JP2007039293A - Method for producing oxide powder of zinc-based metal - Google Patents
Method for producing oxide powder of zinc-based metal Download PDFInfo
- Publication number
- JP2007039293A JP2007039293A JP2005227414A JP2005227414A JP2007039293A JP 2007039293 A JP2007039293 A JP 2007039293A JP 2005227414 A JP2005227414 A JP 2005227414A JP 2005227414 A JP2005227414 A JP 2005227414A JP 2007039293 A JP2007039293 A JP 2007039293A
- Authority
- JP
- Japan
- Prior art keywords
- zinc
- powder
- firing
- oxide powder
- inert gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
Description
本発明は、導電性酸化亜鉛粉末の製造方法及びその方法により製造される導電性酸化亜鉛粉末に関する。 The present invention relates to a method for producing a conductive zinc oxide powder and a conductive zinc oxide powder produced by the method.
導電性酸化亜鉛の製造方法として酸化亜鉛と各種添加剤を混合し還元雰囲気で焼成する方法が開示されている。例えば、特許文献1には水溶性亜鉛を用いて添加物とともに共沈させたのち水素中で焼成するという方法が開示されている。また、特許文献2にはZnOに対し酸化ガリウムを乾式混合し固体炭素存在下、約800〜1100℃で加熱焼成する事が開示されている。さらに、特許文献3には酸化亜鉛100重量部とAl,In,Ti,Gaを酸化物として0.01〜1重量部存在させ、可燃性ガス中で焙焼する方法が開示されている。 As a method for producing conductive zinc oxide, a method of mixing zinc oxide and various additives and firing in a reducing atmosphere is disclosed. For example, Patent Document 1 discloses a method in which water-soluble zinc is coprecipitated with additives and then fired in hydrogen. Patent Document 2 discloses that gallium oxide is dry-mixed with ZnO and heated and fired at about 800 to 1100 ° C. in the presence of solid carbon. Further, Patent Document 3 discloses a method in which 100 to 10 parts by weight of zinc oxide and 0.01 to 1 part by weight of Al, In, Ti, and Ga as oxides are present and roasted in a combustible gas.
上記の方法は、いずれも還元雰囲気で焼成を行う事を特徴としている。しかしながら、還元雰囲気での焼成は、爆発などの危険性の問題、多量の燃焼ガスが発生する問題、及び酸化亜鉛の大量の還元揮発を伴い収率の低下をもたらすという問題がある。また、より電導性を高めるためには、高温にしてAl,In,Ga等の元素との反応を十分進ませる事が望ましいが、高温にすると粒子の凝集が進むという問題がある。
これを避けるために特許文献1では、水溶性亜鉛を用いて低温で焼成する方法を開示している。しかしながら、プロセス上、pHの調整や脱水等の操作が必要となり、複雑で製造コストが高くなるという問題点がある。
All of the above methods are characterized by firing in a reducing atmosphere. However, firing in a reducing atmosphere has a problem of danger such as an explosion, a problem that a large amount of combustion gas is generated, and a problem that a reduction in yield is accompanied by a large amount of reduction and volatilization of zinc oxide. Moreover, in order to further improve the electrical conductivity, it is desirable that the reaction with elements such as Al, In, and Ga is sufficiently advanced at a high temperature, but there is a problem that the aggregation of particles proceeds at a high temperature.
In order to avoid this, Patent Document 1 discloses a method of baking at a low temperature using water-soluble zinc. However, the process requires operations such as pH adjustment and dehydration, and there is a problem that the manufacturing cost is complicated.
大気中での焼成は、装置が簡素で安価であり大量製造に適しているが、焼成された粉末の表面に高抵抗層ができるため、電気伝導性が十分に上がらないだけでなく、粒子が焼結し粒子径が大きくなってしまい、導電性の良好な微粉末を得ることができなかった。この粒子を機械的に微粉化すると、粒子に欠陥が生成するため、さらに著しく電気伝導性が低下してしまうという問題があった。
以上より、大気中で焼成され、製造された導電性酸化亜鉛系微粉末は、十分には電気抵抗を下げることができなかった。
From the above, the conductive zinc oxide fine powder baked and produced in the air could not sufficiently lower the electrical resistance.
本発明の目的は、安価な酸化亜鉛を母材とする亜鉛系酸化物であって、導電性の良い粉末を提供することである。 An object of the present invention is to provide a zinc-based oxide having an inexpensive zinc oxide as a base material and having good conductivity.
