JPH09279455A - Biodegradable short fiber nonwoven fabric and its production - Google Patents

Biodegradable short fiber nonwoven fabric and its production

Info

Publication number
JPH09279455A
JPH09279455A JP8092111A JP9211196A JPH09279455A JP H09279455 A JPH09279455 A JP H09279455A JP 8092111 A JP8092111 A JP 8092111A JP 9211196 A JP9211196 A JP 9211196A JP H09279455 A JPH09279455 A JP H09279455A
Authority
JP
Japan
Prior art keywords
melting point
point component
fiber
short fiber
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8092111A
Other languages
Japanese (ja)
Inventor
Fumio Matsuoka
文夫 松岡
Naoji Ichinose
直次 一瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP8092111A priority Critical patent/JPH09279455A/en
Publication of JPH09279455A publication Critical patent/JPH09279455A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain the subject nonwoven fabric comprising short fibers made of conjugate filament yarns of excellent cooling disposition, spinnability and drawability following their delivery from a spinneret, controllable in biodegradability, and having thermoadhesive function. SOLUTION: The single fiber as constituent fiber of this nonwoven fabric has the following characteristics: made up of high-melting component 1 and low-melting component 2 each consisting of biodegradable aliphatic polyester; in the fiber cross-section, the high-melting component 1 and the low-melting component 2 alternately occupies a specified range each from the center of the cross-section toward the circumference and are divided into segments each with an area equal to one another, and there is a hollow 3 at the center of the cross-section. To obtain the above constituent fiber, a melt conjugate spinning followed by drawing is conducted to produce conjugate filament yarns in such a way that both the high-melting and low-melting components 1, 2 are continuous in the direction of fiber axis and exposed onto the fiber surface. and the resultant drawn filament yarns are mechanically crimped and cut to a specified length, and then carded into a short fiber web, which is then preserved in a specified form, thus affording the objective biodegradable short fiber nonwoven fabric.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、制御可能な生分解
性能を有するとともに、製造の際にも良好な製糸性を保
持する生分解性短繊維不織布及びその製造方法に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a biodegradable short fiber nonwoven fabric which has a controllable biodegradability and retains good spinnability during production, and a method for producing the same.

【0002】[0002]

【従来の技術】従来から、生分解性不織布としては、例
えば乾式法あるいは溶液浸漬法により得られるビスコー
ス短繊維不織布、湿式法により得られるキュプラレーヨ
ン長繊維不織布やビスコースレーヨン長繊維不織布、キ
チンやコラーゲンのような天然物の化学繊維からなる不
織布、コットンからなるスパンレース不織布等が知られ
ている。しかしながら、これらの生分解性不織布は機械
的強度が低くかつ親水性であるため吸水・湿潤の時の機
械的強度の低下が著しい。さらに、これらの不織布は非
熱可塑性であることから、熱成形性を有さず加工性に劣
るものであった。
Conventionally, biodegradable nonwoven fabrics include, for example, viscose short fiber non-woven fabrics obtained by a dry method or a solution dipping method, cupra rayon long fiber non-woven fabrics obtained by a wet method, viscose rayon long fiber non-woven fabrics, and chitin. Nonwoven fabrics composed of natural chemical fibers such as collagen and collagen, spunlace nonwoven fabrics composed of cotton, etc. are known. However, since these biodegradable nonwoven fabrics have low mechanical strength and are hydrophilic, the mechanical strength upon water absorption / wetting is significantly reduced. Furthermore, since these nonwoven fabrics are non-thermoplastic, they have no thermoformability and are inferior in workability.

【0003】このような問題を解決する生分解性不織布
としては、特開平5−93318号公報または特開平5
−195407号公報に生分解性を有する熱可塑性重合
体を用いた不織布が開示されている。しかし、これらに
おいては、紡出糸条の冷却性および可紡性、延伸性に劣
り、しかも熱圧接工程等において全融タイプとなるので
得られた不織布の機械的特性および柔軟性に劣るもので
あった。
As a biodegradable nonwoven fabric which solves such a problem, Japanese Patent Application Laid-Open No. 5-93318 or Japanese Patent Application Laid-Open No.
No. 195407 discloses a non-woven fabric using a biodegradable thermoplastic polymer. However, in these, the spun yarn is inferior in the cooling property, spinnability, and stretchability, and is inferior in mechanical properties and flexibility of the obtained nonwoven fabric because it becomes a full-melt type in a hot pressing process and the like. there were.

【0004】生分解性不織布の製造工程においてこのよ
うな問題が生じるのは、一般的に生分解性を有する重合
体の融点および結晶化温度が低く、しかも結晶化速度が
遅いことに起因する。すなわち、紡糸口金より吐出され
た紡出糸条の冷却、捲取工程において、糸条間に密着が
発生し、均整度に劣る未延伸糸しか得ることができず、
続く延伸工程で糸切れが発生したり、延伸が可能であっ
ても機械的特性に劣る短繊維しか得ることができないこ
ととなる。そして、延いてはこのような短繊維からなる
不織布は機械的特性および地合いに劣るものとなる。
[0004] Such a problem occurs in the process of producing a biodegradable nonwoven fabric because, in general, a polymer having biodegradability has a low melting point and a low crystallization temperature and a low crystallization rate. That is, in the cooling and winding processes of the spun yarn discharged from the spinneret, adhesion occurs between the yarns, and only undrawn yarn with poor uniformity is obtained,
In the subsequent drawing step, yarn breakage occurs, or even if drawing is possible, only short fibers having poor mechanical properties can be obtained. And, by extension, the nonwoven fabric made of such short fibers is inferior in mechanical properties and texture.

【0005】また、従来の生分解性短繊維においては、
一般にその繊維横断面は単一型、単一中空型あるいは芯
鞘複合型であり、構成する一成分のみが繊維の全表面を
被覆している。従って、融点及び結晶化温度の比較的高
い生分解性重合体を用いて紡出糸条の冷却性及び可紡
性、延伸性を重視すると、得られる不織布の分解性能に
劣ることとなり、逆に、融点及び結晶化温度の比較的低
い生分解重合体を用いて生分解性能を重視すると、紡出
糸条の冷却性および可紡性、延伸性に劣る結果となる。
しかも、従来の方法では、生分解性能の制御は、適用す
る重合体の種類および繊度、複合比および繊維の配向度
などを変更することにより幾分かは可能ではあるが、微
妙な制御は不可能であった。
In conventional biodegradable short fibers,
Generally, the cross-section of the fiber is a single type, a single hollow type or a core-sheath composite type, and only one constituent component covers the entire surface of the fiber. Accordingly, if the cooling property and spinnability of the spun yarn are emphasized using a biodegradable polymer having a relatively high melting point and crystallization temperature, the resulting nonwoven fabric will be inferior in decomposition performance, and conversely, When biodegradation performance is emphasized using a biodegradable polymer having a relatively low melting point and crystallization temperature, the spun yarn has poor cooling, spinnability and stretchability.
Moreover, in the conventional method, the biodegradability can be controlled to some extent by changing the type and fineness of the polymer to be applied, the composite ratio and the orientation degree of the fiber, but delicate control is not possible. It was possible.

【0006】[0006]

【発明が解決しようとする課題】本発明は、このような
問題を解決するもので、生分解性能が制御可能であると
ともに、製造の際の紡出糸条の冷却性および可紡性、延
伸性に優れ、かつ熱接着機能を有する生分解性短繊維不
織布及びその製造方法を提供しようとするものである。
DISCLOSURE OF THE INVENTION The present invention solves such a problem and has a controllable biodegradability, as well as a cooling property, a spinnability and a drawability of a spun yarn at the time of production. An object of the present invention is to provide a biodegradable short-fiber non-woven fabric having excellent properties and having a heat-bonding function, and a method for producing the same.

【0007】[0007]

【課題を解決するための手段】本発明者らは上記課題を
解決すべく、鋭意検討の結果本発明に至った。すなわ
ち、本発明は以下の構成を要旨とするものである。
Means for Solving the Problems The inventors of the present invention have made intensive studies to solve the above problems, and as a result, have reached the present invention. That is, the present invention has the following structures.

【0008】(1)生分解性を有する第1の脂肪族ポリ
エステルからなる高融点成分とこの高融点成分よりも融
点の低い生分解性を有する第2の脂肪族ポリエステルか
らなる低融点成分とから形成される複合短繊維からな
り、この複合短繊維の繊維横断面において高融点成分お
よび低融点成分が繊維横断面の中心から周方向の一定範
囲ずつを交互に占め、かつ前記両成分が繊維横断面にお
いてそれぞれ均等な面積を有するセグメントに分割され
ており、しかも高融点成分および低融点成分が繊維軸方
向に連続するとともに繊維表面に露出していることを特
徴とする生分解性短繊維不織布。
(1) From a high melting point component composed of a first aliphatic polyester having biodegradability and a low melting point component composed of a second aliphatic polyester having a lower melting point than the high melting point component The composite short fibers are formed, and the high melting point component and the low melting point component alternately occupy a certain range in the circumferential direction from the center of the fiber cross section in the fiber cross section of the composite short fiber, and both components cross the fiber. A biodegradable short-fiber non-woven fabric, characterized in that it is divided into segments each having a uniform surface area, and that the high-melting point component and the low-melting point component are continuous in the fiber axis direction and are exposed on the fiber surface.

【0009】(2)生分解性を有する第1の脂肪族ポリ
エステルからなる高融点成分とこの高融点成分よりも融
点の低い生分解性を有する第2の脂肪族ポリエステルか
らなる低融点成分とから形成される複合短繊維からな
り、この複合短繊維の繊維横断面において高融点成分お
よび低融点成分が繊維横断面の中心から周方向の一定範
囲ずつを交互に占め、かつ繊維横断面に中空部を有し、
かつ前記両成分が繊維横断面においてそれぞれ均等な面
積を有するセグメントに分割されており、しかも高融点
成分および低融点成分が繊維軸方向に連続するとともに
繊維表面ならびに中空部に露出していることを特徴とす
る生分解性短繊維不織布。
(2) From a high melting point component composed of a first aliphatic polyester having biodegradability and a low melting point component composed of a second aliphatic polyester having a lower melting point than the high melting point component The composite short fibers are formed, and the high melting point component and the low melting point component alternately occupy a constant range in the circumferential direction from the center of the fiber cross section in the fiber cross section of the composite short fiber, and a hollow portion is formed in the fiber cross section. Have
And both components are divided into segments each having an equal area in the cross section of the fiber, and the high-melting point component and the low-melting point component are continuous in the fiber axis direction and are exposed on the fiber surface and the hollow portion. Characteristic biodegradable short fiber non-woven fabric.

【0010】(3)生分解性を有する第1の脂肪族ポリ
エステルからなる高融点成分とこの高融点成分よりも融
点の低い生分解性を有する第2の脂肪族ポリエステルか
らなる低融点成分とを用いて、繊維横断面において高融
点成分および低融点成分が繊維横断面の中心から周方向
の一定範囲ずつを交互に占め、前記両成分が繊維横断面
においてそれぞれ均等な面積を有するセグメントに分割
されており、しかも高融点成分および低融点成分が繊維
軸方向に連続するとともに繊維表面に露出するように複
合繊維を溶融複合紡糸し、次いで延伸し、得られた延伸
糸条に機械捲縮を付与した後に所定長に切断して短繊維
となし、この短繊維をカーディングすることにより短繊
維ウエブを形成し、この短繊維ウエブを所定の形態に保
持させることを特徴とする生分解性短繊維不織布の製造
方法。
(3) A high melting point component made of a first aliphatic polyester having biodegradability and a low melting point component made of a second aliphatic polyester having a biodegradability lower in melting point than the high melting point component. In the fiber cross section, the high melting point component and the low melting point component alternately occupy a certain range in the circumferential direction from the center of the fiber cross section, and the two components are divided into segments each having an equal area in the fiber cross section. In addition, the high melting point component and the low melting point component are melt-combined and spun so that the high melting point component and the low melting point component are continuous in the fiber axis direction and exposed on the fiber surface, and then the resulting drawn yarn is provided with a mechanical crimp. After that, it is cut into a short length into short fibers, and the short fibers are carded to form a short fiber web, and the short fiber web is held in a predetermined shape. Manufacturing method of the biodegradable staple fiber nonwoven fabric to be.

【0011】(4)生分解性を有する第1の脂肪族ポリ
エステルからなる高融点成分とこの高融点成分よりも融
点の低い生分解性を有する第2の脂肪族ポリエステルか
らなる低融点成分とを用いて、繊維横断面において高融
点成分および低融点成分が繊維横断面の中心から周方向
の一定範囲ずつを交互に占め、かつ繊維横断面に中空部
を有し、かつ前記両成分が繊維横断面においてそれぞれ
均等な面積を有するセグメントに分割されており、しか
も高融点成分および低融点成分が繊維軸方向に連続する
とともに繊維表面ならびに中空部に露出するように複合
繊維を溶融複合紡糸し、次いで延伸し、得られた延伸糸
条に機械捲縮を付与した後に所定長に切断して短繊維と
なし、この短繊維をカーディングすることにより短繊維
ウエブを形成し、この短繊維ウエブを所定の形態に保持
させることを特徴とする生分解性短繊維不織布の製造方
法。
(4) A high melting point component made of a first aliphatic polyester having biodegradability and a low melting point component made of a second aliphatic polyester having a lower melting point than the high melting point component. In the fiber cross section, the high melting point component and the low melting point component alternately occupy a certain range in the circumferential direction from the center of the fiber cross section, and have a hollow portion in the fiber cross section, and both components cross the fiber. The surface is divided into segments each having an even area, and the high melting point component and the low melting point component are melt-combined and spun so that the high-melting point component and the low-melting point component are continuous in the fiber axis direction and are exposed on the fiber surface and the hollow portion, and Stretching, after giving a mechanical crimp to the resulting drawn yarn to cut into short fibers to a short fiber, to form a short fiber web by carding this short fiber, Manufacturing method of the biodegradable staple fiber nonwoven fabric, characterized in that the short fiber web is held in a predetermined form of.

【0012】[0012]

【発明の実施の形態】まず、本発明の生分解性短繊維不
織布を構成する短繊維について説明する。本発明におい
て適用される短繊維は、生分解性を有する第1の脂肪族
ポリエステルからなる高融点成分とこの高融点成分より
も融点の低い生分解性を有する第2の脂肪族ポリエステ
ルからなる低融点成分とから形成される複合短繊維であ
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS First, the short fibers constituting the non-woven biodegradable nonwoven fabric of the present invention will be described. The short fiber applied in the present invention is composed of a high melting point component composed of a first aliphatic polyester having biodegradability and a low melting point composed of a second aliphatic polyester having a biodegradability having a lower melting point than the high melting point component. It is a conjugate short fiber formed from a melting point component.

