞘側に配設したため、紡出糸条の冷却
性、可紡性、延伸性のいずれもが不良であり、目的とす
る不織布が得られなかった。
In Comparative Example 3, although the same high-melting-point component and low-melting-point component as in Example 1 were used, since the fiber cross-section was a core-sheath type irrelevant to the present invention, the cooling property was poor. Since the low melting point component was disposed on the sheath side, the cooling property, spinnability and stretchability of the spun yarn were all poor, and the desired nonwoven fabric could not be obtained.

【0081】比較例4は、実施例1の場合と同じ高融点
成分および低融点成分を用いたものの、繊維断面が本発
明の範囲外である並列型(丸形、積層数合計2)であっ
たので、紡出糸条の冷却性、可紡性、延伸性のいずれも
不良であり、目的とする不織布が得られなかった。
Comparative Example 4 uses the same high-melting-point component and low-melting-point component as in Example 1, but has a fiber cross section outside the scope of the present invention (round type, total number of laminations: 2). Therefore, the cooling property, spinnability, and stretchability of the spun yarn were all poor, and the desired nonwoven fabric could not be obtained.

【0082】比較例5は、実施例1の高融点成分と同じ
成分を単体で用いただけのものであり、その繊維断面が
本発明とは関係のない単相型であったため、紡出糸条の
冷却性、可紡性、延伸性は良好であったものの、生分解
性が著しく劣り、目的とする不織布が得られなかった。
In Comparative Example 5, the same component as the high melting point component of Example 1 was used alone, and the fiber cross section was a single-phase type unrelated to the present invention. Although the cooling property, spinnability and stretchability of the sample were good, the biodegradability was remarkably inferior, and the desired nonwoven fabric could not be obtained.

【0083】比較例6は、実施例1の低融点成分と同じ
成分を単体で用いただけのものであり、その繊維断面が
本発明とは関係のない単相型であったため、紡出糸条の
冷却性、可紡性、延伸性に劣り、目的とする不織布が得
られなかった。
In Comparative Example 6, the same component as the low melting point component of Example 1 was used alone, and the fiber cross section was a single-phase type unrelated to the present invention. Was inferior in cooling property, spinnability and stretchability, and the desired nonwoven fabric could not be obtained.

【0084】[0084]

【発明の効果】本発明によれば、所要の生分解性能を達
成可能であるとともに不織布の機械的特性、紡出糸条の
冷却性、可紡性、延伸性に優れ、かつ熱接着機能を有す
る生分解性不織布およびこれらの製造方法を提供するこ
とができる。
According to the present invention, the required biodegradability can be achieved, and the mechanical properties of the nonwoven fabric, the cooling property of the spun yarn, the spinnability, the stretchability, and the heat bonding function can be improved. The present invention can provide a biodegradable nonwoven fabric having the same and a production method thereof.

【0085】本発明の生分解性不織布は、おむつや生理
用品その他の医療・衛生材料素材、使い捨ておしぼりや
ワイピングクロスなどの拭き取り布、使い捨て包装材、
家庭・業務用の生ごみ捕集用袋その他廃棄物処理材など
の生活関連用素材、あるいは、農業・園芸・土木用に代
表される産業用資材の各素材として好適である。しかも
この不織布は、生分解性を有し、その使用後に完全に分
解消失するため、自然環境保護の観点からも有益であ
り、あるいは、例えば堆肥化して肥料とするなど再利用
を図ることもできるため、資源の再利用の観点からも有
益である。
The biodegradable nonwoven fabric of the present invention includes diapers, sanitary products and other medical and sanitary materials, wipes such as disposable towels and wiping cloths, disposable packaging materials,
It is suitable as a living-related material such as a household / business bag for collecting garbage and other waste treatment materials, or as an industrial material represented by agriculture, horticulture and civil engineering. Moreover, this nonwoven fabric has biodegradability and is completely decomposed and disappears after its use, which is beneficial from the viewpoint of protecting the natural environment, or it can be reused, for example, by composting it into fertilizer. Therefore, it is also useful from the viewpoint of resource reuse.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明にもとづく交互積層型複合繊維を得るた
めの紡糸口金の一例の模式図である。
FIG. 1 is a schematic view of an example of a spinneret for obtaining an alternately laminated conjugate fiber according to the present invention.

【図2】本発明にもとづく交互積層型複合繊維の一例の
繊維横断面のモデル図である。
FIG. 2 is a model diagram of a fiber cross section of an example of an alternately laminated conjugate fiber according to the present invention.

【図3】本発明にもとづく交互積層型複合繊維の他の例
の繊維横断面のモデル図である。
FIG. 3 is a model diagram of a fiber cross section of another example of the alternately laminated conjugate fiber according to the present invention.

【図4】本発明にもとづく交互積層型複合繊維のさらに
他の例の繊維横断面のモデル図である。
FIG. 4 is a model diagram of a fiber cross section of still another example of the alternately laminated conjugate fiber according to the present invention.