本発明者は、上記課題を克服するために鋭意検討を重ねた結果、亜鉛酸化物、又は亜鉛酸化物と他の金属元素を含む化合物の混合原料を焼成し、導電性を付与した粉末を、窒素等の不活性ガス雰囲気下で加熱処理することにより、電気伝導度の高い亜鉛系複合酸化物粉末を得られることを見出した。
また、用途上の要請から、より微粉化した亜鉛系複合酸化物粉末を製造する場合、焼成した粉末を微粉化処理し、その後に窒素等の不活性ガス雰囲気下で加熱処理することにより、電気伝導度の高い亜鉛系複合酸化物粉末が得られることを見出し、本発明を完成させた。
As a result of intensive studies in order to overcome the above problems, the present inventor baked zinc oxide or a mixed raw material of a compound containing zinc oxide and another metal element to give a powder imparted with conductivity, It has been found that a zinc-based composite oxide powder having high electrical conductivity can be obtained by heat treatment under an inert gas atmosphere such as nitrogen.
In addition, in order to produce a more finely divided zinc-based composite oxide powder due to demands in use, the fired powder is pulverized and then heat-treated in an inert gas atmosphere such as nitrogen. The present inventors have found that a zinc-based composite oxide powder having high conductivity can be obtained and completed the present invention.
本発明によれば、以下の亜鉛系酸化物粉末の製造方法、及び亜鉛系酸化物粉末が提供される。
1.亜鉛元素と、酸化亜鉛に固溶する+3価以上の元素又は−1価以下の元素を含む原料物質を焼成した後、不活性ガス雰囲気にて焼成する亜鉛系酸化物粉末の製造方法。
2.不活性ガス雰囲気下での焼成温度が1300℃以下である1記載の亜鉛系酸化物粉末の製造方法。
3.前記不活性ガスが窒素である1又は2記載の亜鉛系酸化物粉末の製造方法。
4.前記原料物質を焼成したものを微粉化した後に、不活性ガス雰囲気下で焼成する1〜3のいずれかに記載の亜鉛系酸化物粉末の製造方法。
5.上記1〜4のいずれかに記載の製造方法によって製造した亜鉛系酸化物粉末。
According to the present invention, the following zinc-based oxide powder production method and zinc-based oxide powder are provided.
1. A method for producing a zinc-based oxide powder, comprising firing a raw material containing a zinc element and a +3 or higher valent element or a -1 or lower valent element dissolved in zinc oxide, followed by firing in an inert gas atmosphere.
2. 2. The method for producing a zinc-based oxide powder according to 1, wherein the firing temperature in an inert gas atmosphere is 1300 ° C. or lower.
3. The method for producing a zinc-based oxide powder according to 1 or 2, wherein the inert gas is nitrogen.
4). The method for producing a zinc-based oxide powder according to any one of 1 to 3, wherein the material obtained by firing the raw material is pulverized and then fired in an inert gas atmosphere.
5. The zinc-type oxide powder manufactured by the manufacturing method in any one of said 1-4.
本発明によれば、高い電気伝導性を有する亜鉛系酸化物粉末が得られる。 According to the present invention, a zinc-based oxide powder having high electrical conductivity can be obtained.
以下、本発明の亜鉛系酸化物粉末の製造方法を具体的に説明する。
本発明の亜鉛系酸化物粉末の製造方法は、亜鉛元素と、酸化亜鉛に固溶する+3価以上の元素又は−1価以下の元素を含む原料物質を焼成した後、不活性ガス雰囲気にて焼成することを特徴としている。
Hereinafter, the manufacturing method of the zinc-type oxide powder of this invention is demonstrated concretely.
In the method for producing a zinc-based oxide powder of the present invention, after firing a raw material containing a zinc element and an element having a valence of 3 or more or an element having a valence of −1 or less dissolved in zinc oxide, in an inert gas atmosphere It is characterized by firing.
亜鉛系酸化物の原料としては、必要な元素源を含む粉末等が使用でき、各成分元素、各成分元素の酸化物等の化合物、又は焼成時に酸化物となる物質が使用できる。
例えば、Zn源としては、金属(Zn)、酸化物(ZnO)、水酸化物[Zn(OH)2]、硝酸塩[Zn(NO3)2]等が用いられる。
As a raw material for zinc-based oxides, powders containing necessary element sources can be used, and each component element, a compound such as an oxide of each component element, or a substance that becomes an oxide upon firing can be used.
For example, as the Zn source, metal (Zn), oxide (ZnO), hydroxide [Zn (OH) 2 ], nitrate [Zn (NO 3 ) 2 ], or the like is used.
