JPH06187833A - Transparent conductive film - Google Patents

Transparent conductive film

Info

Publication number
JPH06187833A
JPH06187833A JP5224673A JP22467393A JPH06187833A JP H06187833 A JPH06187833 A JP H06187833A JP 5224673 A JP5224673 A JP 5224673A JP 22467393 A JP22467393 A JP 22467393A JP H06187833 A JPH06187833 A JP H06187833A
Authority
JP
Japan
Prior art keywords
film
conductive film
transparent conductive
oxide
transparent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5224673A
Other languages
Japanese (ja)
Other versions
JP3453805B2 (en
Inventor
Junichi Ebisawa
純一 海老沢
Kazuo Sato
一夫 佐藤
Akira Mitsui
彰 光井
Kunihiko Adachi
邦彦 安達
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP22467393A priority Critical patent/JP3453805B2/en
Publication of JPH06187833A publication Critical patent/JPH06187833A/en
Application granted granted Critical
Publication of JP3453805B2 publication Critical patent/JP3453805B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Non-Insulated Conductors (AREA)
  • Liquid Crystal (AREA)
  • Surface Heating Bodies (AREA)
  • Physical Vapour Deposition (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To provide a transparent conductive film with low resistance and high transmissivity, even when manufactured at a high speed, and high grade and low cost without marring electric property, even after given high- temperature heat treatment in an oxidizing atmosphere such as an air atmosphere, by controlling the concentration of potassium and crystallinity to preset values. CONSTITUTION:A transparent conductive film contains 0.1atom% or more and 15atom% or less potassium with respect to zinc, and in a X-ray diffraction pattern it has a diffraction peak on the plane (002) and the half value width of a diffraction line being 1.2 degrees or less on the plane (002). Otherwise, it contains 0.5atom% or more and 12atom% or less potassium with respect to zinc, and in a X-ray diffraction pattern it has a diffraction peak on the plane (002) and the half value of a diffraction line being 0.6 degree or less on the plane (002). The specific resistance is 10<-2>OMEGA.cm or less and the thickness 100Angstrom or more and 5mu or less. The film with the concentration of potassium being 0.5atom% or more and 12atom% or less at an atomic ratio shows high conductivity, when formed, and high grade and low cost without marring electric property even after given heat treatment in the air.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高性能を有する透明性
電導膜、特に液晶表示素子、プラズマ発光素子等の表示
用透明電極や太陽電池用透明電極、あるいは熱線反射
膜、透明発熱体として有用な透明性導電膜および該透明
性導電膜を有する透明発熱体に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a transparent conductive film having a high performance, particularly a transparent electrode for display such as a liquid crystal display device and a plasma light emitting device, a transparent electrode for a solar cell, a heat ray reflecting film and a transparent heating element. The present invention relates to a useful transparent conductive film and a transparent heating element having the transparent conductive film.

【0002】[0002]

【従来の技術】透明導電膜は可視光域で高い透過率と高
い導電性を合せもつものであり、液晶表示素子、プラズ
マ発光素子、EL(エレクトロ・ルミネッセンス)素子
等の表示素子用透明電極や、太陽電池、TFT、その他
各種受光素子の透明電極に利用されている。また自動車
および建築用の熱線反射膜、フォトマスクその他各種用
途の帯電防止膜、冷凍ショーケースをはじめとする各種
の防曇窓、自動車のフロントガラス用の融氷・防曇機能
付きガラス(Electrically Heated Window、以下EHW
と呼ぶ)などの透明発熱体に広く用いられている。さら
に調光ガラスとしてのエレクトロクロミック素子用基板
にも用いられる。
2. Description of the Related Art A transparent conductive film has both high transmittance and high conductivity in the visible light range, and is used for a transparent electrode for a display element such as a liquid crystal display element, a plasma light emitting element, an EL (electro luminescence) element, or the like. , Solar cells, TFTs, and other transparent electrodes of various light receiving elements. In addition, heat-reflecting films for automobiles and buildings, antistatic films for photomasks and other applications, various anti-fog windows such as freezer showcases, glass with melting ice and anti-fog function for automobile windshields (Electrically Heated) Window, EHW
It is widely used for transparent heating elements such as. Furthermore, it is also used as a substrate for electrochromic devices as light control glass.

【0003】従来、透明導電膜としてはガラス基板上に
堆積したアンチモンやフッ素をドーパントとして含む酸
化錫(SnO2 )、あるいは、錫をドーパントとして含
む酸化インジウム(In23 )、酸化亜鉛等が知られ
ており、特に錫を添加した酸化インジウム膜(以下IT
O膜とよぶ)は低抵抗膜が容易に得られることから主と
して液晶等の表示素子用電極として広く用いられてい
る。
Conventionally, as a transparent conductive film, tin oxide (SnO 2 ) containing antimony or fluorine as a dopant, indium oxide (In 2 O 3 ) containing zinc as a dopant, zinc oxide, etc., is deposited on a glass substrate. Known indium tin oxide film (hereinafter referred to as IT
The O film) is widely used mainly as an electrode for a display element such as a liquid crystal because a low resistance film can be easily obtained.

【0004】リーチインドア用の導電ガラスは、スプレ
ー法により、数百℃に加熱された基板に原料液を噴霧
し、基板表面で熱分解反応させて、酸化錫膜を成膜して
作られる。膜に導電性を付与するためのドーパントにつ
いては、フッ素やアンチモンがよく用いられている。し
かしながらスプレー法では、リーチインドアやEHWで
用いられる、おおよそ1m×2m程度の大きな基板に対
しては、処理面積全面に対して、均一な膜質の膜を、均
一な膜厚で安定して生産するのは非常に難しい。
The conductive glass for reach indoors is formed by spraying a raw material liquid onto a substrate heated to several hundreds of degrees by a spraying method and causing a thermal decomposition reaction on the substrate surface to form a tin oxide film. Fluorine and antimony are often used as the dopant for imparting conductivity to the film. However, in the spray method, for a large substrate of about 1 m × 2 m used in reach indoor or EHW, a film having a uniform film quality can be stably produced with a uniform film thickness over the entire processing area. Is very difficult.

【0005】膜厚が均一でない場合、反射率や反射色の
むらが生じて、外観上、見苦しいものになり、また膜面
内にシート抵抗の不均一があると、通電時に局部的な異
常加熱や、加熱されない部分を生じて、機能上あるいは
安全上好ましくない。また成膜に際して、基板の背面へ
の膜の回り込みが発生しやすく、さらに周辺部や電極取
り出し部周辺など膜付けしたくない部分を効果的にマス
クするのが難しく、成膜後にエッチングや研磨などの手
段によってこれを取り除く必要があり、工程上煩雑にな
りコストが嵩むという問題点があった。
If the film thickness is not uniform, the reflectance and the reflected color become uneven, resulting in an unsightly appearance. Also, if the sheet resistance is not uniform in the film surface, abnormal heating or local abnormal heating may occur when electricity is applied. However, there is a portion that is not heated, which is not preferable in terms of function or safety. In addition, when the film is formed, it is easy for the film to wrap around the back surface of the substrate, and it is difficult to effectively mask the peripheral portion and the area around the electrode lead-out portion where the film is not desired. However, there is a problem in that the process becomes complicated and the cost increases.

【0006】またEHWにはスパッタ法による、膜厚数
百Åの金属薄膜を用いた膜系が用いられている。金属膜
としては、可視光線領域(400〜700nm)で車両
用窓材として必要な透明性を確保するために可視域で透
過率が高い、自動車の電装系(12ないし24V)で駆
動できるために抵抗が低い、の2点を同時に満足するこ
とが必要で、種々の金属材料の中で銀が最も適している
ので用いられている。
Further, a film system using a metal thin film having a film thickness of several hundred liters by a sputtering method is used for EHW. The metal film has a high transmittance in the visible region in order to secure the transparency required as a window material for vehicles in the visible region (400 to 700 nm), and it can be driven by an electric system (12 to 24 V) of an automobile. It is necessary to simultaneously satisfy the two points of low resistance, and silver is used because it is most suitable among various metal materials.

【0007】通常、可視域での透明性を増して、かつぎ
らぎらした外観となるのを防ぐ目的で、銀層の両側を透
明誘電体膜ではさみ、可視域での反射率が低減されるよ
うに光学条件が調整された3層構成ないしは銀2層の両
側と間を透明誘電体膜ではさんだ5層膜構成で用いられ
る。しかしながら、金属薄膜ではいわゆるエレクトロマ
イグレーション現象が知られており、通電を続けると、
膜中の金属原子が粒界・粒内拡散を起こしてヒロックや
ボイドを生成して膜切れを起こしやすい。
Usually, for the purpose of increasing the transparency in the visible region and preventing a staggered appearance, both sides of the silver layer are sandwiched by transparent dielectric films to reduce the reflectance in the visible region. It is used in a three-layer structure in which optical conditions are adjusted, or in a five-layer film structure in which both sides and two layers of silver are sandwiched by a transparent dielectric film. However, the so-called electromigration phenomenon is known in the metal thin film, and if current is continued,
Metal atoms in the film easily diffuse at the grain boundaries and within the grains to form hillocks and voids, which easily causes film breakage.

【0008】また、さらに銀膜は元来、環境に対する耐
久性が弱いので湿気などによる化学的なアタックを受け
やすく、信頼性向上の要求の観点から銀の積層膜系に替
わる透明発熱体に好適な膜系が望まれていた。
Further, since the silver film originally has low durability to the environment, it is easily susceptible to chemical attack due to moisture, etc., and is suitable as a transparent heating element which replaces the silver laminated film system from the viewpoint of demand for improvement in reliability. A new membrane system was desired.

【0009】透明基体に電導性を付与して、透明発熱体
としての機能を付与することができる透明導電体膜とし
ては、他に蒸着法やイオンプレーティング法によるドー
プされた酸化錫膜や、同じく蒸着法やイオンプレーティ
ング法やスパッタ法によるITO 、ドープされた酸化亜鉛
膜がある。しかしながら、酸化錫膜においては、こうい
ったいわゆる物理蒸着法では、透明発熱体に適した低抵
抗の透明導電膜を形成するのは難しい。
As a transparent conductor film capable of imparting electric conductivity to a transparent substrate to give a function as a transparent heating element, a doped tin oxide film formed by a vapor deposition method or an ion plating method, Similarly, there are ITO and doped zinc oxide films formed by vapor deposition, ion plating and sputtering. However, for the tin oxide film, it is difficult to form a low-resistance transparent conductive film suitable for a transparent heating element by such a so-called physical vapor deposition method.