【符号の説明】[Explanation of symbols]

A 高融点成分 B 低融点成分 A High melting point component B Low melting point component

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 生分解性を有する第1の脂肪族ポリエス
テルからなる高融点成分とこの高融点成分よりも融点の
低い生分解性を有する第2の脂肪族ポリエステルからな
る低融点成分とで形成される複合短繊維からなり、この
複合短繊維は、それぞれ複数の高融点成分と低融点成分
とが繊維横断面において交互に積層され、しかも高融点
成分および低融点成分が繊維軸方向に連続するとともに
繊維表面に露出していることを特徴とする生分解性短繊
維不織布。
1. A high melting point component comprising a biodegradable first aliphatic polyester and a low melting point component comprising a biodegradable second aliphatic polyester having a lower melting point than the high melting point component. This composite staple fiber has a plurality of high-melting point components and low-melting point components alternately laminated in the fiber cross section, and the high-melting point component and the low-melting point component are continuous in the fiber axis direction. And a biodegradable short-fiber nonwoven fabric, which is exposed on the fiber surface.
【請求項2】 高融点成分がポリブチレンサクシネート
であり、低融点成分が、ブチレンサクシネートを主繰り
返し単位とし、かつブチレンサクシネートの共重合量比
が70〜90モル%の共重合ポリエステルであることを
特徴とする請求項1記載の生分解性短繊維不織布。
2. A high-melting-point component is polybutylene succinate, and a low-melting-point component is a copolyester having butylene succinate as a main repeating unit and a copolymerization ratio of butylene succinate of 70 to 90 mol%. The biodegradable short fiber nonwoven fabric according to claim 1, wherein
【請求項3】 低融点成分が、ブチレンサクシネートに
エチレンサクシネートあるいはブチレンアジペートを共
重合せしめた共重合ポリエステルであることを特徴とす
る請求項1または2記載の生分解性短繊維不織布。
3. The non-woven biodegradable nonwoven fabric according to claim 1, wherein the low melting point component is a copolymerized polyester obtained by copolymerizing ethylene succinate or butylene adipate with butylene succinate.
【請求項4】 高融点成分と低融点成分との積層数の合
計が4以上であり、かつ複合繊維の単糸繊度が1.5〜
10デニールであることを特徴とする請求項1から3ま
でのいずれか1項記載の生分解性短繊維不織布。
4. The total number of layers of the high melting point component and the low melting point component is 4 or more, and the single fiber fineness of the composite fiber is 1.5 to 1.5.
The biodegradable short-fiber nonwoven fabric according to any one of claims 1 to 3, wherein the nonwoven fabric is 10 denier.
【請求項5】 高融点成分/低融点成分の複合比が1/
3〜3/1(重量比)であることを特徴とする請求項1
から4までのいずれか1項記載の生分解性短繊維不織
布。
5. The composite ratio of a high melting point component / low melting point component is 1 /
2. The weight ratio is 3 to 3/1 (weight ratio).
5. The non-woven biodegradable nonwoven fabric according to any one of items 1 to 4.
【請求項6】 低融点成分および高融点成分のうち、少
なくとも低融点成分に中に結晶核剤が添加されているこ
とを特徴とする請求項1から5までのいずれか1項に記
載の生分解性短繊維不織布。
6. The raw material according to claim 1, wherein a nucleating agent is added to at least the low melting point component of the low melting point component and the high melting point component. Degradable short fiber non-woven fabric.
【請求項7】 生分解性を有する第1の脂肪族ポリエス
テルからなる高融点成分とこの高融点成分よりも融点の
低い生分解性を有する第2の脂肪族ポリエステルからな
る低融点成分とを用いて、それぞれ複数の高融点成分と
低融点成分とが繊維横断面において交互に積層され、し
かも高融点成分および低融点成分が繊維軸方向に連続す
るとともに繊維表面に露出する交互積層型複合繊維を溶
融紡出し、次いで紡出された糸条を延伸し、得られた延
伸糸条に機械捲縮を付与した後に所定長に切断して短繊
維となし、この短繊維をカーディングすることにより短
繊維ウエブを形成し、この短繊維ウエブを所定の形態に
保持させることを特徴とする生分解性短繊維不織布の製
造方法。
7. A high melting point component comprising a first aliphatic polyester having biodegradability and a low melting point component comprising a second aliphatic polyester having a biodegradability having a lower melting point than the high melting point component. A plurality of high-melting-point components and low-melting-point components are alternately laminated on the fiber cross section, and the high-melting-point component and the low-melting-point component are continuous in the fiber axis direction and are exposed to the fiber surface. Melt spinning, then stretching the spun yarn, applying mechanical crimp to the obtained stretched yarn, cutting it into a predetermined length to form short fibers, and carding the short fibers to shorten them. A method for producing a biodegradable short fiber nonwoven fabric, comprising forming a fiber web and holding the short fiber web in a predetermined form.
【請求項8】 短繊維ウエブに、低融点成分の融点以下
の温度でエンボスロールにて部分的な熱圧接処理を施し
て、所定の形態を保持させることを特徴とする請求項7
記載の生分解性短繊維不織布の製造方法。
8. The short fiber web is subjected to a partial heat pressing treatment with an embossing roll at a temperature not higher than the melting point of the low melting point component to maintain a predetermined form.
A method for producing the biodegradable short-fiber nonwoven fabric according to the above.
【請求項9】 短繊維ウエブに超音波融着処理を施して
所定の形態を保持させることを特徴とする請求項7記載
の生分解性短繊維不織布の製造方法。
9. The method for producing a biodegradable short-fiber nonwoven fabric according to claim 7, wherein the short fiber web is subjected to an ultrasonic fusion treatment to maintain a predetermined form.
【請求項10】 短繊維ウエブに三次元的交絡処理を施
して所定の形態を保持させることを特徴とする請求項7
記載の生分解性短繊維不織布の製造方法。
10. The short fiber web is subjected to a three-dimensional entanglement treatment to maintain a predetermined form.
A method for producing the biodegradable short-fiber nonwoven fabric according to the above.
JP8127969A 1996-04-15 1996-05-23 Biodegradable short fiber nonwoven fabric and its production Pending JPH101855A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8127969A JPH101855A (en) 1996-04-15 1996-05-23 Biodegradable short fiber nonwoven fabric and its production