酸化亜鉛に固溶する+3価以上の元素としては、例えば、Al、Ga、Sc、In、Y等の短周期型周期表第3A,B族元素(3族元素)やSiが使用できる。好ましくは、Al、Ga、Inである。
また、−1価以下の元素としては、F、Cl、Br等のハロゲン元素等が使用できる。好ましくは、Fである。
これらの元素についてもZn源の例と同様、単体、酸化物、硝酸塩、炭酸塩、窒化物等の各種化合物用いることができる。
尚、硝酸塩等の酸化物以外を原料として用いる場合は、焼成前に仮焼を行なってもよい。
As the element having a valence of +3 or more that dissolves in zinc oxide, for example, a short-period type periodic table Group 3A, Group B element (Group 3 element) such as Al, Ga, Sc, In, Y, or Si can be used. Al, Ga, and In are preferable.
In addition, halogen elements such as F, Cl, and Br can be used as elements having a valence of −1 or less. Preferably, it is F.
As for these elements, various compounds such as simple substances, oxides, nitrates, carbonates and nitrides can be used as in the case of the Zn source.
In addition, when other than oxides such as nitrate are used as raw materials, calcination may be performed before firing.
上記の原料の一種又は二種以上を均一に混合し、焼成する。焼成温度は、添加元素によって異なるが、1000℃〜1600℃が適当である。1600℃よりも高くなると、酸化亜鉛の蒸発が激しくなるため収率が下がり、また、亜鉛系酸化物の粒子間の凝集が激しくなるため、粉末を得るための粉砕工程に、より手間がかかる原因となる。
尚、焼成時間(保持時間)は、0.1〜3時間程度が好ましい。また、焼成は、例えば、大気雰囲気下や還元雰囲気下で行なうことができ、特に制限されない。
One or more of the above raw materials are uniformly mixed and fired. Although the firing temperature varies depending on the additive element, 1000 ° C. to 1600 ° C. is appropriate. When the temperature is higher than 1600 ° C., the yield of the zinc oxide is reduced due to the intense evaporation of zinc oxide, and the aggregation between the particles of the zinc-based oxide becomes intense. It becomes.
The firing time (holding time) is preferably about 0.1 to 3 hours. Further, the firing can be performed, for example, in an air atmosphere or a reducing atmosphere, and is not particularly limited.
亜鉛元素と、酸化亜鉛に固溶する+3価以上の元素又は−1価以下の元素を含む原料物質を焼成した後、さらに、不活性ガス雰囲気で焼成する。
不活性ガスとしては、例えば、窒素、アルゴン、ヘリウム、ネオン、クリプトン、キセノン等が使用できる。この中でも、安価であるため、窒素が好ましい。
不活性ガス雰囲気での焼成温度は、500℃〜1300℃とすることが好ましく、特に700℃〜1200℃とすることが好ましい。1300℃より高い場合、亜鉛系酸化物の再凝集が生じ、微粉末が得られないおそれがある。一方、500℃より低い場合、電気伝導度の向上効果が十分発現しないおそれがある。
After firing a raw material material containing a zinc element and a +3 or higher valent element or a -1 or lower valent element dissolved in zinc oxide, it is further fired in an inert gas atmosphere.
As the inert gas, for example, nitrogen, argon, helium, neon, krypton, xenon or the like can be used. Among these, nitrogen is preferable because it is inexpensive.
The firing temperature in the inert gas atmosphere is preferably 500 ° C to 1300 ° C, particularly preferably 700 ° C to 1200 ° C. When it is higher than 1300 ° C., re-aggregation of the zinc-based oxide occurs, and there is a possibility that a fine powder cannot be obtained. On the other hand, when the temperature is lower than 500 ° C., the effect of improving the electrical conductivity may not be sufficiently exhibited.
不活性ガス雰囲気下での焼成時間(保持時間)は、使用する原料の種類等により適宜調整するが、一般的には、1時間以内で十分であり、好ましくは、1秒〜30分である。尚、焼成時間が長すぎる場合、エネルギーが無駄になるだけでなく、亜鉛系酸化物粒子の凝集が生じやすくなる。
焼成した後、室温まで冷却することにより、本発明の亜鉛系酸化物粉末が得られる。
The firing time (holding time) in an inert gas atmosphere is appropriately adjusted depending on the type of raw material used, but generally within one hour is sufficient, and preferably between 1 second and 30 minutes. . If the firing time is too long, not only is energy wasted, but the agglomeration of zinc-based oxide particles tends to occur.
After firing, the zinc-based oxide powder of the present invention is obtained by cooling to room temperature.
焼成は、公知の焼成炉を用いて実施できる。また、不活性ガス雰囲気での焼成は、不活性ガスを充填でき、炉内を不活性ガス雰囲気に維持できるものであれば、公知の焼成炉を用いて実施できる。 Firing can be performed using a known firing furnace. The firing in an inert gas atmosphere can be carried out using a known firing furnace as long as it can be filled with an inert gas and the inside of the furnace can be maintained in an inert gas atmosphere.
