JPH09279452A - Laminated nonwoven fabric and its production - Google Patents

Laminated nonwoven fabric and its production

Info

Publication number
JPH09279452A
JPH09279452A JP8092117A JP9211796A JPH09279452A JP H09279452 A JPH09279452 A JP H09279452A JP 8092117 A JP8092117 A JP 8092117A JP 9211796 A JP9211796 A JP 9211796A JP H09279452 A JPH09279452 A JP H09279452A
Authority
JP
Japan
Prior art keywords
melting point
point component
fiber
low
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8092117A
Other languages
Japanese (ja)
Inventor
Mamiko Matsunaga
雅美子 松永
Koichi Nagaoka
孝一 長岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP8092117A priority Critical patent/JPH09279452A/en
Publication of JPH09279452A publication Critical patent/JPH09279452A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a laminated nonwoven fabric comprising short fibers made of conjugate filament yarns of excellent cooling disposition, spinnability and drawability following their delivery from a spinneret, good in biodegradability which is controllable, rich in both moisture and water absorbability, and having enough mechanical strength to stand its practical use. SOLUTION: The single fiber as constituent fiber of this nonwoven fabric has the following characteristics: made up of high-melting component 1 and low-melting component 2 each consisting of biodegradable aliphatic polyester; in the fiber cross-section, the low-melting component 2 represents core, while the high-melting component 1 plural projections independent of one another arranged circumferentially around the low-melting component 2; and the low-melting component 2 is continuous without being segmented by the high-melting component 1. To obtain the above constituent fiber, a melt conjugate spinning followed by drawing is conducted to produce multifoliate-type conjugate filament yarns in such a way that both the high-melting and low-melting components 1, 2 are continuous in the direction of fiber axis and exposed onto the fiber surface alternately, and the resultant drawn filament yarns are mechanically crimped and cut to a specified length, then carded into a short fiber web, which is, in turn, laminated with a natural fiber web followed by subjecting both the webs to fluid jet treatment into integration through three-dimensional interlacing of the constituent fibers of both the webs, thus affording the objective laminated nonwoven fabric.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、医療・衛生材料、
生活資材あるいは一般産業資材など、生分解性能及び吸
水性が要望される幅広い用途に好適な積層不織布及びそ
の製造方法に関するものである。
TECHNICAL FIELD The present invention relates to a medical / hygiene material,
The present invention relates to a laminated non-woven fabric suitable for a wide range of applications where biodegradability and water absorption are desired, such as daily life materials and general industrial materials, and a method for producing the same.

【0002】[0002]

【従来の技術】従来から、生分解性能を有する不織布と
しては、例えば乾式法あるいは溶液浸漬法により得られ
るビスコース短繊維不織布、湿式法により得られるキュ
プラレーヨン長繊維不織布やビスコースレーヨン長繊維
不織布、キチンやコラーゲンのような天然物の化学繊維
からなる不織布、コットンからなるスパンレース不織布
等が知られている。しかしながら、これらの生分解性不
織布は機械的強度が低くかつ親水性であるため吸水・湿
潤の時の機械的強度の低下が著しい。さらに、これらの
不織布は素材自体が非熱可塑性であることから、熱接着
性や熱成形性を有しない等の問題を有していた。
BACKGROUND OF THE INVENTION Conventionally, as non-woven fabrics having biodegradability, for example, viscose short fiber non-woven fabrics obtained by a dry method or a solution dipping method, cupra rayon long fiber non-woven fabrics and viscose rayon long fiber non-woven fabrics obtained by a wet method. Nonwoven fabrics made of natural chemical fibers such as chitin and collagen, spunlace nonwoven fabric made of cotton, and the like are known. However, since these biodegradable nonwoven fabrics have low mechanical strength and are hydrophilic, the mechanical strength upon water absorption / wetting is significantly reduced. Further, since these non-woven fabrics are non-thermoplastic in nature, they have problems such as lack of thermal adhesiveness and thermoformability.

【0003】このような問題を解決する生分解性不織布
として、特開平5−93318号公報または特開平5−
195407号公報に生分解性を有する熱可塑性重合体
を用いた不織布が開示されている。しかし、これらは、
製造の際の紡出糸条の冷却性及び可紡性、延伸性に劣
り、しかも熱圧接工程等において全融タイプとなるので
得られた不織布の機械的特性及び柔軟性に劣るものであ
った。
As a biodegradable non-woven fabric which solves such a problem, there is disclosed in Japanese Patent Laid-Open No. 93318/1993 or Japanese Patent Laid-Open No. 5-93318.
Japanese Patent No. 195407 discloses a non-woven fabric using a biodegradable thermoplastic polymer. But these are
The spun yarn during production was inferior in the cooling property, spinnability, and stretchability, and, since it was a fully melted type in the hot pressing process, the resulting nonwoven fabric was inferior in mechanical properties and flexibility. .

【0004】生分解性不織布の製造工程においてこのよ
うな問題が生じるのは、一般的に生分解性を有する重合
体の融点及び結晶化温度が低く、しかも結晶化速度が遅
いことに起因する。すなわち、溶融紡出後の冷却・細化
において糸条間に密着が発生し、次工程での延伸・捲縮
付与工程において操業性を著しく損なうものであった。
Such problems occur in the process of producing a biodegradable nonwoven fabric because the melting point and crystallization temperature of a biodegradable polymer are generally low and the crystallization rate is slow. That is, adhesion between yarns occurs during cooling / thinning after melt spinning, and operability is significantly impaired in the drawing / crimping step in the next step.

【0005】また、従来の生分解性繊維においては、一
般にその繊維横断面は単一型、単一中空型あるいは芯鞘
複合型であり、構成する一成分のみが繊維の全表面を被
覆している。従って、融点及び結晶化温度の比較的高い
生分解性重合体を用いて紡出糸条の冷却性及び可紡性、
延伸性を重視すると、得られる不織布の分解性能に劣る
こととなり、逆に、融点及び結晶化温度の比較的低い生
分解重合体を用いて生分解性能を重視すると、紡出糸条
の冷却性及び可紡性、延伸性に劣る結果となる。しか
も、従来の方法では、生分解性能の制御は、適用する重
合体の種類、繊度、繊維の配向度などを変更することに
より幾分かは可能ではあるが、微妙な制御は不可能であ
った。
In the conventional biodegradable fiber, the cross section of the fiber is generally a single type, a single hollow type or a core-sheath composite type, and only one constituent component covers the entire surface of the fiber. There is. Therefore, using a biodegradable polymer having a relatively high melting point and crystallization temperature, the cooling and spinnability of the spun yarn,
When the stretchability is emphasized, the decomposition performance of the resulting nonwoven fabric is inferior, and conversely, when the biodegradability is emphasized by using a biodegradable polymer having a relatively low melting point and crystallization temperature, the cooling property of the spun yarn is improved. In addition, the result is poor spinnability and stretchability. Moreover, in the conventional method, the biodegradability can be controlled to some extent by changing the type of the polymer to be applied, the fineness, the orientation degree of the fiber, etc., but the delicate control is not possible. It was

【0006】さらに、前述のような生分解性熱可塑性重
合体を用いた繊維単独で形成された不織布は、機械的特
性には優れるものの、吸湿性、吸水性に劣り、用途が限
定されるものであった。これを改善する方法としては、
吸水性に優れる天然繊維等を積層することが考えられる
が、生分解性熱可塑性重合体からなるウエブと天然繊維
からなるウエブとを積層して部分熱融着を施す場合に通
常適用されるエンボスロールを用いた熱圧接装置による
と、両ウエブ間の接着力が弱く、得られる積層不織布は
到底使用に耐えるものではなかった。
Further, although the nonwoven fabric formed of the fibers alone using the biodegradable thermoplastic polymer as described above has excellent mechanical properties, it is inferior in hygroscopicity and water absorption and its use is limited. Met. As a way to improve this,
It is conceivable to laminate natural fibers and the like having excellent water absorption, but the embossing that is usually applied when a web made of a biodegradable thermoplastic polymer and a web made of natural fibers are laminated to carry out partial heat fusion. According to the thermocompression bonding apparatus using a roll, the adhesive strength between the two webs was weak, and the resulting laminated nonwoven fabric was not durable enough to be used.

【0007】[0007]

【発明が解決しようとする課題】本発明は、前記の問題
を解決し、紡出糸条の冷却性及び可紡性、延伸性に優
れ、良好な生分解性能を有するとともにその制御が可能
であり、吸湿性、吸水性に富み、さらに実使用に耐えう
るだけの充分な強力を有する積層不織布及びその製造方
法を提供しようとするものである。
DISCLOSURE OF THE INVENTION The present invention solves the above problems, has excellent cooling properties, spinnability and stretchability of spun yarns, has good biodegradability, and is controllable. Accordingly, the present invention aims to provide a laminated nonwoven fabric which is rich in hygroscopicity and water absorption and has sufficient strength to withstand actual use, and a method for producing the same.

【0008】[0008]

【課題を解決するための手段】本発明者らは上記課題を
解決すべく、鋭意検討の結果本発明に至った。すなわ
ち、本発明は以下の構成を要旨とするものである。
Means for Solving the Problems The inventors of the present invention have made intensive studies to solve the above problems, and as a result, have reached the present invention. That is, the present invention has the following structures.

【0009】(1)複合短繊維からなる短繊維ウエブと
天然繊維からなる天然繊維ウエブとが積層され三次元交
絡により一体化されており、前記複合短繊維が生分解性
を有する第1の脂肪族ポリエステルからなる高融点成分
とこの高融点成分よりも融点の低い生分解性を有する第
2の脂肪族ポリエステルからなる低融点成分とから形成
される多葉型複合短繊維であり、この多葉型複合短繊維
の繊維横断面において、低融点成分が芯部を形成し、高
融点成分が前記低融点成分の円周方向に独立した突起部
を複数形成し、しかも低融点成分は高融点成分によって
分断されることなく連続しており、かつ、多葉型複合短
繊維を形成する高融点成分及び低融点成分はともに繊維
軸方向に連続するとともに繊維表面において交互に露出
してなること特徴とする積層不織布。
(1) A short fiber web made of composite short fibers and a natural fiber web made of natural fibers are laminated and integrated by three-dimensional entanglement, and the composite short fibers are a first fat having biodegradability. A multi-leaf type composite short fiber formed from a high-melting-point component composed of a group polyester and a low-melting-point component composed of a second aliphatic polyester having a lower melting point than the high-melting point component and having a biodegradability. In the fiber cross section of the type composite short fiber, the low melting point component forms the core, the high melting point component forms a plurality of independent protrusions in the circumferential direction of the low melting point component, and the low melting point component is the high melting point component. The high melting point component and the low melting point component forming the multileaf type composite short fiber are both continuous in the fiber axis direction and are alternately exposed on the fiber surface. Laminated non-woven fabric.

【0010】(2)生分解性を有する第1の脂肪族ポリ
エステルからなる高融点成分とこの高融点成分よりも融
点の低い生分解性を有する第2の脂肪族ポリエステルか
らなる低融点成分とを用いて、繊維横断面において低融
点成分が芯部を形成し、繊維横断面において高融点成分
が前記低融点成分の円周方向に独立した突起部を複数形
成し、しかも繊維横断面において前記低融点成分は高融
点成分によって分断されることなく連続しており、高融
点成分及び低融点成分がともに繊維軸方向に連続すると
ともに繊維表面において交互に露出するような多葉型複
合繊維を溶融複合紡糸し、次いで延伸し、得られた延伸
糸条に機械捲縮を付与した後に所定長に切断して短繊維
となし、この短繊維をカーディングすることにより短繊
維ウエブを形成し、この短繊維ウエブに天然繊維からな
る天然繊維ウエブを積層した後に、加圧液体流処理を施
して両ウエブの構成繊維を三次元交絡させ一体化するこ
とを特徴とする積層不織布の製造方法。
(2) A high-melting point component composed of a first aliphatic polyester having biodegradability and a low-melting point component composed of a second aliphatic polyester having a lower melting point than the high-melting point component. The low melting point component forms the core in the fiber cross section, the high melting point component forms a plurality of independent protrusions in the circumferential direction of the low melting point component in the fiber cross section, and The melting point component is continuous without being divided by the high melting point component, and both the high melting point component and the low melting point component are continuous in the axial direction of the fiber, and the multi-leaf type composite fiber is exposed alternately on the fiber surface. The drawn filaments are spun, then drawn, and mechanically crimped on the resulting drawn filaments, which are then cut into short fibers to form short fibers, and the short fibers are carded to form a short fiber web. This short fiber web after a natural fiber web made of natural fiber are laminated, pressurized method for producing a laminated nonwoven fabric which is characterized in that pressure liquid jet treatment is a three-dimensional entanglement of both webs of fibers constituting subjected to integrate.

【0011】本発明は以上の構成により、短繊維ウエブ
層を構成する短繊維の繊維横断面において、生分解性能
には劣るが冷却性及び可紡性、延伸性に優れる高融点成
分を細分化し繊維外周部に位置させ、冷却性及び可紡
性、延伸性には劣るが生分解性能に優れる低融点成分を
中央部に位置させることにより、冷却性、可紡性、延伸
性及び生分解性能のいずれにも優れる積層不織布を得る
ものである。
According to the present invention, the high melting point component having poor biodegradability but excellent cooling property, spinnability and stretchability is subdivided in the fiber cross section of the short fibers constituting the short fiber web layer. Cooling, spinnability, stretchability and biodegradation performance by locating the low melting point component located in the outer periphery of the fiber, which is inferior in cooling properties, spinnability and stretchability, but has excellent biodegradability A laminated non-woven fabric excellent in any of the above is obtained.