【0013】高融点成分および低融点成分を構成する第
1および第2の生分解性脂肪族ポリエステルとしては、
例えば、ポリグリコール酸やポリ乳酸のようなポリ(α
−ヒドロキシ酸)またはこれらを構成する繰り返し単位
要素による共重合体が挙げられる。また、ポリ(ε−カ
プロラクトン)、ポリ(β−プロピオラクトン)のよう
なポリ(ω−ヒドロキシアルカノエート)が、さらに、
ポリ−3−ヒドロキシプロピオネート、ポリ−3−ヒド
ロキシブチレート、ポリ−3−ヒドロキシカプロエー
ト、ポリ−3−ヒドロキシヘプタノエート、ポリ−3−
ヒドロキシオクタノエートのようなポリ(β−ヒドロキ
シアルカノエート)およびこれらを構成する繰り返し単
位要素とポリ−3−ヒドロキシバリレートやポリ−4−
ヒドロキシブチレートを構成する繰り返し単位要素との
共重合体が挙げられる。また、ジオールとジカルボン酸
の縮重合体からなるものとして、例えば、ポリエチレン
オキサレート、ポリエチレンサクシネート、ポリエチレ
ンアジペート、ポリエチレンアゼテート、ポリブチレン
オキサレート、ポリブチレンサクシネート、ポリブチレ
ンアジペート、ポリブチレンセバケート、ポリヘキサメ
チレンセバケート、ポリネオペンチルオキサレートまた
はこれらを構成する繰り返し単位要素による共重合体が
挙げられる。また、これらの脂肪族ポリエステルを複数
ブレンドして用いることもできる。以上の脂肪族ポリエ
ステルのなかでは、製糸性および生分解性能の観点か
ら、ポリブチレンサクシネート、ポリエチレンサクシネ
ートならびにポリブチレンアジペートが特に好ましく、
さらに特にはブチレンサクシネートを主繰り返し単位と
してこれにエチレンサクシネートあるいはブチレンアジ
ペートを共重合せしめた共重合ポリエステルが好適であ
る。本発明においては、以上の脂肪族ポリエステルの中
から選択された2種の重合体のうち、融点が高い方の重
合体を高融点成分とし、融点が低い方の重合体を低融点
成分とする。
As the first and second biodegradable aliphatic polyesters constituting the high melting point component and the low melting point component,
For example, poly (α) such as polyglycolic acid and polylactic acid
-Hydroxy acids) or copolymers composed of repeating unit elements constituting them. In addition, poly (ω-hydroxyalkanoate) such as poly (ε-caprolactone) and poly (β-propiolactone) further includes
Poly-3-hydroxypropionate, poly-3-hydroxybutyrate, poly-3-hydroxycaproate, poly-3-hydroxyheptanoate, poly-3-
Poly (β-hydroxyalkanoates) such as hydroxyoctanoate, and the repeating unit elements constituting them, and poly-3-hydroxyvalerate and poly-4-
A copolymer with a repeating unit element constituting hydroxybutyrate is exemplified. Further, as the one consisting of a condensation polymer of a diol and a dicarboxylic acid, for example, polyethylene oxalate, polyethylene succinate, polyethylene adipate, polyethylene acetate, polybutylene oxalate, polybutylene succinate, polybutylene adipate, polybutylene sebacate , Polyhexamethylene sebacate, polyneopentyl oxalate, or copolymers composed of repeating units constituting these. Further, a plurality of these aliphatic polyesters can be blended and used. Among the above aliphatic polyesters, polybutylene succinate, polyethylene succinate and polybutylene adipate are particularly preferred from the viewpoints of spinnability and biodegradability.
Further, a copolymerized polyester obtained by using butylene succinate as a main repeating unit and copolymerizing ethylene succinate or butylene adipate is particularly preferable. In the present invention, of the two types of polymers selected from the above aliphatic polyesters, the polymer having a higher melting point is a high melting point component, and the polymer having a lower melting point is a low melting point component. .

【0014】ところで、脂肪族ポリエステルは一般に、
融点が高い程、紡出糸条の冷却性および可紡性、延伸性
には優れるものの、結晶化度が高いため生分解性能には
劣り、逆に、融点が低い程、紡出糸条の冷却性および可
紡性、延伸性には劣るものの、結晶化度が低いため生分
解性能には優れる。例えば、繊維横断面が比較的融点の
高い高融点成分単相の場合には、製糸性および不織布化
には優れるものの、目標とする生分解性能を得ることが
できない。一方、繊維横断面が比較的融点の低い低融点
成分単相の場合には、溶融紡糸に際し紡出糸条の冷却性
に劣り不織布を得ることができない。
By the way, the aliphatic polyester is generally
The higher the melting point, the better the cooling, spinnability, and stretchability of the spun yarn, but the higher the crystallinity, the poorer the biodegradability. Conversely, the lower the melting point, the better the spun yarn. Although inferior in cooling, spinnability and stretchability, it has excellent biodegradability due to low crystallinity. For example, in the case where the fiber cross section is a single phase of a high melting point component having a relatively high melting point, the desired biodegradability cannot be obtained although the spinning property and the formation of a nonwoven fabric are excellent. On the other hand, when the fiber cross section is a single phase of a low melting point component having a relatively low melting point, the spun yarn is inferior in the cooling property during melt spinning, and a nonwoven fabric cannot be obtained.

【0015】本発明によれば、後述のように、繊維横断
面において生分解性能には劣るが冷却性および可紡性、
延伸性に優れる高融点成分を細分化するとともに、紡出
糸条の冷却性および可紡性、延伸性には劣るが生分解性
能に優れる低融点成分を細分化し、この細分化した両成
分を円周方向に交互に配列させることにより、紡出糸条
の冷却性および可紡性、延伸性と生分解性能とのいずれ
にも優れる不織布を得ることができるのである。
According to the present invention, as will be described later, in the cross section of the fiber, the biodegradability is inferior, but the cooling property and the spinnability,
In addition to subdividing the high-melting-point component with excellent drawability, into the low-melting-point component with poor cooling and spinnability and stretchability of the spun yarn, but with excellent biodegradability, these subdivided components are combined. By alternately arranging them in the circumferential direction, it is possible to obtain a nonwoven fabric which is excellent in all of the cooling property and spinnability of the spun yarn, the stretchability and the biodegradability.

【0016】従って、本発明においては、高融点成分と
低融点成分との融点差を5℃以上とすることが好まし
く、さらに好ましくは10℃以上とするのが良い。高融
点成分と低融点成分との融点差が5℃未満であると、繊
維横断面が単相の場合のような全融タイプに近づくた
め、後述の繊維横断面とすることにより紡出糸条の冷却
性および可紡性、延伸性と生分解性能とのいずれをも満
足させるという本発明の効果を発揮することができな
い。
Therefore, in the present invention, the melting point difference between the high melting point component and the low melting point component is preferably 5 ° C. or more, more preferably 10 ° C. or more. If the melting point difference between the high-melting point component and the low-melting point component is less than 5 ° C., the fiber cross-section approaches a full-melt type as in the case of a single phase. The effect of the present invention that the cooling property, spinnability, stretchability and biodegradability are satisfied cannot be exhibited.

【0017】このことから、高融点成分として、ポリブ
チレンサクシネートを用い、低融点成分として、ブチレ
ンサクシネートの共重合量比が70〜90モル%となる
ようにブチレンサクシネートにエチレンサクシネートあ
るいはブチレンアジペートを共重合せしめた共重合ポリ
エステルを用いることが好ましい。ブチレンサクシネー
トの共重合量比が70モル%未満であると、生分解性能
には優れるものの、紡出糸条の冷却性および可紡性、延
伸性に劣り、目的とする短繊維が得られないこととな
る。逆に、90モル%を超えると、紡出糸条の冷却性お
よび可紡性、延伸性には優れるものの、生分解性能に劣
り本発明の目的とするものではない。
Therefore, polybutylene succinate is used as the high melting point component, and ethylene succinate or butylene succinate is added to the butylene succinate so that the copolymerization ratio of the butylene succinate is 70 to 90 mol% as the low melting point component. It is preferable to use a copolymerized polyester obtained by copolymerizing butylene adipate. If the copolymerization ratio of butylene succinate is less than 70 mol%, the biodegradability is excellent, but the cooling property, spinnability and stretchability of the spun yarn are poor, and the desired short fiber can be obtained. It will not be. On the other hand, if it exceeds 90 mol%, although the spinnability of the spun yarn is excellent in cooling property, spinnability and stretchability, it is inferior in biodegradability and is not intended for the present invention.

【0018】なお、本発明において、高融点成分および
低融点成分に適用される前述の脂肪族ポリエステルは、
数平均分子量が約20,000以上、好ましくは40,
000以上、さらに好ましくは60,000以上のもの
が、製糸性および得られる糸条の特性の点で良い。ま
た、重合度を高めるために少量のジイソシアネートやテ
トラカルボン酸二無水物などで鎖延長したものでも良
い。
In the present invention, the above-mentioned aliphatic polyester applied to the high melting point component and the low melting point component is
The number average molecular weight is about 20,000 or more, preferably 40,
Those having a molecular weight of 000 or more, more preferably 60,000 or more are good in terms of the spinning properties and the properties of the obtained yarn. Further, it may be chain-extended with a small amount of diisocyanate or tetracarboxylic dianhydride in order to increase the degree of polymerization.

【0019】また、本発明においては、前述の高融点成
分および低融点成分の両方またはいずれか一方に、必要
に応じて、例えば艶消し剤、顔料、光安定剤、酸化防止
剤を本発明の効果を損なわない範囲内で添加することが
できる。
In the present invention, if necessary, for example, a matting agent, a pigment, a light stabilizer and an antioxidant may be added to either or both of the above-mentioned high melting point component and low melting point component. It can be added within a range that does not impair the effect.

【0020】特に、本発明において適用される短繊維に
おいては、その構成成分のうちの少なくとも低融点成分
中に結晶核剤が添加されていることが好ましい。結晶核
剤を添加することにより、溶融紡出後に固化しにくい低
結晶性の重合体であっても、紡出糸条間に密着が発生す
るのを防止することができる。
Particularly, in the short fibers applied in the present invention, it is preferable that the crystal nucleating agent is added to at least the low melting point component of the constituent components. Addition of a nucleating agent can prevent adhesion between spun yarns even for a low-crystalline polymer that is hard to solidify after melt spinning.

【0021】ここで、結晶核剤としては、粉末状の無機
物で、かつ溶融液に溶解したりするものでなければ特に
制限をうけないが、タルク、炭酸カルシウム、酸化チタ
ン、窒化ホウ素、シリカゲル、酸化マグネシウムなどが
通常用いられ、これらの中でも特に、タルクまたは酸化
チタンまたはこれらの混合物が好適に用いられる。
The crystal nucleating agent is not particularly limited as long as it is a powdered inorganic substance and is not dissolved in a melt, but talc, calcium carbonate, titanium oxide, boron nitride, silica gel, Magnesium oxide or the like is usually used, and among these, talc, titanium oxide, or a mixture thereof is preferably used.

【0022】また、結晶核剤は、高融点成分中への結晶
核剤の添加量をQA (重量%)とし、低融点成分中への
結晶核剤の添加量をQB (重量%)としたときに、
(1)式および(2)式を満足するように添加されてい
ることが好ましい。 [(ΔTA +ΔTB)/100]−2 /3 ≦QA +QB ≦[(ΔTA +ΔTB)/100]+4 …(1) QA ≦QB …(2) 但し、ΔTA =高融点成分の融点−高融点成分の結晶化
温度≧35 ΔTB =低融点成分の融点−低融点成分の結晶化温度≧
35 結晶核剤の全添加量QA +QB (重量%)が(1)式で
定義された上限を超えると、紡出糸条の冷却効果は高い
ものの、製糸性が低下するとともに得られた短繊維ひい
ては不織布の機械的性能が劣り好ましくない。逆に、結
晶核剤の全添加量QA +QB (重量%)が(1)式で定
義された下限より低くなると、紡出糸条の冷却性が低下
して紡出糸条間に密着が発生し、目標とする不織布を得
ることが困難となる。また、高融点成分中への結晶核剤
の添加量QA (重量%)が、低融点成分中への結晶核剤
の添加量QB (重量%)よりも多くなると、高融点成分
の冷却性はさらに向上するが、低融点成分の冷却性が低
くなり、これによって紡出糸条間に密着が発生しやすく
なるため好ましくない。
Regarding the crystal nucleating agent, the addition amount of the crystal nucleating agent to the high melting point component was QA (wt%), and the addition amount of the crystal nucleating agent to the low melting point component was QB (wt%). sometimes,
It is preferable that it is added so as to satisfy the formulas (1) and (2). [(ΔTA + ΔTB) / 100] −2 / 3 ≦ QA + QB ≦ [(ΔTA + ΔTB) / 100] +4 (1) QA ≦ QB (2) where ΔTA = melting point of high melting point component−high melting point component Crystallization temperature ≧ 35 ΔTB = melting point of low melting point component−crystallization temperature of low melting point component ≧
If the total amount of the crystal nucleating agent QA + QB (% by weight) exceeds the upper limit defined by the formula (1), the spun yarn has a high cooling effect, but the spinnability is reduced and the obtained short fibers are obtained. As a result, the mechanical performance of the nonwoven fabric is inferior, which is not preferable. Conversely, if the total amount of the crystal nucleating agent QA + QB (% by weight) is lower than the lower limit defined by the formula (1), the cooling property of the spun yarn is reduced, and adhesion between the spun yarns occurs. Then, it becomes difficult to obtain the target nonwoven fabric. Also, when the addition amount QA (% by weight) of the nucleating agent in the high melting point component is larger than the addition amount QB (% by weight) of the nucleating agent in the low melting point component, the cooling property of the high melting point component is reduced. Although it is further improved, the cooling property of the low-melting point component is lowered, and this is not preferable because adhesion between spun yarns is likely to occur.