本発明の亜鉛系酸化物粉末の製造方法において、より粒径の小さい粉末を製造する必要がある場合、焼成で得た焼成物を微粉化処理し、その後、不活性ガス雰囲気で焼成すればよい。従来、焼成後の粒子を機械的に微粉化すると、粒子に欠陥が生成するため、著しく電気伝導性が低下してしまうという問題があったが、本発明のように、不活性ガス雰囲気で焼成することによって、高い導電性を示す亜鉛系酸化物微粉末が得られる。
微粉化処理の方法としては、乳鉢による粉砕や、ボールミル等の公知の機械的方法が使用できる。これにより、平均粒径が10nm〜1μm程度の亜鉛系酸化物粉末が製造できる。
In the method for producing a zinc-based oxide powder of the present invention, when it is necessary to produce a powder having a smaller particle size, the fired product obtained by firing may be pulverized and then fired in an inert gas atmosphere. . Conventionally, when the particles after firing are mechanically pulverized, defects are generated in the particles, so that there is a problem that the electrical conductivity is remarkably lowered. However, as in the present invention, firing is performed in an inert gas atmosphere. By doing so, a zinc-based oxide fine powder exhibiting high conductivity can be obtained.
As the pulverization method, a known mechanical method such as pulverization with a mortar or a ball mill can be used. Thereby, the zinc-type oxide powder whose average particle diameter is about 10 nm-1 micrometer can be manufactured.
上述した製造方法で得られる本発明の亜鉛系酸化物粉末では、特に、酸化亜鉛とガリウム元素、アルミニウム元素、インジウム元素を含む亜鉛含有複合酸化物であることが好ましい。この亜鉛含有複合酸化物は、特に優れた導電性を有している。
亜鉛含有複合酸化物におけるこれらの元素の添加量は、Zn元素1モルに対し、0.1モル以下であることが好ましく、特に、0.001〜0.05モルであることが好ましい。
The zinc-based oxide powder of the present invention obtained by the production method described above is particularly preferably a zinc-containing composite oxide containing zinc oxide and a gallium element, an aluminum element, and an indium element. This zinc-containing composite oxide has particularly excellent conductivity.
The addition amount of these elements in the zinc-containing composite oxide is preferably 0.1 mol or less, and particularly preferably 0.001 to 0.05 mol, per 1 mol of Zn element.
以下、本発明を実施例によってさらに具体的に説明する。
実施例1
酸化亜鉛粉(ハクスイテック(株)製、第一種)19.772gに酸化ガリウムを0.228g添加し、遊星ボールミルで5時間混合した。この混合物を電気炉で、大気雰囲気下1200℃で1時間焼成した。
得られた粉末を乳鉢でさらに細かく粉砕した。その後、この粉末を窒素雰囲気下にて、赤外イメージ炉を用いて焼成した。昇温は、室温から1100℃に、20分かけて行なった。昇温後、10分間保持した後に室温まで急冷した。
得られた粉末は薄く青味がかかった白色であり、大気焼成した粉末の薄い褐色の着色が消えた。
得られた粉末を加圧しながら電気抵抗を測定した。100kg/cm2の加重をかけた時の体積抵抗は2.9Ω・cmであり、小さな値となった。
Hereinafter, the present invention will be described more specifically with reference to examples.
Example 1
0.228 g of gallium oxide was added to 19.772 g of zinc oxide powder (manufactured by Hakusui Tech Co., Ltd., first type) and mixed for 5 hours with a planetary ball mill. This mixture was baked in an electric furnace at 1200 ° C. for 1 hour in an air atmosphere.
The obtained powder was further finely pulverized in a mortar. Thereafter, this powder was fired using an infrared image furnace in a nitrogen atmosphere. The temperature was raised from room temperature to 1100 ° C. over 20 minutes. After raising the temperature, it was kept for 10 minutes and then rapidly cooled to room temperature.
The resulting powder was thin and bluish white, and the light brown coloration of the air-baked powder disappeared.
The electrical resistance was measured while pressing the obtained powder. The volume resistance when a load of 100 kg / cm 2 was applied was 2.9 Ω · cm, which was a small value.