【0012】また、本発明の積層不織布は、天然繊維に
よって吸水性を発揮させるとともに、湿潤時の機械的強
力に劣るという天然繊維の特性を短繊維ウエブによって
補強するものである。すなわち、短繊維ウエブと天然繊
維ウエブとを積層することにより、吸水性および機械的
特性を併せ持つことができるのである。しかも、短繊維
ウエブは脂肪族ポリエステル系重合体から構成され、天
然繊維ウエブはコットン等の分解性素材から構成される
ため、本発明の積層不織布の構成素材は全て自然環境下
で分解し得るものである。
Further, the laminated non-woven fabric of the present invention is made to exhibit water absorption by natural fibers and to reinforce the characteristic of natural fibers that mechanical strength when wet is poor by a short fiber web. That is, by laminating the short fiber web and the natural fiber web, it is possible to have both water absorption and mechanical properties. Moreover, since the short fiber web is composed of an aliphatic polyester polymer and the natural fiber web is composed of a degradable material such as cotton, all the constituent materials of the laminated nonwoven fabric of the present invention can be decomposed in a natural environment. Is.

【0013】さらに、本発明の積層不織布は、短繊維ウ
エブと天然繊維ウエブとが三次元交絡により一体化され
てなるので、両ウエブ間の剥離強力に優れ、充分に実使
用に耐えうるものである。
Further, since the laminated nonwoven fabric of the present invention is made by integrating the short fiber web and the natural fiber web by three-dimensional entanglement, the peel strength between the two webs is excellent and they can be sufficiently used in practice. is there.

【0014】[0014]

【発明の実施の形態】本発明の積層不織布は、複合短繊
維からなる短繊維ウエブと天然繊維からなる天然繊維ウ
エブとが積層されてなるものである。
BEST MODE FOR CARRYING OUT THE INVENTION The laminated nonwoven fabric of the present invention is formed by laminating a short fiber web made of composite short fibers and a natural fiber web made of natural fibers.

【0015】まず、本発明の短繊維ウエブについて説明
する。本発明において適用される短繊維は、生分解性を
有する第1の脂肪族ポリエステルからなる高融点成分と
この高融点成分よりも融点の低い生分解性を有する第2
の脂肪族ポリエステルからなる低融点成分とから形成さ
れる複合短繊維である。
First, the short fiber web of the present invention will be described. The short fibers applied in the present invention include a high-melting point component made of a first aliphatic polyester having biodegradability and a second high-melting point component having a lower melting point than the high-melting point component.
Is a composite short fiber formed from a low melting point component composed of the aliphatic polyester.

【0016】高融点成分及び低融点成分を構成する第1
及び第2の生分解性脂肪族ポリエステルとしては、例え
ば、ポリグリコール酸やポリ乳酸のようなポリ(α−ヒ
ドロキシ酸)またはこれらを構成する繰り返し単位要素
による共重合体が挙げられる。また、ポリ(ε−カプロ
ラクトン)、ポリ(β−プロピオラクトン)のようなポ
リ(ω−ヒドロキシアルカノエート)が、さらに、ポリ
−3−ヒドロキシプロピオネート、ポリ−3−ヒドロキ
シブチレート、ポリ−3−ヒドロキシカプロエート、ポ
リ−3−ヒドロキシヘプタノエート、ポリ−3−ヒドロ
キシオクタノエートのようなポリ(β−ヒドロキシアル
カノエート)及びこれらを構成する繰り返し単位要素と
ポリ−3−ヒドロキシバリレートやポリ−4−ヒドロキ
シブチレートを構成する繰り返し単位要素との共重合体
が挙げられる。また、ジオールとジカルボン酸の縮重合
体からなるものとして、例えば、ポリエチレンオキサレ
ート、ポリエチレンサクシネート、ポリエチレンアジペ
ート、ポリエチレンアゼテート、ポリブチレンオキサレ
ート、ポリブチレンサクシネート、ポリブチレンアジペ
ート、ポリブチレンセバケート、ポリヘキサメチレンセ
バケート、ポリネオペンチルオキサレートまたはこれら
を構成する繰り返し単位要素による共重合体が挙げられ
る。また、以上の脂肪族ポリエステルを複数ブレンドし
て用いることもできる。以上の脂肪族ポリエステルのな
かでは、製糸性及び生分解性能の観点から、ポリブチレ
ンサクシネート、ポリエチレンサクシネートならびにポ
リブチレンアジペートが特に好ましく、さらに特に、ブ
チレンサクシネートを主繰り返し単位としてこれにエチ
レンサクシネートあるいはブチレンアジペートを共重合
せしめた共重合ポリエステルが好適である。本発明にお
いては、以上の脂肪族ポリエステルの中から選択された
2種の重合体のうち、融点が高い方の重合体を高融点成
分とし、融点が低い方の重合体を低融点成分とする。
First to form high melting point component and low melting point component
Examples of the second biodegradable aliphatic polyester include poly (α-hydroxy acid) such as polyglycolic acid and polylactic acid, or a copolymer of repeating unit elements constituting the poly (α-hydroxy acid). Further, poly (ω-hydroxyalkanoate) such as poly (ε-caprolactone) and poly (β-propiolactone) is further added to poly-3-hydroxypropionate, poly-3-hydroxybutyrate, poly Poly (β-hydroxyalkanoates) such as 3-hydroxycaproate, poly-3-hydroxyheptanoate, poly-3-hydroxyoctanoate, and repeating unit elements and poly-3-hydroxy constituting them Examples thereof include a copolymer with a repeating unit element constituting valerate or poly-4-hydroxybutyrate. Further, as the one consisting of a condensation polymer of a diol and a dicarboxylic acid, for example, polyethylene oxalate, polyethylene succinate, polyethylene adipate, polyethylene acetate, polybutylene oxalate, polybutylene succinate, polybutylene adipate, polybutylene sebacate , Polyhexamethylene sebacate, polyneopentyl oxalate, or copolymers composed of repeating units constituting these. Further, a plurality of the above aliphatic polyesters may be blended and used. Among the above-mentioned aliphatic polyesters, polybutylene succinate, polyethylene succinate and polybutylene adipate are particularly preferable from the viewpoint of spinnability and biodegradability, and more particularly, butylene succinate as a main repeating unit and ethylene succinate. A copolyester obtained by copolymerizing nate or butylene adipate is preferable. In the present invention, of the two types of polymers selected from the above aliphatic polyesters, the polymer having a higher melting point is a high melting point component, and the polymer having a lower melting point is a low melting point component. .

【0017】ところで、脂肪族ポリエステルは一般に、
融点が高い程、紡出糸条の冷却性及び可紡性、延伸性に
は優れるものの、結晶化度が高いため生分解性能には劣
り、逆に、融点が低い程、紡出糸条の冷却性及び可紡
性、延伸性には劣るものの、結晶化度が低いため生分解
性能には優れる。例えば、繊維横断面が比較的融点の高
い高融点成分単相の場合には、製糸性及び不織布化には
優れるものの、目標とする生分解性能を得ることができ
ない。一方、繊維横断面が比較的融点の低い低融点成分
単相の場合には、溶融紡糸に際し紡出糸条の冷却性に劣
り不織布を得ることができない。
By the way, the aliphatic polyester is generally
The higher the melting point, the better the cooling properties, spinnability and stretchability of the spun yarn, but the poorer the biodegradability due to the higher crystallinity. Conversely, the lower the melting point, the higher the melting point of the spun yarn. Although it is inferior in cooling property, spinnability and stretchability, it has excellent biodegradability due to its low crystallinity. For example, when the cross-section of the fiber is a single phase of a high melting point component having a relatively high melting point, the target biodegradability cannot be obtained, although the spinnability and the non-woven fabric are excellent. On the other hand, when the fiber cross section is a single phase of a low melting point component having a relatively low melting point, the spun yarn is inferior in the cooling property during melt spinning, and a nonwoven fabric cannot be obtained.

【0018】本発明における短繊維ウエブは、互いに融
点の異なる高融点成分と低融点成分とを用い、後述の繊
維横断面とすることにより、紡出糸条の冷却性及び可紡
性、延伸性と生分解性能とのいずれにも優れる短繊維ウ
エブを得ることができるのである。
The short fiber web according to the present invention comprises a high melting point component and a low melting point component having different melting points from each other and has a fiber cross-section described later, whereby the spun yarn is cooled, spinnable and stretchable. It is possible to obtain a short fiber web that is excellent in both the biodegradability and the biodegradability.

【0019】このことから、高融点成分として、ポリブ
チレンサクシネートを用い、低融点成分として、ブチレ
ンサクシネートの共重合量比が70〜90モル%となる
ようにブチレンサクシネートにエチレンサクシネートあ
るいはブチレンアジペートを共重合せしめた共重合ポリ
エステルを用いることが好ましい。ブチレンサクシネー
トの共重合量比が70モル%未満であると、生分解性能
には優れるものの、紡出糸条の冷却性及び可紡性、延伸
性に劣り、目的とする短繊維が得られないこととなる。
逆に、90モル%を超えると、紡出糸条の冷却性及び可
紡性、延伸性には優れるものの、生分解性能に劣り本発
明の目的とするものではない。
Therefore, polybutylene succinate is used as the high melting point component, and ethylene succinate or butylene succinate is added to the butylene succinate so that the copolymerization ratio of the butylene succinate is 70 to 90 mol% as the low melting point component. It is preferable to use a copolymerized polyester obtained by copolymerizing butylene adipate. When the copolymerization amount ratio of butylene succinate is less than 70 mol%, the biodegradability is excellent, but the cooling property, spinnability and stretchability of the spun yarn are poor, and the target short fibers can be obtained. There will be no.
On the other hand, if it exceeds 90 mol%, the spun yarn is excellent in cooling property, spinnability and stretchability, but is inferior in biodegradability and is not the object of the present invention.

【0020】なお、本発明において、高融点成分及び低
融点成分に適用される前述の脂肪族ポリエステルは、数
平均分子量が約20,000以上、好ましくは40,0
00以上、さらに好ましくは60,000以上のもの
が、製糸性及び得られる糸条の特性の点で良い。また、
重合度を高めるために少量のジイソシアネートやテトラ
カルボン酸二無水物などで鎖延長したものでも良い。
In the present invention, the above-mentioned aliphatic polyester applied to the high melting point component and the low melting point component has a number average molecular weight of about 20,000 or more, preferably 40,0.
The number of fibers of 00 or more, and more preferably 60,000 or more, is good in terms of spinnability and characteristics of the obtained yarn. Also,
It may be chain-extended with a small amount of diisocyanate or tetracarboxylic acid dianhydride to increase the degree of polymerization.

【0021】また、本発明においては、前述の高融点成
分及び低融点成分の両方またはいずれか一方に、必要に
応じて、例えば艶消し剤、顔料、光安定剤、酸化防止剤
等を本発明の効果を損なわない範囲内で添加することが
できる。
In the present invention, if necessary, for example, a matting agent, a pigment, a light stabilizer, an antioxidant, etc. may be added to either or both of the above-mentioned high-melting point component and low-melting point component. It can be added within a range that does not impair the effect of.

【0022】特に、本発明においては、短繊維の製造に
際して紡出糸条の冷却性を向上させるうえで、その構成
成分のうちの少なくとも低融点成分中に結晶核剤が添加
されていることが好ましい。結晶核剤を添加することに
より、溶融紡出後に固化しにくい低結晶性の重合体であ
っても、紡出糸条間に密着が発生するのを防止すること
ができる。ここで、結晶核剤としては、粉末状の無機物
で、かつ溶融液に溶解したりするものでなければ特に制
限をうけないが、タルク、炭酸カルシウム、酸化チタ
ン、窒化ホウ素、シリカゲル、酸化マグネシウムまたは
これらの混合物が好適に用いられる。
Particularly, in the present invention, in order to improve the cooling property of the spun yarn in the production of short fibers, it is preferable that a crystal nucleating agent is added to at least the low melting point component of the constituent components. preferable. Addition of a nucleating agent can prevent adhesion between spun yarns even for a low-crystalline polymer that is hard to solidify after melt spinning. Here, the crystal nucleating agent is a powdered inorganic substance, and is not particularly limited unless it dissolves in the melt, but talc, calcium carbonate, titanium oxide, boron nitride, silica gel, magnesium oxide or A mixture of these is preferably used.