【0023】ところで、(1)式において、ΔTは各成
分の融点と結晶化温度との差であるが、製糸工程におい
ては、このΔTが小さいほうが紡出糸条の冷却性は向上
する。本発明の重合体において、ΔTは通常35以上と
大きくなるが、結晶核剤を添加することにより効果的に
紡出糸条の冷却を促進することができるのである。
In the formula (1), ΔT is the difference between the melting point of each component and the crystallization temperature. In the yarn making process, the smaller ΔT, the better the cooling property of the spun yarn. In the polymer of the present invention, ΔT is usually as large as 35 or more. However, the cooling of the spun yarn can be effectively promoted by adding a nucleating agent.

【0024】また、本発明において、高融点成分および
低融点成分の粘度は特に限定しないが、高融点成分の粘
度が低融点成分の粘度より低い方が好ましい。これは、
一般に熱可塑性樹脂の複合紡糸においては低粘度成分が
高粘度成分を被覆しようとする力が働くことに起因す
る。すなわち、本発明においては、生分解性能には劣る
ものの高結晶化度を有する高融点成分を低粘度にするこ
とにより、繊維表面における低融点成分セグメントの露
出比率を減少させ、紡出糸条の密着を防止し、さらに可
紡性、延伸性を良化させることができるのである。しか
し、あまりにも低粘度にすると、高融点成分が低融点成
分セグメントの大部分を被覆してしまう結果となるの
で、密着は良化できるものの生分解性能が劣ることとな
り、本発明の目的とするものではない。
In the present invention, the viscosities of the high melting point component and the low melting point component are not particularly limited, but the viscosity of the high melting point component is preferably lower than the viscosity of the low melting point component. this is,
Generally, in composite spinning of a thermoplastic resin, this is because a low-viscosity component acts to cover a high-viscosity component. That is, in the present invention, by lowering the viscosity of the high melting point component having a high degree of crystallinity, which is inferior in biodegradability, the exposure ratio of the low melting point component segment on the fiber surface is reduced, and the spun yarn is removed. Adhesion can be prevented and spinnability and stretchability can be improved. However, if the viscosity is too low, the high melting point component will cover most of the low melting point component segment, so that the adhesion can be improved but the biodegradation performance is inferior, and the object of the present invention. Not something.

【0025】従って、本発明で適用する重合体のメルト
フローレート値(以降、MFR値と記す)は、高融点成
分が20〜70g/10分であり、低融点成分が15〜
50g/10分であることが好ましい。但し、本発明に
おけるMFR値は、ASTM−D−1238(E)記載
の方法に準じて測定したものである。高融点成分のMF
R値が20g/10分未満および/または低融点成分の
MFR値が15g/10分未満であると、あまりにも高
粘度であるため、紡出糸条の細化がスムーズに行われず
操業性を損なう結果となり、しかも得られる繊維は太繊
度で均斉度に劣るものとなる。逆に、高融点成分のMF
R値が70g/10分および/または低融点成分のMF
R値が50g/10分を超えると、あまりにも低粘度で
あるため、複合断面が不安定となるばかりか、紡糸工程
において糸切れが発生し操業性を損なうとともに、得ら
れる不織布の機械的特性が劣る結果となる。これらの理
由により、高融点成分のMFR値は25〜65g/10
分、低融点成分のMFR値は18〜45g/10分であ
ることがさらに好ましい。
Therefore, the melt flow rate value (hereinafter referred to as the MFR value) of the polymer applied in the present invention is such that the high melting point component is 20 to 70 g / 10 minutes and the low melting point component is 15 to 70 g / 10 min.
It is preferably 50 g / 10 minutes. However, the MFR value in the present invention is measured according to the method described in ASTM-D-1238 (E). MF of high melting point component
When the R value is less than 20 g / 10 min and / or the MFR value of the low melting point component is less than 15 g / 10 min, the spun yarn is not smoothened smoothly because the viscosity is too high, resulting in poor operability. As a result, the resulting fibers have a large fineness and poor uniformity. Conversely, MF of high melting point component
MF with R value of 70 g / 10 min and / or low melting point component
If the R value exceeds 50 g / 10 minutes, the viscosity is so low that not only the composite cross section becomes unstable, but also yarn breakage occurs in the spinning process, impairing operability and mechanical properties of the obtained nonwoven fabric. Is inferior. For these reasons, the MFR value of the high melting point component is 25 to 65 g / 10
More preferably, the MFR value of the low melting point component is 18 to 45 g / 10 minutes.

【0026】本発明において適用される短繊維は、以下
の中実交互配列型複合断面あるいは中空交互配列型複合
断面を有するものでなければならない。ここで、中実交
互配列型複合断面とは、例えば図1に示すような、繊維
横断面において高融点成分1および低融点成分2が繊維
横断面の中心から周方向の一定範囲ずつを交互に占め、
かつ前記両成分1,2が繊維横断面においてそれぞれ均
等な面積を有するセグメントに分割されており、しかも
高融点成分1および低融点成分2が繊維軸方向に連続す
るとともに繊維表面に露出している断面をいう。また、
中空交互配列型複合断面とは、例えば図2に示すよう
な、繊維横断面において高融点成分1および低融点成分
2が繊維横断面の中心から周方向の一定範囲ずつを交互
に占め、かつ繊維横断面に中空部3を有し、かつ前記両
成分1,2が繊維横断面においてそれぞれ均等な面積を
有するセグメントに分割されており、しかも高融点成分
1および低融点成分2が繊維軸方向に連続するとともに
繊維表面ならびに中空部3に露出している断面をいう。
The short fibers applied in the present invention must have the following solid alternating array type composite section or hollow alternating array type composite section. Here, the solid alternating array type composite cross section means that, for example, as shown in FIG. 1, a high melting point component 1 and a low melting point component 2 alternate in a constant range in the circumferential direction from the center of the fiber cross section in the fiber cross section. Occupy the
Further, the two components 1 and 2 are divided into segments each having an equal area in the cross section of the fiber, and the high melting point component 1 and the low melting point component 2 are continuous in the fiber axis direction and are exposed on the fiber surface. A cross section. Also,
The hollow alternating array type composite cross section means, for example, as shown in FIG. 2, the high melting point component 1 and the low melting point component 2 alternately occupy a constant range in the circumferential direction from the center of the fiber cross section in the fiber cross section. The hollow component 3 is formed in the cross section, and the both components 1 and 2 are divided into segments each having an equal area in the cross section of the fiber, and the high melting point component 1 and the low melting point component 2 are arranged in the fiber axial direction. A cross section that is continuous and is exposed on the fiber surface and the hollow portion 3.

【0027】中実交互配列型複合断面においては、高融
点成分1と低融点成分2とが交互に配列されていること
により、例えば、低融点成分2が冷却性および可紡性、
延伸性に劣る重合体であっても、隣接する高融点成分1
により紡出糸条の冷却性および可紡性、延伸性を向上で
きるのである。また、高融点成分1が生分解性能に劣る
重合体であっても隣接する低融点成分2の生分解性能が
優れるため、経時的に低融点成分2が分解すると高融点
成分1が繊度が極細い楔状の薄片として取り残される状
態となり、不織布としての生分解性能には優れる結果と
なるのである。また、高融点成分1および低融点成分2
のいずれもが繊維軸方向に連続していることが、繊維横
断面の安定性、製糸性および繊維の機械的特性を高める
ために必要である。また、前記両成分のいずれもが繊維
表面に露出していることは、紡出糸条の冷却性および可
紡性、延伸性の向上および生分解性能の促進、制御のた
めに必要である。さらに、高融点成分1と低融点成分2
とがそれぞれ均等な面積を有するセグメントに分割され
ていることにより、紡出糸条の冷却性および可紡性、延
伸性に優れる高融点成分1および生分解性能に優れる低
融点成分2は繊維表面においてバランス良く配置される
ので、紡出糸条の冷却性および可紡性、延伸性と生分解
性とを偏りなく均一に付与することができる。
In the solid alternating arrangement type composite cross section, the high melting point component 1 and the low melting point component 2 are alternately arranged, so that, for example, the low melting point component 2 is coolable and spinnable,
Even if the polymer is poor in stretchability, the adjacent high melting point component 1
This makes it possible to improve the cooling property, spinnability and drawability of the spun yarn. Even if the high-melting point component 1 is a polymer having poor biodegradability, the adjacent low-melting point component 2 has excellent biodegradability. Therefore, when the low-melting point component 2 decomposes over time, the high-melting point component 1 has an extremely fineness. The thin wedge-shaped flakes are left behind, resulting in excellent biodegradability as a nonwoven fabric. In addition, high melting point component 1 and low melting point component 2
All of them are required to be continuous in the fiber axial direction in order to improve the stability of the fiber cross section, the spinnability, and the mechanical properties of the fiber. Further, it is necessary that both of the above components are exposed on the fiber surface in order to improve the cooling property and spinnability of the spun yarn, the stretchability, and the promotion and control of the biodegradability. Furthermore, high melting point component 1 and low melting point component 2
And are divided into segments each having an equal area, so that the high melting point component 1 excellent in cooling property, spinnability and stretchability of the spun yarn and the low melting point component 2 excellent in biodegradability are the fiber surface. In this case, since it is arranged in a well-balanced manner, it is possible to impart evenly the cooling property, spinnability, drawability and biodegradability of the spun yarn.

【0028】一方、中空交互配列型複合断面は、前述の
中実交互配列型複合断面に中空部3を設けたものであ
る。繊維横断面に中空部3を有することにより、紡出糸
条の冷却性をより向上させ、生分解速度をさらに促進さ
せることができる。すなわち、低融点成分2の分解が進
行すると中空部3が有るために高融点成分1が弧状の薄
片として取り残される状態となり生分解速度が促進され
るのである。また、前記両成分のいずれもが繊維表面の
みならず中空部3にも露出していることが、紡出糸条の
冷却性および可紡性、延伸性を向上させるため、および
生分解性能の促進、制御のために必要である。たとえば
低融点成分2が繊維横断面の中空部3まで貫通していな
い場合には、高融点成分1が弧状になるのに時間を要す
るため生分解性能に劣る結果となる。
On the other hand, the hollow alternating arrangement type composite cross section is obtained by providing the hollow portion 3 in the solid alternating arrangement type composite cross section. By having the hollow portion 3 in the cross section of the fiber, it is possible to further improve the cooling property of the spun yarn and further accelerate the biodegradation rate. That is, as the decomposition of the low-melting point component 2 proceeds, the high-melting point component 1 is left as an arc-shaped thin piece due to the presence of the hollow portion 3, and the biodegradation rate is accelerated. Further, the fact that both of the above components are exposed not only on the fiber surface but also in the hollow portion 3 improves the cooling properties, spinnability and stretchability of the spun yarn, and Necessary for promotion and control. For example, when the low melting point component 2 does not penetrate to the hollow portion 3 of the fiber cross section, it takes time for the high melting point component 1 to form an arc shape, resulting in poor biodegradability.

【0029】本発明において、中空交互型複合断面を有
する複合短繊維が適用される場合、中空率は5〜30%
であることが好ましい。ここで、中空率とは、図2に示
すように、繊維横断面における糸の直径を(A)、中空
部3の直径を(a)としたとき、次式で示される値であ
る。
In the present invention, when the composite staple fiber having a hollow alternating composite cross section is applied, the hollow ratio is 5 to 30%.
It is preferred that Here, as shown in FIG. 2, the hollow ratio is a value represented by the following equation, where (A) is the diameter of the yarn in the fiber cross section and (a) is the diameter of the hollow portion 3.

【0030】中空率(%)=(a2 /A2 )×100 中空率が5%未満であると、冷却性および生分解速度の
促進には不充分であり、逆に、中空率が30%を超える
と、製糸段階において中空部3がパンクしたり、製糸性
に劣ることとなり好ましくない。この理由により、中空
率は、さらに好ましくは18〜25%が良い。
Hollow ratio (%) = (a 2 / A 2 ) × 100 When the hollow ratio is less than 5%, it is insufficient to accelerate the cooling property and the biodegradation rate, and conversely, the hollow ratio is 30%. If it exceeds%, the hollow portion 3 will be punctured in the yarn making stage and the yarn formability will be poor, such being undesirable. For this reason, the hollow rate is more preferably 18 to 25%.

【0031】本発明に適用される複合短繊維は、高融点
成分/低融点成分の複合比が1/3〜3/1(重量%)
であることが好ましい。複合比がこの範囲を外れると紡
出糸条の冷却性および可紡性、延伸性と生分解性能とを
併せて満足することができず、さらに、繊維横断面形状
の不安定さを誘発するため好ましくない。例えば、高融
点成分/低融点成分の複合比が1/3を超えると、生分
解性能には優れるものの、紡出糸条の冷却性および可紡
性、延伸性には劣る結果となる。逆に、高融点成分/低
融点成分の複合比が3/1を超えると、紡出糸条の冷却
性および可紡性、延伸性には優れるものの、生分解性能
には劣る結果となる。さらに例えば、高融点成分が生分
解性能に劣る重合体であれば、低融点成分の複合比を上
げることにより生分解速度を促進させることができる。
この理由により、さらに好ましくは1/2〜2/1(重
量%)が良い。
The composite short fibers applied to the present invention have a composite ratio of high melting point component / low melting point component of 1/3 to 3/1 (% by weight).
It is preferred that If the composite ratio is out of this range, the spinnability, spinnability, stretchability and biodegradability of the spun yarn cannot be satisfied together, and further, instability of the fiber cross-sectional shape is induced. Therefore, it is not preferable. For example, when the composite ratio of the high melting point component / low melting point component exceeds 1/3, the biodegradability is excellent, but the cooling property, spinnability and stretchability of the spun yarn are poor. On the other hand, when the composite ratio of the high melting point component / low melting point component exceeds 3/1, the spun yarn has excellent cooling properties, spinnability and stretchability, but poor biodegradability. Further, for example, if the high melting point component is a polymer having poor biodegradability, the biodegradation rate can be promoted by increasing the composite ratio of the low melting point component.
For this reason, 1/2 to 2/1 (% by weight) is more preferable.