実施例2
実施例1と同様にして、大気雰囲気で焼成した粉末を、乳鉢でさらに細かく粉砕した。この粉末を窒素雰囲気下にて、赤外イメージ炉を用いて焼成した。昇温は、室温から1000℃に、20分かけて行なった。昇温後、30分間保持した後に室温まで急冷した。
得られた粉末は薄く青味がかかった白色であり、大気焼成した粉末の薄い褐色の着色が消えた。
得られた粉末を加圧しながら電気抵抗を測定した。100kg/cm2の加重をかけた時の体積抵抗は7.8Ω・cmであり、小さな値となった。
Example 2
In the same manner as in Example 1, the powder fired in the air atmosphere was further finely pulverized with a mortar. This powder was fired using an infrared image furnace in a nitrogen atmosphere. The temperature was raised from room temperature to 1000 ° C. over 20 minutes. After raising the temperature, it was kept for 30 minutes and then rapidly cooled to room temperature.
The resulting powder was thin and bluish white, and the light brown coloration of the air-baked powder disappeared.
The electrical resistance was measured while pressing the obtained powder. The volume resistance when a load of 100 kg / cm 2 was applied was 7.8 Ω · cm, which was a small value.
実施例3
実施例1と同様にして、大気雰囲気で焼成した粉末を、乳鉢でさらに細かく粉砕した。この粉末を窒素雰囲気下にて、赤外イメージ炉を用いて焼成した。昇温は、室温から850℃に、20分かけて行なった。昇温後、30分間保持した後に室温まで急冷した。
得られた粉末は薄く青味がかかった白色であり、大気焼成した粉末の薄い褐色の着色が消えた。
得られた粉末を加圧しながら電気抵抗を測定した。100kg/cm2の加重をかけた時の体積抵抗は19.8Ω・cmであり、小さな値となった。
Example 3
In the same manner as in Example 1, the powder fired in the air atmosphere was further finely pulverized with a mortar. This powder was fired using an infrared image furnace in a nitrogen atmosphere. The temperature was raised from room temperature to 850 ° C. over 20 minutes. After raising the temperature, it was kept for 30 minutes and then rapidly cooled to room temperature.
The resulting powder was thin and bluish white, and the light brown coloration of the air-baked powder disappeared.
The electrical resistance was measured while pressing the obtained powder. The volume resistance when a load of 100 kg / cm 2 was applied was 19.8 Ω · cm, which was a small value.
比較例1
実施例1と同様に大気焼成した粉末を、乳鉢でさらに細かく粉砕したものについて、加圧しながら電気抵抗を測定した。100kg/cm2の加重をかけた時の体積抵抗は520kΩ・cmであった。
Comparative Example 1
The electrical resistance was measured while applying pressure to a powder obtained by firing in the air in the same manner as in Example 1 and further pulverizing it in a mortar. The volume resistance when a load of 100 kg / cm 2 was applied was 520 kΩ · cm.
実施例4
酸化亜鉛粉(ハクスイテック(株)製、第一種)19.863gに酸化ガリウムを0.137g添加し、遊星ボールミルで5時間混合した。この混合物を大気雰囲気下、電気炉で1200℃で1時間焼成した。
得られた粉末を乳鉢でさらに細かく粉砕した。この粉末を窒素雰囲気下にて、赤外イメージ炉を用いて焼成した。昇温は、室温から1100℃に、20分かけて行なった。昇温後、10分間保持した後に室温まで急冷した。
得られた粉末は薄く青味がかかった白色であり、大気焼成した粉末の薄い褐色の着色が消えた。
得られた粉末を加圧しながら電気抵抗を測定した。100kg/cm2の加重をかけた時の体積抵抗は1.9Ω・cmであり、小さな値となった。
Example 4
0.137 g of gallium oxide was added to 19.863 g of zinc oxide powder (manufactured by Hakusui Tech Co., Ltd., first type) and mixed for 5 hours with a planetary ball mill. This mixture was baked at 1200 ° C. for 1 hour in an electric furnace in an air atmosphere.
The obtained powder was further finely pulverized in a mortar. This powder was fired using an infrared image furnace in a nitrogen atmosphere. The temperature was raised from room temperature to 1100 ° C. over 20 minutes. After raising the temperature, it was kept for 10 minutes and then rapidly cooled to room temperature.
The resulting powder was thin and bluish white, and the light brown coloration of the air-baked powder disappeared.
The electrical resistance was measured while pressing the obtained powder. The volume resistance when a weight of 100 kg / cm 2 was applied was 1.9 Ω · cm, which was a small value.
比較例2
実施例2と同様に大気焼成した粉末を、乳鉢でさらに細かく粉砕したものについて、加圧しながら電気抵抗を測定した。100kg/cm2の加重をかけた時の体積抵抗は470kΩ・cmであった。
Comparative Example 2
The electrical resistance was measured while applying pressure to a powder obtained by air-sintering in the same manner as in Example 2 and finely ground in a mortar. The volume resistance when a load of 100 kg / cm 2 was applied was 470 kΩ · cm.