【0023】また、結晶核剤を添加する際には、高融点
成分中への結晶核剤の添加量をQA(重量%)とし、低
融点成分中への結晶核剤の添加量をQB (重量%)とし
たときに、(1)式及び(2)式を満足するように添加
されていることが好ましい。 [(ΔTA +ΔTB)/100]−2 /3 ≦QA +QB ≦[(ΔTA +ΔTB)/100]+4 …(1) QA ≦QB …(2) 但し、ΔTA =高融点成分の融点−高融点成分の結晶化
温度 ΔTB =低融点成分の融点−低融点成分の結晶化温度 結晶核剤の全添加量QA +QB (重量%)が(1)式で
定義された上限を超えると、紡出糸条の冷却効果は高い
ものの、製糸性が低下するとともに得られた短繊維ひい
ては不織布の機械的性能が劣り好ましくない。逆に、結
晶核剤の全添加量QA +QB (重量%)が(1)式で定
義された下限より低くなると、紡出糸条の冷却性が低下
して紡出糸条間に密着が発生し、目標とする短繊維を得
ることが困難となる。また、高融点成分中への結晶核剤
の添加量QA (重量%)が、低融点成分中への結晶核剤
の添加量QB (重量%)よりも多くなると、高融点成分
の冷却性はさらに向上するが、低融点成分の冷却性が低
くなり、これによって紡出糸条間に密着が発生しやすく
なるため好ましくない。
When adding the crystal nucleating agent, the addition amount of the crystal nucleating agent to the high melting point component is QA (wt%), and the addition amount of the crystal nucleating agent to the low melting point component is QB ( (Wt%), it is preferable to add so as to satisfy the formulas (1) and (2). [(ΔTA + ΔTB) / 100] −2 / 3 ≦ QA + QB ≦ [(ΔTA + ΔTB) / 100] +4 (1) QA ≦ QB (2) where ΔTA = melting point of high melting point component−high melting point component Crystallization temperature ΔTB = melting point of low melting point component-crystallization temperature of low melting point component When the total amount of crystal nucleating agent QA + QB (% by weight) exceeds the upper limit defined by the formula (1), Although the cooling effect is high, the spun fiber deteriorates and the mechanical properties of the resulting short fibers and thus the nonwoven fabric are poor, which is not preferable. On the contrary, if the total amount of the crystal nucleating agent QA + QB (% by weight) becomes lower than the lower limit defined by the equation (1), the cooling property of the spun yarn is deteriorated and adhesion occurs between the spun yarns. However, it becomes difficult to obtain the target short fiber. Also, when the addition amount QA (% by weight) of the nucleating agent in the high melting point component is larger than the addition amount QB (% by weight) of the nucleating agent in the low melting point component, the cooling property of the high melting point component is reduced. Although it is further improved, the cooling property of the low-melting point component is lowered, and this is not preferable because adhesion between spun yarns is likely to occur.

【0024】また、本発明において、高融点成分及び低
融点成分の粘度は特に限定しないが、高融点成分の粘度
が低融点成分の粘度より高い方が好ましい。これは、一
般に熱可塑性樹脂の複合紡糸においては低粘度成分が高
粘度成分を被覆しようとする力が働くことに起因する。
すなわち、本発明においては、高融点成分を高粘度にす
ることにより円周方向において高融点成分にて形成され
る突起部を独立させやすく、延いては異形度を上げ、冷
却性を向上させるのにも好適となる。
In the present invention, the viscosities of the high melting point component and the low melting point component are not particularly limited, but the viscosity of the high melting point component is preferably higher than that of the low melting point component. This is because the low-viscosity component generally acts in the composite spinning of the thermoplastic resin so as to cover the high-viscosity component.
That is, in the present invention, by increasing the viscosity of the high-melting-point component, the protrusions formed of the high-melting-point component in the circumferential direction can be easily made independent, which in turn raises the irregularity and improves the cooling property. It is also suitable for

【0025】従って、本発明で適用する重合体のメルト
フローレート値(以降、MFR値と記す)は、高融点成
分が5〜50g/10分であり、低融点成分が10〜7
0g/10分であることが好ましい。但し、本発明にお
けるMFR値は、ASTM−D−1238(E)記載の
方法に準じて測定したものである。高融点成分のMFR
値が5g/10分未満及び/または低融点成分のMFR
値が10g/10分未満であると、あまりにも高粘度で
あるため、紡出糸条の細化がスムーズに行われず操業性
を損なう結果となり、しかも得られる繊維は太繊度で均
斉度に劣るものとなる。逆に、高融点成分のMFR値が
50g/10分及び/または低融点成分のMFR値が7
0g/10分を超えると、あまりにも低粘度であるた
め、複合断面が不安定となるばかりか、紡糸工程におい
て糸切れが発生し操業性を損なうとともに、得られる不
織布の機械的特性が劣る結果となる。これらの理由によ
り、高融点成分のMFR値は10〜45g/10分、低
融点成分のMFR値は15〜65g/10分であること
がさらに好ましい。
Therefore, the melt flow rate value (hereinafter referred to as MFR value) of the polymer used in the present invention is 5 to 50 g / 10 minutes for the high melting point component and 10 to 7 for the low melting point component.
It is preferably 0 g / 10 minutes. However, the MFR value in the present invention is measured according to the method described in ASTM-D-1238 (E). High melting point MFR
Value less than 5g / 10min and / or low melting point MFR
If the value is less than 10 g / 10 minutes, the viscosity is too high, and the spun yarn is not thinned smoothly, resulting in impaired operability. Moreover, the obtained fiber has a large fineness and poor uniformity. Will be things. On the contrary, the MFR value of the high melting point component is 50 g / 10 minutes and / or the MFR value of the low melting point component is 7
When it exceeds 0 g / 10 minutes, the viscosity is too low, the composite cross section becomes unstable, and yarn breakage occurs in the spinning process, impairing operability, and the resulting nonwoven fabric has poor mechanical properties. Becomes For these reasons, it is more preferable that the high melting point component has an MFR value of 10 to 45 g / 10 minutes and the low melting point component has an MFR value of 15 to 65 g / 10 minutes.

【0026】本発明において適用される短繊維は、多葉
型複合断面を有するものでなければならない。ここで、
多葉型複合断面とは、例えば図1に示すように、繊維横
断面において、低融点成分2が芯部を形成し、高融点成
分1が前記低融点成分2の円周方向に独立した突起部を
複数形成し、しかも低融点成分2は高融点成分1によっ
て分断されることなく連続しており、かつ高融点成分1
及び低融点成分2がともに繊維軸方向に連続するととも
に繊維表面において交互に露出している断面をいう。多
葉型複合断面においては、高融点成分1が芯部を形成す
る低融点成分2の円周方向に個々に独立した突起部を複
数形成していること、すなわち低融点成分2が高融点成
分1によって分断されることなく連続していることは、
優れた生分解性能を維持させるのに必要である。たとえ
ば、高融点成分1が円周方向に独立せずに結合した状態
(いわゆる異形芯鞘型複合断面)では、高融点成分1が
分解した後に芯部の低融点成分2が分解し始めるのであ
るから、不織布としての生分解性能には劣る結果となる
のである。また、高融点成分1及び低融点成分2のいず
れもが繊維軸方向に連続することは、繊維横断面の安定
性、製糸性及び繊維の機械的特性を向上させるために必
要である。さらに、高融点成分1及び低融点成分2が繊
維表面において交互に露出していることは、紡出糸条の
冷却性及び可紡性、延伸性、さらに生分解性能の促進、
制御のために必要である。本発明においては、このよう
な多葉型複合断面を有する短繊維を適用することによ
り、たとえば低融点成分2が紡出糸条の冷却性及び可紡
性、延伸性に劣る重合体であっても、突起部に配設する
高融点成分1により糸条間の凝集が防止され紡出糸条の
冷却性及び可紡性、延伸性を向上させることができる。
また、高融点成分1が生分解性能に劣る重合体であって
も、芯部に配設された低融点成分2の生分解性能が優れ
るため、経時的に高融点成分1が小片として取り残され
た状態となる。そして、この小片の繊度は極めて細いこ
とから、不織布としての生分解性能には優れる結果とな
るのである。
The short fibers applied in the present invention must have a multileaf composite cross section. here,
As shown in FIG. 1, for example, a multi-leaf composite cross section means that the low melting point component 2 forms a core portion and the high melting point component 1 is an independent protrusion in the circumferential direction of the low melting point component 2 in the cross section of the fiber. A plurality of parts are formed, and the low melting point component 2 is continuous without being divided by the high melting point component 1, and the high melting point component 1 is
And the low melting point component 2 are both continuous in the fiber axis direction and are alternately exposed on the fiber surface. In the multi-leaf type composite cross section, the high melting point component 1 forms a plurality of independent protrusions in the circumferential direction of the low melting point component 2 forming the core, that is, the low melting point component 2 is the high melting point component. Continuing without being divided by 1,
It is necessary to maintain excellent biodegradability. For example, in a state in which the high melting point component 1 is coupled in the circumferential direction without being independent (so-called deformed core-sheath type composite cross section), the low melting point component 2 of the core portion begins to decompose after the high melting point component 1 decomposes. Therefore, the biodegradability of the nonwoven fabric is inferior. Further, it is necessary for both the high-melting point component 1 and the low-melting point component 2 to be continuous in the fiber axis direction in order to improve the stability of the cross section of the fiber, the spinnability, and the mechanical properties of the fiber. Further, the fact that the high-melting point component 1 and the low-melting point component 2 are alternately exposed on the fiber surface means that the spinnability and the spinnability of the spun yarn are enhanced, and the biodegradability is further promoted.
Required for control. In the present invention, by applying the short fibers having such a multi-leaf composite cross section, for example, the low melting point component 2 is a polymer having poor cooling property, spinnability and stretchability of spun yarn. Also, the high-melting point component 1 disposed on the protrusion prevents aggregation between yarns, and can improve the cooling property, spinnability, and drawability of the spun yarn.
Even if the high-melting point component 1 is a polymer having poor biodegradability, the high-melting point component 1 is left behind over time because the low-melting point component 2 disposed in the core has excellent biodegradability. It will be in a state of being And, since the fineness of this small piece is extremely thin, the result is excellent in biodegradability as a nonwoven fabric.

【0027】本発明に適用される複合短繊維の繊維横断
面において、個々に独立した高融点成分のセグメントの
配設形態は、前記の繊維横断面形状を満足するものであ
れば制限はないが、高融点成分の各セグメントが繊維横
断面の外周上に各々等間隔に位置していることが好まし
い。高融点成分の各セグメントが繊維横断面の外周上に
各々片寄りをもって位置する場合においては、紡糸工程
において紡出糸条がニーリングを発生し易くなる。さら
に、高融点成分の各セグメントは、全て同じ割合で低融
点成分のなかに埋没するように配設されていることが好
ましい。高融点成分の各セグメントが各々異なる割合で
低融点成分のなかに埋没するような場合においては、繊
維横断面形状の安定性を損なうこととなる。また、高融
点成分の各セグメントがどのような割合で低融点成分の
なかに埋没するように配設されているかについては、た
とえば、図2に示すように、高融点成分1の各セグメン
トの中心3が低融点成分2の円周より外側にあるような
配設形態、すなわち高融点成分1の円周占有率が大きい
場合から、図3に示すように、高融点成分1の各セグメ
ントの中心3が低融点成分2の円周より内側にあるよう
な配設形態、すなわち低融点成分2の円周占有率が大き
い場合まで、任意の形態を適用できるが、少なくとも、
高融点成分1の各セグメントが製糸・製反工程において
剥離しない程度に低融点成分2と重なり合っているこ
と、ならびに低融点成分2が内部に埋没した高融点成分
1によって分断されていないことが必要である。繊維横
断面形状の安定性を考慮すると、たとえば、図1に示す
ように、高融点成分1の各セグメントの中心3が低融点
成分2の円周上にあるような配設形態が良い。
In the fiber cross-section of the composite staple fiber applied to the present invention, there are no restrictions on the disposition form of the individual segments of the high melting point component as long as they satisfy the above-mentioned fiber cross-section shape. It is preferable that the respective segments of the high melting point component are located at equal intervals on the outer circumference of the fiber cross section. When each segment of the high melting point component is located on the outer periphery of the fiber cross section with a deviation, the spun yarn is likely to cause kneeling in the spinning process. Further, it is preferable that all the segments of the high melting point component are arranged so as to be buried in the low melting point component at the same ratio. When each segment of the high melting point component is buried in the low melting point component in different proportions, the stability of the cross-sectional shape of the fiber is impaired. Regarding the proportion of each segment of the high melting point component embedded in the low melting point component, as shown in FIG. 2, for example, as shown in FIG. As shown in FIG. 3, the center of each segment of the high melting point component 1 is shown in FIG. Arbitrary forms can be applied until the arrangement form in which 3 is inside the circumference of the low melting point component 2, that is, the case where the occupancy ratio of the low melting point component 2 is large, at least,
It is necessary that each segment of the high-melting point component 1 overlaps with the low-melting point component 2 to such an extent that it does not peel off in the yarn making / fabrication process, and that the low-melting point component 2 is not divided by the high-melting point component 1 buried inside. Is. Considering the stability of the cross-sectional shape of the fiber, for example, as shown in FIG. 1, it is preferable that the center 3 of each segment of the high melting point component 1 is on the circumference of the low melting point component 2.