【0010】またITO膜については、低抵抗膜が容易
に得られること、特にスパッタ法に依ればEHWやリー
チインドア用に適した大面積の基板にも均一な特性・膜
厚の透明電動膜を形成することが可能であるが、一方、
インジウムが希少な金属なため高価格で、処理された基
体の低価格化にはおのずから限界があるため、透明発熱
体の幅広い分野への応用の拡大が妨げられていた。また
インジウムの資源埋蔵量は他の元素に比べても特に少な
く、亜鉛鉱の精練時の副産物として抽出されるためにそ
の生産量も亜鉛生産量に依存しており、大幅な生産量の
増大は困難である。
Regarding the ITO film, a low resistance film can be easily obtained, and a transparent electric film having uniform characteristics and film thickness even on a large area substrate suitable for EHW and reach indoors, especially by the sputtering method. It is possible to form
Since indium is a rare metal, it is expensive, and there is a limit to lowering the cost of the treated substrate, which hinders the expansion of the application of the transparent heating element to a wide range of fields. In addition, the resource reserve of indium is particularly small compared to other elements, and since it is extracted as a by-product during refining of zinc ore, its production amount also depends on the zinc production amount. Have difficulty.

【0011】今後、表示素子用などの他の用途を含めた
透明導電膜の需要が拡大した場合、ITOの場合、原料
であるインジウムの安定供給にも問題がある。一方、酸
化亜鉛(ZnO)を主成分とする透明導電膜では、ドー
パントとしてアルミニウムを用いると10-4Ω・cm台
とITO膜に匹敵する低い比抵抗が得られることが知ら
れているが、成膜に際して、高エネルギー粒子ボンバー
ドメントによる膜のダメージを避けるために基板をター
ゲットに対して垂直配置したり、外部磁場を印加したり
する工夫が必要であったり、成膜後に非酸化性雰囲気で
の熱処理が必要であった。
In the future, when the demand for a transparent conductive film including other uses such as display devices is increased, in the case of ITO, there is a problem in stable supply of indium as a raw material. On the other hand, it is known that in a transparent conductive film containing zinc oxide (ZnO) as a main component, when aluminum is used as a dopant, a low resistivity of the order of 10 −4 Ω · cm, which is comparable to that of an ITO film, can be obtained. At the time of film formation, in order to avoid damage to the film due to high energy particle bombardment, it is necessary to arrange the substrate vertically with respect to the target, apply an external magnetic field, or use a non-oxidizing atmosphere after film formation. Heat treatment was required.

【0012】また、ターゲット性状の経時変化の影響を
受け易いために低抵抗膜を再現性良く製造するのが困難
であったり、低抵抗膜の成膜速度が5Å/sec程度以
下と極めて小さいため実際の工業生産においては生産速
度が遅いという致命的な問題があり、広く用いられるに
は至っていない。
Further, it is difficult to manufacture the low resistance film with good reproducibility because it is easily affected by the change of the target property with time, and the film forming rate of the low resistance film is extremely small, about 5 Å / sec or less. In actual industrial production, there is a fatal problem that the production speed is slow, and it has not been widely used.

【0013】一方、表示素子等の電極に透明導電膜を応
用する場合、素子作製プロセスにおいて300℃から5
00℃程度の高温での熱処理が行われる。この場合、不
活性ガス中での熱処理も可能であるが、雰囲気を保持す
るための設備が必要となるためコスト増加を招く。そこ
で実際に工業的には大気中での熱処理が必要とされる。
また、透明導電膜を発熱体として使用する場合、導電膜
は大気中雰囲気で通電加熱された状態で使用される。こ
のため、発熱による抵抗値変化が少ないこと、すなわ
ち、酸化性雰囲気中での耐熱性が要求される。
On the other hand, when a transparent conductive film is applied to an electrode of a display element or the like, the temperature is from 300 ° C.
The heat treatment is performed at a high temperature of about 00 ° C. In this case, heat treatment in an inert gas is also possible, but equipment for holding the atmosphere is required, which causes an increase in cost. Therefore, industrially, heat treatment in the atmosphere is required.
When the transparent conductive film is used as a heating element, the conductive film is used while being electrically heated in the atmosphere. Therefore, it is required that the change in resistance value due to heat generation is small, that is, heat resistance in an oxidizing atmosphere.

【0014】また、熱線反射ガラスとして透明導電膜を
応用する場合も曲げ加工や強化加工を行う際に、大気中
で600℃以上の高温熱処理が行われるため、同様な耐
熱性が要求される。このように、透明導電膜を工業分野
に応用する場合には単に非酸化性雰囲気での耐熱性では
なく、大気中での高い耐熱性が要求される。
Also, when a transparent conductive film is applied as the heat ray reflective glass, high temperature heat treatment of 600 ° C. or higher is performed in the atmosphere when performing bending or strengthening, so that similar heat resistance is required. As described above, when the transparent conductive film is applied to the industrial field, not only heat resistance in a non-oxidizing atmosphere but high heat resistance in the air is required.

【0015】この点でITO膜は充分ではないが大気中
での耐熱性を有している。このためITOは主に液晶表
示素子等に用いられているが、これは300℃付近の比
較的低温での耐熱性しか要求されないからである。これ
に対して、従来のZnO膜(添加物なし)は酸化性雰囲
気における耐熱性がITOに比べると著しく劣ってお
り、酸化性雰囲気での耐熱性向上が実用化における課題
であった。
In this respect, the ITO film is not sufficient but has heat resistance in the atmosphere. For this reason, ITO is mainly used for liquid crystal display devices and the like, because it is required only to have heat resistance at a relatively low temperature around 300 ° C. On the other hand, the conventional ZnO film (without an additive) is significantly inferior to ITO in heat resistance in an oxidizing atmosphere, and improvement in heat resistance in an oxidizing atmosphere has been a problem in practical use.

【0016】そこでこのZnO膜の耐熱性を改善するた
めに、従来、特公平3−72011号公報に示されてい
るように、ZnOに周期律表第3族の不純物を添加する
ことによって、アルゴン気流中や真空中等の非酸化性雰
囲気における耐熱性が改善されることが示されている。
Therefore, in order to improve the heat resistance of this ZnO film, as disclosed in Japanese Patent Publication No. 3-72011, ZnO is conventionally doped with an impurity of Group 3 of the periodic table so that argon can be added. It has been shown that the heat resistance is improved in a non-oxidizing atmosphere such as an air stream or a vacuum.

【0017】しかし、3族の不純物を添加した場合で、
不活性ガス雰囲気や還元性ガス雰囲気での耐熱性は向上
するが、大気雰囲気における400℃での高温熱処理で
は、電気抵抗が4桁以上も増加するため導電膜としては
使用不可能になることも同時に知られている(電子通信
学会技術報告,CPM84-8,55(1984) )。この大気中での耐
熱性の欠如のために、ZnO膜は透明導電膜としての実
用化が遅れている。
However, when impurities of Group 3 are added,
Although the heat resistance in an inert gas atmosphere or a reducing gas atmosphere is improved, a high temperature heat treatment at 400 ° C. in an air atmosphere may increase the electrical resistance by four digits or more, so that it cannot be used as a conductive film. It is also known (Technical Report of IEICE, CPM84-8,55 (1984)). Due to this lack of heat resistance in the atmosphere, the ZnO film is delayed in practical use as a transparent conductive film.

【0018】このように表示素子基板、透明発熱体、熱
線反射ガラスとして透明導電膜を応用する場合、透明導
電膜は大気中での高温加熱を経るため、導電膜の電気的
および光学的特性が損われない特性を有することが極め
て重要となる。しかし従来、ZnOを主成分とする透明
導電膜はITOに替る低コスト材料として期待されなが
ら、酸化性雰囲気での耐熱性が不充分なため広範な実用
化、工業化が遅れており、大気中での耐熱性改善がZn
O膜の最大の課題とされてきた。
When the transparent conductive film is applied as the display element substrate, the transparent heating element, and the heat ray reflective glass as described above, the transparent conductive film undergoes high temperature heating in the atmosphere, and therefore the electrical and optical characteristics of the conductive film are improved. Having properties that are not compromised becomes extremely important. However, conventionally, a transparent conductive film containing ZnO as a main component has been expected as a low-cost material to replace ITO, but its heat resistance in an oxidizing atmosphere is insufficient, and thus its widespread practical application and industrialization have been delayed. Zn improves the heat resistance of
It has been regarded as the biggest problem of the O film.

【0019】[0019]

【発明が解決しようとする課題】本発明は、従来技術が
有していた前述の欠点を解消し、高速で製造しても低抵
抗で高透過率の導電膜が得られ、かつ大気雰囲気等の酸
化性雰囲気での高温熱処理においても電気特性を損わな
い特性を有する高品位でかつ低コストの透明導電膜、特
に表示素子用電極、建築用および自動車用透明発熱体、
熱線反射ガラスとして工業的に有用な透明性導電膜を提
供することを目的とする。
DISCLOSURE OF THE INVENTION The present invention solves the above-mentioned drawbacks of the prior art, obtains a conductive film having a low resistance and a high transmittance even when it is manufactured at a high speed, and has an atmosphere or the like. High-quality and low-cost transparent conductive film having properties that do not impair electrical properties even in high-temperature heat treatment in an oxidizing atmosphere, particularly display element electrodes, transparent heating elements for construction and automobiles,
An object is to provide a transparent conductive film industrially useful as a heat ray reflective glass.

【0020】[0020]

【課題を解決するための手段】本発明は前述の課題を解
決すべくなされたものであり、酸化亜鉛を主成分とする
透明導電膜であって、該透明導電膜は、ガリウムを亜鉛
に対して0.1原子%以上15原子%以下含有し、その
X線回折パターンにおいて(002)面による回折ピー
クを有し、(002)面による回折線の半値幅が1.2
度以下であることを特徴とする透明導電膜、および基体
上に、前記透明導電膜を有することを特徴とする透明発
熱体を提供するものである。
The present invention has been made to solve the above-mentioned problems, and is a transparent conductive film containing zinc oxide as a main component, the transparent conductive film containing gallium against zinc. Content of 0.1 atom% or more and 15 atom% or less, the X-ray diffraction pattern thereof has a diffraction peak of the (002) plane, and the full width at half maximum of the diffraction line of the (002) plane is 1.2.
And a transparent heating film characterized by having the transparent conductive film on a substrate.