実施例5
酸化亜鉛粉(ハクスイテック(株)製、第一種)19.119gに硝酸アルミニウム九水塩の10重量%水溶液を8.81g添加、混合した後、乾燥して水分を除去した。この混合物を500℃で3時間、大気雰囲気下にて仮焼成した。得られた粉末を乳鉢で粉砕した後、大気雰囲気下、電気炉で1200℃で1時間焼成した。
得られた粉末を乳鉢でさらに細かく粉砕した。この粉末を窒素雰囲気下にて、赤外イメージ炉を用いて焼成した。昇温は、室温から1100℃に、20分かけて行なった。昇温後、30分間保持した後に室温まで急冷した。
得られた粉末は薄く青味がかかった白色であり、大気焼成した粉末の褐色の着色が消えた。
得られた粉末を加圧しながら電気抵抗を測定した。100kg/cm2の加重をかけた時の体積抵抗は178Ω・cmであり、小さな値となった。
Example 5
After adding 8.81 g of a 10 wt% aqueous solution of aluminum nitrate nonahydrate to 19.119 g of zinc oxide powder (Hakusui Tech Co., Ltd., first type), the mixture was dried to remove moisture. This mixture was calcined at 500 ° C. for 3 hours in an air atmosphere. The obtained powder was pulverized in a mortar and then baked in an electric furnace at 1200 ° C. for 1 hour in an air atmosphere.
The obtained powder was further finely pulverized in a mortar. This powder was fired using an infrared image furnace in a nitrogen atmosphere. The temperature was raised from room temperature to 1100 ° C. over 20 minutes. After raising the temperature, it was kept for 30 minutes and then rapidly cooled to room temperature.
The resulting powder was thin and bluish white, and the brown coloration of the air-baked powder disappeared.
The electrical resistance was measured while pressing the obtained powder. The volume resistance when a load of 100 kg / cm 2 was applied was 178 Ω · cm, which was a small value.
比較例3
酸化亜鉛粉(ハクスイテック(株)製、第一種)19.462gに硝酸アルミニウム九水塩の10重量%水溶液を5.38g添加し、乳鉢で混合した後、乾燥した。この混合物を大気雰囲気下、電気炉にて1200℃で1時間焼成した。粉末の色は褐色に着色していた。
得られた粉末を加圧しながら電気抵抗を測定した。100kg/cm2の加重をかけた時の体積抵抗は3.5MΩ・cmであった。
Comparative Example 3
5.38 g of 10 wt% aqueous solution of aluminum nitrate nonahydrate was added to 19.462 g of zinc oxide powder (manufactured by Hakusuitec Co., Ltd., first type), mixed in a mortar, and dried. This mixture was baked at 1200 ° C. for 1 hour in an electric furnace in an air atmosphere. The powder color was brown.
The electrical resistance was measured while pressing the obtained powder. The volume resistance when a load of 100 kg / cm 2 was applied was 3.5 MΩ · cm.
実施例6
酸化亜鉛粉(ハクスイテック(株)製、第一種)19.727gに酸化ガリウムを0.273g添加し、遊星ボールミルで2時間混合した。この混合物を赤外イメージ炉で、窒素を0.5L/分の流量で供給しながら1200℃で30分間焼成した。
得られた粉末を加圧しながら電気抵抗を測定した。100kg/cm2の加重をかけた時の体積抵抗は0.8Ω・cmであり、非常に低い値であったが、粒径が約2μmであり凝集が進んでいた。この粉末を乳鉢でさらに細かく粉砕した後、体積抵抗を測定したところ、205Ω・cmと高くなっていた。
この粉末を、さらに窒素雰囲気下にて、赤外イメージ炉を用いて焼成した。昇温は、室温から900℃に、20分かけて行なった。昇温後、10分間保持した後に室温まで急冷した。
得られた粉末を加圧しながら電気抵抗を測定した。100kg/cm2の加重をかけた時の体積抵抗は1.9Ω・cmであり、小さな値となった。また、粒径は、約0.1μmと小さい粉末が得られた。
尚、粉末の粒径は走査型電子顕微鏡で観察した。
Example 6
0.273 g of gallium oxide was added to 19.727 g of zinc oxide powder (manufactured by Hakusui Tech Co., Ltd., first type) and mixed for 2 hours with a planetary ball mill. This mixture was baked in an infrared image furnace at 1200 ° C. for 30 minutes while supplying nitrogen at a flow rate of 0.5 L / min.