【0028】本発明に適用される複合短繊維は、高融点
成分/低融点成分の複合比が1/3〜3/1(重量比)
であることが好ましい。複合比がこの範囲を外れると紡
出糸条の冷却性及び可紡性、延伸性と生分解性能とを併
せて満足することができず、さらに、繊維横断面形状の
不安定さを誘発するため好ましくない。例えば、高融点
成分/低融点成分の複合比が1/3を超えると、生分解
性能には優れるものの、紡出糸条の冷却性及び可紡性、
延伸性には劣る結果となる。逆に、高融点成分/低融点
成分の複合比が3/1を超えると、紡出糸条の冷却性及
び可紡性、延伸性には優れるものの、生分解性能には劣
る結果となる。さらに例えば、高融点成分が生分解性能
に劣る重合体であれば、低融点成分の複合比を上げるこ
とにより生分解速度を促進させることができる。この理
由により、さらに好ましくは1/2.5〜2.5/1
(重量比)が良い。
The composite short fibers applied to the present invention have a high melting point component / low melting point component composite ratio of 1/3 to 3/1 (weight ratio).
It is preferred that If the composite ratio is out of this range, the spinnability of the spun yarn cannot be satisfied together with the cooling property, spinnability, stretchability and biodegradability, and further, instability of the fiber cross-sectional shape is induced. Therefore, it is not preferable. For example, when the composite ratio of the high melting point component / low melting point component exceeds 1/3, although the biodegradability is excellent, the cooling property and spinnability of the spun yarn,
The stretchability is inferior. On the other hand, when the composite ratio of the high melting point component / low melting point component exceeds 3/1, the spun yarn has excellent cooling properties, spinnability and stretchability, but poor biodegradability. Further, for example, if the high melting point component is a polymer having poor biodegradability, the biodegradation rate can be promoted by increasing the composite ratio of the low melting point component. For this reason, more preferably 1 / 2.5-2.5 / 1.
(Weight ratio) is good.

【0029】本発明に適用される複合短繊維は、繊維横
断面において高融点成分の突起部数の合計が4以上であ
ることが好ましい。高融点成分の突起部数の合計が4未
満であると、紡出糸条の冷却性及び可紡性、延伸性に劣
ることとなる。すなわち、本発明においては、高融点成
分の円周方向に占める割合が大きいほど、紡出糸条の冷
却性及び可紡性、延伸性には優れる結果となる。従っ
て、突起部数の合計が4未満であると、低融点成分の円
周占有率が大きくなるため冷却性及び可紡性、延伸性に
劣ることとなるのである。これを回避するために、高融
点成分の複合比を上げると、個々に独立した高融点成分
の各セグメント繊度、すなわち繊維横断面において高融
点成分が占める最小構成単位部分の繊度が大きくなるの
であるから、必然的に不織布の生分解性能には劣ること
となる。一方、高融点成分の突起部数の合計があまりに
も多すぎると、高融点成分の各セグメントを個々に独立
させることが困難となる。従って、これらの理由によ
り、高融点成分の突起部数の合計は、さらに好ましくは
5〜10であるのが良い。
The composite short fibers applied to the present invention preferably have a total number of protrusions of the high melting point component of 4 or more in the cross section of the fiber. When the total number of protrusions of the high melting point component is less than 4, the spun yarn is inferior in cooling property, spinnability and stretchability. That is, in the present invention, the greater the proportion of the high melting point component in the circumferential direction, the better the cooling properties, spinnability and drawability of the spun yarn. Therefore, if the total number of protrusions is less than 4, the circumferential occupancy of the low-melting point component becomes large, resulting in poor cooling properties, spinnability, and stretchability. In order to avoid this, if the composite ratio of the high-melting point component is increased, the individual fineness of each segment of the high-melting point component, that is, the fineness of the minimum constitutional unit portion occupied by the high-melting point component in the fiber cross section becomes large. Therefore, the biodegradability of the nonwoven fabric is inevitably inferior. On the other hand, if the total number of protrusions of the high-melting point component is too large, it becomes difficult to make each segment of the high-melting point component independent. Therefore, for these reasons, the total number of protrusions of the high melting point component is more preferably 5 to 10.

【0030】本発明に適用される複合短繊維において
は、高融点成分の個々に独立した各セグメント繊度が
0.05〜2デニールであることが好ましい。高融点成
分の各セグメント繊度が0.05デニール未満である
と、生産量の低下及び繊維横断面形状の不安定化等の理
由により好ましくない。逆に、高融点成分の各セグメン
ト繊度が2デニールを超えると、紡出糸条の冷却性及び
可紡性、延伸性に劣るとともに生分解性能にも劣る結果
となる。これらの理由により、高融点成分の各セグメン
ト繊度は、さらに好ましくは0.1〜1デニールである
のが良い。
In the composite staple fiber applied to the present invention, it is preferable that the individual fineness of each segment of the high melting point component is 0.05 to 2 denier. When the segment fineness of the high-melting point component is less than 0.05 denier, it is not preferable because of a decrease in the production amount and instability of the fiber cross-sectional shape. On the contrary, when the fineness of each segment of the high melting point component exceeds 2 denier, the spun yarn has poor cooling property, spinnability and stretchability, and also poor biodegradability. For these reasons, the segment fineness of the high melting point component is more preferably 0.1 to 1 denier.

【0031】また、高融点成分の各セグメント繊度と同
様に、高融点成分と低融点成分とから構成される複合短
繊維の単糸繊度が1.5〜10デニールであることが好
ましい。1.5デニール未満であると、紡糸口金の複雑
化、製糸工程における糸切れの増大、生産量の低下及び
繊維横断面形状の不安定さなどを招くため好ましくな
い。逆に、10デニールを超えると紡出糸条の冷却性に
劣るとともに生分解性能にも劣る結果となる。この理由
により、さらに好ましくは2〜8デニールが良い。
As with the segment fineness of the high melting point component, the single yarn fineness of the composite staple fiber composed of the high melting point component and the low melting point component is preferably 1.5 to 10 denier. When it is less than 1.5 denier, the spinneret becomes complicated, the number of yarn breakages in the spinning process increases, the production amount decreases, and the fiber cross-sectional shape becomes unstable. On the other hand, when it exceeds 10 denier, the spun yarn has poor cooling properties and biodegradability. For this reason, 2 to 8 denier is more preferable.

【0032】以上のように、本発明に適用される短繊維
ウエブは、生分解性能を異にする高融点成分及び低融点
成分で構成された多葉型複合短繊維よりなるウエブであ
って、高融点成分の突起部数、高融点成分の各セグメン
ト繊度、各成分の単糸繊度などを組み合わせることによ
り、要求する紡出糸条の冷却性及び可紡性、延伸性が得
られ、さらに生分解性能を制御することができるのであ
る。
As described above, the short fiber web applied to the present invention is a web composed of multileaf type composite short fibers composed of a high melting point component and a low melting point component having different biodegradability, By combining the number of protrusions of the high melting point component, each segment fineness of the high melting point component, and the single yarn fineness of each component, the required cooling property, spinnability and stretchability of the spun yarn can be obtained, and further biodegradation The performance can be controlled.

【0033】次に、本発明の天然繊維ウエブについて説
明する。本発明において適用される天然繊維としては、
コットン、ラミー、短繊維状に裁断されたシルク繊維等
が好ましく、これらの天然繊維を単独または複数組み合
わせて、短繊維ウエブが作成される。ここで、コットン
繊維としては、晒し加工の施されていないコーマ糸、晒
し加工された晒し綿、また、織物、編み物から得られた
反毛が挙げられる。
Next, the natural fiber web of the present invention will be described. As the natural fiber applied in the present invention,
Cotton, ramie, silk fibers cut into short fibers and the like are preferable, and short fiber webs are prepared by using these natural fibers alone or in combination. Here, examples of the cotton fiber include combed yarn that has not been subjected to bleaching, bleached cotton that has been bleached, and fluff obtained from woven fabrics and knits.

【0034】本発明における短繊維ウエブおよび天然繊
維ウエブは、カード機の進行方向に配列したパラレルウ
エブ、パラレルウエブのクロスレイドされたウエブ、ラ
ンダムに配列したランダムウエブあるいは中程度に配列
したセミランダムウエブのいずれであっても良く、使用
用途によって適宜選択することができる。特に、衣料用
途に用いる場合には、不織布としての強力において、縦
/横強力比が概ね1/1となるカードウエブを使用する
のが好ましい。
The short fiber web and the natural fiber web in the present invention are parallel webs arranged in the traveling direction of the card machine, crosslaid webs of parallel webs, randomly arranged random webs or medium-sized semi-random webs. It may be any of the above, and can be appropriately selected depending on the intended use. In particular, when used for clothing, it is preferable to use a card web having a strength / longitudinal strength ratio of about 1/1 in terms of strength as a nonwoven fabric.

【0035】本発明の積層不織布は、短繊維ウエブと天
然繊維ウエブとを積層したものであるが、天然繊維ウエ
ブと短繊維ウエブとの積層比率は10/90〜90/1
0(重量%)であることが好ましい。天然繊維が10重
量%未満であると、積層不織布の機械的特性には優れる
ものの、吸湿性、吸水性を充分に向上させることができ
ず、天然繊維を積層した目的を達成することができない
ため好ましくない。逆に、天然繊維が90重量%を超え
ると、吸湿性、吸水性には優れるものの、機械的特性を
損なうこととなり好ましくない。これらの理由により、
天然繊維ウエブと短繊維ウエブとの積層比率は20/8
0〜80/20(重量%)であることがさらに好まし
い。
The laminated nonwoven fabric of the present invention is obtained by laminating a short fiber web and a natural fiber web, and the lamination ratio of the natural fiber web and the short fiber web is from 10/90 to 90/1.
It is preferably 0 (% by weight). When the content of natural fibers is less than 10% by weight, the laminated nonwoven fabric has excellent mechanical properties, but the hygroscopicity and water absorption cannot be sufficiently improved, and the purpose of laminating the natural fibers cannot be achieved. Not preferable. On the other hand, if the natural fiber content exceeds 90% by weight, the hygroscopicity and water absorption are excellent, but the mechanical properties are impaired, which is not preferable. For these reasons,
Lamination ratio of natural fiber web and short fiber web is 20/8
It is more preferably 0 to 80/20 (% by weight).

【0036】本発明の積層不織布は、積層された短繊維
ウエブと天然繊維ウエブとが三次元交絡により一体化さ
れたものである。すなわち、後述の加圧液体流処理を施
すことにより、短繊維ウエブの構成繊維と天然繊維ウエ
ブの構成繊維とが互いに三次元的に交絡し、一体化され
るのである。これにより、短繊維ウエブと熱接着性を有
しない天然繊維とを実用に耐えうるだけの強力で一体化
することができる。
The laminated nonwoven fabric of the present invention is one in which the laminated short fiber web and natural fiber web are integrated by three-dimensional entanglement. That is, the constituent liquid of the short fiber web and the constituent fiber of the natural fiber web are three-dimensionally entangled with each other and integrated by performing the pressurized liquid flow treatment described later. As a result, the short fiber web and the natural fiber having no heat-adhesiveness can be integrated with each other with sufficient strength for practical use.

【0037】次に、本発明の積層不織布の製造方法につ
いて説明する。まず、本発明に適用される短繊維ウエブ
の製造は、通常の複合紡糸装置及び延伸装置を用いて行
なうことができる。すなわち、前述の生分解性を有する
高融点成分と低融点成分とを溶融して個別計量し、これ
を前述の高融点成分の突起部数、高融点成分の各セグメ
ント繊度、単糸繊度を満足する繊維横断面構造を形成可
能な多葉型複合紡糸口金を介して紡出し、紡出糸条を冷
却空気流などを用いた公知の冷却装置にて冷却する。次
いで、引取ロールにて未延伸糸として捲きとり、この未
延伸糸を周速の異なる延伸ロール間で所定の延伸倍率で
延伸を行う。ここで、延伸工程における延伸ロール個数
及び延伸温度は適宜選択すれば良い。たとえば、太繊度
を延伸する場合には延伸ロール個数を多くし、さらに熱
延伸することも必要である。次いで、得られた延伸糸に
スタッファーボックスにて捲縮を付与した後、所定長に
切断して短繊維を得ることができる。なお、上述したの
は、二工程法であるが、一工程法、即ち未延伸糸を一旦
捲き取ることなく連続して延伸するいわゆるスピンドロ
ー法で短繊維を得ることもできる。
Next, a method for manufacturing the laminated nonwoven fabric of the present invention will be described. First, the production of the short fiber web applied to the present invention can be carried out using an ordinary composite spinning apparatus and drawing apparatus. That is, the high melting point component and the low melting point component having biodegradability described above are melted and individually weighed, and the number of protrusions of the high melting point component, each segment fineness of the high melting point component, and the single yarn fineness are satisfied. The filament is spun through a multi-leaf composite spinneret capable of forming a fiber cross-sectional structure, and the spun yarn is cooled by a known cooling device using a cooling air flow or the like. Then, it is wound as an undrawn yarn on a take-up roll, and this undrawn yarn is drawn at a predetermined draw ratio between drawing rolls having different peripheral speeds. Here, the number of stretching rolls and the stretching temperature in the stretching step may be appropriately selected. For example, in the case of stretching the fineness, it is necessary to increase the number of stretching rolls and further perform hot stretching. Then, the obtained drawn yarn is crimped with a stuffer box and then cut into a predetermined length to obtain short fibers. Although the above-described method is a two-step method, short fibers can also be obtained by a one-step method, that is, a so-called spin draw method in which undrawn yarn is continuously drawn without being wound up.