【0021】本発明における透明導電膜は、ガリウムを
亜鉛に対して0.5原子%以上12原子%以下含有し、
そのX線回折パターンにおいて(002)面による回折
ピークを有し、(002)面による回折線の半値幅が
0.6度以下であることが好ましい。
The transparent conductive film in the present invention contains gallium in an amount of 0.5 atom% or more and 12 atom% or less with respect to zinc.
It is preferable that the X-ray diffraction pattern has a diffraction peak due to the (002) plane and the half width of the diffraction line due to the (002) plane is 0.6 degrees or less.

【0022】また、本発明における透明導電膜は、比抵
抗が10-2Ω・cm以下で、膜厚が100Å以上5μ以
下の範囲にあることが好ましい。膜厚が100Å以下で
あると不連続膜になりやすく、また段差部へのコーティ
ングにおいて膜破断を起こしやすいなどの問題がある。
また、膜厚が5μ以上になると成膜時間が長くなり、コ
スト増加を招く。一方、比抵抗が10-2Ω・cm以下で
あると前述の膜厚範囲において透明発熱体として必要な
シート抵抗を満足することができる。
The transparent conductive film in the present invention preferably has a specific resistance of 10 -2 Ω · cm or less and a film thickness of 100 Å or more and 5 μ or less. If the film thickness is 100 Å or less, there is a problem that a discontinuous film is liable to be formed and the film is likely to be broken in coating the step portion.
Further, if the film thickness is 5 μm or more, the film formation time becomes long, which causes an increase in cost. On the other hand, when the specific resistance is 10 −2 Ω · cm or less, the sheet resistance required as a transparent heating element can be satisfied in the above-mentioned film thickness range.

【0023】本発明の透明導電膜(以下、単に導電膜と
もいう)には、Zn、Ga以外の金属元素が本発明の目
的を損わない範囲で含まれていても支障ないができる限
り少量にとどめることが望ましい。
The transparent conductive film of the present invention (hereinafter, also simply referred to as a conductive film) may contain a metal element other than Zn and Ga in a range that does not impair the purpose of the present invention, but it is not a problem and the amount thereof is as small as possible. It is desirable to keep it.

【0024】また、本発明の透明導電膜を形成する基体
にはガラス、プラスチック等を使用することが可能であ
る。基体がソーダライムガラスのように、その成分とし
てアルカリ金属を含む場合には、製膜時あるいは熱処理
時あるいは長期間の使用における基体から導電膜へのア
ルカリ金属の拡散を防止するために、基体と導電膜の間
にSi、Al、Zr等の金属の酸化物を主成分とする下
地層を形成することがより好ましい。
Further, glass, plastic or the like can be used for the substrate forming the transparent conductive film of the present invention. When the substrate contains an alkali metal as its component, such as soda lime glass, in order to prevent the diffusion of the alkali metal from the substrate to the conductive film during film formation, heat treatment or long-term use, It is more preferable to form a base layer containing an oxide of a metal such as Si, Al, or Zr as a main component between the conductive films.

【0025】本発明の導電膜の形成方法に関しては特に
限定されず、スパッタリング法、真空蒸着法等の物理蒸
着法やCVD法等の化学蒸着法が用いられるが、より低
温基板温度で良好な導電膜特性が得られる物理蒸着法が
好ましい。なかでも結晶性を促進させるために有効な高
密度プラズマを活性化手段として用いたスパッタリング
法、高磁場を用いた低電圧スパッタリング法、および、
プラズマ活性化真空蒸着法が低抵抗で耐熱性に優れる膜
を得る上でより好ましい。スパッタリング法で本発明の
透明導電膜を形成する際には、ターゲットについて、単
に酸化亜鉛中に酸化ガリウムを所定量添加して焼結する
だけでなく、好ましくは1400℃以上の温度で2時間
以上保持する処理を行って、酸化ガリウムを酸化亜鉛中
に充分、固溶させる処理を行ったものを用いることが好
ましい。なお、実施例ではスパッタリング法として直流
法を示しているが、これを高周波法で行ってもよいこと
はいうまでもない。
The method for forming the conductive film of the present invention is not particularly limited, and a physical vapor deposition method such as a sputtering method or a vacuum vapor deposition method or a chemical vapor deposition method such as a CVD method is used, and a good electrical conductivity is obtained at a lower substrate temperature. A physical vapor deposition method that can obtain film characteristics is preferable. Among them, a sputtering method using a high-density plasma effective as a activating means for promoting crystallinity, a low-voltage sputtering method using a high magnetic field, and
The plasma activated vacuum deposition method is more preferable for obtaining a film having low resistance and excellent heat resistance. When forming the transparent conductive film of the present invention by the sputtering method, the target is not only added with a predetermined amount of gallium oxide in zinc oxide and then sintered, but preferably at a temperature of 1400 ° C. or higher for 2 hours or more. It is preferable to use a material that has been subjected to a treatment for holding it so that gallium oxide is sufficiently dissolved in zinc oxide to form a solid solution. In the examples, the direct current method is shown as the sputtering method, but it goes without saying that this may be performed by a high frequency method.

【0026】本発明になる導電膜においては、たとえば
マグネトロン直流スパッタ法を用いて作製された場合、
40Å/秒までの高速で製膜された場合も低抵抗かつ大
気中での高耐熱性が確保されるため、実用的な成膜速度
で膜を成長できるという効果も合せもっている。
In the conductive film according to the present invention, for example, when the conductive film is formed by the magnetron DC sputtering method,
Since low resistance and high heat resistance in the atmosphere are secured even when a film is formed at a high speed of up to 40 Å / sec, it is possible to grow the film at a practical film formation rate.

【0027】本発明の透明発熱体においては、外観を調
整する目的で、透明導電膜層と基体の間に1層以上のア
ンダーコート膜、あるいは透明導電膜層の上に、1層以
上のオーバーコート膜を設けて、光の干渉現象や膜の吸
収を利用して透過・反射色調や可視光線反射率の調整す
ることが可能である。
In the transparent heating element of the present invention, for the purpose of adjusting the appearance, one or more undercoat films are provided between the transparent conductive film layer and the substrate, or one or more overcoats are formed on the transparent conductive film layer. By providing a coat film, it is possible to adjust the transmission / reflection color tone and the visible light reflectance by utilizing the light interference phenomenon and the film absorption.

【0028】前記アンダーコート膜の少なくとも1層ま
たはオーバーコート膜の少なくとも1層の膜材料として
は、たとえば、酸化ケイ素、酸化チタン、酸化ジルコニ
ウム、酸化錫、酸化タンタル、酸化クロム、酸化ニオ
ブ、酸化ホウ素、酸化インジウム、酸化亜鉛、および酸
化セリウムからなる群から選ばれる少なくとも1種な
ど、あるいは、チタン、ジルコニウム、ハフニウム、ク
ロム、ニオブの金属、前記金属の窒化物、および前記金
属の酸窒化物からなる群から選ばれる少なくとも1種な
どを挙げることができる。
The film material of at least one layer of the undercoat film or at least one layer of the overcoat film is, for example, silicon oxide, titanium oxide, zirconium oxide, tin oxide, tantalum oxide, chromium oxide, niobium oxide or boron oxide. , At least one selected from the group consisting of indium oxide, zinc oxide, and cerium oxide, or a metal of titanium, zirconium, hafnium, chromium, or niobium, a nitride of the metal, and an oxynitride of the metal. At least one selected from the group can be exemplified.

【0029】この上記のアンダーコート膜やオーバーコ
ート膜は、光学特性を調整する以外の目的にも有効に用
いることができる。例えば、合わせ前のコート製品の取
り扱い性を向上させるために耐久性を付与する目的に対
して効果がある。また他の基体とともに合わせ構造に、
あるいは複層構造にしたり、電極リードの取出し部を取
付けたりする際に、合せ構造におけるの中間膜やスペー
サ、組み付ける他の部品等との接着性を調整する目的
や、透明発熱体を形成した後に、合わせガラス化・バス
バーや電極形成・ガラス基板の強化や曲げなどの高温を
要する工程に耐えるための耐熱性を付与したり、高温下
での使用に対する信頼性を高めたりする等の目的に対し
ても効果がある。
The above-mentioned undercoat film and overcoat film can be effectively used for the purpose other than adjusting the optical characteristics. For example, it is effective for the purpose of imparting durability in order to improve the handleability of the coated product before the combination. In addition, with other bases, in a combined structure,
Alternatively, when using a multi-layer structure or when attaching the lead-out part of the electrode lead, the purpose is to adjust the adhesiveness with the interlayer film, spacer, other parts to be assembled in the mating structure, or after forming the transparent heating element. , For the purpose of imparting heat resistance to withstand high temperature processes such as laminated glass formation, bus bar and electrode formation, strengthening and bending of glass substrates, and increasing reliability for use at high temperatures. But still effective.

【0030】本発明の透明発熱体は、もちろん透明電導
膜が形成された基体単独でも用いることができるが、例
えば自動車用の安全規格を満足するために、強化処理し
たり、対になる透明基体と樹脂フィルムを介してあるい
はあるいは樹脂フィルムのみと接着処理したりすること
ができる。
The transparent heating element of the present invention can of course be used as a substrate alone having a transparent conductive film formed thereon, but it is subjected to a strengthening treatment or a pair of transparent substrates to satisfy safety standards for automobiles, for example. It is possible to carry out an adhesive treatment via the resin film or only with the resin film.

【0031】本発明の透明発熱体においては、少なくと
も2箇所以上の、通電のための電極取出し部が設けられ
ていて、電極取出し部に直流、交流、ないしは直流と交
流が重畳された電圧が、連続してあるいはパルス状にオ
ン・オフさせるデューティー駆動で印加されて、透明基
体がそのジュール熱により加熱される。
In the transparent heating element according to the present invention, at least two or more electrode lead-out portions for energization are provided, and the electrode lead-out portions have direct current, alternating current, or a voltage in which direct current and alternating current are superposed. The transparent substrate is heated by its Joule heat by being applied continuously or in a pulsed manner by duty driving for turning it on and off.

【0032】本発明の透明発熱体においては、必要に応
じて、通電加熱時の温度制御、異常発熱、透明発熱体の
割れなどの異常検出を目的とした、検出手段を設けるこ
とができる。
In the transparent heating element of the present invention, if necessary, a detecting means may be provided for the purpose of temperature control during electric heating, abnormal heating, and abnormality detection such as cracking of the transparent heating element.