The electrical resistance was measured while pressing the obtained powder. When a load of 100 kg / cm 2 was applied, the volume resistance was 0.8 Ω · cm, which was a very low value, but the particle size was about 2 μm and aggregation was progressing. The powder was further finely pulverized with a mortar and then the volume resistance was measured. As a result, it was as high as 205Ω · cm.
This powder was further fired using an infrared image furnace in a nitrogen atmosphere. The temperature was raised from room temperature to 900 ° C. over 20 minutes. After raising the temperature, it was kept for 10 minutes and then rapidly cooled to room temperature.
The electrical resistance was measured while pressing the obtained powder. The volume resistance when a weight of 100 kg / cm 2 was applied was 1.9 Ω · cm, which was a small value. Further, a powder having a particle size as small as about 0.1 μm was obtained.
The particle size of the powder was observed with a scanning electron microscope.
本発明の亜鉛系酸化物粉末の製造方法は、安価な酸化亜鉛を母材とし、低い電気抵抗を有する粉末を、安全かつ安価な不活性ガス中で焼成できる優れた製造方法である。
本発明の亜鉛系酸化物粉末は、白色導電性フィラーとして各種ゴム、樹脂、塗料に用いられ、帯電防止、赤外線遮蔽、電磁シールド材としての用途に有用である。
また、本発明の製造方法は、超微粒子(約100nm以下)の導電性酸化亜鉛を得る方法としても有効であるため、特に、透明性を要求されるような透明赤外線遮蔽材料、透明電極材料、透明導電性ペースト、透明導電性インク等への用途に有用である。
The method for producing a zinc-based oxide powder according to the present invention is an excellent production method in which an inexpensive zinc oxide is used as a base material and a powder having low electrical resistance can be fired in a safe and inexpensive inert gas.
The zinc-based oxide powder of the present invention is used for various rubbers, resins and paints as a white conductive filler, and is useful for applications as antistatic, infrared shielding and electromagnetic shielding materials.
The production method of the present invention is also effective as a method for obtaining ultrafine particles (about 100 nm or less) of conductive zinc oxide. Therefore, in particular, a transparent infrared shielding material, a transparent electrode material, and the like that require transparency, This is useful for applications such as transparent conductive paste and transparent conductive ink.
Claims (5)
A zinc-based oxide powder produced by the production method according to claim 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005227414A JP2007039293A (en) | 2005-08-05 | 2005-08-05 | Method for producing oxide powder of zinc-based metal |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005227414A JP2007039293A (en) | 2005-08-05 | 2005-08-05 | Method for producing oxide powder of zinc-based metal |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007039293A true JP2007039293A (en) | 2007-02-15 |
Family
ID=37797618
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005227414A Pending JP2007039293A (en) | 2005-08-05 | 2005-08-05 | Method for producing oxide powder of zinc-based metal |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2007039293A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021251297A1 (en) * | 2020-06-11 | 2021-12-16 | 国立大学法人東北大学 | Gallium-doped zinc oxide particles, film containing gallium-doped zinc oxide particles, transparent conductive film, electronic device, and method for producing gallium-doped zinc oxide particles |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0323220A (en) * | 1989-06-21 | 1991-01-31 | Mitsui Mining & Smelting Co Ltd | Preparation of white electrically- conductive zinc oxide |
JPH0360429A (en) * | 1989-07-28 | 1991-03-15 | Lion Corp | Zinc oxide-based electrically-conductive powder |
JPH06144833A (en) * | 1992-11-09 | 1994-05-24 | Mitsui Mining & Smelting Co Ltd | Production of electrically conductive acicular zinc oxide |
JPH06187833A (en) * | 1992-09-11 | 1994-07-08 | Asahi Glass Co Ltd | Transparent conductive film |
JPH0769631A (en) * | 1993-06-29 | 1995-03-14 | Sumitomo Chem Co Ltd | Flaky electric conductive zinc oxide and production thereof |
JPH08245220A (en) * | 1994-06-10 | 1996-09-24 | Hoya Corp | Electrically conductive oxide and electrode using same |
JPH08330103A (en) * | 1995-06-01 | 1996-12-13 | Hoya Corp | Electric resistance film |
JPH11302835A (en) * | 1998-04-21 | 1999-11-02 | Sumitomo Metal Mining Co Ltd | Production of zinc oxide base sintered compact |
JP2000309776A (en) * | 1999-03-10 | 2000-11-07 | Samsung Sdi Co Ltd | Low-voltage blue-emitting phosphor and its production |
JP2006347861A (en) * | 2005-05-20 | 2006-12-28 | Idemitsu Kosan Co Ltd | Manufacturing method of zinc-based oxide and zinc-based oxide manufactured by the method |
