JPH09279449A - Laminated nonwoven fabric and its production - Google Patents

Laminated nonwoven fabric and its production

Info

Publication number
JPH09279449A
JPH09279449A JP8092108A JP9210896A JPH09279449A JP H09279449 A JPH09279449 A JP H09279449A JP 8092108 A JP8092108 A JP 8092108A JP 9210896 A JP9210896 A JP 9210896A JP H09279449 A JPH09279449 A JP H09279449A
Authority
JP
Japan
Prior art keywords
nonwoven fabric
fiber web
sheath
core
laminated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8092108A
Other languages
Japanese (ja)
Inventor
Yoshinari Yoshioka
良成 吉岡
Tomosato Yamamoto
知里 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP8092108A priority Critical patent/JPH09279449A/en
Publication of JPH09279449A publication Critical patent/JPH09279449A/en
Pending legal-status Critical Current

Links

Landscapes

  • Biological Depolymerization Polymers (AREA)
  • Multicomponent Fibers (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a nonwoven fabric comprising short fibers made of conjugate filament yarns of excellent cooling disposition, spinnability and drawability following their delivery from a spinneret, good in biodegradability which is controllable, rich in both moisture and water absorbability, and having enough mechanical strength to stand its practical use. SOLUTION: First, a melt conjugate spinning is conducted to produce a sheath-core type conjugate fiber made up of core component consisting of a 1st biodegradable aliphatic polyester and sheath component consisting of a 2nd biodegradable aliphatic polyester lower in melting point than the 1st polyester. Subsequently, the conjugate fibers are drawn, the resultant oriented filament yarns are then mechanically crimped and cut to a specified length into short fibers, which are then carded into a short fiber web, which is, in turn, laminated with a natural fiber web followed by subjecting both the webs to ultrasonic fusing treatment into integration through partial fusing, thus affording the objective laminated nonwoven fabric.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、医療・衛生材料、
生活資材あるいは一般産業資材など、生分解性能及び吸
水性が要望される幅広い用途に好適な積層不織布及びそ
の製造方法に関するものである。
TECHNICAL FIELD The present invention relates to a medical / hygiene material,
The present invention relates to a laminated non-woven fabric suitable for a wide range of applications where biodegradability and water absorption are desired, such as daily life materials and general industrial materials, and a method for producing the same.

【0002】[0002]

【従来の技術】従来から、生分解性能を有する不織布と
しては、例えば乾式法あるいは溶液浸漬法により得られ
るビスコース短繊維不織布、湿式法により得られるキュ
プラレーヨン長繊維不織布やビスコースレーヨン長繊維
不織布、キチンやコラーゲンのような天然物の化学繊維
からなる不織布、コットンからなるスパンレース不織布
等が知られている。しかしながら、これらの生分解性不
織布は機械的強度が低くかつ親水性であるため吸水・湿
潤の時の機械的強度の低下が著しい。さらに、これらの
不織布は素材自体が非熱可塑性であることから、熱接着
性や熱成形性を有しない等の問題を有していた。
BACKGROUND OF THE INVENTION Conventionally, as non-woven fabrics having biodegradability, for example, viscose short fiber non-woven fabrics obtained by a dry method or a solution dipping method, cupra rayon long fiber non-woven fabrics and viscose rayon long fiber non-woven fabrics obtained by a wet method. Nonwoven fabrics made of natural chemical fibers such as chitin and collagen, spunlace nonwoven fabric made of cotton, and the like are known. However, since these biodegradable nonwoven fabrics have low mechanical strength and are hydrophilic, the mechanical strength upon water absorption / wetting is significantly reduced. Further, since these non-woven fabrics are non-thermoplastic in nature, they have problems such as lack of thermal adhesiveness and thermoformability.

【0003】このような問題を解決する生分解性不織布
として、特開平5−93318号公報または特開平5−
195407号公報に生分解性を有する熱可塑性重合体
を用いた不織布が開示されている。しかし、これらは、
製造の際の紡出糸条の冷却性及び可紡性、延伸性に劣
り、しかも熱圧接工程等において全融タイプとなるので
得られた不織布の機械的特性及び柔軟性に劣るものであ
った。
As a biodegradable non-woven fabric which solves such a problem, there is disclosed in Japanese Patent Laid-Open No. 93318/1993 or Japanese Patent Laid-Open No. 5-93318.
Japanese Patent No. 195407 discloses a non-woven fabric using a biodegradable thermoplastic polymer. But these are
The spun yarn during production was inferior in the cooling property, spinnability, and stretchability, and, since it was a fully melted type in the hot pressing process, the resulting nonwoven fabric was inferior in mechanical properties and flexibility. .

【0004】生分解性不織布の製造工程においてこのよ
うな問題が生じるのは、一般的に生分解性を有する重合
体の融点及び結晶化温度が低く、しかも結晶化速度が遅
いことに起因する。すなわち、溶融紡出後の冷却・細化
において糸条間に密着が発生し、次工程での延伸・捲縮
付与工程において操業性を著しく損なうものであった。
しかも、前述のような従来の製造方法では、生分解性能
の制御は、適用する重合体の種類、繊度、繊維の配向度
などを変更することにより幾分かは可能ではあるが、微
妙な制御は不可能であった。
Such problems occur in the process of producing a biodegradable nonwoven fabric because the melting point and crystallization temperature of a biodegradable polymer are generally low and the crystallization rate is slow. That is, adhesion between yarns occurs during cooling / thinning after melt spinning, and operability is significantly impaired in the drawing / crimping step in the next step.
Moreover, in the conventional manufacturing method as described above, control of biodegradation performance is possible to some extent by changing the type of polymer to be applied, fineness, orientation degree of fiber, etc., but delicate control is possible. Was impossible.

【0005】さらに、生分解性熱可塑性重合体からなる
繊維単独で形成された不織布は、機械的特性には優れる
ものの、吸湿性、吸水性に劣り、用途が限定されるもの
であった。これを改善する方法としては、吸水性に優れ
る天然繊維等を積層することが考えられるが、生分解性
熱可塑性重合体からなるウエブと天然繊維からなるウエ
ブとを積層して部分熱融着を施す場合に通常適用される
熱エンボスロールを用いた熱圧接装置によると、両ウエ
ブ間の接着力が弱く、得られる積層不織布は到底使用に
耐えるものではなかった。
Further, although a nonwoven fabric formed of fibers made of a biodegradable thermoplastic polymer alone has excellent mechanical properties, it is inferior in hygroscopicity and water absorption and its use is limited. As a method for improving this, it is conceivable to laminate natural fibers and the like having excellent water absorption, but partial heat fusion is performed by laminating a web made of a biodegradable thermoplastic polymer and a web made of natural fibers. According to the thermocompression bonding apparatus using a hot embossing roll which is usually applied when applied, the adhesive strength between the two webs is weak and the obtained laminated nonwoven fabric cannot withstand use at all.

【0006】[0006]

【発明が解決しようとする課題】本発明は、前記の問題
を解決し、紡出糸条の冷却性及び可紡性、延伸性に優
れ、良好な生分解性能を有するとともにその制御が可能
であり、吸湿性、吸水性に富み、さらに実使用に耐えう
るだけの充分な強力を有する積層不織布及びその製造方
法を提供しようとするものである。
DISCLOSURE OF THE INVENTION The present invention solves the above problems, has excellent cooling properties, spinnability and stretchability of spun yarns, has good biodegradability, and is controllable. Accordingly, the present invention aims to provide a laminated nonwoven fabric which is rich in hygroscopicity and water absorption and has sufficient strength to withstand actual use, and a method for producing the same.

【0007】[0007]

【課題を解決するための手段】本発明者らは上記課題を
解決すべく、鋭意検討の結果本発明に至った。すなわ
ち、本発明は以下の構成を要旨とするものである。
Means for Solving the Problems The inventors of the present invention have made intensive studies to solve the above problems, and as a result, have reached the present invention. That is, the present invention has the following structures.

【0008】(1)複合短繊維からなる短繊維ウエブと
天然繊維からなる天然繊維ウエブとが積層され部分的な
超音波融着により一体化されており、前記複合短繊維が
生分解性を有する第1の脂肪族ポリエステルからなる芯
成分とこの芯成分よりも融点の低い生分解性を有する第
2の脂肪族ポリエステルからなる鞘成分とから形成され
る芯鞘型複合断面を有してなることを特徴とする積層不
織布。
(1) A short fiber web made of composite short fibers and a natural fiber web made of natural fibers are laminated and integrated by partial ultrasonic fusion, and the composite short fibers have biodegradability. It has a core-sheath type composite cross section formed of a core component made of a first aliphatic polyester and a sheath component made of a second aliphatic polyester having a lower melting point than the core component and having biodegradability. Laminated non-woven fabric characterized by.

【0009】(2)生分解性を有する第1の脂肪族ポリ
エステルからなる芯成分とこの芯成分よりも融点の低い
生分解性を有する第2の脂肪族ポリエステルからなる鞘
成分とを用いて、芯鞘型複合繊維を溶融複合紡糸し、次
いで延伸し、得られた延伸糸条に機械捲縮を付与した後
に所定長に切断して短繊維となし、この短繊維をカーデ
ィングすることにより短繊維ウエブを形成し、この短繊
維ウエブに天然繊維からなる天然繊維ウエブを積層した
後に、超音波融着処理を施して両ウエブを部分的に融着
させ一体化することを特徴とする積層不織布の製造方
法。
(2) A core component made of a first aliphatic polyester having biodegradability and a sheath component made of a second aliphatic polyester having a lower melting point than the core component are used. The core-sheath type composite fiber is melt-combined and then drawn, and the resulting drawn yarn is mechanically crimped and then cut into a predetermined length to form a short fiber. A laminated non-woven fabric characterized by forming a fibrous web, laminating a natural fiber web made of natural fibers on the short fibrous web, and then subjecting the two webs to partial fusion by ultrasonic fusion treatment to integrate them. Manufacturing method.