【0038】また、本発明においては、前述のように、
用いる重合体の中に結晶核剤を添加することが好まし
い。これにより、溶融紡糸の際に紡出糸条の冷却性を向
上させることができるのである。結晶核剤の添加は重合
工程あるいは溶融工程で行うが、その際、得られる糸の
機械的性能及び均整度を向上させるため、できる限り均
一分散させておくことが好ましい。
Further, in the present invention, as described above,
It is preferable to add a nucleating agent to the polymer used. Thereby, the cooling property of the spun yarn during the melt spinning can be improved. The crystal nucleating agent is added in the polymerization step or the melting step. At this time, it is preferable to disperse the nucleating agent as uniformly as possible in order to improve the mechanical performance and the uniformity of the obtained yarn.

【0039】次いで、得られた短繊維を公知のカード機
によりカーディングして所定目付けの短繊維ウエブを作
成する。そして、得られた短繊維ウエブに常法により別
途作成した天然繊維を積層し、これに加圧液体流処理を
施して構成繊維間に三次元交絡を形成することにより一
体化させて積層不織布を得る。
Then, the obtained short fibers are carded by a known card machine to prepare a short fiber web having a predetermined weight. Then, the obtained short fiber web is laminated with a natural fiber separately prepared by a conventional method, and a pressurized liquid flow treatment is applied thereto to form a three-dimensional entanglement between the constituent fibers to integrate them to form a laminated nonwoven fabric. obtain.

【0040】加圧液体流処理を施すに際しては、加圧液
体流の噴射孔として、孔径0.05〜1.5mmの噴射
孔が0.4〜5mm間隔で一列ないしは複数列に配置さ
れたオリフィスヘッドを用い、このオリフィスヘッドを
3〜10段に配するのが好ましい。オリフィスヘッドの
配置としては、積層ウエブに対して片面あるいは両面に
配置されたもののいずれであっても良い。
When performing the pressurized liquid flow treatment, as the injection holes for the pressurized liquid flow, orifices having a diameter of 0.05 to 1.5 mm are arranged in one row or a plurality of rows at 0.4 to 5 mm intervals. It is preferable to use a head and arrange the orifice heads in 3 to 10 stages. The orifice head may be arranged on one side or both sides of the laminated web.

【0041】加圧液体流処理は、第1回目の液圧を45
kg/cm2 G未満の加圧液体流により予備交絡を施し
た後、引き続き第2回以降の処理として45kg/cm
2 G以上の液圧の加圧液体流により交絡処理を施して行
われる。第1回目の液圧が45kg/cm2 G以上であ
ると、加圧液体流により発生する随伴気流により、ウエ
ブの乱れが発生したり、また、加圧液体流によりウエブ
を構成する短繊維が脱落し、製品となる積層不織布の品
位を保つ上で好ましくない。以上の方法により得られた
積層不織布を反転し、第3回目の交絡処理を第2回目に
適用した液圧により交絡処理を施すことにより表裏共に
一体化した積層不織布を得ることができる。
In the pressurized liquid flow treatment, the first liquid pressure is set to 45.
After pre-entanglement with a pressurized liquid flow of less than kg / cm 2 G, then 45 kg / cm as the second and subsequent treatments.
It is performed by performing an entanglement treatment with a pressurized liquid flow having a hydraulic pressure of 2 G or more. When the first hydraulic pressure is 45 kg / cm 2 G or more, the turbulence of the web occurs due to the accompanying airflow generated by the pressurized liquid flow, and the short fibers constituting the web are generated by the pressurized liquid flow. It is not preferable in terms of keeping the quality of the laminated non-woven fabric which is dropped and becomes a product. By inverting the laminated nonwoven fabric obtained by the above method and subjecting the third entanglement treatment to the entanglement treatment by the hydraulic pressure applied to the second time, a laminated nonwoven fabric having both the front and back sides integrated can be obtained.

【0042】加圧液体流処理に際し、積層ウエブを載置
する多孔性支持板としては支持板上に載置された積層ウ
エブを加圧液体流が通過するものであれば、金属製、ポ
リエステル製、その他の材質のいずれを用いても良い。
多孔性支持板のメッシュの範囲はその用途によって適宜
選択されるものであるが、20〜150メッシュのもの
を用いると良い。20メッシュ未満では、得られた積層
不織布に実質的に孔が開き、例えば、家庭用、業務用の
廃棄物を入れる等の用途に用いた際、この孔部分より細
かなクズが流れ出し好ましくない。逆に、150メッシ
ュを超えると積層ウエブとネットを貫通する液体流の液
圧を多大にする必要があり、生産コスト上好ましくな
い。以上の理由により、多孔性支持板のメッシュの範囲
は、より好ましくは30〜100メッシュが良い。
As the porous support plate on which the laminated web is placed during the pressurized liquid flow treatment, metal or polyester is used as long as the pressurized liquid flow passes through the laminated web placed on the support plate. , Any of the other materials may be used.
The range of the mesh of the porous support plate is appropriately selected depending on the application, but it is preferable to use the mesh of 20 to 150 mesh. If it is less than 20 mesh, the resulting laminated nonwoven fabric is substantially perforated, and when it is used for the purpose of, for example, putting in household waste or commercial waste, fine scraps flow out from the perforated portion, which is not preferable. On the other hand, when it exceeds 150 mesh, it is necessary to increase the liquid pressure of the liquid flow passing through the laminated web and the net, which is not preferable in terms of production cost. For the above reasons, the range of the mesh of the porous support plate is more preferably 30 to 100 mesh.

【0043】以上の方法により得られた積層不織布は、
余分な水分を既知の水分除去装置であるマングル等によ
り除去した後乾燥処理が施される。本発明の積層不織布
の目付けは、使用目的により選択されるため特に限定さ
れるものではないが、一般的には10〜150g/m2
の範囲が好ましく、より好ましくは15〜70g/m2
の範囲とするのが良い。目付けが10g/m2 未満では
柔軟性及び生分解速度には優れるものの機械的強力に劣
り実用的ではない。逆に、目付けが150g/m2 を超
えると、不織布が硬い風合いのものとなり、柔軟性に劣
るものとなる。
The laminated nonwoven fabric obtained by the above method is
Excess water is removed by mangle which is a known water removing device and then dried. The unit weight of the laminated nonwoven fabric of the present invention is not particularly limited because it is selected according to the purpose of use, but is generally 10 to 150 g / m 2.
Is preferable, and more preferably 15 to 70 g / m 2.
Should be within the range. When the basis weight is less than 10 g / m 2 , flexibility and biodegradation rate are excellent, but mechanical strength is poor and it is not practical. On the other hand, when the basis weight exceeds 150 g / m 2 , the nonwoven fabric has a hard texture and is inferior in flexibility.

【0044】[0044]

【実施例】次に、実施例に基づき本発明を具体的に説明
するが、本発明は、これらの実施例によって何ら限定さ
れるものではない。
Next, the present invention will be described in detail with reference to examples, but the present invention is not limited to these examples.

【0045】実施例において、各物性値の測定を次の方
法により実施した。
In the examples, each physical property value was measured by the following methods.

【0046】・メルトフローレート値(g/10分);
ASTM−D−1238(E)に記載の方法に準じて温
度190℃で測定した。(以降、MFR値と記す)
Melt flow rate value (g / 10 minutes);
The temperature was measured at 190 ° C. according to the method described in ASTM-D-1238 (E). (Hereinafter referred to as MFR value)

【0047】・融点(℃);パーキンエルマ社製示差走
査型熱量計DSC−2型を用い、試料重量を5mg、昇
温速度を20℃/分として測定して得た融解吸熱曲線の
最大値を与える温度を融点(℃)とした。
Melting point (° C.); maximum value of melting endothermic curve obtained by measuring with a differential scanning calorimeter DSC-2 type manufactured by Perkin Elma Co., Ltd. with a sample weight of 5 mg and a heating rate of 20 ° C./min. Was given as the melting point (° C.).

【0048】・結晶化温度(℃);パーキンエルマ社製
示差走査型熱量計DSC−2型を用い、試料重量を5m
g、降温速度を20℃/分として測定して得た固化発熱
曲線の最大値を与える温度を結晶化温度(℃)とした。
Crystallization temperature (° C.); using a differential scanning calorimeter DSC-2 type manufactured by Perkin Elma Co., and a sample weight of 5 m
g, the temperature giving the maximum value of the solidification exothermic curve obtained by measuring the cooling rate at 20 ° C./min was defined as the crystallization temperature (° C.).

【0049】・冷却性;紡出糸条を目視して下記の3段
階にて評価した。 ○;密着糸が認められない。 △;密着糸がわずかではあるが認められる。 ×;大部分が密着している。
Coolability: The spun yarn was visually observed and evaluated in the following three stages. ◯: No adhesion thread is observed. Δ: A small amount of adhesive thread is recognized. X: Most of them are in close contact.

【0050】・可紡性; ○;糸切れが発生せず、紡糸操業性が良好である。 ×;糸切れが多発し、紡糸操業性が不良である。Spinnability: ◯: No yarn breakage occurs and spinning operability is good. X: Thread breakage occurs frequently and spinning operability is poor.

【0051】・延伸性; ○;延伸毛羽が発生せず、延伸操業性が良好である。 ×;延伸毛羽が多発し、延伸が不可能である。Stretchability: Good: Stretching fluff is not generated and stretching operability is good. X: Stretching fuzz occurs frequently and stretching is impossible.

【0052】・目付け(g/m2 );標準状態の試料か
ら試料長が10cm、試料幅が10cmの試料片10点
を作成し平衡水分にした後、各試料片の重量(g)を秤
量し、得られた値の平均値を単位面積当たりに換算し、
目付け(g/m2 )とした。
-Basis weight (g / m 2 ); 10 pieces of a sample having a sample length of 10 cm and a sample width of 10 cm were prepared from a standard state sample to make equilibrium moisture, and then the weight (g) of each sample piece was weighed. Then, convert the average value of the obtained values per unit area,
The basis weight (g / m 2 ) was used.

【0053】・不織布の強力(kg/5cm幅);JI
S−L−1096Aに記載の方法に準じて測定した。す
なわち、試料長が20cm、試料幅が5cmの試料片1
0点を作成し、試料片毎に不織布の縦方向について、定
速伸張型引張り試験機(東洋ボールドウイン社製テンシ
ロンUTM−4−1−100)を用いて、引張り速度1
0cm/分で伸張し、得られた切断時荷重値の平均値を
強力(kg/5cm幅)とした。
・ Strength of non-woven fabric (kg / 5 cm width); JI
It was measured according to the method described in S-L-1096A. That is, a sample piece 1 having a sample length of 20 cm and a sample width of 5 cm
A zero point was created, and a tensile speed of 1 was set for each sample piece in the longitudinal direction of the nonwoven fabric using a constant-speed extension-type tensile tester (Tensilon UTM-4-1-100 manufactured by Toyo Baldwin Co., Ltd.).
It was stretched at 0 cm / min, and the average value of the load values at cutting obtained was taken as the strength (kg / 5 cm width).

【0054】・生分解性能;不織布を土中に埋設し、6
ヶ月後に取り出し、不織布がその形態を保持していない
場合、あるいは、その形態を保持していても強力が埋設
前の強力初期値に対して50%以下に低下している場
合、生分解性能が良好(;○)であるとし、強力が埋設
前の強力初期値に対して50%を超える場合、生分解性
能が不良(;×)であると評価した。
Biodegradability: 6 is obtained by embedding a non-woven fabric in soil.
If the nonwoven fabric does not retain its shape after a month, or if the strength is reduced to 50% or less of the initial strength value before embedding even if it retains its shape, the biodegradation performance is The biodegradability was evaluated as poor (; x) if the strength was more than 50% of the initial strength before embedding.

【0055】・吸水性(mm):JIS−L−1096
に記載のバイレック法に準じて測定した。すなわち、試
料長が20cm、試料幅が2.5cmの試料片5点を作
成し、各試料片を20±2℃の水を入れた水槽上の一定
の高さに支えた水平棒上にピンで留めて吊す。試料片の
下端を一線に並べて水平棒を下げ、試料片の下端の1c
mがちょうど水に浸かるようにする。10分間放置後の
水の上昇した高さ(mm)を測り、その平均値を吸水性
(mm)とした。
Water absorption (mm): JIS-L-1096
It was measured according to the Bayrec method described in 1. That is, five sample pieces having a sample length of 20 cm and a sample width of 2.5 cm were prepared, and each sample piece was pinned on a horizontal bar supported at a constant height on a water tank containing water at 20 ± 2 ° C. And hang it. Align the lower end of the sample piece in a line and lower the horizontal bar,
Make sure that m just submerges in water. The rise height (mm) of water after standing for 10 minutes was measured, and the average value was taken as water absorbency (mm).