【0032】本発明に適用される複合短繊維の繊維横断
面においては、高融点成分、低融点成分の各セグメント
数が3〜20であることが好ましい。ここで、セグメン
ト数とは、繊維横断面において、高融点成分、低融点成
分それぞれが分割されて占める最小構成単位の存在数で
ある。各セグメント数が3未満であると、紡出糸条の冷
却性および可紡性、延伸性に劣るとともに生分解性能に
も劣る結果となる。逆に、各セグメント数が20を超え
ると、紡糸口金における開孔数が減少し生産性に劣ると
ともに、安定した複合断面が得られないこととなる。従
って、低融点成分が紡出糸条の冷却性および可紡性、延
伸性に劣る重合体であり、セグメント数が3未満であれ
ば、セグメントが大きすぎるため冷却性および可紡性、
延伸性を改良することは困難となる。また、高融点成分
が生分解性能に劣る重合体であれば、セグメント数を増
加させ高融点成分を細分化することにより、生分解速度
を促進させることができる。この理由により、各セグメ
ント数は、さらに好ましくは6〜16が良い。
In the fiber cross section of the composite staple fiber applied to the present invention, it is preferable that the number of each segment of the high melting point component and the low melting point component is 3 to 20. Here, the number of segments is the number of the minimum constitutional units that the high-melting point component and the low-melting point component occupy when divided in the cross section of the fiber. When the number of each segment is less than 3, the spun yarn is inferior in cooling property, spinnability and stretchability, and also in biodegradability. On the other hand, when the number of each segment exceeds 20, the number of openings in the spinneret decreases, the productivity deteriorates, and a stable composite cross section cannot be obtained. Therefore, if the low melting point component is a polymer having poor spinnability, spinnability and spinnability, and if the number of segments is less than 3, the segments are too large and thus the coolability and spinnability are
It is difficult to improve the stretchability. If the high melting point component is a polymer having poor biodegradability, the biodegradation rate can be accelerated by increasing the number of segments and subdividing the high melting point component. For this reason, the number of each segment is more preferably 6 to 16.

【0033】また、セグメント数とともに、高融点成分
と低融点成分とから構成される複合短繊維の単糸繊度が
1.5〜10デニールであることが好ましい。1.5デ
ニール未満であると、紡糸口金の複雑化、製糸工程にお
ける糸切れの増大、生産量の低下および繊維横断面形状
の不安定さなどを招くため好ましくない。逆に、10デ
ニールを超えると紡出糸条の冷却性に劣るとともに生分
解性能にも劣る結果となる。この理由により、さらに好
ましくは2〜8デニールが良い。
In addition to the number of segments, it is preferable that the single yarn fineness of the composite short fibers composed of the high melting point component and the low melting point component is 1.5 to 10 denier. When it is less than 1.5 denier, the spinneret becomes complicated, the number of yarn breakages in the spinning process increases, the production amount decreases, and the fiber cross-sectional shape becomes unstable. On the other hand, when it exceeds 10 denier, the spun yarn has poor cooling properties and biodegradability. For this reason, 2 to 8 denier is more preferable.

【0034】本発明に適用される複合短繊維において個
々に分割された高融点成分および低融点成分の各セグメ
ント繊度は、0.05〜1.0デニールであることが好
ましい。各セグメント繊度が、0.05デニール未満で
あると、生産量の低下および繊維横断面形状の不安定さ
を招き、逆に、1.0デニールを超えると、紡出糸条の
冷却性および可紡性、延伸性に劣るとともに生分解性能
にも劣る結果となるため、いずれも好ましくない。たと
えば、高融点成分が生分解性能に劣る重合体であれば、
セグメント繊度を極細化することにより、生分解速度を
促進させることができる。これらの理由により、さらに
好ましくは、各セグメント繊度は、0.1〜0.8デニ
ールが良い。
The segment fineness of each of the high melting point component and the low melting point component individually divided in the composite short fiber applied to the present invention is preferably 0.05 to 1.0 denier. If the segment fineness is less than 0.05 denier, the production amount will be reduced and the fiber cross-sectional shape will be unstable. On the contrary, if it exceeds 1.0 denier, the spinnability and the cooling property of the spun yarn will be improved. Both the spinnability and the stretchability are inferior and the biodegradability is also inferior, which is not preferable. For example, if the high melting point component is a polymer having poor biodegradability,
By making the segment fineness extremely fine, the rate of biodegradation can be accelerated. For these reasons, each segment fineness is more preferably 0.1 to 0.8 denier.

【0035】以上のように、本発明は、生分解性能を異
にする高融点成分および低融点成分で構成された中実交
互配列型複合短繊維あるいは中空交互配列型複合短繊維
からなる不織布であって、高融点成分および低融点成分
のセグメント数、各成分の複合比、単糸繊度などを組み
合わせることにより、要求する紡出糸条の冷却性および
可紡性、延伸性が得られ、さらに生分解性能を制御する
ことができるのである。
As described above, the present invention is a nonwoven fabric composed of solid alternating array type short staple fibers or hollow alternating array type short staple fibers composed of high melting point components and low melting point components having different biodegradability. Therefore, by combining the number of segments of the high-melting point component and low-melting point component, the composite ratio of each component, the single yarn fineness, etc., the required cooling property, spinnability and drawability of the spun yarn can be obtained. The biodegradability can be controlled.

【0036】次に、本発明の生分解性短繊維不織布の製
造方法について説明する。まず、通常の複合紡糸装置及
び延伸装置を用いて、本発明の生分解性を有する中実交
互型複合短繊維あるいは中空交互型複合短繊維を製造す
る。すなわち、前述の生分解性を有する高融点成分と低
融点成分とを溶融して個別計量し、これを前述の中実交
互型複合断面あるいは中空交互型複合断面となる紡糸口
金を介して紡出し、紡出糸条を通常の冷却装置を用いて
冷却する。次いで、引き取りロールにて未延伸糸として
捲き取り、この未延伸糸を周速の異なる延伸ロール間で
所定の延伸倍率で延伸を行う。ここで、延伸工程におけ
る延伸ロール個数および延伸温度は適宜選択すれば良
い。たとえば、太繊度を延伸する場合には、延伸ロール
個数を多くし、さらに熱延伸することも必要である。次
いで、得られた延伸糸をスタッファーボックスにて捲縮
を付与した後、所定長に切断して短繊維を得ることがで
きる。なお、上述したのは、二工程法であるが、一工程
法、即ち未延伸糸を一旦捲き取ることなく連続して延伸
するいわゆるスピンドロー法で短繊維を得ることもでき
る。
Next, a method for producing the biodegradable short fiber nonwoven fabric of the present invention will be described. First, the bio-degradable solid alternating-type composite staple fiber or hollow alternating-type composite staple fiber of the present invention is produced using an ordinary composite spinning apparatus and drawing apparatus. That is, the above-mentioned high-melting point component and low-melting point component having biodegradability are melted and individually weighed, and this is spun through a spinneret having the above-mentioned solid alternating composite cross section or hollow alternating composite cross section. , The spun yarn is cooled using a normal cooling device. Next, the undrawn yarn is wound up by a take-up roll, and the undrawn yarn is drawn at a predetermined draw ratio between drawing rolls having different peripheral speeds. Here, the number of stretching rolls and the stretching temperature in the stretching step may be appropriately selected. For example, in the case of stretching the fineness, it is also necessary to increase the number of stretching rolls and further perform hot stretching. Then, the obtained drawn yarn is crimped by a stuffer box and then cut into a predetermined length to obtain short fibers. Although the above-described method is a two-step method, short fibers can also be obtained by a one-step method, that is, a so-called spin draw method in which undrawn yarn is continuously drawn without being wound up.

【0037】また、本発明においては、前述のように、
用いる重合体の中に結晶核剤を添加することが好まし
い。これにより、溶融紡糸の際に紡出糸条の冷却性を向
上させることができるのである。結晶核剤の添加は重合
工程あるいは溶融工程で行うが、その際、得られる糸の
機械的性能および均斉度を向上させるため、できる限り
均一分散させておくことが好ましい。
Further, in the present invention, as described above,
It is preferable to add a nucleating agent to the polymer used. Thereby, the cooling property of the spun yarn during the melt spinning can be improved. The nucleating agent is added in the polymerization step or the melting step. In this case, it is preferable to disperse the yarn as uniformly as possible in order to improve the mechanical performance and uniformity of the obtained yarn.

【0038】次いで、得られた短繊維をカード機により
カーデイングして所定目付の短繊維ウエブを作成する。
このウエブは、構成繊維の配列度合いによって、カード
機の進行方向に配列したパラレルウエブ、パラレルウエ
ブがクロスレイドされたウエブ、ランダムに配列したラ
ンダムウエブあるいは両者の中程度に配列したセミラン
ダムウエブのいずれであっても良い。特に、衣料用途に
用いられるものには不織布としての強力において、縦/
横強力比が概ね1/1となるカードウエブを使用するこ
とが好ましい。
Next, the obtained short fibers are carded by a card machine to prepare a short fiber web having a predetermined weight.
Depending on the degree of arrangement of the constituent fibers, the web may be any one of a parallel web arranged in the traveling direction of the card machine, a web in which the parallel webs are cross-laid, a random web arranged randomly, or a semi-random web arranged in the middle of both. It may be. In particular, for those used for clothing, the strength of
It is preferable to use a card web having a lateral strength ratio of approximately 1/1.

【0039】そして、作成された短繊維ウエブに低融点
成分の融点以下の温度による部分的な熱圧接処理または
三次元的交絡処理を施すことによって、短繊維不織ウエ
ブに所定の形態を保持させ、本発明の生分解性短繊維不
織布を得ることができるのである。
Then, the produced short fiber web is subjected to a partial heat-pressing treatment or a three-dimensional entanglement treatment at a temperature equal to or lower than the melting point of the low-melting point component so that the short fiber non-woven web retains a predetermined shape. Thus, the biodegradable short fiber nonwoven fabric of the present invention can be obtained.

【0040】部分的な熱圧接処理により短繊維ウエブの
形態を保持させる場合、加熱されたエンボスロールと表
面が平滑な金属ロールとを用いて長繊維間に点状融着区
域を形成する方法、あるいは超音波融着装置を用いパタ
ーンロール上で超音波による高周波を印加してパターン
部の長繊維間に点状融着区域を形成する方法が採用され
る。ここで、部分的な熱圧接とは、構成繊維間におい
て、低融点成分同士が熱圧接されることでウエブの形態
を保持し、少なくとも高融点成分同士は融着されず構成
繊維同士の完全融着を防止し得るような熱圧接をいい、
このような部分的熱圧接とすることにより、所定の不織
布形態を保持しつつ生分解性能および柔軟性を発揮させ
ることができる。
When the shape of the short fiber web is retained by the partial hot press treatment, a method of forming a spot-like fused region between the long fibers by using a heated embossing roll and a metal roll having a smooth surface, Alternatively, a method of applying a high frequency wave of ultrasonic waves on a pattern roll using an ultrasonic fusing device to form spot-shaped fused areas between the long fibers of the pattern portion is adopted. Here, the partial heat-bonding means that, between the constituent fibers, the low-melting-point components are heat-bonded to each other to maintain the form of the web, and at least the high-melting-point components are not melt-bonded to each other to completely melt the constituent fibers. It means thermal pressure welding that can prevent wearing,
By such partial heat pressure contact, biodegradability and flexibility can be exhibited while maintaining a predetermined non-woven fabric form.

【0041】加熱されたエンボスロールを用いる場合、
ロールの表面温度すなわち加工温度は低融点成分の融点
以下の温度としなければならない。低融点成分の融点を
超えると、熱圧接装置に重合体が固着し操業性を著しく
損なうばかりか、不織布の風合いが硬くなり柔軟な不織
布が得られない。さらに好ましくは、加工温度は、低融
点成分の融点を(Tm)℃としたとき、(Tm−25)
℃〜(Tm)℃の範囲にあることが良い。
When using a heated embossing roll,
The surface temperature of the roll, that is, the processing temperature, must be lower than the melting point of the low melting point component. If the melting point of the low melting point component is exceeded, not only the polymer adheres to the heat-welding apparatus and the operability is remarkably impaired, but also the texture of the nonwoven fabric becomes hard and a flexible nonwoven fabric cannot be obtained. More preferably, the processing temperature is (Tm-25) when the melting point of the low melting point component is (Tm) ° C.
C. to (Tm) .degree. C.

【0042】超音波融着装置を用いる場合、周波数が約
20kHzの通常ホーンと呼称される超音波発振器と、
円周上に点状または帯状に凸状突起部を具備するパター
ンロールとからなる装置が採用される。前記超音波発振
器の下部に前記パターンロールが配設され、短繊維不織
ウエブを超音波発振器とパターンロールとの間に通すこ
とにより部分的に熱融着することができる。このパター
ンロールに配設される凸状突起部1列あるいは複数列で
あってもよく、また、その配設が複数列の場合には、並
列あるいは千鳥型のいずれの配列でも良い。
When using the ultrasonic fusing device, an ultrasonic oscillator having a frequency of about 20 kHz, which is usually called a horn,
An apparatus comprising a pattern roll having a point-like or band-like convex protrusion on the circumference is employed. The pattern roll is disposed below the ultrasonic oscillator, and the short fiber non-woven web can be partially heat-sealed by passing it between the ultrasonic oscillator and the pattern roll. There may be one row or a plurality of rows of convex protrusions arranged on this pattern roll, and when the arrangement is a plurality of rows, either parallel or staggered arrangement may be used.

【0043】なお、部分的な熱圧接処理は、連続工程あ
るいは別工程のいずれで行っても良い。また、熱圧接処
理については、前述の加熱されたエンボスロールあるい
は超音波融着装置のいずれを選択しても良いが、不織布
の使用用途に応じ、特に柔軟性が要求される医療・衛生
材料や拭き取り布などの一般生活関連材としては、超音
波融着装置を用いると、優れた性能を有する不織布を得
ることができる。
The partial heat-pressing treatment may be carried out either as a continuous process or as a separate process. Further, for the heat-pressing treatment, any of the above-described heated embossing roll or ultrasonic fusing device may be selected, but depending on the use application of the nonwoven fabric, a medical / hygiene material or the like which particularly requires flexibility is used. When an ultrasonic fusion device is used as a general living related material such as a wiping cloth, a nonwoven fabric having excellent performance can be obtained.

【0044】一方、本発明において短繊維ウエブを三次
元的交絡処理により不織布化する場合、加圧柱水流ある
いはニードルを用いた公知の方法を適用することができ
る。なお、三次元的交絡処理による場合加熱することが
ないため、より柔軟性に優れた不織布が得られることと
なる。
On the other hand, in the present invention, when the short fiber web is made into a nonwoven fabric by a three-dimensional entanglement treatment, a known method using a pressurized column water flow or a needle can be applied. In addition, in the case of the three-dimensional entanglement treatment, since heating is not performed, a nonwoven fabric having more excellent flexibility can be obtained.