【0010】以上のように、本発明の積層不織布を構成
する短繊維ウエブは、融点の異なる2成分を複合してな
る芯鞘型複合短繊維により形成されていることにより、
紡出糸条の冷却性及び可紡性、延伸性と生分解性能との
いずれにも優れるものとなるのである。
As described above, since the short fiber web constituting the laminated nonwoven fabric of the present invention is formed of the core-sheath type composite short fibers composed of two components having different melting points,
The spun yarn has excellent cooling properties, spinnability, stretchability and biodegradability.

【0011】また、本発明の積層不織布は、天然繊維に
よって吸水性を発揮させるとともに、湿潤時の機械的強
力に劣るという天然繊維の特性を短繊維ウエブによって
補強するものである。すなわち、短繊維ウエブと天然繊
維ウエブとを積層することにより、吸水性および機械的
特性を併せ持つことができるのである。しかも、短繊維
ウエブは脂肪族ポリエステル系重合体から構成され、天
然繊維ウエブはコットン等の分解性素材から構成される
ため、本発明の積層不織布の構成素材は全て自然環境下
で分解し得るものである。
In addition, the laminated nonwoven fabric of the present invention is made to absorb water by natural fibers and to reinforce the characteristic of natural fibers that mechanical strength when wet is poor by a short fiber web. That is, by laminating the short fiber web and the natural fiber web, it is possible to have both water absorption and mechanical properties. Moreover, since the short fiber web is composed of an aliphatic polyester polymer and the natural fiber web is composed of a degradable material such as cotton, all the constituent materials of the laminated nonwoven fabric of the present invention can be decomposed in a natural environment. Is.

【0012】さらに、本発明の積層不織布は、短繊維ウ
エブと天然繊維ウエブとが超音波融着により一体化され
てなるので、両ウエブ間の剥離強力に優れ、充分に実使
用に耐えうるものである。
Further, since the laminated nonwoven fabric of the present invention is formed by integrating the short fiber web and the natural fiber web by ultrasonic fusion, it is excellent in peel strength between both webs and can withstand practical use sufficiently. Is.

【0013】[0013]

【発明の実施の形態】本発明の積層不織布は、複合短繊
維からなる短繊維ウエブと天然繊維からなる天然繊維ウ
エブとが積層されてなるものである。
BEST MODE FOR CARRYING OUT THE INVENTION The laminated nonwoven fabric of the present invention is formed by laminating a short fiber web made of composite short fibers and a natural fiber web made of natural fibers.

【0014】まず、本発明の短繊維ウエブについて説明
する。本発明において適用される短繊維は、生分解性を
有する第1の脂肪族ポリエステルからなる芯成分とこの
芯成分よりも融点の低い生分解性を有する第2の脂肪族
ポリエステルからなる鞘成分とから形成される複合短繊
維である。
First, the short fiber web of the present invention will be described. The short fibers applied in the present invention include a core component made of a first aliphatic polyester having biodegradability and a sheath component made of a second aliphatic polyester having a biodegradability lower than the core component. Is a composite short fiber formed from

【0015】芯成分及び鞘成分を構成する第1及び第2
の生分解性脂肪族ポリエステルとしては、例えば、ポリ
グリコール酸やポリ乳酸のようなポリ(α−ヒドロキシ
酸)またはこれらを構成する繰り返し単位要素による共
重合体が挙げられる。また、ポリ(ε−カプロラクト
ン)、ポリ(β−プロピオラクトン)のようなポリ(ω
−ヒドロキシアルカノエート)が、さらに、ポリ−3−
ヒドロキシプロピオネート、ポリ−3−ヒドロキシブチ
レート、ポリ−3−ヒドロキシカプロエート、ポリ−3
−ヒドロキシヘプタノエート、ポリ−3−ヒドロキシオ
クタノエートのようなポリ(β−ヒドロキシアルカノエ
ート)及びこれらを構成する繰り返し単位要素とポリ−
3−ヒドロキシバリレートやポリ−4−ヒドロキシブチ
レートを構成する繰り返し単位要素との共重合体が挙げ
られる。また、ジオールとジカルボン酸の縮重合体から
なるものとして、例えば、ポリエチレンオキサレート、
ポリエチレンサクシネート、ポリエチレンアジペート、
ポリエチレンアゼテート、ポリブチレンオキサレート、
ポリブチレンサクシネート、ポリブチレンアジペート、
ポリブチレンセバケート、ポリヘキサメチレンセバケー
ト、ポリネオペンチルオキサレートまたはこれらを構成
する繰り返し単位要素による共重合体が挙げられる。ま
た、以上の脂肪族ポリエステルを複数ブレンドして用い
ることもできる。以上の脂肪族ポリエステルのなかで
は、製糸性及び生分解性能の観点から、ポリブチレンサ
クシネート、ポリエチレンサクシネートならびにポリブ
チレンアジペートが特に好ましく、さらに特に、ブチレ
ンサクシネートを主繰り返し単位としてこれにエチレン
サクシネートあるいはブチレンアジペートを共重合せし
めた共重合ポリエステルが好適である。本発明において
は、以上の脂肪族ポリエステルの中から選択された2種
の重合体のうち、融点が高い方の重合体を芯部に配し、
融点が低い方の重合体を鞘部に配するのである。
First and second constituents of the core and sheath components
Examples of the biodegradable aliphatic polyester include poly (α-hydroxy acid) such as polyglycolic acid and polylactic acid, or a copolymer of repeating unit elements constituting them. In addition, poly (ω-caprolactone), poly (ω-propionate such as poly (β-propiolactone),
-Hydroxyalkanoate) and poly-3-
Hydroxypropionate, poly-3-hydroxybutyrate, poly-3-hydroxycaproate, poly-3
-Poly (β-hydroxyalkanoate) such as hydroxyheptanoate and poly-3-hydroxyoctanoate, and repeating unit elements and poly-constituting them
Examples thereof include copolymers with repeating unit elements constituting 3-hydroxyvalerate and poly-4-hydroxybutyrate. In addition, as a polycondensate of diol and dicarboxylic acid, for example, polyethylene oxalate,
Polyethylene succinate, polyethylene adipate,
Polyethylene azetate, polybutylene oxalate,
Polybutylene succinate, polybutylene adipate,
Examples thereof include polybutylene sebacate, polyhexamethylene sebacate, polyneopentyl oxalate, and copolymers of repeating unit elements constituting these. Further, a plurality of the above aliphatic polyesters may be blended and used. Among the above-mentioned aliphatic polyesters, polybutylene succinate, polyethylene succinate and polybutylene adipate are particularly preferable from the viewpoint of spinnability and biodegradability, and more particularly, butylene succinate as a main repeating unit and ethylene succinate. A copolyester obtained by copolymerizing nate or butylene adipate is preferable. In the present invention, of the two polymers selected from the above aliphatic polyesters, the polymer with the higher melting point is placed in the core,
The polymer with the lower melting point is placed in the sheath.

【0016】ところで、脂肪族ポリエステルは一般に、
融点が高い程、紡出糸条の冷却性及び可紡性、延伸性に
は優れるものの、結晶化度が高いため生分解性能には劣
り、逆に、融点が低い程、紡出糸条の冷却性及び可紡
性、延伸性には劣るものの、結晶化度が低いため生分解
性能には優れる。例えば、繊維横断面が比較的融点の高
い成分単相からなる場合には、製糸性及び不織布化には
優れるものの、目標とする生分解性能を得ることができ
ない。一方、繊維横断面が比較的融点の低い成分単相か
らなる場合には、溶融紡糸に際し紡出糸条の冷却性に劣
り不織布を得ることができない。
Incidentally, the aliphatic polyester is generally
The higher the melting point, the better the cooling properties, spinnability and stretchability of the spun yarn, but the poorer the biodegradability due to the higher crystallinity. Conversely, the lower the melting point, the higher the melting point of the spun yarn. Although it is inferior in cooling property, spinnability and stretchability, it has excellent biodegradability due to its low crystallinity. For example, when the fiber cross section is composed of a component single phase having a relatively high melting point, the target biodegradability cannot be obtained, although the spinnability and the non-woven fabric are excellent. On the other hand, when the cross-section of the fiber is composed of a single component phase having a relatively low melting point, the meltability of the spun yarn is inferior in the cooling property during melt spinning, and a nonwoven fabric cannot be obtained.

【0017】本発明においては、例えば、鞘成分が冷却
性、延伸性に劣る重合体であっても、比較的融点の高い
重合体を芯成分として用いることにより、紡出糸条の冷
却性、延伸性を向上させることができるのである。ま
た、芯成分が生分解性能に劣る重合体であっても、比較
的融点の低い生分解性能に優れる重合体を複合すること
により、芯成分は、繊度が極めて細い状態で経時的に取
り残されることとなり、不織布としての生分解性能には
優れる結果となる。
In the present invention, for example, even if the sheath component is a polymer having poor cooling properties and stretchability, by using a polymer having a relatively high melting point as the core component, the cooling properties of the spun yarn, The stretchability can be improved. Further, even if the core component is a polymer having poor biodegradability, by compositing a polymer having a relatively low melting point and being excellent in biodegradability, the core component is left behind in a state where the fineness is extremely fine. As a result, the biodegradability of the nonwoven fabric is excellent.

【0018】このことから、芯成分として、ポリブチレ
ンサクシネートを用い、鞘成分として、ブチレンサクシ
ネートの共重合量比が70〜90モル%となるようにブ
チレンサクシネートにエチレンサクシネートあるいはブ
チレンアジペートを共重合せしめた共重合ポリエステル
を用いることが好ましい。ブチレンサクシネートの共重
合量比が70モル%未満であると、生分解性能には優れ
るものの、紡出糸条の冷却性及び可紡性、延伸性に劣
り、目的とする短繊維が得られないこととなる。逆に、
90モル%を超えると、紡出糸条の冷却性及び可紡性、
延伸性には優れるものの、生分解性能に劣り本発明の目
的とするものではない。
Therefore, polybutylene succinate is used as the core component, and ethylene succinate or butylene adipate is added to the butylene succinate so that the copolymerization ratio of the butylene succinate is 70 to 90 mol% as the sheath component. It is preferable to use a copolyester obtained by copolymerizing the above. When the copolymerization amount ratio of butylene succinate is less than 70 mol%, the biodegradability is excellent, but the cooling property, spinnability and stretchability of the spun yarn are poor, and the target short fibers can be obtained. There will be no. vice versa,
If it exceeds 90 mol%, the cooling and spinnability of the spun yarn,
Although it is excellent in stretchability, it is inferior in biodegradability and is not the object of the present invention.