【0056】実施例1 高融点成分成分として、MFR値が20g/10分で融
点114℃、結晶化温度75℃のポリブチレンサクシネ
ートを、低融点成分成分として、MFR値が30g/1
0分で融点102℃、結晶化温度52℃のブチレンサク
シネート/エチレンサクシネート=85/15モル%の
共重合体を用いて、多葉型複合短繊維よりなる短繊維ウ
エブを製造した。すなわち、前記高融点成分と低融点成
分とを個別のエクストルーダ型溶融押出し機を用いて、
温度180℃で溶融し、繊維横断面が図1(高融点成分
突起部数合計6)の多葉型複合断面となる紡糸口金を用
い、単孔吐出量=1.30g/分、複合比(高融点成分
/低融点成分)=1/1(重量比)の条件下にて溶融紡
出した。この紡出糸条を冷却装置にて冷却した後で油剤
を付与し、速度が800m/分の引き取りロールを介し
て繊度が14.6デニールの未延伸糸を得た。得られた
未延伸糸束を複数集束し、延伸温度が常温の条件下で延
伸倍率3.8で延伸し、次いで、スタッファーボックス
にて15個/インチの捲縮を付与した後、51mmに切
断し、銘柄4d×51mm(高融点成分セグメント繊度
=0.33d×6個、低融点成分セグメント繊度=2.
0d)の短繊維を得た。この短繊維をパラレルカード機
に供給して目付けが25g/m 2 のカードウエブを作成
した。
Example 1 As a high melting point component, a MFR value of 20 g / 10 min was used for melting.
Polybutylene succine having a point of 114 ° C and a crystallization temperature of 75 ° C
Is used as a low melting point component and has an MFR value of 30 g / 1.
Butylenesac having a melting point of 102 ° C and a crystallization temperature of 52 ° C in 0 minutes
Cinate / ethylene succinate = 85/15 mol%
Using a copolymer, a staple fiber composite consisting of multi-leaf type composite staple fibers is used.
Eve manufactured. That is, the high melting point component and the low melting point component
Minutes and separate extruder type melt extruder,
It melts at a temperature of 180 ° C and the cross-section of the fiber is shown in Fig. 1 (high melting point component).
Uses a spinneret with a multi-leaf type composite cross section with a total of 6) protrusions
Single hole discharge rate = 1.30 g / min, composite ratio (high melting point component
/ Low melting point component) = 1/1 (weight ratio)
Issued. After cooling this spun yarn with a cooling device,
Through a take-up roll with a speed of 800 m / min.
To obtain an undrawn yarn having a fineness of 14.6 denier. Got
Multiple undrawn yarn bundles are bundled and stretched under the condition that the stretching temperature is room temperature.
Stretched at a draw ratio of 3.8, then stuffer box
After crimping with 15 crimps / inch, cut into 51 mm
Cut off, brand 4d x 51mm (high melting point component segment fineness
= 0.33d × 6 pieces, low melting point component segment fineness = 2.
0d) short fibers were obtained. This short fiber parallel card machine
And the basis weight is 25 g / m Two Create a card web for
did.

【0057】一方、天然繊維からなる天然繊維ウエブと
して、木綿の晒し綿を用い、ランダムカード機により目
付けが25g/m2 のカードウエブを作成した。次い
で、多葉型複合短繊維からなる短繊維ウエブと晒し綿か
らなる天然繊維ウエブとを積層し、これを移動する50
メッシュの金網上に載置し、積層ウエブの上方50mm
の位置より加圧液体流の噴射孔として、孔径0.12m
m、孔間隔0.6mmで一列に配されたオリフィスヘッ
ドが5段に配列された装置を用いて加圧液体流処理を行
い、三次元交絡させた目付けが50g/m2 の積層不織
布を得た。処理条件としては、第1回目の液圧を35k
g/cm2 Gとして予備交絡を施した後、第2回目以降
の液圧を85kg/cm2 Gとして構成繊維間に三次元
交絡を形成した。そして、得られた積層不織布の余分な
水分をマングルにて除去した後、80℃の温度に保たれ
た乾燥機により乾燥処理を行った。多葉型複合短繊維製
造の操業性及び積層不織布物性、生分解性能を表1に示
す。
On the other hand, as a natural fiber web made of natural fibers, a bleached cotton was used, and a card web having a basis weight of 25 g / m 2 was prepared by a random card machine. Next, a short fiber web made of multi-leaf composite short fibers and a natural fiber web made of bleached cotton are laminated and moved 50.
Placed on a mesh wire mesh, 50 mm above the laminated web
From the position of 0.12m as the injection hole for the pressurized liquid flow
m, a pressurized liquid flow treatment was performed using a device in which orifice heads arranged in a row with a hole interval of 0.6 mm were arranged in 5 stages, and a laminated nonwoven fabric with a basis weight of 50 g / m 2 was three-dimensionally entangled. It was The processing condition is that the first hydraulic pressure is 35k.
After the preliminary entanglement was performed at g / cm 2 G, the three-dimensional entanglement was formed between the constituent fibers at the second and subsequent hydraulic pressures of 85 kg / cm 2 G. Then, after removing excess water of the obtained laminated nonwoven fabric with mangle, a drying treatment was performed by a dryer kept at a temperature of 80 ° C. Table 1 shows the operability, the physical properties of the laminated non-woven fabric, and the biodegradability of the multi-leaf composite staple fiber production.

【0058】実施例2 単孔吐出量=0.42g/分、複合比(高融点成分/低
融点成分)=1/2(重量比)、延伸倍率3.3にて延
伸したこと及び38mmに切断したこと以外は実施例1
と同一条件下にて、多葉型複合短繊維を製造した。得ら
れた短繊維は銘柄1.5d×38mm(高融点成分セグ
メント繊度=0.08d×6個、低融点成分セグメント
繊度=1.0d)であった。この短繊維をパラレルカー
ド機に供給して目付けが25g/m2 のカードウエブを
作成した。
Example 2 Single hole discharge rate = 0.42 g / min, composite ratio (high melting point component / low melting point component) = 1/2 (weight ratio), stretching at a draw ratio of 3.3 and 38 mm. Example 1 except that it was cut
Under the same conditions as above, multi-leaf composite short fibers were produced. The obtained short fibers had a brand of 1.5 d × 38 mm (high melting point component segment fineness = 0.08 d × 6, low melting point component segment fineness = 1.0 d). This short fiber was supplied to a parallel card machine to prepare a card web having a basis weight of 25 g / m 2 .

【0059】また、実施例1と同様にして目付けが25
g/m2 の木綿の晒し綿からなるカードウエブを作成し
た。次いで、多葉型複合短繊維からなる短繊維ウエブと
晒し綿よりなる天然繊維ウエブとを積層し、加圧液体流
処理を行い、三次元交絡させた目付けが50g/m 2
積層不織布を得た。処理条件は実施例1と同一条件にて
実施した。多葉型複合短繊維製造の操業性及び積層不織
布物性、生分解性能を表1に示す。
Further, as in Example 1, the basis weight is 25.
g / mTwo Create a card web made of bleached cotton
Was. Then, a short fiber web made of multileaf composite short fibers and
Laminated with a natural fiber web made of bleached cotton, pressurizing liquid flow
50g / m with a basis weight of 3D entangled Two of
A laminated nonwoven fabric was obtained. The processing conditions are the same as in Example 1.
Carried out. Operability of multi-leaf composite staple fibers and laminated non-woven fabric.
Table 1 shows the cloth physical properties and biodegradability.

【0060】実施例3 単孔吐出量=3.75g/分、複合比(高融点成分/低
融点成分)=3/1(重量比)、延伸倍率4.4にて延
伸したこと及び96mmに切断したこと以外は実施例1
と同一条件下にて、多葉型複合短繊維を製造した。得ら
れた短繊維は銘柄10d×96mm(高融点成分セグメ
ント繊度=1.25d×6個、低融点成分セグメント繊
度=2.5d)であった。この短繊維をパラレルカード
機に供給して目付けが25g/m2 のカードウエブを作
成した。また、実施例1と同様にして目付けが25g/
2 の木綿の晒し綿からなるカードウエブを作成した。
Example 3 Single hole discharge rate = 3.75 g / min, composite ratio (high melting point component / low melting point component) = 3/1 (weight ratio), stretching at a draw ratio of 4.4 and 96 mm. Example 1 except that it was cut
Under the same conditions as above, multi-leaf composite short fibers were produced. The obtained short fibers had a brand of 10 d × 96 mm (high melting point component segment fineness = 1.25 d × 6 pieces, low melting point component segment fineness = 2.5 d). This short fiber was supplied to a parallel card machine to prepare a card web having a basis weight of 25 g / m 2 . Further, in the same manner as in Example 1, the basis weight is 25 g /
A card web made of bleached cotton of m 2 was created.

【0061】次いで、多葉型複合短繊維からなる短繊維
ウエブと晒し綿よりなる天然繊維ウエブとを積層し、加
圧液体流処理を行い、三次元交絡させた目付けが50g
/m 2 の積層不織布を得た。処理条件は実施例1と同一
条件にて実施した。多葉型複合短繊維製造の操業性及び
積層不織布物性、生分解性能を表1に示す。
Next, a short fiber comprising a multi-leaf type composite short fiber
Laminate a web and a natural fiber web made of bleached cotton and add
50g weight is obtained by three-dimensionally entangled fabric after pressure liquid flow treatment.
/ M Two To obtain a laminated nonwoven fabric. The processing conditions are the same as in Example 1.
It was carried out under the conditions. Operability of manufacturing multileaf short staple fibers and
Table 1 shows the laminated nonwoven fabric physical properties and biodegradability.

【0062】実施例4 実施例1と同一の高融点成分及び低融点成分を用い、繊
維横断面が高融点成分突起部数の合計が10である多葉
型複合断面となる紡糸口金を用い、単孔吐出量=1.2
3g/分、複合比(高融点成分/低融点成分)=1/1
(重量比)の条件下にて溶融紡出した。この紡出糸条を
冷却装置にて冷却した後で、実施例1と同一条件下で未
延伸糸を得た。得られた未延伸糸束を複数集束し、延伸
温度が常温の条件下で延伸倍率3.6で延伸し、次い
で、スタッファーボックスにて15個/インチの捲縮を
付与した後、51mmに切断し、銘柄4d×51mm
(高融点成分セグメント繊度=0.20d×10個、低
融点成分セグメント繊度=2.0d)の短繊維を得た。
この短繊維をパラレルカード機に供給して目付けが25
g/m2 のカードウエブを作成した。
Example 4 Using the same high-melting-point component and low-melting-point component as in Example 1, and using a spinneret having a multi-leaf composite cross-section in which the total number of high-melting-point component protrusions was 10 in the fiber cross section, Hole discharge rate = 1.2
3g / min, composite ratio (high melting point component / low melting point component) = 1/1
Melt spinning was performed under the condition of (weight ratio). After this spun yarn was cooled by a cooling device, an undrawn yarn was obtained under the same conditions as in Example 1. A plurality of the obtained unstretched yarn bundles were bundled, stretched at a stretching ratio of 3.6 under a stretching temperature of room temperature, and then crimped with a stuffer box at 15 pieces / inch, and then cut into 51 mm. And brand 4d x 51mm
Short fibers of (high melting point component segment fineness = 0.20d × 10, low melting point component segment fineness = 2.0d) were obtained.
This short fiber is fed to a parallel card machine and the basis weight is 25
A card web of g / m 2 was prepared.

【0063】また、実施例1と同様にして目付けが25
g/m2 の木綿の晒し綿からなるカードウエブを作成し
た。次いで、多葉型複合短繊維からなる短繊維ウエブと
晒し綿よりなる天然繊維ウエブとを積層し、加圧液体流
処理を行い、三次元交絡させた目付けが50g/m 2
積層不織布を得た。処理条件は実施例1と同一条件にて
実施した。多葉型複合短繊維製造の操業性及び積層不織
布物性、生分解性能を表1に示す。
Further, as in Example 1, the basis weight is 25.
g / mTwo Create a card web made of bleached cotton
Was. Then, a short fiber web made of multileaf composite short fibers and
Laminated with a natural fiber web made of bleached cotton, pressurizing liquid flow
50g / m with a basis weight of 3D entangled Two of
A laminated nonwoven fabric was obtained. The processing conditions are the same as in Example 1.
Carried out. Operability of multi-leaf composite staple fibers and laminated non-woven fabric.
Table 1 shows the cloth physical properties and biodegradability.

【0064】実施例5 実施例1と同一条件下にて得た目付けが10g/m2
多葉型複合短繊維からなる短繊維ウエブと、目付けが4
0g/m2 の晒し綿からなる天然繊維ウエブとを積層
し、加圧液体流処理を行い、三次元交絡させた目付けが
50g/m2 の積層不織布を得た。処理条件は実施例1
と同一条件にて実施した。多葉型複合短繊維製造の操業
性及び積層不織布物性、生分解性能を表1に示す。
Example 5 A staple fiber web composed of multileaf type composite staple fibers having a basis weight of 10 g / m 2 obtained under the same conditions as in Example 1 and a basis weight of 4
A natural fiber web made of 0 g / m 2 bleached cotton was laminated and subjected to a pressurized liquid flow treatment to obtain a laminated nonwoven fabric having a basis weight of 50 g / m 2 which was three-dimensionally entangled. Processing conditions are Example 1
It carried out on the same conditions as. Table 1 shows the operability, the physical properties of the laminated non-woven fabric, and the biodegradability of the multi-leaf composite staple fiber production.

【0065】実施例6 実施例1と同一条件下にて得た目付けが40g/m2
多葉型複合短繊維からなる短繊維ウエブと、目付けが1
0g/m2 の晒し綿からなる天然繊維ウエブとを積層
し、加圧液体流処理を行い、三次元交絡させた目付けが
50g/m2 の積層不織布を得た。処理条件は実施例1
と同一条件にて実施した。多葉型複合短繊維製造の操業
性及び積層不織布物性、生分解性能を表1に示す。
Example 6 A staple fiber web composed of multileaf type composite staple fibers having a basis weight of 40 g / m 2 obtained under the same conditions as in Example 1 and a basis weight of 1
A natural fiber web made of 0 g / m 2 bleached cotton was laminated and subjected to a pressurized liquid flow treatment to obtain a laminated nonwoven fabric having a basis weight of 50 g / m 2 which was three-dimensionally entangled. Processing conditions are Example 1
It carried out on the same conditions as. Table 1 shows the operability, the physical properties of the laminated non-woven fabric, and the biodegradability of the multi-leaf composite staple fiber production.