【0033】図3に本発明の透明発熱体の断面構成図
を、また図4に本発明の透明導電膜を用いたEHWの平
面図を示す。図中において、1はオーバーコート層、2
はガリウムドープ酸化亜鉛層、3はアンダーコート層、
4は基板、5は上辺バスバー、6は透明発熱膜コート部
分、7は下辺バスバー、8は基板を表す。
FIG. 3 is a sectional view of the transparent heating element of the present invention, and FIG. 4 is a plan view of an EHW using the transparent conductive film of the present invention. In the figure, 1 is an overcoat layer, 2
Is a gallium-doped zinc oxide layer, 3 is an undercoat layer,
Reference numeral 4 is a substrate, 5 is an upper bus bar, 6 is a transparent heating film coating portion, 7 is a lower bus bar, and 8 is a substrate.

【0034】[0034]

【作用】本発明者らはZnO透明導電膜中のGa濃度を
原子比で0.5%以上、12%以下に制御し、かつ膜の
(002)X線回折線の半値幅が0.6度以下になるよ
うに膜の結晶性を制御することにより、比抵抗値が2×
10-4Ω・cmとITOと同等に低いものが通常の基板
配置で高速で製造した場合でも容易に得られることを見
出した。さらにこれらの膜は500℃以上での大気中熱
処理の後に導電性の劣化はなく、酸化性雰囲気での耐熱
性に極めて優れていることを見出した。
The present inventors controlled the Ga concentration in the ZnO transparent conductive film to be 0.5% or more and 12% or less in atomic ratio, and the half-width of the (002) X-ray diffraction line of the film was 0.6. By controlling the crystallinity of the film so that
It has been found that a material as low as 10 −4 Ω · cm, which is as low as ITO, can be easily obtained even when it is manufactured at high speed with a normal substrate arrangement. Further, they have found that these films do not deteriorate in conductivity after heat treatment in air at 500 ° C. or higher, and have extremely excellent heat resistance in an oxidizing atmosphere.

【0035】ZnOに単にGaを添加すること自体はす
でに報告されている(J.Electrochem.Soc,127,1636(198
0) 、Jpn.J.Appl.Phys,24,L781(1985))。前者は、Zn
に対して1原子%のGaを添加した例であり、後者はZ
nに対して1原子%から4原子%のGaを添加したスパ
ッタリング法による例である。しかしいずれの場合も電
気的、光学的特性について添加膜と無添加膜との比較検
討を行った報告例であり、耐熱性に関する検討および記
述は一切みられない。またそれらの膜の導電性は従来の
Al添加膜に比べて劣るものである。
The simple addition of Ga to ZnO has already been reported (J. Electrochem. Soc, 127, 1636 (198).
0), Jpn.J.Appl.Phys, 24, L781 (1985)). The former is Zn
Is an example in which 1 atomic% of Ga is added, and the latter is Z
This is an example of a sputtering method in which 1 atomic% to 4 atomic% of Ga is added to n. However, in each case, it is a report example in which the addition film and the non-addition film were compared and examined in terms of electrical and optical characteristics, and no examination or description regarding heat resistance was found. Moreover, the conductivity of these films is inferior to that of the conventional Al-added film.

【0036】これに対して本発明はGa添加量と膜の結
晶性を制御することにより、電気特性の大幅な向上とと
もに大気中での耐熱性を著しく向上させることを可能と
する。すなわち耐熱性はGaを含むだけでは発現せず、
Gaをある特定の範囲の量含み、かつX線回折の半値幅
の値が特定の値以下である場合のみに現れることがわか
った。
On the other hand, the present invention makes it possible to significantly improve the electrical characteristics and the heat resistance in the atmosphere by controlling the Ga addition amount and the crystallinity of the film. That is, the heat resistance does not appear only by including Ga,
It was found that Ga appears only when the content of Ga is within a specific range and the value of the half width of X-ray diffraction is less than or equal to the specific value.

【0037】一般に、ZnOに周期律表第3族の金属を
添加すると電子密度が増加するために導電性が増加する
ことはよく知られている。これは3族すなわち3価の金
属が、2価のZnの位置に置換することにより、浅い電
気的ドナーを形成し自由電子を生成するためと考えられ
ている。また同時に過剰Znが格子間位置に生成するこ
とや酸素欠陥の生成によってもドナー形成による電子密
度の増加は説明可能である。実際の膜ではこれらが混在
した状態になっているものと推定される。3族元素とZ
nのイオン半径は同一ではないため置換した場合でも結
晶格子歪が生じることが考えられる。
It is generally well known that when ZnO is added with a metal of Group 3 of the periodic table, the electron density increases and the conductivity increases. It is considered that this is because the group 3 or trivalent metal substitutes at the position of divalent Zn to form a shallow electric donor and generate a free electron. At the same time, it is possible to explain the increase in electron density due to donor formation due to excess Zn being generated at interstitial sites and oxygen defects. It is presumed that these are mixed in the actual film. Group 3 elements and Z
Since the ionic radii of n are not the same, it is conceivable that crystal lattice distortion will occur even if they are replaced.

【0038】また3族元素はすべて置換可能なわけでは
なく、一部は結晶格子間または粒界等に析出していると
考えられる。なぜならば膜中から検出される3族元素の
量は、電子密度から理論的に算出される量より約1桁も
多いからである。これらの余剰な元素は格子歪を引き起
こすため、酸素空孔等の生成を引き起こすことが予想さ
れる。酸素空孔等の欠陥は高温の酸素雰囲気下で熱処理
すると減少するため、同時に空孔により発生する電子密
度も減少するため抵抗増加が生じると解釈される。
It is considered that not all the Group 3 elements can be replaced, but some of them are precipitated between crystal lattices or at grain boundaries. This is because the amount of the Group 3 element detected in the film is larger by about one digit than the amount theoretically calculated from the electron density. Since these excess elements cause lattice distortion, it is expected that oxygen vacancies will be generated. Defects such as oxygen vacancies are reduced by heat treatment in a high-temperature oxygen atmosphere, and at the same time, the electron density generated by the vacancies is also reduced, which leads to an increase in resistance.

【0039】実際、Ga以外のAl、In、Bの3族元
素を添加したZnO膜は非酸化性雰囲気での耐熱性には
優れるものの、大気中等の酸化性雰囲気での耐熱性は極
めて悪い。本発明者らはX線回折により膜の組成と結晶
性および大気中での熱的安定性の関係を詳細に調べた結
果、その添加元素が単に3族元素ではなくGaであり、
しかもその添加量がある特定の範囲であり、加えて膜の
X線回折の半値幅がある値以下の場合に限り大気中での
耐熱性に富む膜が得られることを見出した。
Actually, the ZnO film to which a group 3 element of Al, In, and B other than Ga is added has excellent heat resistance in a non-oxidizing atmosphere, but has extremely poor heat resistance in an oxidizing atmosphere such as the air. As a result of detailed examination of the relationship between the composition and crystallinity of the film and the thermal stability in the atmosphere by X-ray diffraction, the present inventors have found that the additive element is Ga, not simply the Group 3 element,
Moreover, it has been found that a film having a high heat resistance in the atmosphere can be obtained only when the added amount is within a specific range and in addition, the half width of the X-ray diffraction of the film is less than a certain value.

【0040】添加元素がAl、B、Inの場合とGaの
場合で大気中での耐熱性が異なる原因としてはイオン半
径の差を考えることができる。すなわちAl、Bのイオ
ン半径はそれぞれZnに比べて小さすぎ、逆にInは大
きすぎる。Gaのイオン半径はZnのそれに最も近いた
め置換した場合の格子歪は最も小さくなると考えられ
る。低抵抗膜を得るためにはAl、B、Inを多量に添
加する必要があるが、この場合歪が増加し、酸素空孔が
生成すると考えられる。この欠陥は酸化性雰囲気中での
高温熱処理により容易に減少し、同時に欠陥により発生
した自由電子も減少するため、抵抗増加が起ると考えら
れる。
The difference in ionic radius can be considered as the cause of the difference in heat resistance in the atmosphere when the additive element is Al, B, In and Ga. That is, the ionic radii of Al and B are too small compared with Zn, respectively, and conversely In is too large. Since the ionic radius of Ga is the closest to that of Zn, it is considered that the lattice strain in the case of substitution is the smallest. In order to obtain a low resistance film, it is necessary to add a large amount of Al, B and In. In this case, it is considered that the strain increases and oxygen vacancies are generated. It is considered that this defect is easily reduced by high-temperature heat treatment in an oxidizing atmosphere, and at the same time, the number of free electrons generated by the defect is also reduced, so that the resistance is increased.

【0041】これに対してGa添加膜の場合、Gaの多
量添加によっても格子歪、酸素欠陥が生じにくいため酸
化性雰囲気での耐熱性も向上すると考えられる。Ga添
加の場合も耐熱性は膜の結晶性に強く依存することがわ
かり、結晶性のよい膜、すなわちX線回折線の半値幅が
ある値以下の場合、酸化性雰囲気での耐熱性が著しく向
上することがわかった。
On the other hand, in the case of a Ga-added film, it is considered that even if a large amount of Ga is added, lattice strain and oxygen defects are less likely to occur, so that the heat resistance in an oxidizing atmosphere is also improved. It was found that the heat resistance also strongly depends on the crystallinity of the film even when Ga is added, and when the film has good crystallinity, that is, when the half width of the X-ray diffraction line is less than a certain value, the heat resistance in an oxidizing atmosphere is remarkably high. It turned out to improve.

【0042】[0042]

【実施例】【Example】

[実施例1〜6および比較例1〜9]以下本発明の実施
例について図表を参照しながら詳細に説明する。アルカ
リバリアーコートとして約500Åの膜厚のシリカ膜が
形成されたガラス基板(5cm×5cm×1mm)を用
意し、充分に洗浄したシリカコートガラス基板上に直流
スパッタリング法により、ZnO中に酸化ガリウム(G
23 )を添加した種々のターゲット(Ga/Zn比
が0.3から15原子%)を用いてAr雰囲気中で、膜
厚が3000Åから10000ÅのZnO透明導電膜を
形成した。このとき用いたターゲットは、ZnO中に酸
化ガリウムを添加した後、1400℃以上の温度で2時
間以上保持して、酸化ガリウムをZnO中に充分固溶さ
せたターゲットである。
[Examples 1 to 6 and Comparative Examples 1 to 9] Examples of the present invention will be described in detail below with reference to the drawings. Prepare a glass substrate (5 cm × 5 cm × 1 mm) on which a silica film having a thickness of about 500 Å is formed as an alkali barrier coat, and gallium oxide (ZnO G
A ZnO transparent conductive film having a film thickness of 3000 Å to 10000 Å was formed in an Ar atmosphere by using various targets (Ga / Zn ratio of 0.3 to 15 atom%) to which a 2 0 3 ) was added. The target used at this time is a target in which gallium oxide is added to ZnO and then held at a temperature of 1400 ° C. or higher for 2 hours or more to sufficiently dissolve gallium oxide in ZnO.