【0045】[0045]

【実施例】次に、実施例に基づき本発明を具体的に説明
するが、本発明は、これらの実施例によって何ら限定さ
れるものではない。
Next, the present invention will be described in detail with reference to examples, but the present invention is not limited to these examples.

【0046】実施例において、各物性値の測定を次の方
法により実施した。
In the examples, each physical property value was measured by the following methods.

【0047】・メルトフローレート値(g/10分);
ASTM−D−1238(E)に記載の方法に準じて温
度190℃で測定した。(以降、MFR値と記す)
Melt flow rate value (g / 10 minutes);
The temperature was measured at 190 ° C. according to the method described in ASTM-D-1238 (E). (Hereinafter referred to as MFR value)

【0048】・融点(℃);パーキンエルマ社製示差走
査型熱量計DSC−2型を用い、試料重量を5mg、昇
温速度を20℃/分として測定して得た融解吸熱曲線の
極値を与える温度を融点(℃)とした。
Melting point (° C.); extremum value of melting endothermic curve obtained by measurement using a differential scanning calorimeter DSC-2 type manufactured by Perkin Elma Co., Ltd. with a sample weight of 5 mg and a heating rate of 20 ° C./min. Was given as the melting point (° C.).

【0049】・結晶化温度(℃);パーキンエルマ社製
示差走査型熱量計DSC−2型を用い、試料重量を5m
g、降温速度を20℃/分として測定して得た固化発熱
曲線の極値を与える温度を結晶化温度(℃)とした。
Crystallization temperature (° C); using a differential scanning calorimeter DSC-2 type manufactured by Perkin Elma Co., and a sample weight of 5 m
g, the crystallization temperature (° C.) was defined as the temperature at which the extreme value of the solidification heat generation curve obtained by measuring the temperature drop rate at 20 ° C./min.

【0050】・目付け(g/m2 );標準状態の試料か
ら試料長が10cm、試料幅が10cmの試料片10点
を作成し平衡水分にした後、各試料片の重量(g)を秤
量し、得られた値の平均値を単位面積当たりに換算し、
目付け(g/m2 )とした。
-Basis weight (g / m 2 ); 10 pieces of a sample having a sample length of 10 cm and a sample width of 10 cm were prepared from the standard state sample to make equilibrium moisture, and then the weight (g) of each sample piece was weighed. Then, convert the average value of the obtained values per unit area,
The basis weight (g / m 2 ) was used.

【0051】・中空率(%);日本光学社製光学顕微鏡
を用い、糸横断面写真を撮影し、図2に示す如く、糸の
直径(A)および中空部3の直径(a)を求め、次式よ
り中空率を求めた。
Hollow ratio (%): Using an optical microscope manufactured by Nippon Kogaku Co., Ltd., a photograph of the cross section of the yarn is taken, and the diameter (A) of the yarn and the diameter (a) of the hollow portion 3 are obtained as shown in FIG. The hollow ratio was calculated from the following equation.

【0052】中空率(%)=(a2 /A2 )×100Hollow ratio (%) = (a 2 / A 2 ) × 100

【0053】・冷却性;紡出糸条を目視して下記の4段
階にて評価した。 ◎;密着糸が認められない。 ○;密着糸がわずかではあるが認められる。 △;密着糸があり、繊維が一部集束している。 ×;大部分が密着している。
Cooling property: The spun yarn was visually observed and evaluated in the following four stages. A: No cohesive yarn is observed. ;: A slight amount of cohesive yarn was observed. Δ: There are adherent threads, and some of the fibers are bundled. X: Most of them are in close contact.

【0054】・可紡性; ○;糸切れが発生せず、紡糸操業性が良好である。 ×;糸切れが多発し、紡糸操業性が不良である。Spinnability; ◯: No yarn breakage occurs, and spinning operability is good. X: Thread breakage occurs frequently and spinning operability is poor.

【0055】・延伸性; ○;延伸毛羽が発生せず、延伸操業性が良好である。 ×;延伸毛羽が多発し、延伸が不可能である。Stretchability: Good: Stretching fluff is not generated and stretching operability is good. X: Stretching fuzz occurs frequently and stretching is impossible.

【0056】・強力(kg/2.5cm幅);JIS−
L−1096Aに記載の方法に準じて測定した。すなわ
ち、試料長が10cm、試料幅が2.5cmの試料片1
0点を作成し、試料片毎に不織布の縦方向について、定
速伸張型引張り試験機(東洋ボールドウイン社製テンシ
ロンUTM−4−1−100)を用いて、引張り速度1
0cm/分で伸張し、得られた切断時荷重値の平均値を
強力(kg/2.5cm幅)とした。
Strong (kg / 2.5 cm width); JIS-
It was measured according to the method described in L-1096A. That is, a sample piece 1 having a sample length of 10 cm and a sample width of 2.5 cm
A zero point was created, and a tensile speed of 1 was set for each sample piece in the longitudinal direction of the nonwoven fabric using a constant-speed extension-type tensile tester (Tensilon UTM-4-1-100 manufactured by Toyo Baldwin Co., Ltd.).
It was stretched at 0 cm / min, and the average value of the load values at cutting obtained was taken as the strength (kg / 2.5 cm width).

【0057】・圧縮剛軟度(g);試料長が10cm、
試料幅が5cmの試料片5点を作成し、各試料片毎に横
方向に曲げて円筒状物とし、各々その端部を接合したも
のを圧縮剛軟度測定試料とした。次いで、各測定試料毎
にその軸方向について、定速伸長型引長試験機(東洋ボ
ールドウイン社製テンシロンUTM−4−1−100)
を用い、圧縮速度5cm/分で圧縮し、得られた最大荷
重値(g)の平均値を圧縮剛軟度(g)とした。なお、
この圧縮剛軟度とは、値が小さいほど柔軟性が優れるこ
とを意味するものである。
Compression stiffness (g); sample length 10 cm,
Five sample pieces each having a sample width of 5 cm were prepared, and each sample piece was bent in the lateral direction to form a cylindrical object, and the end portions thereof were joined together to obtain a sample for measuring compression stiffness. Next, a constant velocity extension type pulling length tester (Tensilon UTM-4-1-100 manufactured by Toyo Baldwin Co., Ltd.) is used for each measurement sample in the axial direction.
And compression was performed at a compression speed of 5 cm / min, and the average value of the obtained maximum load values (g) was defined as the compression stiffness (g). In addition,
This compression stiffness means that the smaller the value, the better the flexibility.

【0058】・生分解性能;不織布を土中に埋設し、6
ヶ月後に取り出し、不織布がその形態を保持していない
場合、あるいは、その形態を保持していても強力が埋設
前の強力初期値に対して50%以下に低下している場
合、生分解性能が良好(;○)であるとし、強力が埋設
前の強力初期値に対して50%を超える場合、生分解性
能が不良(;×)であると評価した。
Biodegradability: 6 is obtained by embedding a non-woven fabric in soil.
If the nonwoven fabric does not retain its shape after a month, or if the strength is reduced to 50% or less of the initial strength value before embedding even if it retains its shape, the biodegradation performance is The biodegradability was evaluated as poor (; x) if the strength was more than 50% of the initial strength before embedding.

【0059】実施例1 高融点成分成分として、MFR値が40g/10分で融
点114℃、結晶化温度75℃のポリブチレンサクシネ
ートを、低融点成分成分として、MFR値が30g/1
0分で融点99℃、結晶化温度49℃のブチレンサクシ
ネート/エチレンサクシネート=85/15モル%の共
重合体を用いて、中実交互配列型複合短繊維よりなる短
繊維不織布を製造した。すなわち、前記高融点成分と低
融点成分とを個別のエクストルーダ型溶融押出し機を用
いて、温度180℃で溶融し、繊維横断面が図1(セグ
メント数合計12)の中実交互配列型複合断面となる2
10孔を有する紡糸口金を用い、単孔吐出量が1.25
g/分、複合比が高融点成分/低融点成分=1/1(重
量比)の条件下にて溶融紡出した。この紡出糸条を冷却
装置にて冷却した後で油剤を付与し、速度が1000m
/分の引き取りロールを介して未延伸糸を得た。得られ
た未延伸糸糸条を数十本引き揃え、公知の延伸機にて延
伸倍率3.9倍にて延伸し、次いで、スタッファーボッ
クスにて15個/インチの捲縮を付与した後、51mm
に切断し、銘柄3d×51mm(高融点成分セグメント
=0.25d、低融点成分セグメント=0.25d)の
短繊維を得た。
Example 1 Polybutylene succinate having a MFR value of 40 g / 10 minutes and a melting point of 114 ° C. and a crystallization temperature of 75 ° C. was used as a high melting point component component, and an MFR value of 30 g / 1 was used as a low melting point component component.
Using a copolymer of butylene succinate / ethylene succinate = 85/15 mol% with a melting point of 99 ° C. and a crystallization temperature of 49 ° C. in 0 minutes, a short fiber non-woven fabric composed of solid alternating array type short fibers was produced. . That is, the high melting point component and the low melting point component are melted at a temperature of 180 ° C. using separate extruder type melt extruders, and the fiber cross section is a solid alternating array type composite cross section shown in FIG. 1 (total number of segments is 12). 2
Using a spinneret with 10 holes, the single hole discharge rate is 1.25
Melt spinning was performed under the conditions of g / min and a composite ratio of high melting point component / low melting point component = 1/1 (weight ratio). After the spun yarn is cooled by a cooling device, an oil agent is applied, and the speed is 1000 m.
An undrawn yarn was obtained through a take-up roll of 1 / min. After tens of the obtained undrawn yarn filaments are aligned and drawn at a draw ratio of 3.9 with a known drawing machine, and then with a stuffer box, crimps of 15 pieces / inch are applied, 51 mm
To obtain short fibers of brand 3d × 51 mm (high melting point component segment = 0.25d, low melting point component segment = 0.25d).

【0060】次いで、この短繊維をパラレルカード機に
供給してカードウエブを作成した。得られた短繊維ウエ
ブをエンボスロールからなる熱圧接装置にて熱圧接して
目付けが50g/m2 の生分解性短繊維不織布を得た。
熱圧接条件としては、面積が0.6mm2 の彫刻模様で
圧接点密度が20点/cm2 、圧接面積率が15%で配
設されたエンボスロールと表面が平滑な金属ロールとを
用い、加工温度を90℃とした。操業性および不織布物
性、生分解性能を表1に示す。
Then, the short fibers were supplied to a parallel card machine to prepare a card web. The obtained short fiber web was hot-pressed with a hot-pressing device consisting of an embossing roll to obtain a biodegradable short-fiber nonwoven fabric having a basis weight of 50 g / m 2 .
As the heat press contacting condition, an embossing roll having an engraving pattern having an area of 0.6 mm 2 and a press contact density of 20 points / cm 2 and a press contact area ratio of 15% and a metal roll having a smooth surface are used. The processing temperature was 90 ° C. Table 1 shows the operability, the physical properties of the nonwoven fabric, and the biodegradability.

【0061】実施例2 低融点成分として、MFR値が30g/10分で融点9
2℃、結晶化温度16℃のブチレンサクシネート/エチ
レンサクシネート=70/30モル%の共重合体を用
い、エンボスロールの加工温度を85℃としたこと以外
は実施例1と同様にして、中実交互配列型複合短繊維よ
りなる短繊維不織布を製造した。操業性および不織布物
性、生分解性能を表1に示す。
Example 2 As a low melting point component, an MFR value of 30 g / 10 min and a melting point of 9
In the same manner as in Example 1 except that a butylene succinate / ethylene succinate = 70/30 mol% copolymer having a crystallization temperature of 2 ° C. and a crystallization temperature of 16 ° C. was used and the processing temperature of the embossing roll was 85 ° C., A short fiber non-woven fabric composed of solid alternating array type composite short fibers was manufactured. Table 1 shows the operability, the physical properties of the nonwoven fabric, and the biodegradability.

【0062】実施例3 低融点成分として、MFR値が30g/10分で融点1
08℃、結晶化温度59℃のブチレンサクシネート/エ
チレンサクシネート=90/10モル%の共重合体を用
い、エンボスロールの加工温度を100℃としたこと以
外は実施例1と同様にして、中実交互配列型複合短繊維
よりなる短繊維不織布を製造した。操業性および不織布
物性、生分解性能を表1に示す。
Example 3 As a low melting point component, an MFR value of 30 g / 10 min and a melting point of 1
The same procedure as in Example 1 was repeated except that a copolymer of butylene succinate / ethylene succinate = 90/10 mol% at a temperature of 08 ° C. and a crystallization temperature of 59 ° C. was used and the processing temperature of the embossing roll was 100 ° C. A short fiber non-woven fabric composed of solid alternating array type composite short fibers was manufactured. Table 1 shows the operability, the physical properties of the nonwoven fabric, and the biodegradability.

【0063】実施例4 低融点成分成分として、MFR値が30g/10分で融
点108℃、結晶化温度41℃のブチレンサクシネート
/ブチレンアジペート=85/15モル%の共重合体を
用い、エンボスロールの加工温度を100℃としたこと
以外は実施例1と同様にして、中実交互配列型複合短繊
維よりなる短繊維不織布を製造した。操業性および不織
布物性、生分解性能を表1に示す。
Example 4 As a low melting point component, a copolymer of butylene succinate / butylene adipate = 85/15 mol% with an MFR value of 30 g / 10 min, a melting point of 108 ° C. and a crystallization temperature of 41 ° C. was used. In the same manner as in Example 1 except that the roll processing temperature was 100 ° C., a short fiber non-woven fabric composed of solid alternating array type composite short fibers was produced. Table 1 shows the operability, the physical properties of the nonwoven fabric, and the biodegradability.