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP9211296 1996-04-15
JP8-92112 1996-04-15
JP8127969A JPH101855A (en) 1996-04-15 1996-05-23 Biodegradable short fiber nonwoven fabric and its production

Publications (1)

Publication Number Publication Date
JPH101855A true JPH101855A (en) 1998-01-06

Family

ID=26433589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8127969A Pending JPH101855A (en) 1996-04-15 1996-05-23 Biodegradable short fiber nonwoven fabric and its production

Country Status (1)

Country Link
JP (1) JPH101855A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000073266A (en) * 1998-08-21 2000-03-07 Shinwa Kk Production of nonwoven fabric for thermoforming
JP2009102796A (en) * 2008-12-28 2009-05-14 Unitika Ltd Nonwoven fabric formed of polylactic acid based composite staple fiber, and method for producing the same
JP2009114619A (en) * 2008-12-28 2009-05-28 Unitika Ltd Polylactic acid conjugated staple fiber and method for production thereof
JP2013136851A (en) * 2011-12-28 2013-07-11 Kuraray Co Ltd Polyester-based conjugate binder fiber
WO2021201186A1 (en) * 2020-03-31 2021-10-07 三菱ケミカル株式会社 Biodegradable resin composition and molded article

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000073266A (en) * 1998-08-21 2000-03-07 Shinwa Kk Production of nonwoven fabric for thermoforming
JP2009102796A (en) * 2008-12-28 2009-05-14 Unitika Ltd Nonwoven fabric formed of polylactic acid based composite staple fiber, and method for producing the same
JP2009114619A (en) * 2008-12-28 2009-05-28 Unitika Ltd Polylactic acid conjugated staple fiber and method for production thereof
JP2013136851A (en) * 2011-12-28 2013-07-11 Kuraray Co Ltd Polyester-based conjugate binder fiber
WO2021201186A1 (en) * 2020-03-31 2021-10-07 三菱ケミカル株式会社 Biodegradable resin composition and molded article

Similar Documents

Publication Publication Date Title
JP4093595B2 (en) Method, product and use of degradable polymer fibers
JP3247176B2 (en) Biodegradable latently crimpable composite filament and nonwoven fabric thereof
JP3264720B2 (en) Biodegradable composite short fiber non-woven fabric
JPH0995847A (en) Nonwoven fabric of polylactate-based filament and its production
JPH08260323A (en) Biodegradable filament nonwoven fabric and its production
JPH101855A (en) Biodegradable short fiber nonwoven fabric and its production
JP3804999B2 (en) Biodegradable long-fiber nonwoven fabric and method for producing the same
JP2003286640A (en) Short fiber nonwoven fabric
JP3247177B2 (en) Biodegradable latently crimpable composite short fiber and nonwoven fabric thereof
JP4117915B2 (en) Biodegradable nonwoven fabric and method for producing the same
JP3146221B2 (en) Microbial degradable ultrafine fiber meltblown nonwoven fabric and method for producing the same
JP3516291B2 (en) Method for producing biodegradable nonwoven fabric with excellent elasticity
JP3553722B2 (en) Biodegradable nonwoven fabric and method for producing the same
JPH09279449A (en) Laminated nonwoven fabric and its production
JP3556089B2 (en) Biodegradable long-fiber nonwoven fabric and method for producing the same
JP4117916B2 (en) Biodegradable nonwoven fabric and method for producing the same
JPH09279454A (en) Biodegradable short fiber nonwoven fabric and its production
JPH09279461A (en) Biodegradable nonwoven fabric and its production
JPH09279455A (en) Biodegradable short fiber nonwoven fabric and its production
JP3262430B2 (en) Method for producing biodegradable laminated nonwoven structure
JPH09310293A (en) Biodegradable wet nonwoven fabric and its production
JPH09279451A (en) Laminated nonwoven fabric and its production
JPH0995852A (en) Polylactate-based laminated nonwoven fabric and its production
JPH09279448A (en) Laminated nonwoven fabric and its production
JP3292786B2 (en) Biodegradable long-fiber nonwoven fabric and method for producing the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041102

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041228

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050308