【0043】真空装置はあらかじめ10-6Torr以下
に排気した後、Arガスを0.01Torr導入してス
パッタリングを行った。基板温度は室温から300℃の
範囲に設定した。またスパッタリングパワーは50Wを
標準条件としたが、高速製膜の例として400Wまで変
化させた。
The vacuum apparatus was evacuated to 10 -6 Torr or less in advance, and then Ar gas was introduced at 0.01 Torr for sputtering. The substrate temperature was set in the range of room temperature to 300 ° C. The sputtering power was set to 50 W as a standard condition, but was changed to 400 W as an example of high-speed film formation.

【0044】比較例のために不純物を添加しないZnO
ターゲット、およびZnO中に酸化アルミニウム(Al
23 )、酸化インジウム(In23 )、酸化ホウ素
(B23 )を添加した種々のターゲット(Al/Zn
比が4原子%、In/Zn比が5原子%、B/Zn比が
4.5原子%)を焼結法により作製し、これを用いて比
較例のサンプルを作製した。
ZnO containing no impurities for comparison
Aluminum oxide (Al
2 O 3 ), indium oxide (In 2 O 3 ), boron oxide (B 2 O 3 ) added to various targets (Al / Zn
A ratio of 4 atomic%, an In / Zn ratio of 5 atomic%, and a B / Zn ratio of 4.5 atomic%) were prepared by a sintering method, and a sample of a comparative example was prepared by using this.

【0045】作製した膜中のGa含有量はZnO膜を塩
酸の2規定溶液中に溶解した後、ICP発光分析法によ
り定量分析を行った。Ga含有量は亜鉛に対する原子%
で表した。また比抵抗は4探針法により求めたシート抵
抗と、触針式膜厚計により測定した膜厚から算出した。
The Ga content in the produced film was quantitatively analyzed by ICP emission spectrometry after the ZnO film was dissolved in a 2N solution of hydrochloric acid. Ga content is atomic% based on zinc
Expressed as The specific resistance was calculated from the sheet resistance obtained by the 4-probe method and the film thickness measured by a stylus type film thickness meter.

【0046】導電膜のX線回折はCuのKα線を使用
し、比例係数管を用いたレートメーターにて測定した。
X線回折の測定例を図1、2に示す。これは後述するよ
うにGaを添加したZnO膜の実施例3と比較例4につ
いて(002)X線回折ピークを拡大したものである。
図に示すように、(002)ピークの最大強度の1/2
の強度となる回折線の線幅(度で表す)を半値幅(半価
幅)とよぶが、図1の実施例3の場合半値幅は0.28
度、図2の比較例4の場合0.82度である。
The X-ray diffraction of the conductive film was measured by using a Kα ray of Cu with a rate meter using a proportional coefficient tube.
An example of X-ray diffraction measurement is shown in FIGS. This is an enlargement of the (002) X-ray diffraction peak for Example 3 and Comparative Example 4 of the ZnO film to which Ga was added, as described later.
As shown in the figure, 1/2 of the maximum intensity of the (002) peak
The line width (expressed in degrees) of the diffraction line having the intensity of is called a half-value width (half-value width), but in the case of Example 3 in FIG. 1, the half-value width is 0.28.
And 0.82 degrees in the case of Comparative Example 4 in FIG.

【0047】可視光透過率は積分球を用いた分光器によ
り行い、400nmから700nmの波長の平均値で透
過率を評価した。これらの導電膜について表1に示す条
件で大気中熱処理試験を行った。表2および表3に熱処
理前後の特性変化について測定した結果を示す。
The visible light transmittance was measured by a spectroscope using an integrating sphere, and the transmittance was evaluated by an average value of wavelengths of 400 nm to 700 nm. These conductive films were subjected to a heat treatment test in air under the conditions shown in Table 1. Tables 2 and 3 show the results of measurement of changes in properties before and after heat treatment.

【0048】[0048]

【表1】 [Table 1]

【0049】表2に示す実施例1、2、3、4、5、6
はGa添加量が0.5原子%以上12原子%以下であ
り、かつ(002)X線回折線の半値幅が0.6度以下
の場合の膜についての耐熱性試験結果である。実施例3
の膜のX線回折線の半値幅は図1に示すように0.28
度であった。これらの膜は成膜時において10-3Ω・c
mから10-4Ω・cm台の高い導電性を示すとともに、
500℃、10分間の大気中熱処理後にも導電性は低下
せず、同等であるかまたは逆に向上している。
Examples 1, 2, 3, 4, 5, 6 shown in Table 2
Is the heat resistance test result for the film when the Ga addition amount is 0.5 atom% or more and 12 atom% or less and the half width of the (002) X-ray diffraction line is 0.6 degree or less. Example 3
The full width at half maximum of the X-ray diffraction line of the film is 0.28 as shown in FIG.
It was degree. These films have a film thickness of 10 -3 Ω · c
In addition to exhibiting a high conductivity of m to 10 −4 Ω · cm,
Even after the heat treatment in the air at 500 ° C. for 10 minutes, the conductivity does not decrease, and the conductivity is equal or, conversely, improved.

【0050】透過率の変化はみられず大気中熱処理に対
して安定な膜であることがわかった。特に注目すべきは
実施例4に示される高速製膜の例であるが、40Å/秒
という高速で製膜された場合にも半値幅が0.45度と
小さい膜は製膜直後にも2×10-4Ω・cm台の低抵抗
であり、かつ大気中熱処理後も安定であることがわかっ
た。
No change in transmittance was observed, and it was found that the film was stable against heat treatment in the atmosphere. Especially noteworthy is the example of the high-speed film formation shown in Example 4, but even when the film is formed at a high speed of 40 Å / sec, a film having a small half-value width of 0.45 ° is 2 immediately after the film formation. It was found that the resistance was as low as × 10 −4 Ω · cm and was stable even after the heat treatment in the air.

【0051】[0051]

【表2】 [Table 2]

【0052】これに対してGaを添加したにもかかわら
ずその量が少なすぎた例を表3中の比較例1、2に示
す。比較例1は無添加ZnOであり、従来から知られる
ように耐熱性は全く見られなかった。Gaを0.3原子
%添加すると比較例2に示すように半値幅は良好である
にもかかわらず、実用上は全く不充分な耐熱性しか得ら
れなかった。
On the other hand, comparative examples 1 and 2 in Table 3 show examples in which the amount of Ga was too small even though it was added. Comparative Example 1 was undoped ZnO, and no heat resistance was observed, as is conventionally known. When Ga was added in an amount of 0.3 atomic%, the half-value width was good as shown in Comparative Example 2, but practically only insufficient heat resistance was obtained.

【0053】比較例3、4はGa添加量が0.5原子%
以上であるが、半値幅が0.6以上と大きい例である。
この場合、製膜後の抵抗は低いものの大気中熱処理によ
り大幅に抵抗増加が起った。比較例5はGa添加量が
0.5原子%以上と特に添加量を増加した例であるが、
半値幅が0.6以下であるにもかかわらず大気中熱処理
により抵抗増加が見られた。以上の抵抗変化に伴い、透
過率も変化(増加)している。これは大気中熱処理によ
る酸化の影響を反映したものと考えられる。
In Comparative Examples 3 and 4, the amount of Ga added is 0.5 atom%.
The above is an example in which the half width is as large as 0.6 or more.
In this case, although the resistance after film formation was low, the resistance was significantly increased by the heat treatment in the atmosphere. Comparative Example 5 is an example in which the added amount of Ga is 0.5 atomic% or more and the added amount is particularly increased.
An increase in resistance was observed due to heat treatment in air even though the half-width was 0.6 or less. The transmittance also changes (increases) with the above resistance change. This is considered to reflect the effect of oxidation due to heat treatment in the atmosphere.

【0054】Ga以外の3族元素であるAl、In、B
を添加した場合の比較例を6〜9に示した。いずれの場
合も半値幅は0.6度以下であるにもかかわらず大気中
での耐熱性は全く見られず、透過率変化もあることが明
らかとなった。比較例7のAl添加の場合、スパッタ電
力を増加させて高速製膜を試みたが、比較例6に示す低
速製膜の場合に較べて製膜後の抵抗は増加し、かつ耐熱
性も劣化した。このようにGa以外の3族元素添加の場
合はX線回折の半値幅が小さくても耐熱性に向上は見出
せなかった。
Al, In, B which are Group 3 elements other than Ga
6 to 9 show comparative examples in which was added. In each case, it was revealed that the heat resistance in the atmosphere was not observed at all and the transmittance was changed although the half width was 0.6 degrees or less. In the case of adding Al in Comparative Example 7, high-speed film formation was attempted by increasing the sputtering power, but the resistance after film formation increased and the heat resistance deteriorated as compared with the case of low-speed film formation shown in Comparative Example 6. did. Thus, in the case of adding a Group 3 element other than Ga, no improvement in heat resistance was found even if the half width of X-ray diffraction was small.

【0055】[0055]

【表3】 [Table 3]

【0056】[実施例7]充分に洗浄したソーダライム
シリカガラス(10cm×10cm×2mm厚)の基板
上にスクリーン印刷・焼成により向かい合った2辺にバ
スバーを形成した。バスバーの長さは8cmであり、バ
スバーとバスバーとの間隔は8cmであった。この基板
上に直流スパッタ法により、酸化亜鉛中に酸化ガリウム
を7.5%添加したターゲットを用いて圧力0.01T
orrのアルゴン雰囲気中で膜厚が2000Åの酸化亜
鉛透明電導膜を形成した。このとき用いたターゲット
は、ZnO中に酸化ガリウムを添加した後、1400℃
以上の温度で2時間以上保持して、酸化ガリウムをZn
O中に充分固溶させたターゲットである。なお成膜中に
特に基板加熱はおこなわなかった。
[Example 7] A bus bar was formed on two opposite sides by screen printing and firing on a sufficiently washed soda lime silica glass (10 cm x 10 cm x 2 mm thick) substrate. The length of the bus bar was 8 cm, and the distance between the bus bars was 8 cm. On this substrate, by DC sputtering, a target of 7.5% gallium oxide in zinc oxide was used and the pressure was 0.01 T.
A zinc oxide transparent conductive film having a film thickness of 2000 Å was formed in an argon atmosphere of orr. The target used at this time was 1400 ° C. after adding gallium oxide to ZnO.
Hold gallium oxide at the above temperature for 2 hours or more to remove gallium oxide.
The target is a solid solution in O. The substrate was not particularly heated during the film formation.