【0019】なお、本発明において、芯成分及び鞘成分
に適用される前述の脂肪族ポリエステルは、数平均分子
量が約20,000以上、好ましくは40,000以
上、さらに好ましくは60,000以上のものが、製糸
性及び得られる糸条の特性の点で良い。また、重合度を
高めるために少量のジイソシアネートやテトラカルボン
酸二無水物などで鎖延長したものでも良い。
In the present invention, the above-mentioned aliphatic polyester applied to the core component and the sheath component has a number average molecular weight of about 20,000 or more, preferably 40,000 or more, more preferably 60,000 or more. However, they are good in terms of spinnability and characteristics of the obtained yarn. Further, it may be chain-extended with a small amount of diisocyanate or tetracarboxylic dianhydride in order to increase the degree of polymerization.

【0020】また、本発明においては、前述の芯成分及
び鞘成分の両方またはいずれか一方に、必要に応じて、
例えば艶消し剤、顔料、光安定剤、酸化防止剤等を本発
明の効果を損なわない範囲内で添加することができる。
In the present invention, the core component and / or the sheath component described above may be added, if necessary, to
For example, matting agents, pigments, light stabilizers, antioxidants and the like can be added within a range that does not impair the effects of the present invention.

【0021】特に、本発明においては、短繊維の製造に
際して紡出糸条の冷却性を向上させるうえで、その構成
成分のうちの少なくとも鞘成分中に結晶核剤が添加され
ていることが好ましい。結晶核剤を添加することによ
り、溶融紡出後に固化しにくい低結晶性の重合体であっ
ても、紡出糸条間に密着が発生するのを防止することが
できる。ここで、結晶核剤としては、粉末状の無機物
で、かつ溶融液に溶解したりするものでなければ特に制
限をうけないが、タルク、炭酸カルシウム、酸化チタ
ン、窒化ホウ素、シリカゲル、酸化マグネシウムまたは
これらの混合物が好適に用いられる。
Particularly, in the present invention, in order to improve the cooling property of the spun yarn in the production of short fibers, it is preferable that a crystal nucleating agent is added to at least the sheath component among the constituent components. . Addition of a nucleating agent can prevent adhesion between spun yarns even for a low-crystalline polymer that is hard to solidify after melt spinning. Here, the crystal nucleating agent is a powdered inorganic substance, and is not particularly limited unless it dissolves in the melt, but talc, calcium carbonate, titanium oxide, boron nitride, silica gel, magnesium oxide or A mixture of these is preferably used.

【0022】また、結晶核剤を添加する際には、芯成分
中への結晶核剤の添加量をQA (重量%)とし、鞘成分
中への結晶核剤の添加量をQB (重量%)としたとき
に、(1)式及び(2)式を満足するように添加されて
いることが好ましい。 [(ΔTA +ΔTB)/100]−2 /3 ≦QA +QB ≦[(ΔTA +ΔTB)/100]+4 …(1) QA ≦QB …(2) 但し、ΔTA =芯成分の融点−芯成分の結晶化温度 ΔTB =鞘成分の融点−鞘成分の結晶化温度 結晶核剤の全添加量QA +QB (重量%)が(1)式で
定義された上限を超えると、紡出糸条の冷却効果は高い
ものの、製糸性が低下するとともに得られた短繊維ひい
ては不織布の機械的性能が劣り好ましくない。逆に、結
晶核剤の全添加量QA +QB (重量%)が(1)式で定
義された下限より低くなると、紡出糸条の冷却性が低下
して紡出糸条間に密着が発生し、目標とする短繊維を得
ることが困難となる。また、芯成分中への結晶核剤の添
加量QA (重量%)が、鞘成分中への結晶核剤の添加量
QB (重量%)よりも多くなると、芯成分の冷却性はさ
らに向上するが、鞘成分の冷却性が低くなり、これによ
って紡出糸条間に密着が発生しやすくなるため好ましく
ない。
When the crystal nucleating agent is added, the amount of the crystal nucleating agent added to the core component is QA (% by weight), and the amount of the crystal nucleating agent added to the sheath component is QB (% by weight). It is preferable that it is added so as to satisfy the expressions (1) and (2). [(ΔTA + ΔTB) / 100] −2 / 3 ≦ QA + QB ≦ [(ΔTA + ΔTB) / 100] +4 (1) QA ≦ QB (2) where ΔTA = melting point of core component−crystallization of core component Temperature ΔTB = melting point of sheath component−crystallization temperature of sheath component When the total amount of crystal nucleating agent QA + QB (% by weight) exceeds the upper limit defined by the formula (1), the effect of cooling the spun yarn is high. However, this is not preferable because the spinnability is deteriorated and the mechanical properties of the obtained short fibers and thus the nonwoven fabric are poor. On the contrary, if the total amount of the crystal nucleating agent QA + QB (% by weight) becomes lower than the lower limit defined by the equation (1), the cooling property of the spun yarn is deteriorated and adhesion occurs between the spun yarns. However, it becomes difficult to obtain the target short fiber. When the amount QA (wt%) of the crystal nucleating agent added to the core component is larger than the amount QB (wt%) of the crystal nucleating agent added to the sheath component, the cooling property of the core component is further improved. However, the cooling property of the sheath component is lowered, and this tends to cause adhesion between spun yarns, which is not preferable.

【0023】また、本発明において、芯成分及び鞘成分
の粘度は特に限定しないが、芯成分の粘度が鞘成分の粘
度より高い方が好ましい。これは、一般に熱可塑性樹脂
の複合紡糸においては低粘度成分が高粘度成分を被覆し
ようとする力が働くことに起因する。すなわち、本発明
においては、芯成分を高粘度にすることにより繊維横断
面において芯鞘形態を保持させるのに好適となる。
In the present invention, the viscosities of the core component and the sheath component are not particularly limited, but it is preferable that the viscosity of the core component is higher than the viscosity of the sheath component. This is because the low-viscosity component generally acts in the composite spinning of the thermoplastic resin so as to cover the high-viscosity component. That is, in the present invention, by making the core component highly viscous, it becomes suitable for maintaining the core-sheath form in the cross section of the fiber.

【0024】従って、本発明で適用する重合体のメルト
フローレート値(以降、MFR値と記す)は、芯成分が
5〜50g/10分であり、鞘成分が10〜70g/1
0分であることが好ましい。但し、本発明におけるMF
R値は、ASTM−D−1238(E)記載の方法に準
じて測定したものである。芯成分のMFR値が5g/1
0分未満及び/または鞘成分のMFR値が10g/10
分未満であると、あまりにも高粘度であるため、紡出糸
条の細化がスムーズに行われず操業性を損なう結果とな
り、しかも得られる繊維は太繊度で均斉度に劣るものと
なる。逆に、芯成分のMFR値が50g/10分及び/
または鞘成分のMFR値が70g/10分を超えると、
あまりにも低粘度であるため、複合断面が不安定となる
ばかりか、紡糸工程において糸切れが発生し操業性を損
なうとともに、得られる不織布の機械的特性が劣る結果
となる。これらの理由により、芯成分のMFR値は10
〜45g/10分、鞘成分のMFR値は15〜65g/
10分であることがさらに好ましい。
Therefore, the melt flow rate value (hereinafter referred to as MFR value) of the polymer applied in the present invention is 5 to 50 g / 10 minutes for the core component and 10 to 70 g / 1 for the sheath component.
It is preferably 0 minutes. However, the MF in the present invention
The R value is measured according to the method described in ASTM-D-1238 (E). MFR value of core component is 5g / 1
Less than 0 minutes and / or MFR value of sheath component is 10 g / 10
If the amount is less than the minute, the viscosity is too high, and the spun yarn cannot be thinned smoothly, resulting in impaired operability, and the obtained fiber has a large fineness and poor uniformity. Conversely, the MFR value of the core component is 50 g / 10 minutes and /
Or, when the MFR value of the sheath component exceeds 70 g / 10 minutes,
Since the viscosity is too low, not only the composite cross section becomes unstable, but also yarn breakage occurs in the spinning process, impairing operability, and the resulting nonwoven fabric has poor mechanical properties. For these reasons, the MFR value of the core component is 10
~ 45g / 10min, MFR value of sheath component is 15 ~ 65g /
More preferably, it is 10 minutes.

【0025】本発明に適用される複合短繊維は、芯成分
/鞘成分の複合比が1/3〜3/1(重量比)であるこ
とが好ましい。複合比がこの範囲を外れると紡出糸条の
冷却性及び可紡性、延伸性と生分解性能とを併せて満足
することができず、さらに、繊維横断面形状の不安定さ
を誘発するため好ましくない。例えば、芯成分/鞘成分
の複合比が1/3を超えると、生分解性能には優れるも
のの、紡出糸条の冷却性及び可紡性、延伸性には劣る結
果となる。逆に、芯成分/鞘成分の複合比が3/1を超
えると、紡出糸条の冷却性及び可紡性、延伸性には優れ
るものの、生分解性能には劣る結果となる。さらに例え
ば、芯成分が生分解性能に劣る重合体であれば、鞘成分
の複合比を上げることにより生分解速度を促進させるこ
とができる。この理由により、さらに好ましくは1/
2.5〜2.5/1(重量比)が良い。
The composite staple fibers applied to the present invention preferably have a core component / sheath component composite ratio of 1/3 to 3/1 (weight ratio). If the composite ratio is out of this range, the spinnability of the spun yarn cannot be satisfied together with the cooling property, spinnability, stretchability and biodegradability, and further, instability of the fiber cross-sectional shape is induced. Therefore, it is not preferable. For example, when the composite ratio of the core component / the sheath component exceeds 1/3, the biodegradability is excellent, but the cooling property, spinnability and stretchability of the spun yarn are poor. On the other hand, when the composite ratio of the core component / the sheath component exceeds 3/1, the spun yarn has excellent cooling properties, spinnability and stretchability, but poor biodegradability. Further, for example, when the core component is a polymer having poor biodegradability, the biodegradation rate can be accelerated by increasing the composite ratio of the sheath component. For this reason, more preferably 1 /
2.5-2.5 / 1 (weight ratio) is good.