-
2005
- 2005-08-05 JP JP2005227414A patent/JP2007039293A/en active Pending
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0323220A (en) * | 1989-06-21 | 1991-01-31 | Mitsui Mining & Smelting Co Ltd | Preparation of white electrically- conductive zinc oxide |
JPH0360429A (en) * | 1989-07-28 | 1991-03-15 | Lion Corp | Zinc oxide-based electrically-conductive powder |
JPH06187833A (en) * | 1992-09-11 | 1994-07-08 | Asahi Glass Co Ltd | Transparent conductive film |
JPH06144833A (en) * | 1992-11-09 | 1994-05-24 | Mitsui Mining & Smelting Co Ltd | Production of electrically conductive acicular zinc oxide |
JPH0769631A (en) * | 1993-06-29 | 1995-03-14 | Sumitomo Chem Co Ltd | Flaky electric conductive zinc oxide and production thereof |
JPH08245220A (en) * | 1994-06-10 | 1996-09-24 | Hoya Corp | Electrically conductive oxide and electrode using same |
JPH08330103A (en) * | 1995-06-01 | 1996-12-13 | Hoya Corp | Electric resistance film |
JPH11302835A (en) * | 1998-04-21 | 1999-11-02 | Sumitomo Metal Mining Co Ltd | Production of zinc oxide base sintered compact |
JP2000309776A (en) * | 1999-03-10 | 2000-11-07 | Samsung Sdi Co Ltd | Low-voltage blue-emitting phosphor and its production |
JP2006347861A (en) * | 2005-05-20 | 2006-12-28 | Idemitsu Kosan Co Ltd | Manufacturing method of zinc-based oxide and zinc-based oxide manufactured by the method |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021251297A1 (en) * | 2020-06-11 | 2021-12-16 | 国立大学法人東北大学 | Gallium-doped zinc oxide particles, film containing gallium-doped zinc oxide particles, transparent conductive film, electronic device, and method for producing gallium-doped zinc oxide particles |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5071800A (en) | Oxide powder, sintered body, process for preparation thereof and targe composed thereof | |
KR101274279B1 (en) | Indium oxide sintered body, indium oxide transparent conductive film, and method for manufacturing the transparent conductive film | |
EP1705154B1 (en) | Method for producing indium oxide powder | |
JP2010132467A (en) | Method for producing oxide | |
JP2006210214A (en) | Metal powder for conductive paste and conductive paste | |
Zhuang et al. | Structural and optical properties of ZnO nanowires doped with magnesium | |
WO2022071245A1 (en) | Hexagonal boron nitride powder and method for producing sintered body | |
WO2019235499A1 (en) | Zinc oxide varistor | |
JP2013053030A (en) | Plate-like ruthenium oxide powder, method for producing the same, and thick film resistor composition using the same | |
WO2010016419A1 (en) | Method for manufacturing zinc sulfide based phosphor | |
JP2008110915A (en) | Tin-doped indium oxide powder | |
JP2012101945A (en) | Method for producing mayenite-containing oxide | |
KR101650611B1 (en) | Ito powder and method of producing same | |
JP4575035B2 (en) | Single crystal magnesium oxide sintered body, method for producing the same, and protective film for plasma display panel | |
JP5729926B2 (en) | Gallium oxide powder | |
JP4638766B2 (en) | Method for producing barium titanyl oxalate and method for producing barium titanate | |
JP2007039293A (en) | Method for producing oxide powder of zinc-based metal | |
JP2008214169A (en) | ITiO SINTERED COMPACT FOR VACUUM VAPOR DEPOSITION AND ITS PRODUCTION METHOD | |
JP2008115024A (en) | Conductive oxide powder and method of manufacturing conductive oxide powder | |
JP2014165260A (en) | Method of producing thermoelectric conversion material | |
Roy | Synthesis of nano Zno powder and study of its varistor behavior at different temperatures | |
JPH0668935B2 (en) | Oxide sintered body, method for producing the same, and target using the same | |
JP2009179515A (en) | In4Sn3O12 POLYCRYSTALLINE POWDER, SINTERED COMPACT THEREOF, AND METHOD FOR PRODUCING THOSE | |
JP2006069811A (en) | Single crystal magnesium oxide sintered compact and protective film for plasma display panel | |
JP2006306695A (en) | Method for manufacturing fine powder of indium oxide and fine powder of indium oxide containing tin |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Effective date: 20080205 Free format text: JAPANESE INTERMEDIATE CODE: A621 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20091029 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20091110 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100105 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20101109 |
|
A02 | Decision of refusal |
Effective date: 20110315 Free format text: JAPANESE INTERMEDIATE CODE: A02 |