【0064】実施例5 高融点成分および低融点成分に結晶核剤を添加したこと
以外は実施例1と同様にして、中実交互配列型複合短繊
維よりなる短繊維不織布を製造した。すなわち、結晶核
剤として、平均粒径が1.0μmのタルク/酸化チタン
=1/1(重量比)を20重量%含有させたマスターバ
ッチを高融点成分重合体および低融点成分重合体ベース
であらかじめ作成し、このマスターバッチとそれに対応
する重合体とをそれぞれブレンドして、高融点成分に添
加する結晶核剤が0.2重量%、低融点成分に添加する
結晶核剤が1.0重量%となるようにして原料とした。
操業性および不織布物性、生分解性能を表1に示す。
Example 5 A short fiber non-woven fabric made of solid alternate array type composite short fibers was produced in the same manner as in Example 1 except that a crystal nucleating agent was added to the high melting point component and the low melting point component. That is, a masterbatch containing 20% by weight of talc / titanium oxide = 1/1 (weight ratio) having an average particle size of 1.0 μm as a crystal nucleating agent is used as a high melting point component polymer and low melting point component polymer base. Prepared in advance and blending each of the masterbatch and the polymer corresponding thereto, 0.2% by weight of the crystal nucleating agent added to the high melting point component and 1.0% by weight of the crystal nucleating agent added to the low melting point component. % Was used as the raw material.
Table 1 shows the operability, the physical properties of the nonwoven fabric, and the biodegradability.

【0065】実施例6 高融点成分と低融点成分との複合比を高融点成分/低融
点成分=1/3(重量比)としたこと以外は実施例1と
同様にして、中実交互配列型複合短繊維よりなる短繊維
不織布を製造した。操業性および不織布物性、生分解性
能を表1に示す。
Example 6 Solid alternating array was carried out in the same manner as in Example 1 except that the composite ratio of the high melting point component and the low melting point component was high melting point component / low melting point component = 1/3 (weight ratio). A short fiber non-woven fabric composed of type composite short fibers was produced. Table 1 shows the operability, the physical properties of the nonwoven fabric, and the biodegradability.

【0066】実施例7 高融点成分と低融点成分との複合比を高融点成分/低融
点成分=3/1(重量比)としたこと以外は実施例1と
同様にして、中実交互配列型複合短繊維よりなる短繊維
不織布を製造した。操業性および不織布物性、生分解性
能を表1に示す。
Example 7 A solid alternating array was prepared in the same manner as in Example 1 except that the composite ratio of the high melting point component and the low melting point component was high melting point component / low melting point component = 3/1 (weight ratio). A short fiber non-woven fabric composed of type composite short fibers was produced. Table 1 shows the operability, the physical properties of the nonwoven fabric, and the biodegradability.

【0067】実施例8 短繊維の繊維横断面における高融点成分および低融点成
分のセグメント数の合計数が3である中実交互配列型複
合断面となる紡糸口金を用いたこと以外は実施例1と同
様にして短繊維不織布を得た。すなわち、実施例1と同
一の高融点成分および低融点成分を温度180℃で溶融
し、高融点成分および低融点成分の各セグメント数が3
である中実交互配列型複合断面となる紡糸口金を用い、
単孔吐出量が1.25g/分、複合比が高融点成分/低
融点成分=1/1(重量比)の条件下にて溶融紡出し
た。この紡出糸条を冷却装置にて冷却した後で油剤を付
与し、速度が1000m/分の引き取りロールを介して
未延伸糸を得た。得られた未延伸糸糸条を複数本引き揃
え、公知の延伸機にて延伸倍率3.9倍にて延伸し、次
いで、スタッファーボックスにて15個/インチの捲縮
を付与した後、51mmに切断し、銘柄3d×51mm
(高融点成分セグメント=0.5d、低融点成分セグメ
ント=0.5d)の短繊維を得た。この短繊維を実施例
1と同様にしてカードウエブとなし、熱圧接装置にて熱
圧接して目付けが50g/m2 の生分解性短繊維不織布
を得た。操業性および不織布物性、生分解性能を表1に
示す。
Example 8 Example 1 except that a spinneret having a solid alternating array type composite cross section in which the total number of segments of the high melting point component and the low melting point component in the transverse cross section of the short fiber was 3 was used. A short fiber non-woven fabric was obtained in the same manner as. That is, the same high-melting point component and low-melting point component as in Example 1 were melted at a temperature of 180 ° C., and the number of each segment of the high-melting point component and the low-melting point component was 3
Using a spinneret with a solid alternating array type composite cross section,
Melt spinning was performed under the conditions that the single hole discharge rate was 1.25 g / min and the composite ratio was a high melting point component / low melting point component = 1/1 (weight ratio). After cooling this spun yarn with a cooling device, an oil agent was applied, and an undrawn yarn was obtained through a take-up roll having a speed of 1000 m / min. A plurality of the obtained undrawn yarn threads are aligned and drawn with a known drawing machine at a draw ratio of 3.9 times, and then with a stuffer box, crimping 15 pieces / inch, and then 51 mm. Cut into pieces, brand 3d x 51mm
Short fibers of (high melting point component segment = 0.5d, low melting point component segment = 0.5d) were obtained. This short fiber was formed into a card web in the same manner as in Example 1 and subjected to heat pressure contact with a heat pressure contact device to obtain a biodegradable short fiber nonwoven fabric having a basis weight of 50 g / m 2 . Table 1 shows the operability, the physical properties of the nonwoven fabric, and the biodegradability.

【0068】実施例9 短繊維の繊維横断面における高融点成分および低融点成
分の各セグメント数が20である中実交互配列型複合断
面となる紡糸口金を用いたこと以外は実施例1と同様に
して短繊維不織布を得た。すなわち、実施例1と同一の
高融点成分および低融点成分を温度180℃で溶融し、
高融点成分および低融点成分のセグメント数の合計数が
20である中実交互配列型複合断面となる紡糸口金を用
い、単孔吐出量が1.25g/分、複合比が高融点成分
/低融点成分=1/1(重量比)の条件下にて溶融紡出
した。この紡出糸条を冷却装置にて冷却した後で油剤を
付与し、速度が1000m/分の引き取りロールを介し
て未延伸糸を得た。得られた未延伸糸糸条を複数本引き
揃え、公知の延伸機にて延伸倍率3.9倍にて延伸し、
次いで、スタッファーボックスにて15個/インチの捲
縮を付与した後、51mmに切断し、銘柄3d×51m
m(高融点成分セグメント=0.075d、低融点成分
セグメント=0.075d)の短繊維を得た。この短繊
維を実施例1と同様にしてカードウエブとなし、熱圧接
装置にて熱圧接して目付けが50g/m2 の生分解性短
繊維不織布を得た。操業性および不織布物性、生分解性
能を表1に示す。
Example 9 Same as Example 1 except that a spinneret having a solid alternating array type composite cross section in which the number of segments of each of the high melting point component and the low melting point component in the fiber cross section of the short fiber was 20 was used. A short fiber non-woven fabric was obtained. That is, the same high melting point component and low melting point component as in Example 1 were melted at a temperature of 180 ° C.,
Using a spinneret having a solid alternating array type composite cross section in which the total number of segments of the high melting point component and the low melting point component is 20, the single hole discharge rate is 1.25 g / min, and the complex ratio is the high melting point component / low. Melt spinning was performed under the condition of melting point component = 1/1 (weight ratio). After cooling this spun yarn with a cooling device, an oil agent was applied, and an undrawn yarn was obtained through a take-up roll having a speed of 1000 m / min. A plurality of the obtained undrawn yarn yarns are aligned and drawn by a known drawing machine at a draw ratio of 3.9 times,
Next, after crimping 15 crimps / inch with a stuffer box, cut into 51 mm, brand 3d x 51 m
m (high melting point component segment = 0.075d, low melting point component segment = 0.075d) was obtained. This short fiber was formed into a card web in the same manner as in Example 1 and subjected to heat pressure contact with a heat pressure contact device to obtain a biodegradable short fiber nonwoven fabric having a basis weight of 50 g / m 2 . Table 1 shows the operability, the physical properties of the nonwoven fabric, and the biodegradability.

【0069】実施例10 中空交互配列型複合短繊維よりなる短繊維不織布を製造
した。すなわち、実施例1と同一の高融点成分と低融点
成分とを個別のエクストルーダ型溶融押出し機を用い
て、温度180℃で溶融し、繊維横断面が図2(セグメ
ント数合計12)の中空交互配列型複合断面となる紡糸
口金を用い、単孔吐出量が1.05g/分、複合比が高
融点成分/低融点成分=1/1(重量比)の条件下にて
溶融紡出した。この紡出糸条を冷却装置にて冷却した後
で油剤を付与し、速度が800m/分の引き取りロール
を介して未延伸糸を得た。得られた未延伸糸糸条を数十
本引き揃え、公知の延伸機にて延伸倍率4.1倍にて延
伸し、次いで、スタッファーボックスにて15個/イン
チの捲縮を付与した後、51mmに切断し、銘柄3d×
51mm(高融点成分セグメント=0.25d、低融点
成分セグメント=0.25d)、中空率16%の短繊維
を得た。この短繊維を実施例1と同様にしてカードウエ
ブとなし、熱圧接装置にて熱圧接して目付けが50g/
2 の生分解性短繊維不織布を得た。操業性および不織
布物性、生分解性能を表2に示す。
Example 10 A short fiber non-woven fabric composed of hollow alternating array type composite short fibers was produced. That is, the same high-melting-point component and low-melting-point component as in Example 1 were melted at a temperature of 180 ° C. using separate extruder-type melt extruders, and the fiber cross-section was hollow hollow in FIG. 2 (total number of segments: 12). Using a spinneret having an array-type composite cross section, melt spinning was performed under the conditions of a single hole discharge rate of 1.05 g / min and a composite ratio of high melting point component / low melting point component = 1/1 (weight ratio). After the spun yarn was cooled by a cooling device, an oil agent was applied, and an undrawn yarn was obtained through a take-up roll having a speed of 800 m / min. After tens of dozens of the obtained undrawn yarn filaments are aligned and drawn at a draw ratio of 4.1 by a known drawing machine, and then 15 crimps / inch are provided by a stuffer box, Cut to 51 mm, brand 3d x
51 mm (high melting point component segment = 0.25 d, low melting point component segment = 0.25 d) and a hollow fiber having a hollow ratio of 16% were obtained. This short fiber was formed into a card web in the same manner as in Example 1, and was heat-pressed by a heat-pressing device to have a basis weight of 50 g /
A biodegradable short fiber nonwoven fabric of m 2 was obtained. Table 2 shows the operability, the physical properties of the nonwoven fabric, and the biodegradability.

【0070】実施例11 中空率が3%となるようにしたこと以外は実施例10と
同様にして中空交互配列型複合短繊維よりなる短繊維不
織布を製造した。すなわち、実施例1と同一の高融点成
分と低融点成分とを個別のエクストルーダ型溶融押出し
機を用いて、温度180℃で溶融し、繊維横断面が図2
(セグメント数合計12)の中空交互配列型複合断面と
なる紡糸口金を用い、単孔吐出量が2.16g/分、複
合比が高融点成分/低融点成分=1/1(重量比)の条
件下にて溶融紡出した。この紡出糸条を冷却装置にて冷
却した後で油剤を付与し、速度が800m/分の引き取
りロールを介して未延伸糸を得た。得られた未延伸糸糸
条を数十本引き揃え、公知の延伸機にて延伸倍率4.2
倍にて延伸し、次いで、スタッファーボックスにて15
個/インチの捲縮を付与した後、51mmに切断し、銘
柄6d×51mm(高融点成分セグメント=0.5d、
低融点成分セグメント=0.5d)、中空率3%の短繊
維を得た。この短繊維を実施例1と同様にしてカードウ
エブとなし、熱圧接装置にて熱圧接して目付けが50g
/m2 の生分解性短繊維不織布を得た。操業性および不
織布物性、生分解性能を表2に示す。
Example 11 A short fiber non-woven fabric made of hollow alternating array type composite short fibers was produced in the same manner as in Example 10 except that the hollow ratio was set to 3%. That is, the same high-melting point component and low-melting point component as in Example 1 were melted at a temperature of 180 ° C. using individual extruder-type melt extruders, and the fiber cross section was as shown in FIG.
Using a spinneret having a hollow alternating array type composite cross section (total of 12 segments), the single hole discharge rate is 2.16 g / min, and the composite ratio is high melting point component / low melting point component = 1/1 (weight ratio). Melt-spun under the conditions. After the spun yarn was cooled by a cooling device, an oil agent was applied, and an undrawn yarn was obtained through a take-up roll having a speed of 800 m / min. Dozens of the obtained undrawn yarns are drawn and aligned, and a draw ratio of 4.2 by a known drawing machine.
Stretched in double, then in a stuffer box 15
After giving crimps of pieces / inch, it is cut into 51 mm, and the brand is 6 d × 51 mm (high melting point component segment = 0.5 d,
A low-melting-point component segment = 0.5d) and a hollow fiber having a hollow ratio of 3% were obtained. This short fiber was formed into a card web in the same manner as in Example 1, and was heat-pressed by a heat-pressing device to have a basis weight of 50 g.
A biodegradable short fiber non-woven fabric of / m 2 was obtained. Table 2 shows the operability, the physical properties of the nonwoven fabric, and the biodegradability.

【0071】実施例12 中空率が50%となるようにしたこと以外は実施例10
と同様にして中空交互配列型複合短繊維よりなる短繊維
不織布を製造した。すなわち、実施例1と同一の高融点
成分と低融点成分とを個別のエクストルーダ型溶融押出
し機を用いて、温度160℃で溶融し、繊維横断面が図
2(セグメント数合計12)の中空交互配列型複合断面
となる紡糸口金を用い、単孔吐出量が0.62g/分、
複合比が高融点成分/低融点成分=1/1(重量比)の
条件下にて溶融紡出した。この紡出糸条を冷却装置にて
冷却した後で油剤を付与し、速度が800m/分の引き
取りロールを介して未延伸糸を得た。得られた未延伸糸
糸条を複数本引き揃え、公知の延伸機にて延伸倍率3.
6倍にて延伸し、次いで、スタッファーボックスにて1
5個/インチの捲縮を付与した後、51mmに切断し、
銘柄2d×51mm(高融点成分セグメント=0.17
d、低融点成分セグメント=0.17d)、中空率50
%の短繊維を得た。この短繊維を実施例1と同様にして
カードウエブとなし、熱圧接装置にて熱圧接して目付け
が50g/m2 の生分解性短繊維不織布を得た。操業性
および不織布物性、生分解性能を表2に示す。
Example 12 Example 10 was repeated except that the hollow ratio was 50%.
In the same manner as described above, a short fiber non-woven fabric composed of hollow alternating array type composite short fibers was produced. That is, the same high-melting-point component and low-melting-point component as in Example 1 were melted at a temperature of 160 ° C. using separate extruder-type melt extruders, and the fiber cross-section was hollow alternating in FIG. 2 (total number of segments: 12). Using a spinneret with an array-type composite cross section, a single hole discharge rate of 0.62 g / min.
Melt spinning was performed under the condition that the composite ratio was high melting point component / low melting point component = 1/1 (weight ratio). After the spun yarn was cooled by a cooling device, an oil agent was applied, and an undrawn yarn was obtained through a take-up roll having a speed of 800 m / min. 2. Draw a plurality of the obtained undrawn yarn filaments and draw with a known drawing machine.
Stretched 6 times, then 1 in a stuffer box
After applying 5 crimps / inch, cut into 51 mm,
Brand 2d x 51mm (high melting point component segment = 0.17
d, low melting point component segment = 0.17d), hollow ratio 50
% Short fiber was obtained. This short fiber was formed into a card web in the same manner as in Example 1 and subjected to heat pressure contact with a heat pressure contact device to obtain a biodegradable short fiber nonwoven fabric having a basis weight of 50 g / m 2 . Table 2 shows the operability, the physical properties of the nonwoven fabric, and the biodegradability.

【0072】実施例13 延伸工程を一段延伸としたこと以外は実施例1と同様に
して、多葉型複合短繊維よりなる短繊維不織布を製造し
た。すなわち、実施例1と同一の高融点成分および低融
点成分を用い、同様の条件にて溶融紡出した。この紡出
糸条を冷却装置にて冷却した後で油剤を付与し、速度が
500m/分のロールと速度が2250m/分の延伸ロ
ール間で、延伸倍率4.5倍にて延伸を行い延伸糸を得
た。この延伸糸糸条を数十本引き揃え、スタッファーボ
ックスにて15個/インチの捲縮を付与した後、51m
mに切断し、銘柄3d×51mm(高融点成分セグメン
ト=0.25d、低融点成分セグメント=0.25d)
の短繊維を得た。そして、この短繊維を実施例1と同様
にして短繊維不織布とした。操業性および不織布物性、
生分解性能を表2に示す。
Example 13 A short fiber non-woven fabric made of multileaf type composite short fibers was produced in the same manner as in Example 1 except that the drawing step was a single drawing step. That is, the same high melting point component and low melting point component as in Example 1 were used, and melt spinning was performed under the same conditions. After the spun yarn is cooled by a cooling device, an oil agent is applied, and stretching is performed at a draw ratio of 4.5 times between a roll having a speed of 500 m / min and a stretching roll having a speed of 2250 m / min. I got a thread. After drawing dozens of these drawn yarns and applying 15 crimps / inch with a stuffer box, 51m
Cut to m, brand 3d x 51mm (high melting point component segment = 0.25d, low melting point component segment = 0.25d)
Was obtained. Then, this short fiber was made into a short fiber non-woven fabric in the same manner as in Example 1. Operability and non-woven physical properties,
The biodegradability is shown in Table 2.

【0073】実施例14 実施例1と同様にして得た短繊維カードウエブを、超音
波融着装置にて部分的に熱圧接して目付けが50g/m
2 の生分解性短繊維不織布を得た。超音波融着条件とし
ては、面積が0.74mm2 の彫刻模様で圧接点密度が
25点/cm2、圧接面積率18.4%で配設されたロ
ールを用い、周波数を19.7kHzとした。操業性お
よび不織布物性、生分解性能を表2に示す。
Example 14 A short fiber card web obtained in the same manner as in Example 1 was partially heat-pressed with an ultrasonic fusing device to give a basis weight of 50 g / m 2.
2 biodegradable short fiber non-woven fabric was obtained. As the ultrasonic welding condition, a roll having an engraving pattern of 0.74 mm 2 and a pressure contact density of 25 points / cm 2 and a pressure contact area ratio of 18.4% was used, and the frequency was set to 19.7 kHz. did. Table 2 shows the operability, the physical properties of the nonwoven fabric, and the biodegradability.

【0074】実施例15 実施例1と同様にして得た短繊維カードウエブに三次元
的交絡処理を施して目付けが45g/m2 の生分解性短
繊維不織布を得た。すなわち、得られた短繊維ウエブを
移動速度20m/分で移動する70メッシュの金網上に
載置して加圧液体流処理を施した。加圧液体流処理は、
孔径0.12mmの噴射孔が孔間隔0.6mmで一列に
配された加圧液体流処理装置を用い、短繊維ウエブの上
方50mmの位置から2段階に分けて柱状水流を作用さ
せた。第一段階の処理では、圧力を30kg/cm2
とし、第二段階の処理では圧力を70kg/cm2 Gと
した。なお、第二段階の処理は、まずウエブの表側から
4回施した後にウエブを反転し、裏側から4回施した。
次いで、得られた不織布からマングルロールを用いて過
剰水分を除去した後、熱風乾燥機を用いて温度60℃の
条件で乾燥を行い、繊維が緻密に三次元交絡した目付け
が45g/m2 の生分解性短繊維不織布を得た。操業性
および不織布物性、生分解性能を表2に示す。
Example 15 A short fiber card web obtained in the same manner as in Example 1 was subjected to a three-dimensional entanglement treatment to obtain a biodegradable short fiber nonwoven fabric having a basis weight of 45 g / m 2 . That is, the obtained short fiber web was placed on a 70-mesh wire net moving at a moving speed of 20 m / min and subjected to a pressurized liquid flow treatment. Pressurized liquid flow treatment is
Using a pressurized liquid flow treatment device in which injection holes having a hole diameter of 0.12 mm were arranged in a row with a hole interval of 0.6 mm, a columnar water flow was made to act in two stages from a position 50 mm above the short fiber web. In the first stage treatment, the pressure is 30 kg / cm 2 G
In the second stage treatment, the pressure was 70 kg / cm 2 G. In the second-stage treatment, the web was first applied four times from the front side, then the web was turned over, and then applied from the back side four times.
Then, after removing excess water from the obtained non-woven fabric using a mangle roll, it was dried at a temperature of 60 ° C. using a hot air drier, and the fibers were densely three-dimensionally entangled and the basis weight was 45 g / m 2 . A biodegradable short fiber nonwoven fabric was obtained. Table 2 shows the operability, the physical properties of the nonwoven fabric, and the biodegradability.

【0075】比較例1 実施例1と同様の高融点成分を用いた単相型短繊維より
なる短繊維不織布を製造した。すなわち、実施例1と同
一の高融点成分または低融点成分をエクストルーダ型溶
融押出し機を用いて、温度180℃で溶融し、通常の単
相型断面となる紡糸口金を用い、単孔吐出量が0.97
g/分の条件下にて溶融紡出した。この紡出糸条を冷却
装置にて冷却した後で油剤を付与し、速度が800m/
分の引き取りロールを介して未延伸糸を得た。得られた
未延伸糸糸条を数十本引き揃え、公知の延伸機にて延伸
倍率3.8倍にて延伸し、次いで、スタッファーボック
スにて15個/インチの捲縮を付与した後、51mmに
切断し、銘柄3d×51mmの短繊維を得た。この短繊
維を実施例1と同様にしてカードウエブとなし、熱圧接
装置にて熱圧接して目付けが50g/m2 の生分解性短
繊維不織布を得た。操業性および不織布物性、生分解性
能を表2に示す。
Comparative Example 1 A short fiber non-woven fabric made of single-phase short fibers using the same high melting point component as in Example 1 was produced. That is, the same high-melting point component or low-melting point component as in Example 1 was melted at a temperature of 180 ° C. using an extruder-type melt extruder, and a spinneret having a normal single-phase cross section was used. 0.97
Melt spinning was performed under the condition of g / min. After cooling this spun yarn with a cooling device, an oil agent is applied, and the speed is 800 m /
An undrawn yarn was obtained through a take-up roll for minutes. After tens of the obtained undrawn yarn filaments are aligned and drawn at a draw ratio of 3.8 times by a known drawing machine, and then 15 crimps / inch are crimped in a stuffer box, It was cut into 51 mm to obtain short fibers of brand 3d × 51 mm. This short fiber was formed into a card web in the same manner as in Example 1 and subjected to heat pressure contact with a heat pressure contact device to obtain a biodegradable short fiber nonwoven fabric having a basis weight of 50 g / m 2 . Table 2 shows the operability, the physical properties of the nonwoven fabric, and the biodegradability.

【0076】比較例2 実施例1と同様の低融点成分を用いた単相型短繊維を得
るべく紡糸を行った。すなわち、実施例1と同一の紡糸
温度180℃で溶融し、単孔吐出量0.97g/分、速
度が800m/分で捲き取ろうとしたが、紡出糸条が密
着し、製糸性が不良であった。
Comparative Example 2 Spinning was carried out in order to obtain a single-phase short fiber using the same low melting point component as in Example 1. That is, it was attempted to be melted at the same spinning temperature of 180 ° C. as in Example 1 and wound up at a single hole discharge rate of 0.97 g / min and a speed of 800 m / min, but the spun yarn was in close contact and the spinnability was poor. Met.

【0077】[0077]

【表1】 [Table 1]

【0078】実施例1、3、4および実施例6〜9は、
本発明の中実交互配列型複合短繊維からなる短繊維不織
布であるので、紡出糸条の冷却性および可紡性、延伸性
に優れ、かつ得られた不織布は機械的性能にも優れるも
のであった。また、この不織布を6ケ月間土中に埋設
し、その後に掘り起こして観察したところ不織布として
の形態を保持しておらず、良好な生分解性を有すること
が認められた。
Examples 1, 3, 4 and Examples 6-9 are
Since it is a short fiber non-woven fabric composed of the solid alternate arrangement composite short fibers of the present invention, the spun yarn has excellent cooling properties, spinnability and stretchability, and the resulting non-woven fabric also has excellent mechanical performance. Met. Further, when this non-woven fabric was embedded in soil for 6 months and then excavated and observed, it was confirmed that the non-woven fabric did not retain its shape and had good biodegradability.

【0079】実施例2は、エチレンサクシネートの共重
合量比が大きいため、冷却性は低下しているが、可紡
性、延伸性ともに良好であり、かつ得られた不織布は機
械的性能にも優れるものであった。また、この不織布を
6ケ月間土中に埋設し、その後に掘り起こして観察した
ところ不織布としての形態を保持しておらず、良好な生
分解性を有することが認められた。
In Example 2, although the copolymerization ratio of ethylene succinate was large, the cooling property was lowered, but the spinnability and stretchability were good, and the nonwoven fabric obtained had good mechanical performance. Was also excellent. Further, when this non-woven fabric was embedded in soil for 6 months and then excavated and observed, it was confirmed that the non-woven fabric did not retain its shape and had good biodegradability.

【0080】実施例5は、結晶核剤の効果が高く冷却性
に優れるものであった。また、得られた不織布は機械的
性能にも優れるものであり、かつ、この不織布を6ケ月
間土中に埋設し、その後に掘り起こして観察したところ
不織布としての形態を保持しておらず、良好な生分解性
を有することが認められた。
In Example 5, the effect of the crystal nucleating agent was high and the cooling property was excellent. Further, the obtained non-woven fabric is excellent in mechanical performance, and when it is embedded in soil for 6 months and then dug up and observed, the non-woven fabric does not retain its morphology. It was found to have excellent biodegradability.

【0081】[0081]

【表2】 [Table 2]

【0082】実施例10〜12は、本発明の中空交互配
列型複合短繊維からなる短繊維不織布であるので、紡出
糸条の冷却性および可紡性、延伸性については中実交互
配列型複合短繊維不織布よりもさらに優れ(実施例1VS
実施例10)、かつ得られた不織布は機械的性能にも優
れるものであった。また、この不織布を6ケ月間土中に
埋設し、その後に掘り起こして観察したところ不織布と
しての形態を保持しておらず、中実交互配列型複合短繊
維不織布よりもさらに優れた生分解性(実施例1VS実施
例10)を有することが認められた。
Since Examples 10 to 12 are short fiber nonwoven fabrics composed of the hollow alternating array type composite short fibers of the present invention, the cooling property, spinnability and stretchability of the spun yarn are solid alternating array type. Even better than composite short fiber nonwoven (Example 1VS
The nonwoven fabric obtained in Example 10) was excellent in mechanical performance. Further, when this non-woven fabric was buried in soil for 6 months, and then excavated and observed, it did not retain its shape as a non-woven fabric, and was more biodegradable than the solid alternating array type composite short fiber non-woven fabric ( Example 1 VS Example 10).

【0083】実施例13は、短繊維ウエブの不織布化を
超音波融着処理にて行っているので、得られた不織布は
実施例1よりも柔軟性に優れたものであった。実施例1
4は、短繊維ウエブの不織布化を加圧液体流による三次
元的交絡処理にて行っているので、得られた不織布は実
施例1よりも柔軟性に優れたものであった。
In Example 13, since the short fiber web was made into a non-woven fabric by ultrasonic fusion treatment, the obtained non-woven fabric was more flexible than that in Example 1. Example 1
In No. 4, since the short fiber web was made into a non-woven fabric by three-dimensional entanglement treatment with a pressurized liquid flow, the obtained non-woven fabric was superior in flexibility to Example 1.

【0084】比較例1で得られた短繊維不織布は、本発
明の範囲外である単相型断面を有する短繊維からなるの
で、実用的な不織布特性を有しているものの、生分解性
能が不良であった。
Since the short fiber nonwoven fabric obtained in Comparative Example 1 is composed of short fibers having a single-phase type cross section which is outside the scope of the present invention, it has practical nonwoven fabric characteristics but biodegradability. It was bad.

【0085】比較例2は、紡出糸条が密着し、目標とす
る繊維が得られず、したがって不織布化ができなかっ
た。
In Comparative Example 2, the spun yarn was in close contact and the target fiber could not be obtained, so that it could not be made into a non-woven fabric.

【0086】[0086]

【発明の効果】本発明によれば、生分解性能が制御可能
であるとともに不織布の地合いおよび機械的特性、紡出
糸条の冷却性および可紡性、延伸性に優れ、かつ熱接着
機能を有する生分解性短繊維不織布及びその製造方法を
提供することができる。
EFFECTS OF THE INVENTION According to the present invention, the biodegradability is controllable, the texture and mechanical properties of the nonwoven fabric are excellent, the cooling and spinnability of the spun yarn and the stretchability are excellent, and the heat-adhesion function is provided. A biodegradable short fiber nonwoven fabric having the same and a method for producing the same can be provided.

【0087】本発明の不織布は、おむつや生理用品など
の医療・衛生材料素材、使い捨ておしぼりやワイピング
クロスなどの拭き取り布、使い捨て包装材、家庭・業務
用の生ごみ捕集用袋その他廃棄物処理材などの生活関連
用素材、あるいは、農業・園芸・土木用に代表される産
業用資材の各素材として好適である。しかもこの不織布
は、生分解性を有するので、その使用後に完全に分解消
失するため、自然環境保護の観点からも有益であり、あ
るいは、例えば堆肥化して肥料とするなど再利用を図る
こともできるため資源の再利用の観点からも有益であ
る。
The nonwoven fabric of the present invention is used as a material for medical / sanitary materials such as diapers and sanitary products, a wipe such as a disposable hand towel and a wiping cloth, a disposable packaging material, a garbage bag for household / business use and other waste treatment. It is suitable as a material for daily life such as wood, or as an industrial material typified by agriculture, gardening, and civil engineering. Moreover, since this non-woven fabric has biodegradability, it decomposes and disappears completely after use, which is beneficial from the viewpoint of protecting the natural environment, or it can be reused, for example, by composting it into a fertilizer. Therefore, it is also useful from the viewpoint of resource reuse.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の中実交互配列型複合短繊維の繊維横断
面のモデル図である。
FIG. 1 is a model view of a fiber cross section of a solid alternating array type composite staple fiber of the present invention.

【図2】本発明の中空交互配列型複合短繊維の繊維横断
面のモデル図である。
FIG. 2 is a model view of a fiber cross section of the hollow alternating array type composite staple fiber of the present invention.

【符号の説明】[Explanation of symbols]

1 高融点成分 2 低融点成分 3 中空部 1 High melting point component 2 Low melting point component 3 Hollow part

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 生分解性を有する第1の脂肪族ポリエス
テルからなる高融点成分とこの高融点成分よりも融点の
低い生分解性を有する第2の脂肪族ポリエステルからな
る低融点成分とから形成される複合短繊維からなり、こ
の複合短繊維の繊維横断面において高融点成分および低
融点成分が繊維横断面の中心から周方向の一定範囲ずつ
を交互に占め、かつ前記両成分が繊維横断面においてそ
れぞれ均等な面積を有するセグメントに分割されてお
り、しかも高融点成分および低融点成分が繊維軸方向に
連続するとともに繊維表面に露出していることを特徴と
する生分解性短繊維不織布。
1. A high melting point component made of a first aliphatic polyester having biodegradability and a low melting point component made of a second aliphatic polyester having a biodegradability lower in melting point than the high melting point component. In the fiber cross section of the composite short fiber, the high melting point component and the low melting point component alternately occupy a constant range in the circumferential direction from the center of the fiber cross section, and the both components have a fiber cross section. In the above, the biodegradable short fiber nonwoven fabric is characterized in that it is divided into segments each having an equal area, and that the high melting point component and the low melting point component are continuous in the fiber axis direction and are exposed on the fiber surface.
【請求項2】 生分解性を有する第1の脂肪族ポリエス
テルからなる高融点成分とこの高融点成分よりも融点の
低い生分解性を有する第2の脂肪族ポリエステルからな
る低融点成分とから形成される複合短繊維からなり、こ
の複合短繊維の繊維横断面において高融点成分および低
融点成分が繊維横断面の中心から周方向の一定範囲ずつ
を交互に占め、かつ繊維横断面に中空部を有し、かつ前
記両成分が繊維横断面においてそれぞれ均等な面積を有
するセグメントに分割されており、しかも高融点成分お
よび低融点成分が繊維軸方向に連続するとともに繊維表
面ならびに中空部に露出していることを特徴とする生分
解性短繊維不織布。
2. A high melting point component made of a first aliphatic polyester having biodegradability and a low melting point component made of a second aliphatic polyester having a biodegradability having a lower melting point than the high melting point component. In the fiber cross section of the composite short fiber, the high melting point component and the low melting point component alternately occupy a constant range in the circumferential direction from the center of the fiber cross section, and a hollow portion is formed in the fiber cross section. And both of the components are divided into segments each having an equal area in the cross section of the fiber, and the high melting point component and the low melting point component are continuous in the fiber axis direction and exposed on the fiber surface and hollow part. A biodegradable short fiber non-woven fabric characterized by being
【請求項3】 複合短繊維の繊維横断面において、糸の
直径を(A)、中空部の直径を(a)としたとき、 (a2 /A2 )×100(%) で示される中空率が、5〜30%であることを特徴とす
る請求項2に記載の生分解性短繊維不織布。
3. In the fiber cross section of the composite short fiber, when the diameter of the yarn is (A) and the diameter of the hollow portion is (a), the hollow space represented by (a 2 / A 2 ) × 100 (%) The rate is 5 to 30%, The biodegradable short fiber nonwoven fabric according to claim 2, which is characterized in that.
【請求項4】 高融点成分が、ポリブチレンサクシネー
トであり、低融点成分が、ブチレンサクシネートの共重
合量比が70〜90モル%となるようにブチレンサクシ
ネートにエチレンサクシネートあるいはブチレンアジペ
ートを共重合せしめた共重合ポリエステルであることを
特徴とする請求項1から3までのいずれか1項に記載の
生分解性短繊維不織布。
4. The high melting point component is polybutylene succinate, and the low melting point component is ethylene succinate or butylene adipate in butylene succinate so that the copolymerization ratio of the butylene succinate is 70 to 90 mol%. The biodegradable short fiber nonwoven fabric according to any one of claims 1 to 3, wherein the biodegradable short fiber nonwoven fabric is a copolyester obtained by copolymerizing the above.
【請求項5】 低融点成分および高融点成分のうち、少
なくとも低融点成分に中に結晶核剤が添加されているこ
とを特徴とする請求項1から4までのいずれか1項に記
載の生分解性短繊維不織布。
5. The raw material according to claim 1, wherein a crystal nucleating agent is added to at least the low melting point component of the low melting point component and the high melting point component. Degradable short fiber non-woven fabric.
【請求項6】 高融点成分/低融点成分の複合比が1/
3〜3/1(重量%)であることを特徴とする請求項1
から5までのいずれか1項に記載の生分解性短繊維不織
布。
6. The composite ratio of high melting point component / low melting point component is 1 /
It is 3 to 3/1 (% by weight).
6. The biodegradable short fiber non-woven fabric according to any one of 1 to 5.
【請求項7】 高融点成分および低融点成分がそれぞれ
3〜20個のセグメント部分に分割されており、かつ高
融点成分および低融点成分から構成された単糸繊度が
1.5〜10デニールであることを特徴とする請求項1
から6までのいずれか1項に記載の生分解性短繊維不織
布。
7. The high melting point component and the low melting point component are each divided into 3 to 20 segment parts, and the single yarn fineness composed of the high melting point component and the low melting point component is 1.5 to 10 denier. Claim 1 characterized by the above.
7. The biodegradable short fiber nonwoven fabric according to any one of 1 to 6.
【請求項8】 生分解性を有する第1の脂肪族ポリエス
テルからなる高融点成分とこの高融点成分よりも融点の
低い生分解性を有する第2の脂肪族ポリエステルからな
る低融点成分とを用いて、繊維横断面において高融点成
分および低融点成分が繊維横断面の中心から周方向の一
定範囲ずつを交互に占め、前記両成分が繊維横断面にお
いてそれぞれ均等な面積を有するセグメントに分割され
ており、しかも高融点成分および低融点成分が繊維軸方
向に連続するとともに繊維表面に露出するように複合繊
維を溶融複合紡糸し、次いで延伸し、得られた延伸糸条
に機械捲縮を付与した後に所定長に切断して短繊維とな
し、この短繊維をカーディングすることにより短繊維ウ
エブを形成し、この短繊維ウエブを所定の形態に保持さ
せることを特徴とする生分解性短繊維不織布の製造方
法。
8. A high melting point component comprising a biodegradable first aliphatic polyester and a low melting point component comprising a biodegradable second aliphatic polyester having a lower melting point than this high melting point component are used. In the fiber cross section, the high melting point component and the low melting point component alternately occupy a constant range in the circumferential direction from the center of the fiber cross section, and the two components are divided into segments each having an equal area in the fiber cross section. In addition, the composite fiber was melt-composite-spun so that the high-melting-point component and the low-melting-point component were continuous in the fiber axis direction and exposed on the fiber surface, and then drawn, and mechanical crimps were imparted to the drawn yarn A short fiber is then cut into a predetermined length to form a short fiber, a short fiber web is formed by carding the short fiber, and the short fiber web is held in a predetermined shape. A method for producing a biodegradable short fiber nonwoven fabric.
【請求項9】 生分解性を有する第1の脂肪族ポリエス
テルからなる高融点成分とこの高融点成分よりも融点の
低い生分解性を有する第2の脂肪族ポリエステルからな
る低融点成分とを用いて、繊維横断面において高融点成
分および低融点成分が繊維横断面の中心から周方向の一
定範囲ずつを交互に占め、かつ繊維横断面に中空部を有
し、かつ前記両成分が繊維横断面においてそれぞれ均等
な面積を有するセグメントに分割されており、しかも高
融点成分および低融点成分が繊維軸方向に連続するとと
もに繊維表面ならびに中空部に露出するように複合繊維
を溶融複合紡糸し、次いで延伸し、得られた延伸糸条に
機械捲縮を付与した後に所定長に切断して短繊維とな
し、この短繊維をカーディングすることにより短繊維ウ
エブを形成し、この短繊維ウエブを所定の形態に保持さ
せることを特徴とする生分解性短繊維不織布の製造方
法。
9. A high melting point component comprising a biodegradable first aliphatic polyester and a low melting point component comprising a biodegradable second aliphatic polyester having a lower melting point than this high melting point component are used. In the fiber cross section, the high melting point component and the low melting point component alternately occupy a constant range in the circumferential direction from the center of the fiber cross section, and have a hollow portion in the fiber cross section, and the both components are the fiber cross section. Are divided into segments each having an equal area, and the high melting point component and the low melting point component are continuous in the axial direction of the fiber, and the composite fiber is melt-composite-spun so that it is exposed on the fiber surface and the hollow portion, and then stretched. After mechanical crimping is applied to the obtained drawn yarn, it is cut into a predetermined length to form a short fiber, and the short fiber is carded to form a short fiber web. A method for producing a biodegradable short fiber non-woven fabric, which comprises holding a fibrous web in a predetermined shape.
【請求項10】 短繊維ウエブに、低融点成分の融点以
下の温度でエンボスロールにて部分的な熱圧接処理を施
して、所定の形態を保持させることを特徴とする請求項
8又は9記載の生分解性短繊維不織布の製造方法。
10. The short fiber web is subjected to a partial thermocompression bonding treatment with an embossing roll at a temperature equal to or lower than the melting point of the low melting point component to retain a predetermined shape. A method for producing a biodegradable short fiber non-woven fabric.
【請求項11】 短繊維ウエブに、超音波融着処理を施
して、所定の形態を保持させることを特徴とする請求項
8又は9記載の生分解性短繊維不織布の製造方法。
11. The method for producing a biodegradable short fiber nonwoven fabric according to claim 8 or 9, wherein the short fiber web is subjected to ultrasonic fusion treatment to maintain a predetermined shape.
【請求項12】 短繊維ウエブに、三次元的交絡処理を
施して、所定の形態を保持させることを特徴とする請求
項8又は9記載の生分解性短繊維不織布の製造方法。
12. The method for producing a biodegradable short fiber non-woven fabric according to claim 8 or 9, wherein the short fiber web is subjected to a three-dimensional entanglement treatment to retain a predetermined shape.
JP8092111A 1996-04-15 1996-04-15 Biodegradable short fiber nonwoven fabric and its production Pending JPH09279455A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8092111A JPH09279455A (en) 1996-04-15 1996-04-15 Biodegradable short fiber nonwoven fabric and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8092111A JPH09279455A (en) 1996-04-15 1996-04-15 Biodegradable short fiber nonwoven fabric and its production

Publications (1)

Publication Number Publication Date
JPH09279455A true JPH09279455A (en) 1997-10-28

Family

ID=14045327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8092111A Pending JPH09279455A (en) 1996-04-15 1996-04-15 Biodegradable short fiber nonwoven fabric and its production

Country Status (1)

Country Link
JP (1) JPH09279455A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000303337A (en) * 1999-03-01 2000-10-31 Carl Freudenberg:Fa Non-woven fabric made from thermally binding filament or fiber

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000303337A (en) * 1999-03-01 2000-10-31 Carl Freudenberg:Fa Non-woven fabric made from thermally binding filament or fiber

Similar Documents

Publication Publication Date Title
JP4093595B2 (en) Method, product and use of degradable polymer fibers
JP3264720B2 (en) Biodegradable composite short fiber non-woven fabric
JPH08260323A (en) Biodegradable filament nonwoven fabric and its production
JP3804999B2 (en) Biodegradable long-fiber nonwoven fabric and method for producing the same
JPH101855A (en) Biodegradable short fiber nonwoven fabric and its production
JP3247177B2 (en) Biodegradable latently crimpable composite short fiber and nonwoven fabric thereof
JP3556089B2 (en) Biodegradable long-fiber nonwoven fabric and method for producing the same
JPH09279455A (en) Biodegradable short fiber nonwoven fabric and its production
JP2000273750A (en) Biodegradable filament nonwoven cloth and its production
JP4117915B2 (en) Biodegradable nonwoven fabric and method for producing the same
JPH09279454A (en) Biodegradable short fiber nonwoven fabric and its production
JP3150218B2 (en) Biodegradable short fiber non-woven fabric
JPH09279449A (en) Laminated nonwoven fabric and its production
JP3553722B2 (en) Biodegradable nonwoven fabric and method for producing the same
JPH09279448A (en) Laminated nonwoven fabric and its production
JP3516291B2 (en) Method for producing biodegradable nonwoven fabric with excellent elasticity
JPH09310293A (en) Biodegradable wet nonwoven fabric and its production
JP4117916B2 (en) Biodegradable nonwoven fabric and method for producing the same
JPH09279452A (en) Laminated nonwoven fabric and its production
JPH09279464A (en) Laminated nonwoven fabric and its production
JPH09279465A (en) Laminated nonwoven fabric and its production
JPH09279447A (en) Laminated nonwoven fabric and its production
JPH09279451A (en) Laminated nonwoven fabric and its production
JPH09279446A (en) Biodegradable short fiber nonwoven fabric and its production
JPH0995852A (en) Polylactate-based laminated nonwoven fabric and its production

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041102

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041228

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050308