【0026】本発明においては、複合短繊維の単糸繊度
が1.5〜10デニールであることが好ましい。1.5
デニール未満であると、紡糸口金の複雑化、製糸工程に
おける糸切れの増大、生産量の低下及び繊維横断面形状
の不安定さなどを招くため好ましくない。逆に、10デ
ニールを超えると紡出糸条の冷却性に劣るとともに生分
解性能にも劣る結果となる。この理由により、さらに好
ましくは2〜8デニールが良い。
In the present invention, the single yarn fineness of the composite staple fiber is preferably 1.5 to 10 denier. 1.5
When it is less than denier, the spinneret becomes complicated, the number of yarn breakages in the spinning process increases, the production amount decreases, and the fiber cross-sectional shape becomes unstable. On the other hand, when it exceeds 10 denier, the spun yarn has poor cooling properties and biodegradability. For this reason, 2 to 8 denier is more preferable.

【0027】以上のように、本発明に適用される短繊維
ウエブは、融点を異にする生分解性脂肪族ポリエステル
からなる芯成分及び鞘成分で構成された芯鞘型複合短繊
維で形成されるウエブであって、両成分の複合比、単糸
繊度などを組み合わせることにより、要求する紡出糸条
の冷却性及び可紡性、延伸性が得られ、さらに生分解性
能を制御することができるのである。
As described above, the short fiber web applied to the present invention is formed of the core-sheath type composite short fibers composed of the core component and the sheath component made of biodegradable aliphatic polyester having different melting points. It is a web that, by combining the composite ratio of both components, the single yarn fineness, etc., the required cooling property, spinnability and stretchability of the spun yarn can be obtained, and further the biodegradability can be controlled. You can do it.

【0028】次に、本発明の天然繊維ウエブについて説
明する。本発明において適用される天然繊維としては、
コットン、ラミー、短繊維状に裁断されたシルク繊維等
が好ましく、これらの天然繊維を単独または複数組み合
わせて、短繊維ウエブが作成される。ここで、コットン
繊維としては、晒し加工の施されていないコーマ糸、晒
し加工された晒し綿、また、織物、編み物から得られた
反毛が挙げられる。
Next, the natural fiber web of the present invention will be described. As the natural fiber applied in the present invention,
Cotton, ramie, silk fibers cut into short fibers and the like are preferable, and short fiber webs are prepared by using these natural fibers alone or in combination. Here, examples of the cotton fiber include combed yarn that has not been subjected to bleaching, bleached cotton that has been bleached, and fluff obtained from woven fabrics and knits.

【0029】本発明における短繊維ウエブおよび天然繊
維ウエブは、カード機の進行方向に配列したパラレルウ
エブ、パラレルウエブのクロスレイドされたウエブ、ラ
ンダムに配列したランダムウエブあるいは中程度に配列
したセミランダムウエブのいずれであっても良く、使用
用途によって適宜選択することができる。特に、衣料用
途に用いる場合には、不織布としての強力において、縦
/横強力比が概ね1/1となるカードウエブを使用する
のが好ましい。
The short fiber web and the natural fiber web in the present invention are parallel webs arranged in the traveling direction of the card machine, crosslaid webs of parallel webs, randomly arranged random webs or semi-random webs arranged in medium. It may be any of the above, and can be appropriately selected depending on the intended use. In particular, when used for clothing, it is preferable to use a card web having a strength / longitudinal strength ratio of about 1/1 in terms of strength as a nonwoven fabric.

【0030】本発明の積層不織布は、短繊維ウエブと天
然繊維ウエブとを積層したものであるが、天然繊維ウエ
ブと短繊維ウエブとの積層比率は10/90〜90/1
0(重量%)であることが好ましい。天然繊維が10重
量%未満であると、積層不織布の機械的特性には優れる
ものの、吸湿性、吸水性を充分に向上させることができ
ず、天然繊維を積層した目的を達成することができない
ため好ましくない。逆に、天然繊維が90重量%を超え
ると、吸湿性、吸水性には優れるものの、機械的特性を
損なうこととなり好ましくない。これらの理由により、
天然繊維ウエブと短繊維ウエブとの積層比率は20/8
0〜80/20(重量%)であることがさらに好まし
い。
The laminated nonwoven fabric of the present invention is obtained by laminating a short fiber web and a natural fiber web, and the lamination ratio of the natural fiber web and the short fiber web is from 10/90 to 90/1.
It is preferably 0 (% by weight). When the content of natural fibers is less than 10% by weight, the laminated nonwoven fabric has excellent mechanical properties, but the hygroscopicity and water absorption cannot be sufficiently improved, and the purpose of laminating the natural fibers cannot be achieved. Not preferable. On the other hand, if the natural fiber content exceeds 90% by weight, the hygroscopicity and water absorption are excellent, but the mechanical properties are impaired, which is not preferable. For these reasons,
Lamination ratio of natural fiber web and short fiber web is 20/8
It is more preferably 0 to 80/20 (% by weight).

【0031】本発明の積層不織布は、積層された短繊維
ウエブと天然繊維ウエブとが部分的な超音波融着される
ことにより一体化されたものである。すなわち、後述の
超音波融着装置を用いて形成された部分的な融着区域に
おいて、複合短繊維が熱融解されて天然繊維の内部に埋
没していることにより、短繊維ウエブと天然繊維ウエブ
とが融着される。これにより、短繊維ウエブと熱接着性
を有しない天然繊維とを実用に耐えうるだけの接着力で
一体化することができる。
The laminated nonwoven fabric of the present invention is one in which the laminated short fiber web and natural fiber web are integrated by partial ultrasonic fusion. That is, in a partial fusion zone formed by using an ultrasonic fusion machine to be described later, since the composite short fibers are heat-melted and embedded inside the natural fiber, the short fiber web and the natural fiber web are And are fused together. As a result, the short fiber web and the natural fiber having no thermal adhesiveness can be integrated with each other with an adhesive force sufficient for practical use.

【0032】次に、本発明の積層不織布の製造方法につ
いて説明する。まず、本発明に適用される短繊維ウエブ
の製造は、通常の複合紡糸装置及び延伸装置を用いて行
なうことができる。すなわち、前述の生分解性を有する
重合体からなる芯成分と鞘成分とを溶融して個別計量
し、これを前述の複合比にて、芯鞘型複合断面を形成可
能な複合紡糸口金を介して紡出し、紡出糸条を冷却空気
流などを用いた公知の冷却装置にて冷却する。次いで、
速度800〜2500m/分の引取ロールにて未延伸糸
として捲きとり、この未延伸糸を周速の異なる延伸ロー
ル間で所定の延伸倍率で延伸を行う。ここで、延伸工程
における延伸ロール個数及び延伸温度は適宜選択すれば
良い。たとえば、太繊度を延伸する場合には延伸ロール
個数を多くし、さらに熱延伸することも必要である。次
いで、得られた延伸糸にスタッファーボックスにて捲縮
を付与した後、所定長に切断して短繊維を得ることがで
きる。なお、上述したのは、二工程法であるが、一工程
法、即ち未延伸糸を一旦捲き取ることなく連続して延伸
するいわゆるスピンドロー法で短繊維を得ることもでき
る。
Next, a method for manufacturing the laminated nonwoven fabric of the present invention will be described. First, the production of the short fiber web applied to the present invention can be carried out using an ordinary composite spinning apparatus and drawing apparatus. That is, the core component and the sheath component made of the above-mentioned biodegradable polymer are melted and individually weighed, and this is mixed at the above-mentioned composite ratio through a composite spinneret capable of forming a core-sheath composite cross section. And the spun yarn is cooled by a known cooling device using a cooling air flow or the like. Then
It is wound up as an undrawn yarn with a take-up roll at a speed of 800 to 2500 m / min, and this undrawn yarn is drawn at a predetermined draw ratio between drawing rolls having different peripheral speeds. Here, the number of stretching rolls and the stretching temperature in the stretching step may be appropriately selected. For example, in the case of stretching the fineness, it is necessary to increase the number of stretching rolls and further perform hot stretching. Then, the obtained drawn yarn is crimped with a stuffer box and then cut into a predetermined length to obtain short fibers. Although the above-described method is a two-step method, short fibers can also be obtained by a one-step method, that is, a so-called spin draw method in which undrawn yarn is continuously drawn without being wound up.

【0033】また、本発明においては、前述のように、
用いる重合体の中に結晶核剤を添加することが好まし
い。これにより、溶融紡糸の際に紡出糸条の冷却性を向
上させることができるのである。結晶核剤の添加は重合
工程あるいは溶融工程で行うが、その際、得られる糸の
機械的性能及び均整度を向上させるため、できる限り均
一分散させておくことが好ましい。
Further, in the present invention, as described above,
It is preferable to add a nucleating agent to the polymer used. Thereby, the cooling property of the spun yarn during the melt spinning can be improved. The crystal nucleating agent is added in the polymerization step or the melting step. At this time, it is preferable to disperse the nucleating agent as uniformly as possible in order to improve the mechanical performance and the uniformity of the obtained yarn.

【0034】次いで、得られた短繊維を公知のカード機
によりカーディングして所定目付けの短繊維ウエブを作
成する。そして、得られた短繊維ウエブに常法により別
途作成した天然繊維ウエブを積層し、これに超音波融着
処理を施して一体化させて積層不織布を得る。
Next, the obtained short fibers are carded by a known card machine to prepare a short fiber web having a predetermined weight. Then, a natural fiber web separately prepared by a conventional method is laminated on the obtained short fiber web, and ultrasonic fusion treatment is applied to this to integrate them to obtain a laminated nonwoven fabric.