【0066】比較例1 実施例1と同一条件下にて得た目付けが25g/m2
多葉型複合短繊維からなる短繊維ウエブと、目付けが2
5g/m2 の晒し綿からなる天然繊維ウエブとを積層
し、熱エンボスロールにて熱融着加工を行い、目付けが
50g/m2 の積層不織布を得た。熱圧接条件として
は、面積0.6mm2 の凸部が配設されてなるロールを
用い、凸部の圧接面積率15%、線圧50kg/cm、
加工温度90℃で実施した。多葉型複合短繊維製造の操
業性及び積層不織布物性、生分解性能を表2に示す。
Comparative Example 1 A short fiber web made of multi-leaf composite short fibers having a basis weight of 25 g / m 2 obtained under the same conditions as in Example 1 and a basis weight of 2
A natural fiber web made of 5 g / m 2 of bleached cotton was laminated and heat-bonded with a hot embossing roll to obtain a laminated nonwoven fabric having a basis weight of 50 g / m 2 . As the heat pressure welding conditions, a roll having a convex portion having an area of 0.6 mm 2 is used, and the pressure contact area ratio of the convex portion is 15%, and the linear pressure is 50 kg / cm.
It was carried out at a processing temperature of 90 ° C. Table 2 shows the operability, the physical properties of the laminated nonwoven fabric, and the biodegradability of the multileaf composite staple fiber production.

【0067】比較例2 実施例1と同一の高融点成分を芯成分として用い、実施
例1と同一の低融点成分を鞘成分として用いて、繊維横
断面が芯鞘型複合断面となる紡糸口金を用い、単孔吐出
量=1.15g/分、複合比(高融点成分/低融点成
分)=1/1(重量比)の条件下にて溶融紡出した。す
なわち、前記高融点成分と低融点成分とを個別のエクス
トルーダ型溶融押出し機を用いて、温度180℃で溶融
し、芯鞘型複合断面となる紡糸口金を介して溶融紡出
し、この紡出糸条を冷却装置にて冷却した後で油剤を付
与し、速度が1000m/分の引き取りロールを介して
繊度が10.3デニールの未延伸糸を得た。得られた未
延伸糸束を複数集束し、延伸温度が常温の条件下で延伸
倍率3.6で延伸した。
Comparative Example 2 Using the same high melting point component as in Example 1 as the core component and the same low melting point component as in Example 1 as the sheath component, the fiber spinneret has a core-sheath type composite cross section. Was melt-spun under the conditions of single hole discharge rate = 1.15 g / min and composite ratio (high melting point component / low melting point component) = 1/1 (weight ratio). That is, the high melting point component and the low melting point component are melted at a temperature of 180 ° C. using separate extruder type melt extruders, and melt-spun through a spinneret having a core-sheath type composite cross section. After cooling the strip with a cooling device, an oil agent was applied, and an undrawn yarn having a fineness of 10.3 denier was obtained through a take-up roll having a speed of 1000 m / min. A plurality of the obtained unstretched yarn bundles were bundled and stretched at a stretching ratio of 3.6 under the condition that the stretching temperature was room temperature.

【0068】しかし、低融点成分が繊維横断面の全周を
被覆しているために、紡糸工程において密着が発生し、
延伸工程において糸切れが多発したため短繊維を得るこ
とができなかった。芯鞘型複合短繊維製造の操業性を表
2に示す。
However, since the low melting point component covers the entire circumference of the fiber cross section, adhesion occurs in the spinning process,
It was not possible to obtain short fibers because many yarn breakages occurred in the drawing process. Table 2 shows the operability of the core-sheath type composite staple fiber production.

【0069】比較例3 実施例1と同一の高融点成分を用い、繊維横断面が単相
型断面となる紡糸口金を介して、単孔吐出量=1.20
g/分の条件下にて溶融紡出した。すなわち、前記高融
点成分をエクストルーダ型溶融押出し機を用いて、温度
180℃で溶融し、単相型断面となる紡糸口金を介して
溶融紡出し、この紡出糸条を冷却装置にて冷却した後で
油剤を付与し、速度が1000m/分の引き取りロール
を介して繊度が10.8デニールの未延伸糸を得た。得
られた未延伸糸束を複数集束し、延伸温度が常温の条件
下で延伸倍率3.8で延伸し、次いで、スタッファーボ
ックスにて14個/インチの捲縮を付与した後、51m
mに切断し、銘柄3d×51mmの短繊維を得た。この
短繊維をパラレルカード機に供給して目付けが25g/
2 のカードウエブを作成した。
Comparative Example 3 The same high melting point component as in Example 1 was used, and the single hole discharge rate = 1.20 through the spinneret having a fiber cross section of a single phase type cross section.
Melt spinning was performed under the condition of g / min. That is, the high melting point component was melted at a temperature of 180 ° C. using an extruder type melt extruder, melt-spun through a spinneret having a single-phase cross section, and this spun yarn was cooled by a cooling device. After that, an oil agent was applied to the undrawn yarn having a fineness of 10.8 denier through a take-up roll having a speed of 1000 m / min. A plurality of the obtained unstretched yarn bundles were bundled, stretched at a stretching ratio of 3.8 under the stretching temperature of room temperature, and then crimped with a stuffer box to 14 crimps / inch.
It cut | disconnected to m and obtained the brand-name 3dx51 mm short fiber. This short fiber is fed to a parallel card machine and the basis weight is 25 g /
An m 2 card web was created.

【0070】また、実施例1と同様にして目付けが25
g/m2 の木綿の晒し綿からなるカードウエブを作成し
た。次いで、単相型短繊維からなるウエブと晒し綿より
なる天然繊維ウエブとを積層し、加圧液体流処理を行
い、三次元交絡させた目付けが50g/m2 の積層不織
布を得た。処理条件は実施例1と同一条件にて実施し
た。単相型短繊維製造の操業性及び積層不織布物性、生
分解性能を表2に示す。
Further, as in Example 1, the basis weight is 25.
A card web made of bleached cotton of g / m 2 was prepared. Next, a web made of single-phase short fibers and a natural fiber web made of bleached cotton were laminated and subjected to a pressurized liquid flow treatment to obtain a three-dimensionally entangled laminated nonwoven fabric having a basis weight of 50 g / m 2 . The treatment conditions were the same as in Example 1. Table 2 shows the operability, the physical properties of the laminated non-woven fabric, and the biodegradability of the single-phase short fiber production.

【0071】比較例4 実施例1と同一条件下にて得た目付けが50g/m2
多葉型複合短繊維からなる短繊維ウエブを、天然繊維ウ
エブを積層することなく、加圧液体流処理を行い三次元
交絡させた不織布を得た。処理条件は実施例1と同一条
件にて実施した。短繊維製造の操業性及び不織布物性、
生分解性能を表2に示す。
Comparative Example 4 A short fiber web made of multi-leaf composite short fibers having a basis weight of 50 g / m 2 obtained under the same conditions as in Example 1 was applied to a pressurized liquid flow without laminating a natural fiber web. A three-dimensionally entangled nonwoven fabric was obtained by the treatment. The treatment conditions were the same as in Example 1. Operability of short fiber production and physical properties of non-woven fabric,
The biodegradability is shown in Table 2.

【0072】[0072]

【表1】 [Table 1]

【0073】表1から明らかなように、実施例1は、本
発明の多葉型複合短繊維と天然繊維とからなる積層不織
布であるので、多葉型複合短繊維を製造する際の冷却
性、可紡性、延伸性も良好であった。また、多葉型複合
短繊維と天然繊維との積層方法が加圧液体流処理による
三次元交絡にて一体化させたものであるので、2層間の
剥離は発生せず、しかも得られた積層不織布の機械的性
能及び吸水性にも優れるものであった。この積層不織布
を6ケ月間土中に埋設し、その後に掘り出して観察した
ところ、不織布としての形態を保持しておらず、良好な
生分解性を有することが認められた。
As is clear from Table 1, Example 1 is a laminated non-woven fabric composed of the multi-leaf type composite short fibers of the present invention and a natural fiber. Therefore, the cooling property in the production of the multi-leaf type composite short fibers is shown. The spinnability and stretchability were also good. Further, since the method for laminating the multi-leaf composite short fibers and the natural fibers is one in which they are integrated by three-dimensional entanglement by the pressurized liquid flow treatment, delamination between the two layers does not occur, and the obtained laminated layers are obtained. The non-woven fabric was also excellent in mechanical performance and water absorption. When this laminated non-woven fabric was embedded in soil for 6 months and then excavated and observed, it was confirmed that the non-woven fabric did not retain its shape and had good biodegradability.

【0074】実施例2は、低融点成分の比率が大ではあ
るが、繊度を小さくそして多葉型複合短繊維を適用して
いるので、実施例1と同様、多葉型複合繊維を製造する
際の冷却性、可紡性、延伸性も良好であった。また、得
られた積層不織布は機械的性能及び吸水性にも優れるも
のであった。この積層不織布の生分解性能については、
低融点成分の比率が大であるので実施例1で得られた積
層不織布よりさらに良好な結果が得られた。
In Example 2, although the proportion of the low melting point component was large, the fineness was small and the multileaf type composite short fibers were applied. Therefore, as in the case of Example 1, the multileaf type composite fiber is produced. At that time, the cooling property, spinnability and stretchability were also good. Further, the obtained laminated nonwoven fabric was excellent in mechanical performance and water absorption. Regarding the biodegradability of this laminated nonwoven fabric,
Since the ratio of the low melting point component was large, a better result was obtained as compared with the laminated nonwoven fabric obtained in Example 1.

【0075】実施例3は、高融点成分の比率が大であ
り、しかも多葉型複合短繊維を適用しているので、繊度
が大きいにもかかわらず、実施例1と同様、多葉型複合
繊維を製造する際の冷却性、可紡性、延伸性も良好であ
った。また、得られた積層不織布は機械的性能及び吸水
性にも優れるものであった。この積層不織布の生分解性
能も良好な結果が得られた。
In Example 3, since the ratio of the high melting point component was large and the multi-leaf type composite short fibers were applied, the multi-leaf type composite short fiber was used in the same manner as in Example 1 even though the fineness was large. The coolability, spinnability, and drawability during fiber production were also good. Further, the obtained laminated nonwoven fabric was excellent in mechanical performance and water absorption. The biodegradability of this laminated nonwoven fabric was also good.

【0076】実施例4は、実施例1と同様に多葉型複合
繊維を製造する際の冷却性、可紡性、延伸性及び得られ
た積層不織布の機械的性能及び吸水性を兼ね備えたもの
であった。さらに、この積層不織布の生分解性能は、突
起数合計が10であり実施例1より高融点成分が細分化
されているので、さらに良好な結果が得られた。
Example 4 has the same cooling properties, spinnability, and stretchability in the production of the multileaf composite fiber as in Example 1, and the mechanical properties and water absorbency of the obtained laminated nonwoven fabric. Met. Further, the biodegradability of this laminated nonwoven fabric was 10 because the total number of protrusions was 10, and the high-melting point component was subdivided as compared with Example 1, so that even better results were obtained.

【0077】実施例5は、実施例1と同一の両ウエブを
積層比率が天然繊維リッチとなるように積層しているの
で、実施例1より機械的性能にはやや劣るものの、吸水
性及び生分解性にはさらに良好な結果が得られた。
In Example 5, since the same two webs as those in Example 1 were laminated so that the lamination ratio was rich in natural fibers, the mechanical performance was slightly inferior to that in Example 1, but the water absorption and the rawness were improved. Even better results were obtained for degradability.

【0078】実施例6は、実施例1と同一の両ウエブを
積層比率が多葉型複合短繊維リッチとなるように積層し
ているので、実施例1より吸水性にはやや劣るものの、
機械的性能および生分解性能にはさらに良好な結果が得
られた。
In Example 6, since both webs identical to those in Example 1 were laminated so that the lamination ratio was rich in multileaf type composite short fibers, the water absorption was slightly inferior to that in Example 1, but
Even better results were obtained for mechanical performance and biodegradability.

【0079】なお、実施例1〜6で得られた不織布につ
いて層間剥離強力を測定しようとしたが、交絡が強固で
あったため剥離させることができず、その測定は実施で
きなかった。
It was attempted to measure the interlaminar peel strength of the nonwoven fabrics obtained in Examples 1 to 6, but since the entanglement was strong, it could not be peeled off and the measurement could not be carried out.

【0080】[0080]

【表2】 [Table 2]

【0081】これに対し、比較例1は、実施例1と同一
の両ウエブを、本発明の範囲外である熱エンボスロール
を用いた熱融着装置にて一体化したので、2成分間の接
着力が弱く、到底実使用に耐えるものではなかった。
On the other hand, in Comparative Example 1, the same two webs as in Example 1 were integrated by a heat fusion apparatus using a hot embossing roll, which is outside the scope of the present invention, so that between the two components. The adhesive strength was so weak that it could not withstand actual use.