【0057】前記の成膜された基板と、電極取出し部を
切り欠いたもう一枚のソーダライムガラス(10cm×
8.5cm×2mm厚)とをポリビニルブチラール(P
VB)膜を用いて合せ処理をおこなった後、バスバー電
極間の抵抗を測定したところ、50.4Ωであった。電
極間に電圧22Vを印加して単位面積当たりの発熱量が
1500W/m2 で通電試験をおこなったところ、6週
間経過後も、抵抗値、外観共変化を示さず一定であっ
た。
The substrate on which the film was formed and another soda lime glass (10 cm ×
8.5 cm x 2 mm thick) and polyvinyl butyral (P
After performing the matching process using the VB) film, the resistance between the bus bar electrodes was measured and found to be 50.4Ω. When a voltage of 22 V was applied between the electrodes and a heat generation amount per unit area was 1,500 W / m 2 , an energization test was conducted. After 6 weeks, both resistance and appearance did not change and were constant.

【0058】[比較例10]実施例7と同様のバスバー
付き基板に、金属亜鉛、Agのターゲットを備えたイン
ライン式スパッタ装置を用いて、ZnO/Ag/ZnO
の3層からなる高透過率の導電膜を成膜した。ZnO層
は金属亜鉛をターゲットとして、アルゴンと酸素の混合
ガス雰囲気中で、反応性スパッタにより成膜した。Ag
層は銀をターゲットとして、純アルゴン雰囲気中で成膜
した。各層の膜厚は、基板側から順に450Å、100
Å、450Åとした。この積層膜はバスバー間で測定し
た端子間抵抗が7.1Ωであった。
[Comparative Example 10] ZnO / Ag / ZnO was prepared by using an in-line type sputtering apparatus equipped with a bus bar-equipped substrate similar to that of Example 7 and a target of metallic zinc and Ag.
A high-transmittance conductive film having three layers was formed. The ZnO layer was formed by reactive sputtering in a mixed gas atmosphere of argon and oxygen with metallic zinc as a target. Ag
The layer was formed in a pure argon atmosphere with silver as a target. The film thickness of each layer is 450Å, 100 from the substrate side.
Å and 450Å. This laminated film had a terminal resistance of 7.1Ω measured between the bus bars.

【0059】実施例7と同様に、前記の基板と、電極取
出し部を切り欠いたもう一枚のソーダライムガラス(1
0cm×8.5cm×2mm厚)とをPVB膜を用いて
合わせ処理をおこなった後、バスバー間に電圧8.2V
を印加して単位面積当たりの発熱量が1500W/m2
で通電試験をおこなったところ、外観は変化なかった
が、3週間経過後に端子間抵抗が12.9Ωまで増加し
た。引き続き通電試験をおこなったところ、6週間目に
100Ωを超えてしまった。
In the same manner as in Example 7, the above-mentioned substrate and another soda lime glass (1
(0 cm × 8.5 cm × 2 mm thickness) with a PVB film, and then a voltage of 8.2 V is applied between the bus bars.
And the amount of heat generated per unit area is 1500 W / m 2
When a current-carrying test was carried out at, the appearance did not change, but the resistance between terminals increased to 12.9Ω after 3 weeks. When a current-carrying test was conducted subsequently, it exceeded 100 Ω in the 6th week.

【0060】[比較例11]実施例7と同様のバスバー
付き基板に、ITOターゲット(In23 −7.5w
t%SnO2 )を用いて、インライン式直流スパッタ装
置により膜厚2400ÅのITO層を形成した。スパッ
タリングガスとしてはアルゴンと、アルゴン量に対して
2%の酸素を加えた混合ガスを用いて、マスフローメー
ターでスパッタ中の成膜室圧力が0.01Torrにな
るように導入した。なお成膜中に特に基板加熱はおこな
わなかった。30cm角の基板面内でのシート抵抗分布
を測定したところ、±30%のバラツキがあることがわ
かった。バスバー電極間に22Vの電圧を印加したとこ
ろ、高抵抗部分ではほとんど発熱せず、電熱ガラスとし
て機能に問題があることがわかった。
[Comparative Example 11] An ITO target (In 2 O 3 -7.5w) was formed on the same substrate with a bus bar as in Example 7.
t% SnO 2 ) was used to form an ITO layer having a film thickness of 2400 Å by an in-line DC sputtering apparatus. Argon and a mixed gas containing 2% of oxygen relative to the amount of argon were used as the sputtering gas, and the mixture was introduced by a mass flow meter so that the pressure in the film forming chamber during the sputtering was 0.01 Torr. The substrate was not particularly heated during the film formation. When the sheet resistance distribution in the 30 cm square substrate surface was measured, it was found that there was a variation of ± 30%. When a voltage of 22 V was applied between the bus bar electrodes, almost no heat was generated in the high resistance portion, and it was found that there was a problem in function as an electrothermal glass.

【0061】[実施例8]実施例7と同様にしてガリウ
ムドープ酸化亜鉛膜を形成した透明発熱体層付きのガラ
ス基板を作成する際に、同じ真空槽内に設けられたジル
コニウム−シリコン合金(組成は原子比でZr/Si=
1/2)ターゲットを用いて、アルゴン−酸素プラズマ
中での反応スパッタリングにより、ジルコニア−シリカ
膜のオーバーコートおよびアンダーコートを、真空を破
らずにガラス基板上に連続して形成した。すなわち全体
の膜構成としてはガラス基板側から、膜厚300Åのジ
ルコニア‐シリカ膜、膜厚1200Åのガリウムドープ
酸化亜鉛膜、膜厚300Åのジルコニア‐シリカ膜とな
る。
[Embodiment 8] When a glass substrate having a transparent heating element layer on which a gallium-doped zinc oxide film was formed was prepared in the same manner as in Embodiment 7, a zirconium-silicon alloy ( The composition is atomic ratio Zr / Si =
1/2) Using a target, an overcoat and an undercoat of a zirconia-silica film were continuously formed on a glass substrate without breaking vacuum by reactive sputtering in argon-oxygen plasma. That is, the overall film structure is, from the glass substrate side, a zirconia-silica film having a film thickness of 300Å, a gallium-doped zinc oxide film having a film thickness of 1200Å, and a zirconia-silica film having a film thickness of 300Å.

【0062】これにスクリーン印刷法によりバスバーお
よび電極取出し部を印刷して300℃で焼き付けた後、
電極取出し部にリード線を半田付けした。その後、同一
寸法のガラスとスペーサーを挟んでシーラントで封着し
てペアガラス化して電熱ガラスとした。シーラントを貫
通して外部へ取り出したリード線で、バスバー電極間の
抵抗を測定したところ108Ωであった。バスバー間に
電圧32.2Vを印加して通電試験をおこなったとこ
ろ、6週間経過後も、抵抗値、外観とも変化を示さず、
一定であった。
A bus bar and an electrode lead-out portion were printed on this by a screen printing method, and after baking at 300 ° C.,
A lead wire was soldered to the electrode extraction portion. After that, a glass having the same size and a spacer were sandwiched and sealed with a sealant to form a pair of glasses, and an electrically heated glass was obtained. When the resistance between the bus bar electrodes was measured with a lead wire penetrating the sealant and taken out to the outside, it was 108Ω. When a voltage of 32.2V was applied between the bus bars and an energization test was performed, no change was observed in the resistance value and the appearance even after 6 weeks,
It was constant.

【0063】[比較例12]実施例7と同様に充分に洗
浄したソーダライムシリカガラス(10cm×10cm
×2mm厚)の基板上にスクリーン印刷・焼成により向
かい合った2辺にバスバーを形成した。バスバーの長さ
は8cmであり、バスバーとバスバーとの間隔は8cm
であった。この基板上に直流スパッタ法により、酸化亜
鉛中に酸化ガリウムを7.5%添加したターゲットを用
いて圧力0.01Torrのアルゴン雰囲気中で膜厚が
2000Åの酸化亜鉛透明電導膜を形成した。このとき
用いたターゲットは、ZnO中に酸化ガリウムを添加し
た後、1100℃の温度で2時間保持したものである。
なお成膜中に特に基板加熱はおこなわなかった。
[Comparative Example 12] Soda-lime silica glass (10 cm x 10 cm) that was thoroughly washed as in Example 7.
A bus bar was formed on two opposite sides by screen printing and firing on a substrate (× 2 mm thick). The length of the busbar is 8 cm, and the distance between the busbars is 8 cm.
Met. A zinc oxide transparent conductive film having a film thickness of 2000 Å was formed on this substrate by a DC sputtering method using a target in which 7.5% of gallium oxide was added to zinc oxide in an argon atmosphere at a pressure of 0.01 Torr. The target used at this time was one in which gallium oxide was added to ZnO and then held at a temperature of 1100 ° C. for 2 hours.
The substrate was not particularly heated during the film formation.

【0064】前記の成膜された基板と、電極取出し部を
切り欠いたもう一枚のソーダライムガラス(10cm×
8.5cm×2mm厚)とをポリビニルブチラール(P
VB)膜を用いて合せ処理をおこなった後、バスバー電
極間の抵抗を測定したところ、65.2Ωであった。電
極間に電圧25Vを印加して単位面積当たりの発熱量が
1500W/m2 で通電試験をおこなったところ、3週
間経過後に端子間抵抗が80.0Ωに増加し、6週間経
過後に92.5Ωまで増加した。このように抵抗値の安
定性は劣るものであった。
The substrate on which the film was formed and another soda lime glass (10 cm ×
8.5 cm x 2 mm thick) and polyvinyl butyral (P
After performing a matching process using the VB) film, the resistance between the bus bar electrodes was measured and found to be 65.2Ω. When a voltage of 25 V was applied between electrodes and a heat generation amount per unit area was 1500 W / m 2 , an energization test was conducted, the resistance between terminals increased to 80.0 Ω after 3 weeks, and 92.5 Ω after 6 weeks. Increased to. Thus, the stability of the resistance value was poor.

【0065】[0065]

【発明の効果】表2から明らかなように、Ga濃度が原
子比で0.5原子%以上、12原子%以下にある膜は、
成膜時において10-3Ω・cmから10-4Ω・cm台の
高い導電性を示すとともに、大気中熱処理後にも導電性
は低下せず、同等であるかまたは逆に向上する。透過率
の変化はみられず高温大気中で安定な膜であることがわ
かる。
As is clear from Table 2, a film having a Ga concentration of 0.5 atomic% or more and 12 atomic% or less in atomic ratio is
The film exhibits high conductivity of the order of 10 −3 Ω · cm to 10 −4 Ω · cm at the time of film formation, and the conductivity does not decrease even after the heat treatment in the air, and the conductivity is equal or inversely improved. It can be seen that there is no change in transmittance and the film is stable in high temperature atmosphere.