【0035】超音波融着処理を施すに際しては、周波数
が約20kHzの通常ホーンと呼称される超音波発振器
と、円周上に点状または帯状に凸状突起部を具備するパ
ターンロールとからなる装置が採用される。前記超音波
発振器の下部に前記パターンロールが配設され、積層不
織布を超音波発振器とパターンロールとの間に通すこと
により部分的に熱融着することができる。このパターン
ロールに配設される凸状突起部1列あるいは複数列であ
ってもよく、また、その配設が複数列の場合には、並列
あるいは千鳥型のいずれの配列でも良い。
When performing the ultrasonic fusing treatment, it is composed of an ultrasonic oscillator generally called a horn having a frequency of about 20 kHz, and a pattern roll having a convex projection in the form of dots or bands on the circumference. The device is adopted. The pattern roll is disposed below the ultrasonic oscillator, and the laminated nonwoven fabric can be partially heat-sealed by passing the laminated nonwoven fabric between the ultrasonic oscillator and the pattern roll. There may be one row or a plurality of rows of convex protrusions arranged on this pattern roll, and when the arrangement is a plurality of rows, either parallel or staggered arrangement may be used.

【0036】さらに詳しくは、ロールの加圧には空気圧
が使用され、ホーンがロールに接する線圧は1.0〜5
0kg/cmの範囲とすることが好ましい。線圧が1.
0kg/cm未満であると、積層不織布の厚みに対して
押し圧が不足となり積層不織布の剥離強力が小さくなり
好ましくない。逆に、線圧が50kg/cmを超える
と、融着部分に対して圧力が掛かり過ぎるため、融着部
分のフィルム化により同様に接着強力の低下を招き好ま
しくない。
More specifically, air pressure is used to press the roll, and the linear pressure at which the horn contacts the roll is 1.0 to 5
It is preferably in the range of 0 kg / cm. Linear pressure is 1.
If it is less than 0 kg / cm, the pressing force becomes insufficient with respect to the thickness of the laminated non-woven fabric and the peel strength of the laminated non-woven fabric becomes small, which is not preferable. On the contrary, when the linear pressure exceeds 50 kg / cm, the pressure is applied to the fusion-bonded portion too much, and the fusion-bonded portion is also formed into a film, which similarly lowers the adhesive strength, which is not preferable.

【0037】本発明においては、天然繊維ウエブと短繊
維ウエブとを積層する前に、あらかじめ、短繊維ウエブ
に仮熱圧接処理または熱風接着処理または三次元交絡処
理を、天然繊維ウエブに三次元交絡処理を施しておくこ
ともできる。これにより、両ウエブを積層する際に、各
々のウエブの形態を良好に保持させることができる。
In the present invention, before the natural fiber web and the short fiber web are laminated, the short fiber web is preliminarily subjected to a temporary heat press bonding process, a hot air bonding process or a three-dimensional entanglement process, and the natural fiber web is three-dimensionally entangled. It can also be processed. Accordingly, when the two webs are stacked, the shape of each web can be favorably maintained.

【0038】本発明の積層不織布の目付けは、使用目的
により選択されるため特に限定されるものではないが、
一般的には10〜150g/m2 の範囲が好ましく、よ
り好ましくは15〜70g/m2 の範囲とするのが良
い。目付けが10g/m2 未満では柔軟性及び生分解速
度には優れるものの機械的強力に劣り実用的ではない。
逆に、目付けが150g/m2 を超えると、不織布が硬
い風合いのものとなり、柔軟性に劣るものとなる。
The unit weight of the laminated nonwoven fabric of the present invention is not particularly limited because it is selected according to the purpose of use,
Generally, the range of 10 to 150 g / m 2 is preferable, and the range of 15 to 70 g / m 2 is more preferable. When the basis weight is less than 10 g / m 2 , flexibility and biodegradation rate are excellent, but mechanical strength is poor and it is not practical.
On the other hand, when the basis weight exceeds 150 g / m 2 , the nonwoven fabric has a hard texture and is inferior in flexibility.

【0039】[0039]

【実施例】次に、実施例に基づき本発明を具体的に説明
するが、本発明は、これらの実施例によって何ら限定さ
れるものではない。
Next, the present invention will be described in detail with reference to examples, but the present invention is not limited to these examples.

【0040】実施例において、各物性値の測定を次の方
法により実施した。
In the examples, each physical property value was measured by the following methods.

【0041】・メルトフローレート値(g/10分);
ASTM−D−1238(E)に記載の方法に準じて温
度190℃で測定した。(以降、MFR値と記す)
Melt flow rate value (g / 10 minutes);
The temperature was measured at 190 ° C. according to the method described in ASTM-D-1238 (E). (Hereinafter referred to as MFR value)

【0042】・融点(℃);パーキンエルマ社製示差走
査型熱量計DSC−2型を用い、試料重量を5mg、昇
温速度を20℃/分として測定して得た融解吸熱曲線の
最大値を与える温度を融点(℃)とした。
Melting point (° C.); maximum value of melting endothermic curve obtained by measurement using a differential scanning calorimeter DSC-2 type manufactured by Perkin Elma Co., Ltd. with a sample weight of 5 mg and a heating rate of 20 ° C./min. Was given as the melting point (° C.).

【0043】・結晶化温度(℃);パーキンエルマ社製
示差走査型熱量計DSC−2型を用い、試料重量を5m
g、降温速度を20℃/分として測定して得た固化発熱
曲線の最大値を与える温度を結晶化温度(℃)とした。
Crystallization temperature (° C.): Using a differential scanning calorimeter DSC-2 manufactured by PerkinElmer, and weighing a sample of 5 m
g, the temperature giving the maximum value of the solidification exothermic curve obtained by measuring the cooling rate at 20 ° C./min was defined as the crystallization temperature (° C.).

【0044】・冷却性;紡出糸条を目視して下記の3段
階にて評価した。 ○;密着糸が認められない。 △;密着糸がわずかではあるが認められる。 ×;大部分が密着している。
Coolability: The spun yarn was visually inspected and evaluated according to the following three grades. ◯: No adhesion thread is observed. Δ: A small amount of adhesive thread is recognized. X: Most of them are in close contact.

【0045】・可紡性; ○;糸切れが発生せず、紡糸操業性が良好である。 ×;糸切れが多発し、紡糸操業性が不良である。Spinnability: Good; no yarn breakage occurs, and spinning operability is good. X: Thread breakage occurs frequently and spinning operability is poor.

【0046】・延伸性; ○;延伸毛羽が発生せず、延伸操業性が良好である。 ×;延伸毛羽が多発し、延伸が不可能である。Stretchability: Good: Stretching fluff is not generated and stretching operability is good. X: Stretching fuzz occurs frequently and stretching is impossible.

【0047】・目付け(g/m2 );標準状態の試料か
ら試料長が10cm、試料幅が10cmの試料片10点
を作成し平衡水分にした後、各試料片の重量(g)を秤
量し、得られた値の平均値を単位面積当たりに換算し、
目付け(g/m2 )とした。
-Basis weight (g / m 2 ); 10 pieces of a sample having a sample length of 10 cm and a sample width of 10 cm were prepared from a standard sample, and after equilibrating water, the weight (g) of each sample piece was weighed. Then, convert the average value of the obtained values per unit area,
The basis weight (g / m 2 ) was used.

【0048】・不織布の強力(kg/5cm幅);JI
S−L−1096Aに記載の方法に準じて測定した。す
なわち、試料長が20cm、試料幅が5cmの試料片1
0点を作成し、試料片毎に不織布の縦方向について、定
速伸張型引張り試験機(東洋ボールドウイン社製テンシ
ロンUTM−4−1−100)を用いて、引張り速度1
0cm/分で伸張し、得られた切断時荷重値の平均値を
強力(kg/5cm幅)とした。
Strength of non-woven fabric (kg / 5 cm width); JI
It was measured according to the method described in S-L-1096A. That is, a sample piece 1 having a sample length of 20 cm and a sample width of 5 cm
A zero point was created, and a tensile speed of 1 was set for each sample piece in the longitudinal direction of the nonwoven fabric using a constant-speed extension-type tensile tester (Tensilon UTM-4-1-100 manufactured by Toyo Baldwin Co., Ltd.).
It was stretched at 0 cm / min, and the average value of the load values at cutting obtained was taken as the strength (kg / 5 cm width).

【0049】・生分解性能;不織布を土中に埋設し、6
ヶ月後に取り出し、不織布がその形態を保持していない
場合、あるいは、その形態を保持していても強力が埋設
前の強力初期値に対して50%以下に低下している場
合、生分解性能が良好(;○)であるとし、強力が埋設
前の強力初期値に対して50%を超える場合、生分解性
能が不良(;×)であると評価した。
Biodegradability: 6 is obtained by embedding a non-woven fabric in soil.
If the nonwoven fabric does not retain its shape after a month, or if the strength is reduced to 50% or less of the initial strength value before embedding even if it retains its shape, the biodegradation performance is The biodegradability was evaluated as poor (; x) if the strength was more than 50% of the initial strength before embedding.

【0050】・吸水性(mm):JIS−L−1096
に記載のバイレック法に準じて測定した。すなわち、試
料長が20cm、試料幅が2.5cmの試料片5点を作
成し、各試料片を20±2℃の水を入れた水槽上の一定
の高さに支えた水平棒上にピンで留めて吊す。試料片の
下端を一線に並べて水平棒を下げ、試料片の下端の1c
mがちょうど水に浸かるようにする。10分間放置後の
水の上昇した高さ(mm)を測り、その平均値を吸水性
(mm)とした。
Water absorption (mm): JIS-L-1096
It was measured according to the Bayrec method described in 1. That is, five sample pieces having a sample length of 20 cm and a sample width of 2.5 cm were prepared, and each sample piece was pinned on a horizontal bar supported at a constant height on a water tank containing water at 20 ± 2 ° C. And hang it. Align the lower end of the sample piece in a line and lower the horizontal bar,
Make sure that m just submerges in water. The rise height (mm) of water after standing for 10 minutes was measured, and the average value was taken as water absorbency (mm).