【0082】比較例2は、実施例1と同一の高融点成分
及び低融点成分を用いたものの、繊維横断面が本発明の
範囲外である芯鞘型複合断面であるために、紡出糸条が
密着し、延伸工程において糸切れが多発して短繊維を得
ることすらできなかった。
Comparative Example 2 uses the same high-melting point component and low-melting point component as in Example 1, but the fiber cross section is a core-sheath type composite cross section outside the scope of the present invention, and therefore, spun yarn is used. The filaments adhered to each other, and many yarn breakages occurred in the drawing process, so that even short fibers could not be obtained.

【0083】比較例3は、実施例1と同一の高融点成分
を用いたものの、繊維横断面が本発明範囲外である単相
型であるために、得られた不織布の機械的性能には優れ
るものの、不織布を6ケ月間土中に埋設し、その後に掘
り出して観察したところ不織布形態を維持しており、不
織布強力も埋設前の91%であり、生分解性能には著し
く劣るものであった。
In Comparative Example 3, the same high melting point component as in Example 1 was used, but the cross-section of the fiber was a single phase type which was outside the scope of the present invention. Although excellent, the non-woven fabric was buried in the soil for 6 months, and then excavated and observed, the non-woven fabric form was maintained, and the non-woven fabric strength was 91% before embedding, which is significantly inferior in biodegradability. It was

【0084】比較例4は、実施例1と同一の多葉型複合
短繊維ウエブを用いているものの、天然繊維ウエブを積
層していないので、得られた不織布は吸水性に劣るもの
であった。
In Comparative Example 4, the same multi-leaf composite short fiber web as in Example 1 was used, but the natural fiber web was not laminated, so the obtained nonwoven fabric was inferior in water absorbency. .

【0085】[0085]

【発明の効果】本発明によれば、紡出糸条の冷却性及び
可紡性、延伸性に優れ、良好な生分解性能を有するとと
もにその制御が可能であり、吸湿性、吸水性に富み、さ
らに実使用に耐えうるだけの充分な強力を有する積層不
織布及びその製造方法を提供することができる。
EFFECTS OF THE INVENTION According to the present invention, the spun yarn is excellent in cooling property, spinnability and stretchability, has good biodegradability and can be controlled, and is rich in hygroscopicity and water absorption. Further, it is possible to provide a laminated non-woven fabric having a sufficient strength to withstand actual use and a method for producing the same.

【0086】本発明の積層不織布は、おむつや生理用品
その他の医療・衛生材料素材、使い捨ておしぼりやワイ
ピングクロスなどの拭き取り布、使い捨て包装材、家庭
・業務用の生ごみ捕集用袋その他廃棄物処理材などの生
活関連用素材、あるいは、農業・園芸・土木用に代表さ
れる産業用資材の各素材として好適である。しかもこの
積層不織布は、生分解性を有するので、その使用後に完
全に分解消失するため、自然環境保護の観点からも有益
であり、あるいは、例えば堆肥化して肥料とするなど再
利用を図ることもできるため資源の再利用の観点からも
有益である。
The laminated non-woven fabric of the present invention is used as a material for medical and hygiene materials such as diapers and sanitary products, wipes such as disposable hand towels and wiping cloths, disposable packaging materials, bags for household garbage collection for household use, and other waste materials. It is suitable as a material for daily life such as a processing material, or an industrial material typified by agriculture, gardening, and civil engineering. Moreover, since this laminated non-woven fabric is biodegradable, it decomposes and disappears completely after use, which is beneficial from the viewpoint of protecting the natural environment, or it can be reused by, for example, composting it into a fertilizer. It is also useful from the perspective of resource reuse.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の積層不織布を構成する多葉型複合短繊
維の繊維横断面の一例を示すモデル図である。
FIG. 1 is a model diagram showing an example of a fiber cross section of a multileaf composite short fiber constituting the laminated nonwoven fabric of the present invention.

【図2】本発明の積層不織布を構成する多葉型複合短繊
維の繊維横断面の他の一例を示すモデル図である。
FIG. 2 is a model view showing another example of the fiber cross section of the multi-leaf composite short fibers constituting the laminated nonwoven fabric of the present invention.

【図3】本発明の積層不織布を構成する多葉型複合短繊
維の繊維横断面のさらに他の一例を示すモデル図であ
る。
FIG. 3 is a model diagram showing still another example of the fiber cross-section of the multileaf composite short fibers constituting the laminated nonwoven fabric of the present invention.

【符号の説明】[Explanation of symbols]

1 高融点成分 2 低融点成分 3 中心 1 High melting point component 2 Low melting point component 3 Center

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 複合短繊維からなる短繊維ウエブと天然
繊維からなる天然繊維ウエブとが積層され三次元交絡に
より一体化されており、前記複合短繊維が生分解性を有
する第1の脂肪族ポリエステルからなる高融点成分とこ
の高融点成分よりも融点の低い生分解性を有する第2の
脂肪族ポリエステルからなる低融点成分とから形成され
る多葉型複合短繊維であり、この多葉型複合短繊維の繊
維横断面において、低融点成分が芯部を形成し、高融点
成分が前記低融点成分の円周方向に独立した突起部を複
数形成し、しかも低融点成分は高融点成分によって分断
されることなく連続しており、かつ、多葉型複合短繊維
を形成する高融点成分及び低融点成分はともに繊維軸方
向に連続するとともに繊維表面において交互に露出して
なることを特徴とする積層不織布。
1. A first aliphatic having biodegradability, wherein a staple fiber web made of composite staple fibers and a natural fiber web made of natural fibers are laminated and integrated by three-dimensional entanglement, and the composite staple fibers are biodegradable. A multi-leaf composite short fiber formed from a high-melting-point component made of polyester and a low-melting-point component made of a second aliphatic polyester having a lower melting point than the high-melting point component and having a biodegradability. In the fiber cross section of the composite short fiber, the low melting point component forms the core part, the high melting point component forms a plurality of independent protrusions in the circumferential direction of the low melting point component, and the low melting point component is formed by the high melting point component. It is characterized in that it is continuous without being divided, and that both the high-melting point component and the low-melting point component forming the multi-leaf type composite short fiber are continuous in the fiber axis direction and are alternately exposed on the fiber surface. You Laminated non-woven fabric.
【請求項2】 天然繊維が、コットン、ラミー、短繊維
状に裁断されたシルク繊維であることを特徴とする請求
項1記載の積層不織布。
2. The laminated nonwoven fabric according to claim 1, wherein the natural fiber is a cotton fiber, a ramie fiber, or a silk fiber cut into a short fiber shape.
【請求項3】 高融点成分が、ポリブチレンサクシネー
トであり、低融点成分が、ブチレンサクシネートの共重
合量比が70〜90モル%となるようにブチレンサクシ
ネートにエチレンサクシネートあるいはブチレンアジペ
ートを共重合せしめた共重合ポリエステルであることを
特徴とする請求項1または2に記載の積層不織布。
3. The high melting point component is polybutylene succinate and the low melting point component is ethylene succinate or butylene adipate in butylene succinate so that the copolymerization amount ratio of the butylene succinate is 70 to 90 mol%. 3. The laminated non-woven fabric according to claim 1 or 2, which is a copolyester obtained by copolymerizing.
【請求項4】 高融点成分の突起部数の合計が4以上で
あり、高融点成分の個々に独立した各セグメント繊度が
0.05〜2デニールであり、高融点成分及び低融点成
分から構成された単糸繊度が1.5〜10デニールであ
り、高融点成分/低融点成分の複合比が1/3〜3/1
(重量比)であることを特徴とする請求項1から3まで
のいずれか1項に記載の積層不織布。
4. The total number of protrusions of the high melting point component is 4 or more, the individual fineness of each segment of the high melting point component is 0.05 to 2 denier, and the high melting point component and the low melting point component are constituted. The single yarn fineness is 1.5 to 10 denier and the composite ratio of high melting point component / low melting point component is 1/3 to 3/1.
It is (weight ratio), The laminated nonwoven fabric of any one of Claim 1 to 3 characterized by the above-mentioned.
【請求項5】 天然繊維ウエブと短繊維ウエブとの積層
比率が10/90〜90/10(重量%)であることを
特徴とする請求項1から4までのいずれか1項に記載の
積層不織布。
5. The laminate according to any one of claims 1 to 4, wherein a lamination ratio of the natural fiber web and the short fiber web is 10/90 to 90/10 (% by weight). Non-woven fabric.
【請求項6】 生分解性を有する第1の脂肪族ポリエス
テルからなる高融点成分とこの高融点成分よりも融点の
低い生分解性を有する第2の脂肪族ポリエステルからな
る低融点成分とを用いて、繊維横断面において低融点成
分が芯部を形成し、繊維横断面において高融点成分が前
記低融点成分の円周方向に独立した突起部を複数形成
し、しかも繊維横断面において前記低融点成分は高融点
成分によって分断されることなく連続しており、高融点
成分及び低融点成分がともに繊維軸方向に連続するとと
もに繊維表面において交互に露出するような多葉型複合
繊維を溶融複合紡糸し、次いで延伸し、得られた延伸糸
条に機械捲縮を付与した後に所定長に切断して短繊維と
なし、この短繊維をカーディングすることにより短繊維
ウエブを形成し、この短繊維ウエブに天然繊維からなる
天然繊維ウエブを積層した後に、加圧液体流処理を施し
て両ウエブの構成繊維を三次元交絡させ一体化すること
を特徴とする積層不織布の製造方法。
6. A high melting point component comprising a biodegradable first aliphatic polyester and a low melting point component comprising a biodegradable second aliphatic polyester having a lower melting point than the high melting point component are used. The low melting point component forms the core in the fiber cross section, the high melting point component forms a plurality of independent protrusions in the circumferential direction of the low melting point component in the fiber cross section, and the low melting point is formed in the fiber cross section. The components are continuous without being divided by the high-melting point component, and the high-melting point component and the low-melting point component are both continuous in the fiber axis direction and are alternately exposed on the fiber surface. Then, the resulting drawn yarn is mechanically crimped and then cut into short fibers to give short fibers, and the short fibers are carded to form a short fiber web. A method for producing a laminated non-woven fabric, comprising laminating a natural fiber web made of natural fibers on a short fiber web and then subjecting the fibers to a three-dimensional entanglement to integrate the constituent fibers of both webs by applying a pressurized liquid flow treatment.
JP8092117A 1996-04-15 1996-04-15 Laminated nonwoven fabric and its production Pending JPH09279452A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8092117A JPH09279452A (en) 1996-04-15 1996-04-15 Laminated nonwoven fabric and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8092117A JPH09279452A (en) 1996-04-15 1996-04-15 Laminated nonwoven fabric and its production

Publications (1)

Publication Number Publication Date
JPH09279452A true JPH09279452A (en) 1997-10-28

Family

ID=14045502

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8092117A Pending JPH09279452A (en) 1996-04-15 1996-04-15 Laminated nonwoven fabric and its production

Country Status (1)

Country Link
JP (1) JPH09279452A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111212938A (en) * 2017-12-28 2020-05-29 尤妮佳股份有限公司 Fibrous nonwoven fabric sheet

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111212938A (en) * 2017-12-28 2020-05-29 尤妮佳股份有限公司 Fibrous nonwoven fabric sheet
CN111212938B (en) * 2017-12-28 2022-07-26 尤妮佳股份有限公司 Fibrous nonwoven fabric sheet

Similar Documents

Publication Publication Date Title
JP4093595B2 (en) Method, product and use of degradable polymer fibers
JP3150217B2 (en) Biodegradable short fiber non-woven fabric
JP3247177B2 (en) Biodegradable latently crimpable composite short fiber and nonwoven fabric thereof
JPH101855A (en) Biodegradable short fiber nonwoven fabric and its production
JP3150218B2 (en) Biodegradable short fiber non-woven fabric
JPH09279452A (en) Laminated nonwoven fabric and its production
JP3556089B2 (en) Biodegradable long-fiber nonwoven fabric and method for producing the same
JP4117915B2 (en) Biodegradable nonwoven fabric and method for producing the same
JPH09279465A (en) Laminated nonwoven fabric and its production
JPH09279449A (en) Laminated nonwoven fabric and its production
JPH09310293A (en) Biodegradable wet nonwoven fabric and its production
JPH09279464A (en) Laminated nonwoven fabric and its production
JPH09279447A (en) Laminated nonwoven fabric and its production
JPH09279454A (en) Biodegradable short fiber nonwoven fabric and its production
JPH09279450A (en) Laminated nonwoven fabric and its production
JP3553722B2 (en) Biodegradable nonwoven fabric and method for producing the same
JPH09279448A (en) Laminated nonwoven fabric and its production
JPH09279455A (en) Biodegradable short fiber nonwoven fabric and its production
JPH09279451A (en) Laminated nonwoven fabric and its production
JP3262430B2 (en) Method for producing biodegradable laminated nonwoven structure
JPH09279446A (en) Biodegradable short fiber nonwoven fabric and its production
JPH08109567A (en) Laminated nonwoven structure and its production
JPH0995852A (en) Polylactate-based laminated nonwoven fabric and its production
JP4117916B2 (en) Biodegradable nonwoven fabric and method for producing the same
JPH0913256A (en) Biodegradable staple fiber nonwoven fabric and its production