【0066】これに対して表3の比較例1、2に示すよ
うにGa含有量が0.5原子%以下の膜ではX線回折線
の半値幅が0.6度以下であっても、大気中熱処理後に
抵抗の大幅な増加が見られる。同時に熱処理により透過
率も変化している。また比較例3、4に示されるように
Ga量が5原子%であっても半値幅が0.6度以上であ
る場合、大気中熱処理により抵抗増加が見られる。
On the other hand, as shown in Comparative Examples 1 and 2 in Table 3, even if the half-width of the X-ray diffraction line is 0.6 degree or less in the film having a Ga content of 0.5 atomic% or less, A large increase in resistance is seen after heat treatment in air. At the same time, the transmittance changes due to the heat treatment. Further, as shown in Comparative Examples 3 and 4, even when the Ga amount is 5 atomic%, when the half width is 0.6 degree or more, the resistance increase is observed by the heat treatment in the air.

【0067】さらに比較例5に示されるようにGa濃度
が12原子%以上の膜では同様に熱処理後に抵抗の大幅
な増加が見られる。添加物がGa以外の3族元素である
場合の比較例を6〜9に示すが、いずれの場合も半値幅
は0.6度以下であるにもかかわらず大気中での耐熱性
は全く見られないことが明らかである。
Further, as shown in Comparative Example 5, in a film having a Ga concentration of 12 atomic% or more, a large increase in resistance is similarly observed after the heat treatment. Comparative examples 6 to 9 in the case where the additive is a Group 3 element other than Ga are shown. In all cases, the half-value width is 0.6 degrees or less, but no heat resistance in the atmosphere is observed. Obviously not.

【0068】本発明による、ガリウムドープ酸化亜鉛層
を発熱体層に用いた透明発熱体は、薄い銀層等の金属薄
層を用いた透明発熱体用の膜系と比べて、通電に対する
長期信頼性や環境からのアタックに対する安定性などに
おいて優っている。
The transparent heating element using the gallium-doped zinc oxide layer according to the present invention as a heating element layer has a long-term reliability against electric current as compared with a film system for a transparent heating element using a thin metal layer such as a thin silver layer. It excels in stability and stability against attacks from the environment.

【0069】また、大面積基板に均一な膜厚・膜質分布
で成膜が可能な直流スパッタ法で成膜ができるため、例
えば1m巾以上の大面積が必要な、例えば自動車のフロ
ントガラスの防曇用途などへの応用が可能であるし、ま
た小サイズの基板を並べて複数枚同時に成膜することが
できるので、生産効率の点でも優れている。
Further, since it is possible to form a film on a large-area substrate with a uniform film thickness and film quality distribution by the DC sputtering method, a large area of, for example, 1 m width or more is required. It can be applied to cloudy applications, etc., and it is also excellent in terms of production efficiency because it is possible to arrange a plurality of small-sized substrates side by side and simultaneously form a plurality of films.

【0070】以上示したようにGa濃度とX線回折線の
半値幅をある特定の範囲に制御することにより、導電
性、透過率の高い透明導電膜が実現できることに加え
て、大気中熱処理によっても導電性が全く損われない、
耐酸化性透明導電膜を得ることが可能である。したがっ
て、これらの基板は高透明性、低抵抗、大気中耐熱性、
低コスト各要素を供えているため、各種表示素子や太陽
電池および受光素子等の透明電極、建築用および自動車
用の熱線反射膜、選択透過膜、および電磁波遮蔽膜、さ
らに、自動車の防曇、防水用や冷凍ショーケース等やそ
の他の建築用の透明発熱体、あるいはフォトマスクや建
築用等の帯電防止膜、等として最適なものとなり、極め
て広範囲な分野への応用が可能となる。
As described above, by controlling the Ga concentration and the half-value width of the X-ray diffraction line within a specific range, it is possible to realize a transparent conductive film having high conductivity and transmittance. The conductivity is not lost at all,
It is possible to obtain an oxidation resistant transparent conductive film. Therefore, these substrates have high transparency, low resistance, heat resistance in air,
Since it provides low-cost elements, various display elements, transparent electrodes such as solar cells and light-receiving elements, heat ray reflective films for construction and automobiles, selective transmission films, and electromagnetic wave shielding films, as well as anti-fog for automobiles, It is most suitable as a transparent heating element for waterproofing, freezing showcases, and other constructions, or as an antistatic film for photomasks and constructions, and can be applied to an extremely wide range of fields.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例3の透明導電膜の(002)X線回折線
半値幅を示すグラフ
FIG. 1 is a graph showing the full width at half maximum of a (002) X-ray diffraction line of a transparent conductive film of Example 3.

【図2】比較例4の透明導電膜の(002)X線回折線
半値幅を示すグラフ
FIG. 2 is a graph showing the full width at half maximum of (002) X-ray diffraction line of the transparent conductive film of Comparative Example 4.

【図3】本発明の透明発熱体の断面構成図FIG. 3 is a sectional configuration diagram of the transparent heating element of the present invention.

【図4】本発明の透明導電膜を用いたEHWの平面図FIG. 4 is a plan view of an EHW using the transparent conductive film of the present invention.

【符号の説明】[Explanation of symbols]

1:オーバーコート層 2:ガリウムドープ酸化亜鉛層 3:アンダーコート層 4:基板 5:上辺バスバー 6:透明発熱膜コート部分 7:下辺バスバー 8:基板 1: Overcoat layer 2: Gallium-doped zinc oxide layer 3: Undercoat layer 4: Substrate 5: Upper side bus bar 6: Transparent heating film coating part 7: Lower side bus bar 8: Substrate

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H01L 31/04 (72)発明者 安達 邦彦 神奈川県横浜市神奈川区羽沢町1150番地 旭硝子株式会社中央研究所内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification number Reference number within the agency FI Technical indication location H01L 31/04 (72) Inventor Kunihiko Adachi 1150 Hazawa-machi, Kanagawa-ku, Yokohama-shi, Kanagawa Asahi Glass Co., Ltd. Chuo In the laboratory

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】酸化亜鉛を主成分とする透明導電膜であっ
て、該透明導電膜は、ガリウムを亜鉛に対して0.1原
子%以上15原子%以下含有し、そのX線回折パターン
において(002)面による回折ピークを有し、(00
2)面による回折線の半値幅が1.2度以下であること
を特徴とする透明導電膜。
1. A transparent conductive film containing zinc oxide as a main component, wherein the transparent conductive film contains gallium in an amount of 0.1 atom% or more and 15 atom% or less with respect to zinc. Has a diffraction peak due to the (002) plane,
2) A transparent conductive film having a half-value width of a diffraction line by a plane of 1.2 degrees or less.
【請求項2】前記透明導電膜は、ガリウムを亜鉛に対し
て0.5原子%以上12原子%以下含有し、そのX線回
折パターンにおいて(002)面による回折ピークを有
し、(002)面による回折線の半値幅が0.6度以下
であることを特徴とする請求項1の透明導電膜。
2. The transparent conductive film contains gallium in an amount of 0.5 atomic% or more and 12 atomic% or less with respect to zinc, and has a diffraction peak due to a (002) plane in an X-ray diffraction pattern thereof, (002) 2. The transparent conductive film according to claim 1, wherein the half-width of the diffraction line by the surface is 0.6 degree or less.
【請求項3】前記透明導電膜の比抵抗が10-2Ω・cm
以下で、膜厚が100Å以上5μ以下の範囲にあること
を特徴とする請求項1または2の透明導電膜。
3. The specific resistance of the transparent conductive film is 10 −2 Ω · cm.
The transparent conductive film according to claim 1 or 2, wherein the film thickness is in the range of 100 Å or more and 5 µ or less.
【請求項4】基体上に、請求項1〜3いずれか1項の透
明導電膜を有することを特徴とする透明発熱体。
4. A transparent heating element comprising the transparent conductive film according to claim 1 on a substrate.
【請求項5】前記基体と前記透明導電膜との間に1層以
上のアンダーコート膜および/または前記透明導電膜上
に1層以上のオーバーコート膜を有することを特徴とす
る請求項4の透明発熱体。
5. The one or more undercoat film between the substrate and the transparent conductive film, and / or the one or more overcoat film on the transparent conductive film. Transparent heating element.
【請求項6】前記アンダーコート膜の少なくとも1層ま
たは前記オーバーコート膜の少なくとも1層の膜材料
は、酸化ケイ素、酸化チタン、酸化ジルコニウム、酸化
錫、酸化タンタル、酸化クロム、酸化ニオブ、酸化ホウ
素、酸化インジウム、酸化亜鉛、および酸化セリウムか
らなる群から選ばれる少なくとも1種からなることを特
徴とする請求項5の透明発熱体。
6. The film material of at least one layer of the undercoat film or at least one layer of the overcoat film is silicon oxide, titanium oxide, zirconium oxide, tin oxide, tantalum oxide, chromium oxide, niobium oxide, boron oxide. The transparent heating element according to claim 5, comprising at least one selected from the group consisting of, indium oxide, zinc oxide, and cerium oxide.
【請求項7】前記アンダーコート膜の少なくとも1層ま
たは前記オーバーコート膜の少なくとも1層の膜材料
は、チタン、ジルコニウム、ハフニウム、クロム、ニオ
ブの金属、前記金属の窒化物、および前記金属の酸窒化
物からなる群から選ばれる少なくとも1種からなること
を特徴とする請求項5の透明発熱体。
7. The film material of at least one layer of the undercoat film or at least one layer of the overcoat film is a metal of titanium, zirconium, hafnium, chromium, niobium, a nitride of the metal, and an acid of the metal. The transparent heating element according to claim 5, wherein the transparent heating element comprises at least one selected from the group consisting of nitrides.
【請求項8】前記透明発熱体は、少なくとも2箇所以上
の電極取出し部が付けられていることを特徴とする請求
項4〜7いずれか1項の透明発熱体。
8. The transparent heating element according to claim 4, wherein the transparent heating element is provided with at least two electrode lead-out portions.
【請求項9】加熱時の温度制御や異常発熱の検知を目的
とした検知手段を有することを特徴とする請求項4〜8
いずれか1項の透明発熱体。
9. A detection means for the purpose of temperature control during heating and detection of abnormal heat generation.
The transparent heating element according to any one of items.
【請求項10】請求項4〜9いずれか1項の透明発熱体
を有することを特徴とする合せ構造体または複層構造
体。
10. A laminated structure or a multilayer structure comprising the transparent heating element according to any one of claims 4 to 9.
JP22467393A 1992-09-11 1993-09-09 Transparent conductive film Expired - Fee Related JP3453805B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22467393A JP3453805B2 (en) 1992-09-11 1993-09-09 Transparent conductive film