【0051】実施例1 芯成分として、MFR値が20g/10分で融点114
℃、結晶化温度75℃のポリブチレンサクシネートを、
鞘成分として、MFR値が30g/10分で融点102
℃、結晶化温度52℃のブチレンサクシネート/エチレ
ンサクシネート=85/15モル%の共重合体を用い
て、芯鞘型複合短繊維よりなる短繊維ウエブを製造し
た。すなわち、前記芯成分と鞘成分とを個別のエクスト
ルーダ型溶融押出し機を用いて、温度180℃で溶融
し、芯鞘型複合断面となる紡糸口金を用い、単孔吐出量
=1.02g/分、複合比(芯成分/鞘成分)=1/1
(重量比)の条件下にて溶融紡出した。この紡出糸条を
冷却装置にて冷却した後で油剤を付与し、速度が800
m/分の引き取りロールを介して繊度が11.5デニー
ルの未延伸糸を得た。得られた未延伸糸束を複数集束
し、延伸温度が常温の条件下で延伸倍率4.0倍で延伸
し、次いで、スタッファーボックスにて15個/インチ
の捲縮を付与した後、51mmに切断し、銘柄3d×5
1mmの短繊維を得た。この短繊維をパラレルカード機
に供給して目付けが25g/m2 のカードウエブを作成
した。
Example 1 A core component having an MFR value of 20 g / 10 min and a melting point of 114
Polybutylene succinate having a crystallization temperature of 75 ° C.
As a sheath component, MFR value is 30g / 10min and melting point is 102
Using a copolymer of butylene succinate / ethylene succinate = 85/15 mol% at a crystallization temperature of 52 ° C. and a crystallization temperature of 52 ° C., a short fiber web composed of core-sheath type composite short fibers was produced. That is, the core component and the sheath component were melted at a temperature of 180 ° C. using separate extruder type melt extruders, and a spinneret having a core-sheath composite cross section was used, and single hole discharge rate = 1.02 g / min. , Composite ratio (core component / sheath component) = 1/1
Melt spinning was performed under the condition of (weight ratio). After cooling this spun yarn with a cooling device, an oil agent is applied, and the speed is 800
An undrawn yarn having a fineness of 11.5 denier was obtained through a take-up roll of m / min. A plurality of the obtained unstretched yarn bundles were bundled, stretched at a stretching ratio of 4.0 times under the condition that the stretching temperature was room temperature, and then crimped with a stuffer box at 15 pieces / inch, and then 51 mm. Cut, brand 3d x 5
1 mm short fibers were obtained. This short fiber was supplied to a parallel card machine to prepare a card web having a basis weight of 25 g / m 2 .

【0052】一方、天然繊維からなる天然繊維ウエブと
して、木綿の晒し綿を用い、ランダムカード機により目
付けが25g/m2 のカードウエブを作成した。次い
で、芯鞘型複合短繊維からなる短繊維ウエブと晒し綿か
らなる天然繊維ウエブとを積層し、超音波融着装置にて
融着加工を行い、目付けが50g/m2 の積層不織布を
得た。融着加工条件としては、超音波の発振周波数を1
9.7kHzとし、面積0.6mm2 の凸部が配設され
てなるロールを用い、凸部の圧接面積率15%、線圧
2.0kg/cmで実施した。芯鞘型複合短繊維製造の
操業性及び積層不織布物性、生分解性能を表1に示す。
On the other hand, as a natural fiber web made of natural fibers, a bleached cotton cloth was used, and a card web having a basis weight of 25 g / m 2 was prepared by a random card machine. Next, a short fiber web made of core-sheath type composite short fibers and a natural fiber web made of bleached cotton are laminated and subjected to fusion processing by an ultrasonic fusion device to obtain a laminated nonwoven fabric having a basis weight of 50 g / m 2. It was As the fusion processing condition, the ultrasonic oscillation frequency is set to 1
The roll was set to 9.7 kHz, and a roll having a convex portion having an area of 0.6 mm 2 was used, and the pressure contact area ratio of the convex portion was 15% and the linear pressure was 2.0 kg / cm. Table 1 shows the operability, the physical properties of the laminated nonwoven fabric, and the biodegradability of the core-sheath type composite staple fiber production.

【0053】実施例2 単孔吐出量=0.40g/分、複合比(芯成分/鞘成
分)=1/3(重量比)で溶融紡糸を行い、単糸繊度が
4.6デニールの未延伸糸を得、延伸倍率3.2倍にて
延伸したこと及び38mmに切断したこと以外は実施例
1と同一条件下にて、芯鞘型複合短繊維を製造した。得
られた短繊維は銘柄1.5d×38mmであった。この
短繊維をパラレルカード機に供給して目付けが25g/
2 のカードウエブを作成した。
Example 2 Melt spinning was performed at a single hole discharge rate of 0.40 g / min and a composite ratio (core component / sheath component) = 1/3 (weight ratio), and a single yarn fineness of 4.6 denier was measured. A core-sheath type composite short fiber was produced under the same conditions as in Example 1 except that a drawn yarn was obtained, drawn at a draw ratio of 3.2 and cut into 38 mm. The obtained short fibers had a brand of 1.5 d × 38 mm. This short fiber is fed to a parallel card machine and the basis weight is 25 g /
An m 2 card web was created.

【0054】また、実施例1と同様にして目付けが25
g/m2 の木綿の晒し綿からなるカードウエブを作成し
た。次いで、芯鞘型複合短繊維からなる短繊維ウエブと
晒し綿よりなる天然繊維ウエブとを積層し、超音波融着
装置にて融着加工を行い、目付けが50g/m2 の積層
不織布を得た。融着加工条件は実施例1と同一条件にて
実施した。芯鞘型複合短繊維製造の操業性及び積層不織
布物性、生分解性能を表1に示す。
Further, as in Example 1, the basis weight is 25.
A card web made of bleached cotton of g / m 2 was prepared. Next, a short fiber web made of core-sheath type composite short fibers and a natural fiber web made of bleached cotton are laminated and subjected to a fusion processing with an ultrasonic fusion device to obtain a laminated nonwoven fabric having a basis weight of 50 g / m 2. It was The fusion processing conditions were the same as in Example 1. Table 1 shows the operability, the physical properties of the laminated nonwoven fabric, and the biodegradability of the core-sheath type composite staple fiber production.

【0055】実施例3 単孔吐出量=4.10g/分、複合比(芯成分/鞘成
分)=3/1(重量比)で溶融紡糸を行い、単糸繊度が
46デニールの未延伸糸を得、延伸倍率4.8倍にて延
伸したこと及び76mmに切断したこと以外は実施例1
と同一条件下にて、芯鞘型複合短繊維を製造した。得ら
れた短繊維は銘柄10d×76mmであった。この短繊
維をパラレルカード機に供給して目付けが25g/m2
のカードウエブを作成した。
Example 3 Single-hole discharge amount = 4.10 g / min, melt spinning was carried out at a composite ratio (core component / sheath component) = 3/1 (weight ratio), and an undrawn yarn having a single yarn fineness of 46 denier. Example 1 except that the above was obtained and stretched at a stretch ratio of 4.8 times and cut into 76 mm.
Under the same conditions as above, a core-sheath type composite staple fiber was produced. The obtained short fibers had a brand of 10 d × 76 mm. This short fiber is fed to a parallel card machine and the basis weight is 25 g / m 2
Created a card web.

【0056】また、実施例1と同様にして目付けが25
g/m2 の木綿の晒し綿からなるカードウエブを作成し
た。次いで、芯鞘型複合短繊維からなる短繊維ウエブと
晒し綿よりなる天然繊維ウエブとを積層し、超音波融着
装置にて融着加工を行い、目付けが50g/m2 の積層
不織布を得た。融着加工条件は実施例1と同一条件にて
実施した。芯鞘型複合短繊維製造の操業性及び積層不織
布物性、生分解性能を表1に示す。
Further, as in Example 1, the basis weight is 25
A card web made of bleached cotton of g / m 2 was prepared. Next, a short fiber web made of core-sheath type composite short fibers and a natural fiber web made of bleached cotton are laminated and subjected to a fusion processing with an ultrasonic fusion device to obtain a laminated nonwoven fabric having a basis weight of 50 g / m 2. It was The fusion processing conditions were the same as in Example 1. Table 1 shows the operability, the physical properties of the laminated nonwoven fabric, and the biodegradability of the core-sheath type composite staple fiber production.

【0057】実施例4 実施例1と同一条件下にて得た目付けが10g/m2
芯鞘型複合短繊維からなる短繊維ウエブと、目付けが4
0g/m2 の晒し綿からなる天然繊維ウエブとを積層
し、超音波融着装置にて融着加工を行い、目付けが50
g/m2 の積層不織布を得た。融着加工条件は実施例1
と同一条件にて実施した。芯鞘型複合短繊維製造の操業
性及び積層不織布物性、生分解性能を表1に示す。
Example 4 A staple fiber web composed of core-sheath type composite staple fibers having a basis weight of 10 g / m 2 obtained under the same conditions as in Example 1 and a basis weight of 4
Laminated with a natural fiber web made of 0 g / m 2 of bleached cotton, and fusion-bonded with an ultrasonic fusion device to give a basis weight of 50.
g / m 2 of the laminated nonwoven fabric was obtained. Example 1 is the fusion processing conditions.
It carried out on the same conditions as. Table 1 shows the operability, the physical properties of the laminated nonwoven fabric, and the biodegradability of the core-sheath type composite staple fiber production.

【0058】実施例5 実施例1と同一条件下にて得た目付けが40g/m2
芯鞘型複合短繊維からなる短繊維ウエブと、目付けが1
0g/m2 の晒し綿からなる天然繊維ウエブとを積層
し、超音波融着装置にて融着加工を行い、目付けが50
g/m2 の積層不織布を得た。融着加工条件は実施例1
と同一条件にて実施した。芯鞘型複合短繊維製造の操業
性及び積層不織布物性、生分解性能を表1に示す。
Example 5 A staple fiber web composed of core-sheath type composite staple fibers having a basis weight of 40 g / m 2 obtained under the same conditions as in Example 1 and a basis weight of 1
Laminated with a natural fiber web made of 0 g / m 2 of bleached cotton, and fusion-bonded with an ultrasonic fusion device to give a basis weight of 50.
g / m 2 of the laminated nonwoven fabric was obtained. Example 1 is the fusion processing conditions.
It carried out on the same conditions as. Table 1 shows the operability, the physical properties of the laminated nonwoven fabric, and the biodegradability of the core-sheath type composite staple fiber production.

【0059】比較例1 実施例1と同一条件下にて得た目付けが25g/m2
芯鞘型複合短繊維からなる短繊維ウエブと、目付けが2
5g/m2 の晒し綿からなる天然繊維ウエブとを積層
し、熱エンボスロールにて熱融着加工を行い、目付けが
50g/m2 の積層不織布を得た。熱融着加工条件とし
ては、面積0.6mm2 の凸部が配設されてなるロール
を用い、凸部の圧接面積率15%、線圧50kg/c
m、加工温度90℃で実施した。芯鞘型複合短繊維製造
の操業性及び積層不織布物性、生分解性能を表1に示
す。
Comparative Example 1 A staple fiber web made of core-sheath type composite staple fibers having a basis weight of 25 g / m 2 obtained under the same conditions as in Example 1 and a basis weight of 2
A natural fiber web made of 5 g / m 2 of bleached cotton was laminated and heat-bonded with a hot embossing roll to obtain a laminated nonwoven fabric having a basis weight of 50 g / m 2 . As the heat-sealing processing conditions, a roll having a convex portion with an area of 0.6 mm 2 is used, and the pressing area ratio of the convex portion is 15% and the linear pressure is 50 kg / c.
m at a processing temperature of 90 ° C. Table 1 shows the operability, the physical properties of the laminated nonwoven fabric, and the biodegradability of the core-sheath type composite staple fiber production.

【0060】比較例2 実施例1と同一の芯成分を用い、繊維横断面が単相型断
面となる紡糸口金を介して、単孔吐出量=0.97g/
分の条件下にて溶融紡出した。すなわち、前記芯成分を
エクストルーダ型溶融押出し機を用いて、温度180℃
で溶融し、単相型断面となる紡糸口金を介して溶融紡出
し、この紡出糸条を冷却装置にて冷却した後で油剤を付
与し、速度が800m/分の引き取りロールを介して繊
度が10.9デニールの未延伸糸を得た。得られた未延
伸糸束を複数集束し、延伸温度が常温の条件下で延伸倍
率3.8倍で延伸し、次いで、スタッファーボックスに
て14個/インチの捲縮を付与した後、51mmに切断
し、銘柄3d×51mmの短繊維を得た。この短繊維を
パラレルカード機に供給して目付けが25g/m2のカ
ードウエブを作成した。
Comparative Example 2 Using the same core component as in Example 1, single-hole discharge rate = 0.97 g / through a spinneret whose fiber cross section is a single-phase cross section.
Melt-spun under the conditions of minutes. That is, the core component was heated at a temperature of 180 ° C. using an extruder type melt extruder.
Melted and melt-spun through a spinneret having a single-phase cross-section, the spun yarn is cooled in a cooling device, and then an oil agent is applied. The speed is 800 m / min and the fineness is obtained through a take-up roll. To obtain 10.9 denier undrawn yarn. A plurality of the obtained unstretched yarn bundles were bundled, stretched at a stretch ratio of 3.8 times under the condition of a stretching temperature of room temperature, and then crimped to 14 mm / inch with a stuffer box. It cut | disconnected and obtained the short fiber of brand 3dx51mm. This short fiber was supplied to a parallel card machine to prepare a card web having a basis weight of 25 g / m 2 .

【0061】また、実施例1と同様にして目付けが25
g/m2 の木綿の晒し綿からなるカードウエブを作成し
た。次いで、単相型短繊維からなるウエブと晒し綿より
なる天然繊維ウエブとを積層し、超音波融着装置にて融
着加工を行い、目付けが50g/m2 の積層不織布を得
た。融着加工条件は実施例1と同一条件にて実施した。
単相型短繊維製造の操業性及び積層不織布物性、生分解
性能を表1に示す。
Further, as in Example 1, the basis weight is 25
A card web made of bleached cotton of g / m 2 was prepared. Then, a web made of single-phase short fibers and a natural fiber web made of bleached cotton were laminated and subjected to a fusion processing with an ultrasonic fusion device to obtain a laminated nonwoven fabric having a basis weight of 50 g / m 2 . The fusion processing conditions were the same as in Example 1.
Table 1 shows the operability, the physical properties of the laminated non-woven fabric, and the biodegradability of the single-phase short fiber production.

【0062】比較例3 実施例1と同一条件下にて得た目付けが50g/m2
芯鞘型複合短繊維からなる短繊維ウエブを、天然繊維ウ
エブを積層することなく、超音波融着装置にて融着加工
を行い不織布を得た。融着加工条件は実施例1と同一条
件にて実施した。短繊維製造の操業性及び不織布物性、
生分解性能を表1に示す。
Comparative Example 3 A short fiber web composed of core-sheath type composite short fibers having a basis weight of 50 g / m 2 obtained under the same conditions as in Example 1 was ultrasonically fused without laminating a natural fiber web. Fusion processing was performed with the device to obtain a non-woven fabric. The fusion processing conditions were the same as in Example 1. Operability of short fiber production and physical properties of non-woven fabric,
The biodegradability is shown in Table 1.

【0063】[0063]

【表1】 [Table 1]

【0064】表1から明らかなように、実施例1は、本
発明の芯鞘型複合短繊維と天然繊維とからなる積層不織
布であるので、芯鞘型複合短繊維を製造する際の冷却
性、可紡性、延伸性も良好であった。また、芯鞘型複合
短繊維と天然繊維との積層方法が超音波融着であるの
で、2成分間の接着力も強く、しかも得られた積層不織
布の機械的性能及び吸水性にも優れるものであった。こ
の積層不織布を6ケ月間土中に埋設し、その後に掘り出
して観察したところ、不織布としての形態を保持してお
らず、良好な生分解性を有することが認められた。
As is clear from Table 1, Example 1 is a laminated non-woven fabric composed of the core-sheath type composite staple fiber of the present invention and the natural fiber, and therefore, the cooling property in the production of the core-sheath type composite staple fiber. The spinnability and stretchability were also good. Further, since the method of laminating the core-sheath type composite short fibers and the natural fibers is ultrasonic fusion, the adhesive force between the two components is also strong, and the resulting laminated nonwoven fabric is excellent in mechanical performance and water absorption. there were. When this laminated non-woven fabric was embedded in soil for 6 months and then excavated and observed, it was confirmed that the non-woven fabric did not retain its shape and had good biodegradability.

【0065】実施例2は、鞘成分の比率が大ではある
が、繊度を小さくそして芯鞘型複合短繊維を適用してい
るので、実施例1と同様、芯鞘型複合繊維を製造する際
の冷却性、可紡性、延伸性も良好であった。また、得ら
れた積層不織布は機械的性能及び吸水性にも優れるもの
であった。この積層不織布の生分解性能については、鞘
成分の比率が大であるので実施例1で得られた積層不織
布よりさらに良好な結果が得られた。
In Example 2, although the ratio of the sheath component was large, the fineness was small and the core-sheath type composite short fibers were applied. Therefore, as in Example 1, when the core-sheath type composite fiber was produced. The cooling property, spinnability, and stretchability were also good. Further, the obtained laminated nonwoven fabric was excellent in mechanical performance and water absorption. Regarding the biodegradability of this laminated non-woven fabric, a better result was obtained than the laminated non-woven fabric obtained in Example 1 because the ratio of the sheath component was large.

【0066】実施例3は、芯成分の比率が大であり、し
かも芯鞘型複合短繊維を適用しているので、繊度が大き
いにもかかわらず、実施例1と同様、芯鞘型複合繊維を
製造する際の冷却性、可紡性、延伸性も良好であった。
また、得られた積層不織布は機械的性能及び吸水性にも
優れるものであった。この積層不織布の生分解性能も良
好な結果が得られた。
In Example 3, since the ratio of the core component is large and the core-sheath type composite staple fiber is applied, the core-sheath type composite fiber is the same as in Example 1 although the fineness is large. The cooling property, spinnability, and stretchability during the production of were also good.
Further, the obtained laminated nonwoven fabric was excellent in mechanical performance and water absorption. The biodegradability of this laminated nonwoven fabric was also good.

【0067】実施例4は、実施例1と同一の両ウエブを
積層比率が天然繊維リッチとなるように積層しているの
で、実施例1より機械的性能にはやや劣るものの、吸水
性及び生分解性にはさらに良好な結果が得られた。
In Example 4, since the same two webs as those in Example 1 were laminated so that the lamination ratio was rich in natural fibers, the mechanical performance was slightly inferior to that in Example 1, but the water absorption and rawness were improved. Even better results were obtained for degradability.

【0068】実施例5は、実施例1と同一の両ウエブを
積層比率が芯鞘型複合短繊維リッチとなるように積層し
ているので、実施例1より吸水性及び生分解性にはやや
劣るものの、機械的性能にはさらに良好な結果が得られ
た。
In Example 5, since the same two webs as in Example 1 were laminated so that the lamination ratio was rich in the core-sheath type composite short fiber, the water absorption and biodegradability were slightly higher than those in Example 1. Although inferior, better results were obtained in mechanical performance.

【0069】なお、各実施例で得られた不織布について
層間剥離強力を測定しようとしたが、超音波による部分
的な接着が強固であったため剥離させることができず、
その測定は実施できなかった。
Although it was attempted to measure the delamination strength of the non-woven fabrics obtained in each of the examples, the partial adhesion by ultrasonic waves was so strong that they could not be peeled off.
The measurement could not be performed.

【0070】これに対し、比較例1は、実施例1と同一
の両ウエブを、本発明の範囲外である熱エンボスロール
を用いた熱融着装置にて一体化したので、2成分間の接
着力が弱く、到底実使用に耐えるものではなかった。
On the other hand, in Comparative Example 1, the same two webs as in Example 1 were integrated by a heat fusion apparatus using a hot embossing roll which is outside the scope of the present invention, so that the two components The adhesive strength was so weak that it could not withstand actual use.

【0071】比較例2は、実施例1と同一の芯成分を用
いたものの、繊維横断面が本発明範囲外である単相型で
あるために、得られた不織布の機械的性能には優れるも
のの、不織布を6ケ月間土中に埋設し、その後に掘り出
して観察したところ不織布形態を維持しており、不織布
強力も埋設前の91%であり、生分解性能には著しく劣
るものであった。
In Comparative Example 2, the same core component as in Example 1 was used, but since the fiber cross-section was a single phase type outside the scope of the present invention, the resulting nonwoven fabric was excellent in mechanical performance. However, when the non-woven fabric was buried in the soil for 6 months, and then excavated and observed, the non-woven fabric form was maintained, and the strength of the non-woven fabric was 91% before the embedding, and the biodegradability was extremely poor. .

【0072】比較例3は、実施例1と同一の短繊維ウエ
ブを用いているものの、天然繊維ウエブを積層していな
いので、得られた不織布は吸水性に劣るものであった。
In Comparative Example 3, although the same short fiber web as in Example 1 was used, but the natural fiber web was not laminated, the obtained nonwoven fabric was inferior in water absorbency.

【0073】[0073]

【発明の効果】本発明によれば、紡出糸条の冷却性及び
可紡性、延伸性に優れ、良好な生分解性能を有するとと
もにその制御が可能であり、吸湿性、吸水性に富み、さ
らに実使用に耐えうるだけの充分な強力を有する積層不
織布及びその製造方法を提供することができる。
EFFECTS OF THE INVENTION According to the present invention, the spun yarn is excellent in cooling property, spinnability and stretchability, has good biodegradability and can be controlled, and is rich in hygroscopicity and water absorption. Further, it is possible to provide a laminated non-woven fabric having a sufficient strength to withstand actual use and a method for producing the same.

【0074】本発明の積層不織布は、おむつや生理用品
その他の医療・衛生材料素材、使い捨ておしぼりやワイ
ピングクロスなどの拭き取り布、使い捨て包装材、家庭
・業務用の生ごみ捕集用袋その他廃棄物処理材などの生
活関連用素材、あるいは、農業・園芸・土木用に代表さ
れる産業用資材の各素材として好適である。しかもこの
積層不織布は、生分解性を有するので、その使用後に完
全に分解消失するため、自然環境保護の観点からも有益
であり、あるいは、例えば堆肥化して肥料とするなど再
利用を図ることもできるため資源の再利用の観点からも
有益である。
The laminated nonwoven fabric of the present invention is used as a material for medical and hygiene materials such as diapers and sanitary products, wipes such as disposable hand towels and wiping cloths, disposable packaging materials, bags for collecting garbage for household and business use, and other waste materials. It is suitable as a material for daily life such as a processing material, or an industrial material typified by agriculture, gardening, and civil engineering. Moreover, since this laminated non-woven fabric is biodegradable, it decomposes and disappears completely after use, which is beneficial from the viewpoint of protecting the natural environment, or it can be reused by, for example, composting it into a fertilizer. It is also useful from the perspective of resource reuse.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 複合短繊維からなる短繊維ウエブと天然
繊維からなる天然繊維ウエブとが積層され部分的な超音
波融着により一体化されており、前記複合短繊維が生分
解性を有する第1の脂肪族ポリエステルからなる芯成分
とこの芯成分よりも融点の低い生分解性を有する第2の
脂肪族ポリエステルからなる鞘成分とから形成される芯
鞘型複合断面を有してなることを特徴とする積層不織
布。
1. A short fiber web made of composite short fibers and a natural fiber web made of natural fibers are laminated and integrated by partial ultrasonic fusion, and the composite short fibers are biodegradable. 1. A core-sheath composite cross section formed from a core component composed of an aliphatic polyester of 1 and a sheath component composed of a second aliphatic polyester having a biodegradability having a lower melting point than that of the core component. Characteristic laminated non-woven fabric.
【請求項2】 天然繊維が、コットン、ラミー、短繊維
状に裁断されたシルク繊維であることを特徴とする請求
項1記載の積層不織布。
2. The laminated nonwoven fabric according to claim 1, wherein the natural fiber is a cotton fiber, a ramie fiber, or a silk fiber cut into a short fiber shape.
【請求項3】 芯成分が、ポリブチレンサクシネートで
あり、鞘成分が、ブチレンサクシネートの共重合量比が
70〜90モル%となるようにブチレンサクシネートに
エチレンサクシネートあるいはブチレンアジペートを共
重合せしめた共重合ポリエステルであることを特徴とす
る請求項1または2に記載の積層不織布。
3. The core component is polybutylene succinate, and the sheath component is copolymerized with ethylene succinate or butylene adipate in butylene succinate so that the copolymerization ratio of butylene succinate is 70 to 90 mol%. The laminated nonwoven fabric according to claim 1 or 2, which is a copolymerized polyester that is polymerized.
【請求項4】 芯成分及び鞘成分から構成された単糸繊
度が1.5〜10デニールであり、芯成分/鞘成分の複
合比が1/3〜3/1(重量比)であることを特徴とす
る請求項1から3までのいずれか1項に記載の積層不織
布。
4. A single yarn fineness composed of a core component and a sheath component is 1.5 to 10 denier, and a composite ratio of the core component / the sheath component is 1/3 to 3/1 (weight ratio). The laminated nonwoven fabric according to any one of claims 1 to 3, characterized in that.
【請求項5】 天然繊維ウエブと短繊維ウエブとの積層
比率が10/90〜90/10(重量%)であることを
特徴とする請求項1から4までのいずれか1項に記載の
積層不織布。
5. The laminate according to any one of claims 1 to 4, wherein a lamination ratio of the natural fiber web and the short fiber web is 10/90 to 90/10 (% by weight). Non-woven fabric.
【請求項6】 生分解性を有する第1の脂肪族ポリエス
テルからなる芯成分とこの芯成分よりも融点の低い生分
解性を有する第2の脂肪族ポリエステルからなる鞘成分
とを用いて、芯鞘型複合繊維を溶融複合紡糸し、次いで
延伸し、得られた延伸糸条に機械捲縮を付与した後に所
定長に切断して短繊維となし、この短繊維をカーディン
グすることにより短繊維ウエブを形成し、この短繊維ウ
エブに天然繊維からなる天然繊維ウエブを積層した後
に、超音波融着処理を施して両ウエブを部分的に融着さ
せ一体化することを特徴とする積層不織布の製造方法。
6. A core comprising a core component made of a first aliphatic polyester having biodegradability and a sheath component made of a second aliphatic polyester having a biodegradability having a melting point lower than that of the core component. Melt composite spinning of sheath-type composite fibers is followed by drawing, and the resulting drawn yarn is mechanically crimped and then cut into predetermined lengths to form short fibers, and the short fibers are carded to obtain short fibers. Forming a web, after laminating a natural fiber web made of natural fibers to this short fiber web, ultrasonic fusion treatment is applied to both webs to partially fuse and unify the laminated nonwoven fabric. Production method.
JP8092108A 1996-04-15 1996-04-15 Laminated nonwoven fabric and its production Pending JPH09279449A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8092108A JPH09279449A (en) 1996-04-15 1996-04-15 Laminated nonwoven fabric and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8092108A JPH09279449A (en) 1996-04-15 1996-04-15 Laminated nonwoven fabric and its production

Publications (1)

Publication Number Publication Date
JPH09279449A true JPH09279449A (en) 1997-10-28

Family

ID=14045246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8092108A Pending JPH09279449A (en) 1996-04-15 1996-04-15 Laminated nonwoven fabric and its production

Country Status (1)

Country Link
JP (1) JPH09279449A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000056539A1 (en) * 1999-03-23 2000-09-28 Toray Industries, Inc. Composite reinforcing fiber base material, preform and production method for fiber reinforced plastic
US8246882B2 (en) 2003-05-02 2012-08-21 The Boeing Company Methods and preforms for forming composite members with interlayers formed of nonwoven, continuous materials
CN105442188A (en) * 2015-12-29 2016-03-30 苏州鑫茂无纺材料有限公司 High-strength non-woven cloth

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000056539A1 (en) * 1999-03-23 2000-09-28 Toray Industries, Inc. Composite reinforcing fiber base material, preform and production method for fiber reinforced plastic
US8246882B2 (en) 2003-05-02 2012-08-21 The Boeing Company Methods and preforms for forming composite members with interlayers formed of nonwoven, continuous materials
US8852713B2 (en) 2003-05-02 2014-10-07 The Boeing Company Methods and preforms for forming composite members with interlayers formed of nonwoven, continuous materials
CN105442188A (en) * 2015-12-29 2016-03-30 苏州鑫茂无纺材料有限公司 High-strength non-woven cloth

Similar Documents

Publication Publication Date Title
JP4093595B2 (en) Method, product and use of degradable polymer fibers
JPH0995847A (en) Nonwoven fabric of polylactate-based filament and its production
JPH08260320A (en) Nonwoven fabric comprising biodegradable conjugate short fiber
JPH08260323A (en) Biodegradable filament nonwoven fabric and its production
JPH09279449A (en) Laminated nonwoven fabric and its production
JP3804999B2 (en) Biodegradable long-fiber nonwoven fabric and method for producing the same
JPH101855A (en) Biodegradable short fiber nonwoven fabric and its production
JP3247177B2 (en) Biodegradable latently crimpable composite short fiber and nonwoven fabric thereof
JP3716470B2 (en) Biodegradable bag
JP4117915B2 (en) Biodegradable nonwoven fabric and method for producing the same
JPH09310292A (en) Biodegradable wet nonwoven fabric and its production
JP3516291B2 (en) Method for producing biodegradable nonwoven fabric with excellent elasticity
JPH09279465A (en) Laminated nonwoven fabric and its production
JP3553722B2 (en) Biodegradable nonwoven fabric and method for producing the same
JPH09279448A (en) Laminated nonwoven fabric and its production
JPH09279451A (en) Laminated nonwoven fabric and its production
JP2703294B2 (en) Polyester conjugate fiber, nonwoven fabric containing the fiber, and method for producing the nonwoven fabric
JP4117916B2 (en) Biodegradable nonwoven fabric and method for producing the same
JPH09279454A (en) Biodegradable short fiber nonwoven fabric and its production
JPH09310293A (en) Biodegradable wet nonwoven fabric and its production
JPH09279447A (en) Laminated nonwoven fabric and its production
JPH09279452A (en) Laminated nonwoven fabric and its production
JPH09279446A (en) Biodegradable short fiber nonwoven fabric and its production
JP3262430B2 (en) Method for producing biodegradable laminated nonwoven structure
JPH09310261A (en) Laminated nonwoven fabric and its production

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041102

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050301