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP4-269561 1992-09-11
JP26956192 1992-09-11
JP22467393A JP3453805B2 (en) 1992-09-11 1993-09-09 Transparent conductive film

Publications (2)

Publication Number Publication Date
JPH06187833A true JPH06187833A (en) 1994-07-08
JP3453805B2 JP3453805B2 (en) 2003-10-06

Family

ID=26526194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22467393A Expired - Fee Related JP3453805B2 (en) 1992-09-11 1993-09-09 Transparent conductive film

Country Status (1)

Country Link
JP (1) JP3453805B2 (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006308856A (en) * 2005-04-28 2006-11-09 Toppan Printing Co Ltd Color filter substrate
JP2007039293A (en) * 2005-08-05 2007-02-15 Idemitsu Kosan Co Ltd Method for producing oxide powder of zinc-based metal
WO2007148773A1 (en) * 2006-06-22 2007-12-27 Mitsubishi Paper Mills Limited Method for producing conductive material
WO2009031399A1 (en) * 2007-09-05 2009-03-12 Murata Manufacturing Co., Ltd. Transparent conductive film and method for producing transparent conductive film
WO2009136530A1 (en) * 2008-05-07 2009-11-12 Murata Masayoshi Substrate for thin film solar cell, method for producing the same, and thin film solar cell using the same
WO2010032490A1 (en) * 2008-09-19 2010-03-25 株式会社アルバック Solar cell and manufacturing method therefor
JP4517255B2 (en) * 2000-03-31 2010-08-04 東洋紡績株式会社 Transparent conductive film for touch panel, transparent conductive sheet for touch panel, and touch panel
US7867636B2 (en) 2006-01-11 2011-01-11 Murata Manufacturing Co., Ltd. Transparent conductive film and method for manufacturing the same
WO2011102198A1 (en) 2010-02-19 2011-08-25 リンテック株式会社 Transparent conductive film, process for producing same, and electronic device employing transparent conductive film
WO2011122497A1 (en) 2010-03-31 2011-10-06 リンテック株式会社 Transparent conductive film, method for producing same, and electronic device using transparent conductive film
TWI391951B (en) * 2009-09-22 2013-04-01
US8771834B2 (en) 2010-09-21 2014-07-08 Lintec Corporation Formed body, production method thereof, electronic device member and electronic device
US8846200B2 (en) 2010-09-21 2014-09-30 Lintec Corporation Gas-barrier film, process for producing same, member for electronic device, and electronic device
US8865810B2 (en) 2009-03-26 2014-10-21 Lintec Corporation Formed article, method for producing same, electronic device member, and electronic device
US8895427B2 (en) 2008-09-04 2014-11-25 Kaneka Corporation Substrate having a transparent electrode and method for producing the same
JP2014231640A (en) * 2013-05-28 2014-12-11 三星コーニングアドバンスドガラス有限会社Samsung Corning Advanced Glass, LLC Zinc oxide based sputtering target and photocell having protective layer vapor-deposited therefrom
US9340869B2 (en) 2008-08-19 2016-05-17 Lintec Corporation Formed article, method for producing the same, electronic device member, and electronic device
US9365922B2 (en) 2009-05-22 2016-06-14 Lintec Corporation Formed article, method of producing same, electronic device member, and electronic device
US9540519B2 (en) 2010-03-31 2017-01-10 Lintec Corporation Formed article, method for producing same, electronic device member, and electronic device
US9556513B2 (en) 2010-08-20 2017-01-31 Lintec Corporation Molding, production method therefor, part for electronic devices and electronic device
US10431702B2 (en) 2017-07-21 2019-10-01 Kabushiki Kaisha Toshiba Transparent electrode, manufacturing method thereof and electronic device employing the transparent electrode
JP2021014384A (en) * 2019-07-12 2021-02-12 Agc株式会社 Glass substrate with film and manufacturing method thereof

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4517255B2 (en) * 2000-03-31 2010-08-04 東洋紡績株式会社 Transparent conductive film for touch panel, transparent conductive sheet for touch panel, and touch panel
JP2006308856A (en) * 2005-04-28 2006-11-09 Toppan Printing Co Ltd Color filter substrate
JP2007039293A (en) * 2005-08-05 2007-02-15 Idemitsu Kosan Co Ltd Method for producing oxide powder of zinc-based metal
US7867636B2 (en) 2006-01-11 2011-01-11 Murata Manufacturing Co., Ltd. Transparent conductive film and method for manufacturing the same
WO2007148773A1 (en) * 2006-06-22 2007-12-27 Mitsubishi Paper Mills Limited Method for producing conductive material
US8012676B2 (en) 2006-06-22 2011-09-06 Mitsubishi Paper Mills Limited Process for preparing conductive material
JP5040991B2 (en) * 2007-09-05 2012-10-03 株式会社村田製作所 Transparent conductive film and method for producing transparent conductive film
WO2009031399A1 (en) * 2007-09-05 2009-03-12 Murata Manufacturing Co., Ltd. Transparent conductive film and method for producing transparent conductive film
JPWO2009031399A1 (en) * 2007-09-05 2010-12-09 株式会社村田製作所 Transparent conductive film and method for producing transparent conductive film
EP2071586A1 (en) * 2007-09-05 2009-06-17 Murata Manufacturing Co. Ltd. Transparent conductive film and method for producing transparent conductive film
EP2071586A4 (en) * 2007-09-05 2014-03-05 Murata Manufacturing Co Transparent conductive film and method for producing transparent conductive film
WO2009136530A1 (en) * 2008-05-07 2009-11-12 Murata Masayoshi Substrate for thin film solar cell, method for producing the same, and thin film solar cell using the same
US9340869B2 (en) 2008-08-19 2016-05-17 Lintec Corporation Formed article, method for producing the same, electronic device member, and electronic device
US8895427B2 (en) 2008-09-04 2014-11-25 Kaneka Corporation Substrate having a transparent electrode and method for producing the same
JPWO2010032490A1 (en) * 2008-09-19 2012-02-09 株式会社アルバック Solar cell and manufacturing method thereof
WO2010032490A1 (en) * 2008-09-19 2010-03-25 株式会社アルバック Solar cell and manufacturing method therefor
US8865810B2 (en) 2009-03-26 2014-10-21 Lintec Corporation Formed article, method for producing same, electronic device member, and electronic device
US9365922B2 (en) 2009-05-22 2016-06-14 Lintec Corporation Formed article, method of producing same, electronic device member, and electronic device
TWI391951B (en) * 2009-09-22 2013-04-01
WO2011102198A1 (en) 2010-02-19 2011-08-25 リンテック株式会社 Transparent conductive film, process for producing same, and electronic device employing transparent conductive film
WO2011122497A1 (en) 2010-03-31 2011-10-06 リンテック株式会社 Transparent conductive film, method for producing same, and electronic device using transparent conductive film
US9540519B2 (en) 2010-03-31 2017-01-10 Lintec Corporation Formed article, method for producing same, electronic device member, and electronic device
US9556513B2 (en) 2010-08-20 2017-01-31 Lintec Corporation Molding, production method therefor, part for electronic devices and electronic device
US8846200B2 (en) 2010-09-21 2014-09-30 Lintec Corporation Gas-barrier film, process for producing same, member for electronic device, and electronic device
US8771834B2 (en) 2010-09-21 2014-07-08 Lintec Corporation Formed body, production method thereof, electronic device member and electronic device
JP2014231640A (en) * 2013-05-28 2014-12-11 三星コーニングアドバンスドガラス有限会社Samsung Corning Advanced Glass, LLC Zinc oxide based sputtering target and photocell having protective layer vapor-deposited therefrom
US10431702B2 (en) 2017-07-21 2019-10-01 Kabushiki Kaisha Toshiba Transparent electrode, manufacturing method thereof and electronic device employing the transparent electrode
US10644172B2 (en) 2017-07-21 2020-05-05 Kabushiki Kaisha Toshiba Transparent electrode, manufacturing method thereof and electronic device employing the transparent electrode
JP2021014384A (en) * 2019-07-12 2021-02-12 Agc株式会社 Glass substrate with film and manufacturing method thereof

Also Published As

Publication number Publication date
JP3453805B2 (en) 2003-10-06

Similar Documents

Publication Publication Date Title
JP3453805B2 (en) Transparent conductive film
EP1503967B1 (en) Transparent substrate comprising a conductive layer
US6905776B1 (en) Conductive transparent layers and method for their production
EP0578046B1 (en) Transparent conductive film, and target and material for vapor deposition to be used for its production
US5028759A (en) Low emissivity film for a heated windshield
US5270517A (en) Method for fabricating an electrically heatable coated transparency
US5902505A (en) Heat load reduction windshield
US5736267A (en) Transparent conductive film and method for its production, and sputtering target
JPH08336923A (en) Heat resistant window or window shield having high transmission and low radiation rate and manufacture thereof
WO1991002102A1 (en) Film based on silicon dioxide and production thereof
JPH05334924A (en) Manufacture of transparent conductive film
JPH06199544A (en) Transparent substrate with transparent layer and production of said layer
JP4067141B2 (en) Transparent conductive film, method for producing the same, and sputtering target
US8722210B2 (en) Low emissivity glass and method for manufacturing the same
JP4168689B2 (en) Thin film laminate
JP4137254B2 (en) Method for producing transparent conductive laminate
KR20100021355A (en) Low emissivity glass and preparing method thereof
JP3725908B2 (en) Conductive laminate
KR0179462B1 (en) Alkali metal diffusion barrier layer
JPH07249316A (en) Transparent conductive film and transparent substrate using the transparent conductive film
KR20110089143A (en) Transparent conductive zinc oxide display film and production method therefor
JP2009242128A (en) Transparent conductive glass substrate and method for manufacturing the same
JP3850865B2 (en) Conductive laminate
JPH07178866A (en) Heat ray-blocking film and production thereof
JP2000108244A (en) Transparent conductive film, its manufacture, and base having transparent conductive film

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080725

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080725

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090725

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090725

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100725

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100725

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120725

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120725

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120725

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130725

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees