JP2013053030A - Plate-like ruthenium oxide powder, method for producing the same, and thick film resistor composition using the same - Google Patents

Plate-like ruthenium oxide powder, method for producing the same, and thick film resistor composition using the same Download PDF

Info

Publication number
JP2013053030A
JP2013053030A JP2011191439A JP2011191439A JP2013053030A JP 2013053030 A JP2013053030 A JP 2013053030A JP 2011191439 A JP2011191439 A JP 2011191439A JP 2011191439 A JP2011191439 A JP 2011191439A JP 2013053030 A JP2013053030 A JP 2013053030A
Authority
JP
Japan
Prior art keywords
plate
ruthenium
oxide
barium
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011191439A
Other languages
Japanese (ja)
Other versions
JP5831055B2 (en
Inventor
Katsuhiro Kawakubo
勝弘 川久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2011191439A priority Critical patent/JP5831055B2/en
Publication of JP2013053030A publication Critical patent/JP2013053030A/en
Application granted granted Critical
Publication of JP5831055B2 publication Critical patent/JP5831055B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide, as a conductive component of a thick film resistor composition, plate-like ruthenium oxide powder having a strong structure of a baked film even when a compounding ratio to a glass bonding agent is heightened, and having a small resistance value change even when a load of static electricity or surge current is put thereon, and to provide a method for producing the same, and a thick film resistor composition using the same.SOLUTION: This invention relates to a method for producing plate-like ruthenium oxide powder including a process for thermally treating a mixture of a ruthenium compound and a barium compound under an acid atmosphere at a temperature of ≥400°C, to thereby synthesize a plate-like composite oxide of ruthenium and barium; then, a process for, after mixing boron oxide or boric acid with the obtained plate-like composite oxide, performing heat treatment at a temperature of ≥500°C, to thereby produce a plate-like composite oxide in a melt of plate-like ruthenium oxide powder, boron oxide and barium oxide; and a process for adding a solvent into the obtained melt to dissolve the boron oxide and barium oxide, to thereby recover the plate-like ruthenium oxide powder.

Description

本発明は、板状酸化ルテニウム粉末とその製造方法、それを用いた厚膜抵抗組成物に関し、厚膜抵抗体組成物の導電成分として、ガラス結合剤に対して配合比を高めても、焼成膜の構造が強固で、静電気やサージ電流が負荷されても抵抗値変化が小さい板状酸化ルテニウム粉末とその製造方法、それを用いた厚膜抵抗組成物に関する。   The present invention relates to a plate-like ruthenium oxide powder, a method for producing the same, and a thick film resistor composition using the same. As a conductive component of the thick film resistor composition, firing is performed even when the compounding ratio is increased with respect to the glass binder. The present invention relates to a plate-like ruthenium oxide powder having a strong film structure and having a small resistance change even when static electricity or surge current is applied, a method for producing the same, and a thick film resistance composition using the same.

厚膜抵抗体は、チップ抵抗器、厚膜ハイブリッドICや抵抗ネットワーク等に広く用いられている。近年、電子部品のサイズの極小化が進み、チップ抵抗器では、かつて主流となる大きさが長さ1.6mm×幅0.8mmであったが、長さ1.0mm×幅0.5mmへ移行し、更に近年では長さ0.6mm×幅0.3mmのチップ抵抗器も生産量が増加している。それに伴い厚膜抵抗体のサイズも長さ0.5mm×幅0.5mmから長さ0.3mm×幅0.3mmとなり、さらに0.2mm×幅0.2mm以下に移行している。
ところが、抵抗体サイズが小さくなると電気的な負荷による抵抗値変化が大きくなり、抵抗器の信頼性が懸念される。この為、一般的には小さい抵抗器は定格の電力を軽減するなどの考慮がされる。しかしながら、静電気やサージ電流等はサイズの小さい抵抗器でも軽減されない。したがって、抵抗体のサイズが小さくても静電気やサージ電流によって抵抗値変化が小さい厚膜抵抗体が望まれている。
Thick film resistors are widely used in chip resistors, thick film hybrid ICs, resistor networks, and the like. In recent years, the miniaturization of electronic components has progressed, and in chip resistors, the mainstream size used to be 1.6 mm long × 0.8 mm wide, but now it is 1.0 mm long × 0.5 mm wide. In recent years, the production amount of chip resistors having a length of 0.6 mm and a width of 0.3 mm is also increasing. Accordingly, the thickness of the thick film resistor is also changed from 0.5 mm length × 0.5 mm width to 0.3 mm length × 0.3 mm width, and further shifted to 0.2 mm × width 0.2 mm or less.
However, when the resistor size is reduced, the resistance value change due to an electrical load increases, and there is a concern about the reliability of the resistor. For this reason, consideration is generally given to reducing the rated power of a small resistor. However, static electricity, surge current, etc. cannot be reduced even with a small resistor. Therefore, there is a demand for a thick film resistor that has a small change in resistance value due to static electricity or surge current even if the size of the resistor is small.

厚膜抵抗体の材料である厚膜抵抗組成物は、導電成分およびガラス結合剤をビヒクルと呼ばれる有機媒体中に分散させることにより製造されている。このうち、導電成分は厚膜抵抗体の電気的特性を決定する最も重要な役割を有しており、 Ru酸化物粉末が厚膜抵抗体の導電成分として広く用いられている。上記厚膜抵抗組成物を絶縁セラミック基板に印刷したのち焼成することによって、絶縁物のマトリックス中に導電成分が分散された膜構造を有する厚膜抵抗体となる。   A thick film resistor composition, which is a material of the thick film resistor, is manufactured by dispersing a conductive component and a glass binder in an organic medium called a vehicle. Of these, the conductive component has the most important role of determining the electrical characteristics of the thick film resistor, and Ru oxide powder is widely used as the conductive component of the thick film resistor. The thick film resistor composition is printed on an insulating ceramic substrate and then fired to obtain a thick film resistor having a film structure in which conductive components are dispersed in an insulating matrix.

一般にRu酸化物粉末のみを導電成分とした厚膜抵抗体の場合、固有抵抗値が1×10−3〜1×10Ω・cmの厚膜抵抗体が形成できる。
固有抵抗値が1×10−2Ω・cm以上の厚膜抵抗体では、一般に静電気やサージ電流によって抵抗値がマイナスに変化する。しかし、1×10−2Ω・cmよりも小さい厚膜抵抗体では、抵抗値がプラスに大きく変化する場合がある。これは、Ru酸化物を導電成分としガラス結合剤を絶縁成分する厚膜抵抗体の構造に起因していると予想される。一般に固有抵抗値を小さくするには導電成分の配合を増やし絶縁成分の配合を減らす必要がある。しかし、Ru酸化物それ自身は焼結しないため、導電成分の配合が多い厚膜抵抗体は膜構造が脆くなり易く、微細なクラック等も入りやすい。このため固有抵抗値が低い厚膜抵抗体では静電気やサージ電流が負荷されると、微細なクラック等が広がり大きなクラックとなり抵抗値がプラスに変化してしまう。
In general, in the case of a thick film resistor using only Ru oxide powder as a conductive component, a thick film resistor having a specific resistance value of 1 × 10 −3 to 1 × 10 4 Ω · cm can be formed.
In a thick film resistor having a specific resistance value of 1 × 10 −2 Ω · cm or more, the resistance value generally changes to negative due to static electricity or surge current. However, in the case of a thick film resistor smaller than 1 × 10 −2 Ω · cm, the resistance value may greatly change positively. This is expected to be caused by the structure of the thick film resistor in which the Ru oxide is a conductive component and the glass binder is an insulating component. Generally, in order to reduce the specific resistance value, it is necessary to increase the blending of the conductive component and reduce the blending of the insulating component. However, since the Ru oxide itself does not sinter, the thick film resistor containing a large amount of the conductive component is likely to have a brittle film structure, and fine cracks are likely to occur. For this reason, when a thick film resistor having a low specific resistance value is loaded with static electricity or a surge current, fine cracks spread and become large cracks, and the resistance value changes positively.

ところで、固有抵抗値が1×10−2Ω・cm以下の厚膜抵抗組成物では、固有抵抗値を下げるためにAgとPdを導電成分として加える事も一般に行われている(特開平05−90006:特許文献1)。このようなAgとPdを導電成分として加えた厚膜抵抗体では、AgとPdが焼結するため焼成膜が強固になりクラック等が入り難くなる。しかし、このAgとPdを導電成分として含む材料系ではサージ電流によって抵抗値がマイナスに大きく変化してしまうという課題があった。
この様なことから、固有抵抗値が1×10−2Ω・cm以上の厚膜抵抗体において、静電気やサージ電流による抵抗値変化が小さい厚膜抵抗体を形成するには、導電成分としてのRu酸化物の配合を多くするが、焼成後に膜構造が強固でクラック等が入り難い焼成膜にする必要がある。
By the way, in a thick film resistance composition having a specific resistance value of 1 × 10 −2 Ω · cm or less, it is generally performed to add Ag and Pd as conductive components in order to lower the specific resistance value (Japanese Patent Laid-Open No. Hei 05- 90006: Patent Document 1). In such a thick film resistor in which Ag and Pd are added as conductive components, since the Ag and Pd are sintered, the fired film becomes strong and cracks and the like are difficult to enter. However, in the material system containing Ag and Pd as conductive components, there is a problem that the resistance value largely changes negatively by a surge current.
For this reason, in the thick film resistor having a specific resistance value of 1 × 10 −2 Ω · cm or more, in order to form a thick film resistor having a small resistance value change due to static electricity or surge current, Although the compounding of the Ru oxide is increased, it is necessary to form a fired film having a strong film structure and hardly cracking after firing.

これまで厚膜抵抗組成物の導電成分として用いられる酸化ルテニウム粉末としては、一般に1×10−8m〜3×10−7mの粒状物が用いられている。このような粒状の酸化ルテニウムは、Ruの酸化アルカリ塩を中和反応や有機物で還元した水和酸化物、あるいはRuの塩化物水溶液を中和反応による水和酸化物を酸化雰囲気中で熱処理する事によって合成されている(特開平06−345441:特許文献2)。
ルテニウム酸化物は焼結する事が無く、酸化雰囲気で500℃以上の高温で熱処理しても粉末のままである。ルテニウム酸化物は焼結しないため、厚膜抵抗体を調製する焼成過程で軟化するガラス結合材によって固められ膜構造を維持している。そのため微細な焼結しないルテニウム酸化物を固め、膜構造を維持させるためには一定量のガラス結合材が必要となるが、ガラス結合材の配合量を多くすると厚膜抵抗体の固有抵抗値が高くなってしまい、低い抵抗値を得る事が難しい。逆にガラス結合材の量を少なくするには粒径の大きいルテニウム酸化物の粉末を用いれば良いが、導電成分であるルテニウム酸化物同士の接触点が少なくなり、これでも低い抵抗値が得られない。
Conventionally, as the ruthenium oxide powder used as the conductive component of the thick film resistance composition, generally 1 × 10 −8 m to 3 × 10 −7 m of granular material is used. Such granular ruthenium oxide is obtained by heat-treating a hydrated oxide obtained by reducing an alkali oxide of Ru with a neutralization reaction or an organic substance, or a hydrated oxide obtained by neutralizing a Ru chloride aqueous solution in an oxidizing atmosphere. (Japanese Patent Laid-Open No. 06-345441: Patent Document 2).
Ruthenium oxide does not sinter and remains a powder even when heat-treated at a high temperature of 500 ° C. or higher in an oxidizing atmosphere. Since ruthenium oxide is not sintered, the film structure is maintained by being hardened by a glass binder that softens during the firing process of preparing the thick film resistor. Therefore, a certain amount of glass binder is required to solidify fine non-sintered ruthenium oxide and maintain the film structure. However, if the compounding amount of the glass binder is increased, the specific resistance value of the thick film resistor is increased. It becomes high and it is difficult to obtain a low resistance value. Conversely, in order to reduce the amount of the glass binder, a ruthenium oxide powder having a large particle diameter may be used, but the number of contact points between the ruthenium oxides which are conductive components is reduced, and a low resistance value can be obtained even in this case. Absent.

特開平05−90006号公報Japanese Patent Laid-Open No. 05-90006 特開平06−345441号公報Japanese Patent Laid-Open No. 06-345441

本発明は、従来方法の問題点に鑑み、厚膜抵抗体組成物の導電成分として、ガラス結合剤に対して配合比を高めても、焼成膜の構造が強固で、静電気やサージ電流が負荷されても抵抗値変化が小さい板状酸化ルテニウム粉末とその製造方法、それを用いた厚膜抵抗組成物を提供することを目的とする。   In view of the problems of the conventional method, the present invention has a strong structure of the fired film and is loaded with static electricity and surge current even when the compounding ratio is increased with respect to the glass binder as a conductive component of the thick film resistor composition. It is an object of the present invention to provide a plate-like ruthenium oxide powder having a small change in resistance value, a method for producing the same, and a thick film resistor composition using the same.

本発明者は、上述した従来の課題を解決するため鋭意研究を重ねた結果、板状になっているルテニウムとバリウムの複合酸化物を合成した後、これを酸化ホウ素と混合し熱処理する事によって、ルテニウムとバリウムの板状複合酸化物の形状を維持した酸化ルテニウム粉末が、酸化ホウ素と酸化バリウムの溶融体中に分散する事を見出し、さらに、この溶融体から溶剤により分離された板状のルテニウム酸化物粉末は、固有抵抗値の低い抵抗体を形成するため、厚膜抵抗体組成物の導電成分として有用である事を確認して、本発明を完成するに至った。   As a result of intensive studies to solve the above-described conventional problems, the present inventors synthesized a complex oxide of ruthenium and barium in the form of a plate, and then mixed this with boron oxide and heat-treated. The ruthenium oxide powder maintaining the shape of the plate-like composite oxide of ruthenium and barium was found to be dispersed in the melt of boron oxide and barium oxide, and the plate-like shape separated from the melt by a solvent. Since the ruthenium oxide powder forms a resistor having a low specific resistance value, it was confirmed that the ruthenium oxide powder was useful as a conductive component of the thick film resistor composition, and the present invention was completed.

すなわち、本発明の第1の発明によれば、ルテニウム化合物とバリウム化合物の混合物を、酸化雰囲気かつ400℃以上の温度で熱処理してルテニウムとバリウムの板状複合酸化物を合成する工程、次に、得られた板状複合酸化物に酸化ホウ素もしくはホウ酸を混合した後、500℃以上の温度で熱処理を行って板状複合酸化物を板状の酸化ルテニウム粉末と酸化ホウ素と酸化バリウムの溶融物中に生成させる工程、得られた溶融物に溶剤を添加し、酸化ホウ素と酸化バリウムを溶解して板状酸化ルテニウム粉末を回収する工程からなることを特徴とする板状酸化ルテニウム粉末の製造方法が提供される。   That is, according to the first invention of the present invention, a step of synthesizing a plate-shaped composite oxide of ruthenium and barium by heat-treating a mixture of a ruthenium compound and a barium compound at an oxidizing atmosphere and a temperature of 400 ° C. or higher, Then, boron oxide or boric acid is mixed with the obtained plate-like composite oxide, and then heat treatment is performed at a temperature of 500 ° C. or more to melt the plate-like composite oxide into plate-like ruthenium oxide powder, boron oxide, and barium oxide. Production of a plate-like ruthenium oxide powder characterized by comprising a step of forming in a product, a step of adding a solvent to the resulting melt, and dissolving the boron oxide and barium oxide to recover the plate-like ruthenium oxide powder A method is provided.

また、本発明の第2の発明によれば、第1の発明において、ルテニウム化合物が、Ruを含む溶液から湿式合成されたRu酸化物であることを特徴とする請求項1に記載の板状酸化ルテニウム粉末の製造方法が提供される。
また、本発明の第3の発明によれば、第1の発明において、バリウム化合物が、酸化バリウム、炭酸バリウム、硝酸バリウム、塩化バリウム、又は硫酸バリウムから選ばれる少なくとも1種であることを特徴とする板状酸化ルテニウム粉末の製造方法が提供される。
また、本発明の第4の発明によれば、第1の発明において、ルテニウム化合物とバリウム化合物の混合割合が、ルテニウム:バリウムのモル比で0.8:1.2〜1.2:0.8であることを特徴とする板状酸化ルテニウム粉末の製造方法が提供される。
一方、本発明の第5の発明によれば、第1の発明において、板状複合酸化物を合成する工程において、混合物の熱処理温度が400〜1000℃であることを特徴とする板状酸化ルテニウム粉末の製造方法が提供される。
また、本発明の第6の発明によれば、第1の発明において、酸化ホウ素あるいはホウ酸が、酸化ホウ素に換算して、板状複合酸化物100重量部に対し20重量部以上であることを特徴とする板状酸化ルテニウム粉末の製造方法が提供される。
また、本発明の第7の発明によれば、第1の発明において、板状の複合酸化物を溶融する工程において、熱処理温度が500〜1000℃であることを特徴とする板状酸化ルテニウム粉末の製造方法が提供される。
また、本発明の第8の発明によれば、第1の発明において、前記酸化ホウ素もしくはホウ酸に、さらにMn、Nb、Ta、Ti、又はSnから選ばれる少なくとも1種類以上を含む化合物を混合し熱処理を行う事によって、Mn、Nb、Ta、Ti、又はSn元素が固溶した板状酸化ルテニウム粉末を得ることを特徴とする板状酸化ルテニウム粉末の製造方法が提供される。
また、本発明の第9の発明によれば、第1の発明において、板状酸化ルテニウム粉末を回収する工程において、添加される溶剤が、鉱酸あるいは有機酸の水溶液である事を特徴とする板状酸化ルテニウム粉末の製造方法が提供される。
さらに、本発明の第10の発明によれば、第1〜9の発明の製造方法により得られた、長径が1×10−6〜5×10−6mであり、厚みが1.5×10−7〜5×10−7mである板状酸化ルテニウム粉末が提供される。
According to a second aspect of the present invention, in the first aspect, the ruthenium compound is a Ru oxide that is wet-synthesized from a solution containing Ru. A method for producing ruthenium oxide powder is provided.
According to a third aspect of the present invention, in the first aspect, the barium compound is at least one selected from barium oxide, barium carbonate, barium nitrate, barium chloride, or barium sulfate. A method for producing a plate-like ruthenium oxide powder is provided.
According to the fourth aspect of the present invention, in the first aspect, the mixing ratio of the ruthenium compound and the barium compound is 0.8: 1.2 to 1.2: 0. A method for producing a plate-like ruthenium oxide powder is provided.
On the other hand, according to the fifth invention of the present invention, in the first invention, in the step of synthesizing the plate-like composite oxide, the heat treatment temperature of the mixture is 400 to 1000 ° C. A method for producing a powder is provided.
According to the sixth invention of the present invention, in the first invention, boron oxide or boric acid is 20 parts by weight or more with respect to 100 parts by weight of the plate-like composite oxide in terms of boron oxide. A method for producing a plate-like ruthenium oxide powder is provided.
According to a seventh aspect of the present invention, in the first aspect, in the step of melting the plate-shaped composite oxide, the heat treatment temperature is 500 to 1000 ° C. A manufacturing method is provided.
According to the eighth invention of the present invention, in the first invention, the boron oxide or boric acid is further mixed with a compound containing at least one selected from Mn, Nb, Ta, Ti, or Sn. By performing the heat treatment, a plate-like ruthenium oxide powder manufacturing method is provided, in which a plate-like ruthenium oxide powder in which Mn, Nb, Ta, Ti, or Sn element is dissolved is obtained.
According to a ninth aspect of the present invention, in the first aspect, the solvent added in the step of recovering the plate-like ruthenium oxide powder is an aqueous solution of a mineral acid or an organic acid. A method for producing plate-like ruthenium oxide powder is provided.
Furthermore, according to the tenth invention of the present invention, the major axis obtained by the production method of the first to ninth inventions is 1 × 10 −6 to 5 × 10 −6 m, and the thickness is 1.5 ×. A plate-like ruthenium oxide powder that is 10 −7 to 5 × 10 −7 m is provided.

一方、本発明の第11の発明によれば、第10の発明の板状酸化ルテニウム粉末に、ガラス粉末を配合してなる厚膜抵抗組成物が提供される。
また、本発明の第12の発明によれば、第10の発明の板状酸化ルテニウム粉末に、熱硬化性樹脂及び/又は熱可塑性樹脂を配合してなる厚膜抵抗組成物が提供される。
On the other hand, according to the eleventh aspect of the present invention, there is provided a thick film resistor composition obtained by blending glass powder with the plate-like ruthenium oxide powder of the tenth aspect.
According to the twelfth aspect of the present invention, there is provided a thick film resistance composition obtained by blending the plate-like ruthenium oxide powder of the tenth aspect with a thermosetting resin and / or a thermoplastic resin.

本発明の方法によれば、ルテニウムとバリウムの板状の複合酸化物を形成させ、その形状のまま複合酸化物を分解することによって、板状のルテニウム酸化物の粉末を合成するので、従来の技術では製造が困難であった、板状のルテニウム酸化物粉末を容易に製造することが出来る。また、ルテニウム原料やバリウム原料の種類や熱処理の条件によって、ルテニウムとバリウムの板状複合酸化物の粒径を変えられ、最終的に得られる板状のルテニウム酸化物の大きさも変える事ができる。
さらに、本発明によれば、この板状のルテニウム酸化物粉末を用いることで、導電物の割合が非常に高くてもクラック等の欠陥の無い厚膜抵抗体が形成できる。また、この板状のルテニウム酸化物粉末を熱硬化性樹脂あるいは熱可塑性樹脂と混合することによって抵抗値の低い樹脂系の厚膜抵抗体が形成できる。
According to the method of the present invention, a plate-like composite oxide of ruthenium and barium is formed, and the composite oxide is decomposed in its shape to synthesize a plate-like ruthenium oxide powder. A plate-like ruthenium oxide powder, which was difficult to manufacture by the technique, can be easily manufactured. The particle size of the ruthenium-barium plate-like composite oxide can be changed depending on the type of ruthenium raw material or barium raw material and the heat treatment conditions, and the size of the finally obtained plate-like ruthenium oxide can also be changed.
Furthermore, according to the present invention, by using this plate-like ruthenium oxide powder, a thick film resistor having no defects such as cracks can be formed even if the proportion of the conductive material is very high. Further, a resin-based thick film resistor having a low resistance value can be formed by mixing the plate-like ruthenium oxide powder with a thermosetting resin or a thermoplastic resin.

本発明の板状酸化ルテニウム粉末の一例をTEM(透過電子顕微鏡)で観察した写真である。It is the photograph which observed an example of the plate-like ruthenium oxide powder of this invention with TEM (transmission electron microscope). 本発明の板状酸化ルテニウム粉末の一例をTEM(透過電子顕微鏡)で観察した写真である。It is the photograph which observed an example of the plate-like ruthenium oxide powder of this invention with TEM (transmission electron microscope). 本発明の板状酸化ルテニウム粉末の一例をTEM(透過電子顕微鏡)で観察した写真である。It is the photograph which observed an example of the plate-like ruthenium oxide powder of this invention with TEM (transmission electron microscope).

以下、本発明の板状のルテニウム酸化物粉末とその製造方法について説明する。   Hereinafter, the plate-like ruthenium oxide powder of the present invention and the production method thereof will be described.

1.板状のルテニウム酸化物粉末の製造方法
(1)板状複合酸化物の合成
本発明の製造方法では、ルテニウム化合物とバリウム化合物を混合し酸化雰囲気で熱処理する事で、ルテニウムとバリウムの板状の複合酸化物を形成させる。ルテニウム原料やバリウム原料の種類、あるいは熱処理の方法によって、ルテニウムとバリウムの板状複合酸化物の粒径が変わり、最終的に得られる板状のルテニウム酸化物の大きさも変える事ができる。
1. Production method of plate-like ruthenium oxide powder (1) Synthesis of plate-like composite oxide In the production method of the present invention, a ruthenium compound and a barium compound are mixed and heat-treated in an oxidizing atmosphere, whereby a plate-like ruthenium and barium plate is formed. A composite oxide is formed. Depending on the type of ruthenium raw material or barium raw material or the heat treatment method, the particle size of the plate-like composite oxide of ruthenium and barium changes, and the size of the finally obtained plate-like ruthenium oxide can also be changed.

本発明において原料とするRu化合物は、その形態によって制限されないが、Ruを含む溶液から合成されたRu酸化物の水和物あるいはこれを酸化雰囲気中で焙焼したRu酸化物を使用することができる。Ru酸化物の水和物を合成する際のRu溶液や合成法には、代表的な方法としてKRuO水溶液にエタノールを加える方法や、RuCl水溶液をKOH等で中和する方法が挙げられる。本発明においては、Ru酸化物の水和物よりも、Ru酸化物の水和物を酸化雰囲気中で焙焼したRu酸化物の方が好ましい。それはRu酸化物の水和物をバリウム化合物と混合・酸化雰囲気中で熱処理した際に大きな六角板状の結晶になり易いためである。
また、本発明において原料とするBa化合物は、酸化物、水酸化物、炭酸塩などがあげられる。Ba酸化物やBa水酸化物は、Ru化合物との混合が容易であるという観点から本発明の方法には最適である。また、Ba炭酸塩も原料の湿度などに対する安定性が高いので、湿度が高い雰囲気では特に使い易い。Ba炭酸塩は、高温下でも比較的安定であるが、Ru化合物とともに酸化雰囲気中で熱処理を行うと800℃以下の温度で分解し、ルテニウムと複合酸化物を形成する。
The Ru compound used as a raw material in the present invention is not limited by its form, but it is possible to use a Ru oxide hydrate synthesized from a solution containing Ru or a Ru oxide obtained by baking this in an oxidizing atmosphere. it can. Typical examples of the Ru solution and synthesis method for synthesizing a hydrate of Ru oxide include a method of adding ethanol to a K 2 RuO 4 aqueous solution and a method of neutralizing a RuCl 3 aqueous solution with KOH or the like. It is done. In the present invention, a Ru oxide obtained by roasting a Ru oxide hydrate in an oxidizing atmosphere is more preferable than a Ru oxide hydrate. This is because when a hydrate of Ru oxide is mixed with a barium compound and heat-treated in an oxidizing atmosphere, a large hexagonal plate-like crystal tends to be formed.
Examples of the Ba compound used as a raw material in the present invention include oxides, hydroxides, and carbonates. Ba oxide and Ba hydroxide are most suitable for the method of the present invention from the viewpoint of easy mixing with a Ru compound. Moreover, since Ba carbonate is also highly stable against the humidity of the raw material, it is particularly easy to use in an atmosphere with high humidity. Ba carbonate is relatively stable even at high temperatures, but when it is heat-treated in an oxidizing atmosphere together with a Ru compound, it decomposes at a temperature of 800 ° C. or lower to form a composite oxide with ruthenium.

ルテニウム原料とバリウム原料を混合する方法は、両者が充分に混合できる方法であれば特に制限されない。一般的な方法は、ボールミル、らいかい機、シェーカーミキサーなどである。
ルテニウム化合物に対するバリウム化合物の割合は、特に制限されないが、ルテニウム:バリウムのモル比で0.8:1.2〜1.2:0.8の範囲が好ましい。この範囲から外れると、BaRuOの他に酸化ルテニウムや原料に由来するバリウム化合物が残ってしまうことがある。ルテニウムとバリウムの複合酸化物の粒径や形状は出発原料、熱処理温度によってコントロールでき、この粒径や形状がルテニウムとバリウムの複合酸化物を酸化ホウ素と混合・熱処理して得られるルテニウム酸化物粉末の粒径や形状に影響する。ルテニウム化合物に対するバリウム化合物のより好ましい範囲は、ルテニウム:バリウムのモル比で0.9:1.1〜1.1:0.9である。
The method for mixing the ruthenium raw material and the barium raw material is not particularly limited as long as both can be sufficiently mixed. Common methods are ball mills, rabies, shaker mixers and the like.
The ratio of the barium compound to the ruthenium compound is not particularly limited, but a molar ratio of ruthenium: barium is preferably in the range of 0.8: 1.2 to 1.2: 0.8. If it is out of this range, in addition to BaRuO 3 , ruthenium oxide or a barium compound derived from the raw material may remain. The particle size and shape of the composite oxide of ruthenium and barium can be controlled by the starting material and the heat treatment temperature. It affects the particle size and shape. A more preferable range of the barium compound with respect to the ruthenium compound is 0.9: 1.1 to 1.1: 0.9 in terms of a ruthenium: barium molar ratio.

次に、ルテニウム原料とバリウム原料の混合物を酸化雰囲気下で400℃以上の温度で熱処理する。これによってルテニウムとバリウムの複合酸化物が得られる。ここで酸化雰囲気とは、酸素を10容積%以上含む気体であり、例えば空気を使用することができる。
熱処理の温度が400℃より低いと、ルテニウムとバリウムの複合酸化物が完全に生成されないため望ましくない。一方、熱処理温度が1000℃を超えると、ルテニウムとバリウムの複合酸化物の粒径が大きくなり過ぎたり、ルテニウムが6価や8価の酸化物となって揮発する割合が高くなり好ましくない。したがって、好ましい熱処理温度は、500〜900℃とする。また、熱処理の時間は、熱処理温度にもよるが15分以上とし、好ましくは30〜120分とする。
Next, the mixture of the ruthenium raw material and the barium raw material is heat-treated at a temperature of 400 ° C. or higher in an oxidizing atmosphere. Thereby, a complex oxide of ruthenium and barium is obtained. Here, the oxidizing atmosphere is a gas containing 10% by volume or more of oxygen, and for example, air can be used.
When the temperature of the heat treatment is lower than 400 ° C., the composite oxide of ruthenium and barium is not completely generated, which is not desirable. On the other hand, when the heat treatment temperature exceeds 1000 ° C., the particle size of the ruthenium-barium composite oxide becomes too large, or the ratio of volatilization of ruthenium as a hexavalent or octavalent oxide increases, which is not preferable. Therefore, a preferable heat treatment temperature is 500 to 900 ° C. The heat treatment time is 15 minutes or more, preferably 30 to 120 minutes, depending on the heat treatment temperature.

(2)複合酸化物の分解
これにより得られるルテニウムとバリウムの複合酸化物は、X線回折パターンより、BaRuO<Hexagonal>とBaRuO<Cubic>の混合物であることが明らかになっている。そして、このルテニウムとバリウムの複合酸化物は導電性を有しているが、固有抵抗値が酸化ルテニウムに比べ一桁高く、また厚膜抵抗体を形成した時に抵抗値の安定性が劣る。そのため、本発明では、ルテニウムとバリウムの複合酸化物に酸化ホウ素を混合し熱処理する事によって、ルテニウムとバリウムの複合酸化物を分解し、ルテニウム酸化物、および酸化バリウムと酸化ホウ素からなる溶融物にする。
(2) Decomposition of composite oxide The composite oxide of ruthenium and barium obtained in this way is revealed to be a mixture of BaRuO 3 <Hexagonal> and BaRuO 3 <Cubic> from the X-ray diffraction pattern. The complex oxide of ruthenium and barium has conductivity, but the specific resistance value is an order of magnitude higher than that of ruthenium oxide, and the stability of the resistance value is inferior when a thick film resistor is formed. Therefore, in the present invention, ruthenium and barium composite oxide is mixed with boron oxide and heat-treated to decompose the ruthenium and barium composite oxide to form ruthenium oxide and a melt composed of barium oxide and boron oxide. To do.

この酸化ホウ素の代わりに、熱処理中に酸化ホウ素になるホウ酸等を用いても良い。ここで、混合する酸化ホウ素の量は、ルテニウム化合物とバリウム化合物を混合し酸化雰囲気で熱処理し合成したRuとBaの板状複合酸化物の100重量部に対し、酸化ホウ素あるいはホウ酸が酸化ホウ素に換算して20重量部以上である必要がある。RuとBaの複合酸化物に対し、酸化ホウ素あるいはホウ酸が20重量部より少ない場合、RuとBaの複合酸化物の分解が不完全になり残る可能性がある。一方、酸化ホウ素あるいはホウ酸の量は多いほど効果的であるが、酸化ホウ素に換算して200重量部を超えると経済的メリットが失われる。酸化ホウ素あるいはホウ酸のより好ましい量は、30〜150重量部である。
ルテニウムとバリウムの複合酸化物に酸化ホウ素を混合する方法は、両者が充分に混合できれば特に制限されない。一般的な方法は、ボールミル、らいかい機、シェーカーミキサーなどである。このルテニウムとバリウムの複合酸化物を酸化ホウ素と混合する際、Mn、Nb、Ta、Ti、又はSnから選ばれる1種以上を含む化合物を同時に混合することができる。
Instead of boron oxide, boric acid or the like that becomes boron oxide during heat treatment may be used. Here, the amount of boron oxide to be mixed is such that boron oxide or boric acid is boron oxide with respect to 100 parts by weight of the Ru and Ba plate-like composite oxide synthesized by mixing a ruthenium compound and a barium compound and heat-treating in an oxidizing atmosphere. It needs to be 20 parts by weight or more in terms of. When the amount of boron oxide or boric acid is less than 20 parts by weight relative to the composite oxide of Ru and Ba, the decomposition of the composite oxide of Ru and Ba may be incomplete and remain. On the other hand, the larger the amount of boron oxide or boric acid, the more effective, but the economic merit is lost when it exceeds 200 parts by weight in terms of boron oxide. A more preferred amount of boron oxide or boric acid is 30 to 150 parts by weight.
The method of mixing boron oxide into the composite oxide of ruthenium and barium is not particularly limited as long as both can be mixed sufficiently. Common methods are ball mills, rabies, shaker mixers and the like. When this ruthenium and barium composite oxide is mixed with boron oxide, a compound containing one or more selected from Mn, Nb, Ta, Ti, or Sn can be mixed at the same time.

この工程で酸化雰囲気かつ500℃以上の温度で熱処理を行う。ここで酸化雰囲気とは、酸素を10容積%以上含む気体であり、例えば空気を使用することができる。500℃よりも低い温度ではルテニウムとバリウムの複合酸化物の分解が完全に行われない。また、1000℃を超える温度ではルテニウムが6価や8価の酸化物となって揮発する割合が高くなり好ましくない。熱処理の時間は、熱処理温度にもよるが15分以上は必要である。したがって、好ましい熱処理温度は、600〜1000℃とする。また、熱処理の時間は、熱処理温度にもよるが15分以上とし、好ましくは30〜120分とする。
熱処理すると、ルテニウムとバリウムの複合酸化物が分解し、ルテニウム酸化物及び酸化バリウムと酸化ホウ素からなるガラスになる。また、ルテニウムとバリウムの複合酸化物がMn、Nb、Ta、Ti、又はSnから選ばれる化合物との混合物である場合は、Mn、Nb、Ta、Ti、又はSnが固溶したルテニウム酸化物及び酸化バリウムと酸化ホウ素からなる溶融物になる。板状の複合酸化物が分解しても、板状の形状は維持される。
In this step, heat treatment is performed in an oxidizing atmosphere and at a temperature of 500 ° C. or higher. Here, the oxidizing atmosphere is a gas containing 10% by volume or more of oxygen, and for example, air can be used. When the temperature is lower than 500 ° C., the ruthenium-barium composite oxide is not completely decomposed. Further, when the temperature exceeds 1000 ° C., the rate of volatilization of ruthenium as a hexavalent or octavalent oxide increases, which is not preferable. The heat treatment time is 15 minutes or more although it depends on the heat treatment temperature. Therefore, a preferable heat treatment temperature is 600 to 1000 ° C. The heat treatment time is 15 minutes or more, preferably 30 to 120 minutes, depending on the heat treatment temperature.
When the heat treatment is performed, the composite oxide of ruthenium and barium is decomposed to become a glass composed of ruthenium oxide and barium oxide and boron oxide. Further, when the composite oxide of ruthenium and barium is a mixture of a compound selected from Mn, Nb, Ta, Ti, or Sn, the ruthenium oxide in which Mn, Nb, Ta, Ti, or Sn is dissolved and It becomes a melt composed of barium oxide and boron oxide. Even if the plate-like complex oxide is decomposed, the plate-like shape is maintained.

(3)ルテニウム酸化物の回収
最後に、得られたルテニウム酸化物及び酸化バリウムと酸化ホウ素からなるガラスから、溶剤によりガラス成分を溶解し、ルテニウム酸化物微粉末を回収し、必要に応じて洗浄・乾燥する。
酸化ホウ素を溶解する方法は、特に制限されないが、硝酸や塩酸、硫酸などの鉱酸や蟻酸、酢酸等の有機酸水溶液を溶剤として用いる方法が簡便である。これらの中でも硝酸や塩酸、硫酸などの鉱酸の使用が好適である。ルテニウム酸化物及び酸化バリウムと酸化ホウ素からなるガラスは、これら酸性の水溶液に浸すことによって、ガラス成分だけが溶け出して、酸に溶解しないルテニウム酸化物を粉末として回収できる。ガラス溶解に使用した酸は、水洗によって除去できる。
(3) Recovery of ruthenium oxide Lastly, from the obtained ruthenium oxide and glass composed of barium oxide and boron oxide, the glass components are dissolved with a solvent, and ruthenium oxide fine powder is recovered and washed as necessary. ·dry.
A method for dissolving boron oxide is not particularly limited, but a method using a mineral acid such as nitric acid, hydrochloric acid or sulfuric acid, or an organic acid aqueous solution such as formic acid or acetic acid as a solvent is simple. Among these, the use of mineral acids such as nitric acid, hydrochloric acid and sulfuric acid is preferred. The glass composed of ruthenium oxide and barium oxide and boron oxide is immersed in these acidic aqueous solutions, so that only the glass component is dissolved, and ruthenium oxide not dissolved in the acid can be recovered as a powder. The acid used for glass dissolution can be removed by washing with water.

2.ルテニウム酸化物粉末
本発明の製造方法で得られる板状酸化ルテニウム粉末は、実質的に酸化ルテニウムからなるが、前記ルテニウムとバリウムの複合酸化物を酸化ホウ素と混合する際、Mn、Nb、Ta、Ti、Snのうち少なくとも1種類以上を含む化合物を同時に混合した場合には、Mn、Nb、Ta、Ti、Snが固溶した板状酸化ルテニウム粉末を得ることができる。該化合物の混合量は、特に制限されるわけではないが、板状酸化ルテニウム粉末全体に対して、5〜30wt%とすることが好ましく、10〜20wt%とすることがより好ましい。
2. Ruthenium oxide powder The plate-like ruthenium oxide powder obtained by the production method of the present invention is substantially composed of ruthenium oxide. When the ruthenium-barium composite oxide is mixed with boron oxide, Mn, Nb, Ta, When compounds containing at least one of Ti and Sn are mixed at the same time, a plate-like ruthenium oxide powder in which Mn, Nb, Ta, Ti, and Sn are dissolved can be obtained. The mixing amount of the compound is not particularly limited, but is preferably 5 to 30 wt%, more preferably 10 to 20 wt% with respect to the whole plate-like ruthenium oxide powder.

板状酸化ルテニウム粉末は、TEM(透過電子顕微鏡)で観察すると、図1,2のような形状をしている。その大きさは、長径が1×10−6〜5×10−6mであり、厚みが2×10−7〜5×10−7mである。さらに倍率をあげて観察すると板状の粉末は、単結晶ではなく微細な1次粒子が強固に結合した多結晶体になっていることが分かる。X線回折によって物質同定すると、RuO(ルチル)であって、結晶子径は、1.0×10−8〜2.5×10−8mである。 The plate-like ruthenium oxide powder has a shape as shown in FIGS. 1 and 2 when observed with a TEM (transmission electron microscope). The major axis is 1 × 10 −6 to 5 × 10 −6 m and the thickness is 2 × 10 −7 to 5 × 10 −7 m. Further observation of the magnification shows that the plate-like powder is not a single crystal but a polycrystalline body in which fine primary particles are firmly bonded. When the substance is identified by X-ray diffraction, it is RuO 2 (rutile), and the crystallite diameter is 1.0 × 10 −8 to 2.5 × 10 −8 m.

3.厚膜抵抗体組成物
本発明は、板状のルテニウム酸化物粉末を合成し、それを厚膜抵抗組成物の導電成分とすることで、ガラス結合材の配合を少なくし、更に導電成分の間の接触を点から面にすることで厚膜抵抗体の固有抵抗値を低くしようとするものである。
3. Thick film resistor composition The present invention synthesizes a plate-like ruthenium oxide powder and uses it as a conductive component of the thick film resistor composition, thereby reducing the compounding of the glass binder and further between the conductive components. The specific resistance value of the thick film resistor is to be lowered by making the contact of the surface from point to surface.

これまで板状あるいはフレーク状のAg粉末を導電成分として厚膜で低い抵抗値を得る手法が、液状とした熱硬化性樹脂あるいは熱可塑性樹脂とからなる導電性樹脂ペーストの製造に利用されている。このフレーク状のAg粉末は、湿式あるいは乾式による製法で得られたAg粉末の表面に脂肪酸などの界面活性剤をつけた上で、ボールミルやスタンプミルでつぶす事によって製造できる。これは、Agが金属特有の延性を有している事から利用できる方法である。
しかしながら、ルテニウム酸化物は、Ag粉末とは異なり延性がほとんど無いので、ボールミルやスタンプミルでつぶす事によって、板状あるいはフレーク状の粉末を得る事が出来ない。また、ルテニウム酸化物粉末の合成方法は、前記のとおり、Ruの酸化アルカリ塩を中和反応や有機物で還元した水和酸化物、あるいはRuの塩化物水溶液を中和反応によって合成できる水和酸化物を酸化雰囲気で焙焼する方法が一般的である(特許文献2)。しかし、この一般的な方法でルテニウム酸化物の粉末を板状やフレーク状にコントロールすることは出来ない。
So far, a method of obtaining a low resistance value with a thick film using a plate-like or flake-like Ag powder as a conductive component has been used for the production of a conductive resin paste made of a liquid thermosetting resin or thermoplastic resin. . The flaky Ag powder can be produced by adding a surfactant such as a fatty acid to the surface of the Ag powder obtained by a wet or dry process, and then crushing it with a ball mill or a stamp mill. This is a method that can be used because Ag has ductility unique to metals.
However, since ruthenium oxide has almost no ductility unlike Ag powder, it is not possible to obtain a plate-like or flake-like powder by crushing with a ball mill or a stamp mill. In addition, as described above, the ruthenium oxide powder can be synthesized by hydration oxidation in which an alkali oxide of Ru is hydrated by reduction with an organic reaction or an organic substance, or an aqueous chloride of Ru can be synthesized by a neutralization reaction. A method of baking an object in an oxidizing atmosphere is common (Patent Document 2). However, it is not possible to control the ruthenium oxide powder into a plate shape or flake shape by this general method.

このため、本発明では、前記のように、ルテニウム化合物とバリウム化合物を混合し酸化雰囲気で熱処理する事で板状のルテニウムとバリウムの複合酸化物を合成し、これを酸化ホウ素と共に再び酸化雰囲気で熱処理する事によって板状の酸化ルテニウムを合成している。そして、板状酸化ルテニウム粉末に、ガラス粉末を配合するか、熱硬化性樹脂及び/又は熱可塑性樹脂を配合して厚膜抵抗組成物とする。   For this reason, in the present invention, as described above, a ruthenium compound and a barium compound are mixed and heat-treated in an oxidizing atmosphere to synthesize a plate-like ruthenium and barium composite oxide, which is again combined with boron oxide in an oxidizing atmosphere. Plate-like ruthenium oxide is synthesized by heat treatment. And glass powder is mix | blended with plate-like ruthenium oxide powder, or a thermosetting resin and / or a thermoplastic resin are mix | blended, and it is set as a thick film resistance composition.

(1)ガラス粉末
酸化ルテニウム(RuO)粉末にガラス粉末を配合する場合、両者の割合は、目的とする面積抵抗値によって任意に変える事ができる。すなわち、目的とする抵抗値が高い場合には酸化ルテニウム(RuO)粉末を少なく配合し、目的とする抵抗値が低い場合には酸化ルテニウム(RuO)粉末を多く配合する。一般的な重量比は、酸化ルテニウム(RuO)粉末:ガラス粉末=5:95〜50:50の範囲である。これよりも酸化ルテニウム(RuO)粉末が少ないと抵抗値が高くなり過ぎて不安定となる。また、これよりも酸化ルテニウム(RuO)粉末が多いと形成される抵抗体膜が脆くなる。好ましい重量比は、酸化ルテニウム(RuO)粉末:ガラス粉末=5:95〜30:70の範囲である。
(1) Glass powder When glass powder is blended with ruthenium oxide (RuO 2 ) powder, the ratio of the two can be arbitrarily changed according to the intended sheet resistance value. That is, when the target resistance value is high, a small amount of ruthenium oxide (RuO 2 ) powder is blended, and when the target resistance value is low, a large amount of ruthenium oxide (RuO 2 ) powder is blended. A general weight ratio is ruthenium oxide (RuO 2 ) powder: glass powder = 5: 95 to 50:50. If there is less ruthenium oxide (RuO 2 ) powder than this, the resistance value becomes too high and becomes unstable. Further, if there is more ruthenium oxide (RuO 2 ) powder than this, the formed resistor film becomes brittle. A preferred weight ratio is in the range of ruthenium oxide (RuO 2 ) powder: glass powder = 5: 95 to 30:70.

本発明の厚膜抵抗用組成物には、必要に応じて、酸化ルテニウム(RuO)粉末以外の導電性粒子を含んでも良い。これらの導電性粒子としては、パイロクロア型の結晶構造を有するルテニウム酸鉛、ルテニウム酸ビスマス、ペロブスカイト型結晶構造を有するルテニウム酸カルシウム、ルテニウム酸ストロンチウム、ルテニウム酸バリウム、ルテニウム酸ランタン等のルテニウム酸化物や、Ag、Pd等が挙げられる。
本発明の厚膜抵抗体組成物には、酸化ルテニウム(RuO)粉末、ガラス粉末の他に、面積抵抗値や抵抗温度係数の調整、膨張係数の調整、耐電圧性の向上やその他の改質を目的とした添加剤を含んでもなんら差し支えない。厚膜抵抗体組成物の添加剤としては、MnO、CuO、TiO、Nb、SiO、Al、ZrO、ZrSiOなどが一般に用いられている。また、添加剤の割合は、酸化ルテニウム(RuO)粉末とガラス粉末の重量の合計に対して0.05〜20%が一般的である。
The thick film resistor composition of the present invention may contain conductive particles other than ruthenium oxide (RuO 2 ) powder, if necessary. These conductive particles include ruthenium oxides such as lead ruthenate having a pyrochlore crystal structure, bismuth ruthenate, calcium ruthenate having a perovskite crystal structure, strontium ruthenate, barium ruthenate, lanthanum ruthenate, and the like. , Ag, Pd and the like.
The thick film resistor composition of the present invention includes, in addition to ruthenium oxide (RuO 2 ) powder and glass powder, adjustment of area resistance value and resistance temperature coefficient, adjustment of expansion coefficient, improvement of voltage resistance and other modifications. There may be any additives for quality purposes. The additives of the thick film resistor composition, MnO 2, CuO, TiO 2 , Nb 2 O 5, SiO 2, Al 2 O 3, ZrO 2, etc. ZrSiO 4 are generally used. Moreover, the ratio of the additive is generally 0.05 to 20% with respect to the total weight of the ruthenium oxide (RuO 2 ) powder and the glass powder.

(2)樹脂成分
本発明の厚膜抵抗体用組成物は、ビヒクルと呼ばれる樹脂成分を溶解した溶剤中に分散されて厚膜抵抗体ペーストになる。本発明では、ビヒクルの樹脂、溶剤の種類や配合によって限定されない。樹脂成分としては、エチルセルロース、マレイン酸樹脂、ロジンなどが一般的であり、溶剤はターピネオール、ブチルカルビトール、ブチルカルビトールアセテート等が一般に用いられている。これらの配合比は所望する粘度によって調整される。また、ペーストの乾燥を遅らせる目的で沸点が高い溶剤を加える事もできる。抵抗体用組成物に対するビヒクルの割合は、特に限定されないが重量で30%〜100%が一般的である。好ましいビヒクルの量は、重量で30%〜80%、より好ましいビヒクルの量は、重量で30%〜50%である。
(2) Resin Component The thick film resistor composition of the present invention is dispersed in a solvent in which a resin component called a vehicle is dissolved to form a thick film resistor paste. In the present invention, the present invention is not limited by the type and composition of the vehicle resin and solvent. As the resin component, ethyl cellulose, maleic resin, rosin and the like are generally used, and terpineol, butyl carbitol, butyl carbitol acetate and the like are generally used as the solvent. These blending ratios are adjusted according to the desired viscosity. Also, a solvent having a high boiling point can be added for the purpose of delaying the drying of the paste. The ratio of the vehicle to the resistor composition is not particularly limited, but is generally 30% to 100% by weight. A preferred vehicle amount is 30% to 80% by weight, and a more preferred vehicle amount is 30% to 50% by weight.

本発明の厚膜抵抗体用組成物をビヒクル中に分散させて厚膜抵抗体ペーストを製造するには、スリーロールミルが用いる事ができ、このほか遊星ミル、ビーズミルなどを用いる事ができるが、ペーストの製造方法に限定はされない。予め本発明の厚膜抵抗体用組成物をボールミルやらいかい機で混合してから、ビヒクル中に分散させる事もできる。   In order to produce a thick film resistor paste by dispersing the composition for a thick film resistor of the present invention in a vehicle, a three-roll mill can be used, and in addition, a planetary mill, a bead mill, etc. can be used. The method for producing the paste is not limited. The thick film resistor composition of the present invention can be previously mixed with a ball mill or a rough machine and then dispersed in a vehicle.

厚膜抵抗体ペーストでは、無機原料粉末の凝集を解し、樹脂成分を溶解した溶剤中に分散する事が望ましい。一般に、粉末の粒径が小さくなると凝集が強くなり、二次粒子を形成し易くなる。特に一次粒子の比表面積径が3×10−9m〜1.5×10−8mの酸化ルテニウム(RuO)粉末では、二次粒子をほぐし一次粒子に分散させることが困難になる。
このような酸化ルテニウム(RuO)粉末とガラス粉末を分散させて厚膜抵抗体用ペーストを作成するには、脂肪酸を分散剤として用いる事が有効である。脂肪酸は酸化ルテニウム(RuO)粉末の表面に付着して分散を容易にする働きがあると考えられる。
本発明で用いられる脂肪酸は、飽和、不飽和を問わないが、酸化ルテニウム(RuO)粉末を分散させ、再び凝集するのを防ぐ観点から、炭素数が12以上の高級脂肪酸がより望ましい。脂肪酸は無機原料粉末をビヒクル中に分散させる際に加えても、あるいは予め酸化ルテニウム(RuO)粉末に付着させた後に、ビヒクル中に分散させても良い。
In the thick film resistor paste, it is desirable to disaggregate the inorganic raw material powder and disperse it in a solvent in which the resin component is dissolved. In general, when the particle size of the powder becomes smaller, the aggregation becomes stronger and it becomes easier to form secondary particles. In particular, in the case of ruthenium oxide (RuO 2 ) powder having a primary particle specific surface area of 3 × 10 −9 m to 1.5 × 10 −8 m, it is difficult to loosen the secondary particles and disperse them in the primary particles.
In order to produce such a thick film resistor paste by dispersing such ruthenium oxide (RuO 2 ) powder and glass powder, it is effective to use a fatty acid as a dispersant. It is considered that the fatty acid has a function of adhering to the surface of ruthenium oxide (RuO 2 ) powder and facilitating dispersion.
The fatty acid used in the present invention may be saturated or unsaturated, but higher fatty acids having 12 or more carbon atoms are more preferable from the viewpoint of dispersing ruthenium oxide (RuO 2 ) powder and preventing aggregation again. The fatty acid may be added when the inorganic raw material powder is dispersed in the vehicle, or may be dispersed in the vehicle after preliminarily adhering to the ruthenium oxide (RuO 2 ) powder.

以下に実施例を用いて本発明による板状ルテニウム酸化物粉末の製造方法を説明するが、本発明はこれらの実施例によって限定されるものではない。
粉末の形状・物性を評価するために、X線回折により物質同定し結晶子径を測定した。結晶子径はX線回折のピークの広がりより算出できる。ここではX線回折によって得られたルチル構造のピークをKα1、Kα2に波形分離した後、Kα1のピークの広がりとして半価幅を測定し、Scherrerの式より算出した。
Hereinafter, the method for producing a plate-like ruthenium oxide powder according to the present invention will be described with reference to examples, but the present invention is not limited to these examples.
In order to evaluate the shape and physical properties of the powder, the substance was identified by X-ray diffraction and the crystallite diameter was measured. The crystallite diameter can be calculated from the broadening of the peak of X-ray diffraction. Here, the peak of the rutile structure obtained by X-ray diffraction was waveform-separated into Kα1 and Kα2, and then the half width was measured as the spread of the peak of Kα1, and calculated from the Scherrer equation.

(実施例1)
予めRu粉末:100g、KOH:800g、KNO:100gを混合し、銀坩堝中において700℃、3時間溶融し、ルテニウム酸カリ(KRuO)を得た。このルテニウム酸カリを純水に溶解し、エタノール100cmを加え、水洗、乾燥を行い、Ru酸化物の水和物を得た。得られたRu酸化物の水和物全量と酸化バリウム試薬153gを、らいかい機で混合し、空気中800℃で1時間焙焼してルテニウムとバリウムの複合酸化物粉末を285g得た。このルテニウムとバリウムの複合酸化物はX線回折パターンより、BaRuO<Hexagonal>とBaRuO<Cubic>の混合物であることが確認できた。
また、この複合酸化物をTEMで観察すると、長径5×10−6〜10×10−6mであり、厚みが3×10−7〜5×10−7mの板状粉末である事が確認できた。
次に、得られたルテニウムとバリウムの複合酸化物を酸化ホウ素60gとらいかい機で混合し、空気中800℃で1時間熱処理をおこなった。
その後、得られた溶融物を4.5Lの純水と500cmの硝酸の溶液に入れ、ルテニウム酸化物微粉末を130g回収した。このルテニウム酸化物微粉末をX線回折によって物質同定すると、RuO<Rutile>の単相である事が確認できた。また、結晶子径は1.7×10−8mであった。得られたルテニウム酸化物粉末をTEMで観察すると、長径2×10−6〜3×10−6mであり、厚みが2×10−7〜3×10−7mの板状粉末である事が確認できた。
さらに倍率をあげたTEM像を観察すると、板状粉末は単結晶ではなく、微細な1次粒子が強固に結合した多結晶体である事が確認できた。この事は、X線回折による結晶子径が1.7×10−8mである事からも裏付けられる。
Example 1
Ru powder: 100 g, KOH: 800 g, KNO 3 : 100 g were mixed in advance and melted in a silver crucible at 700 ° C. for 3 hours to obtain potassium ruthenate (K 2 RuO 4 ). This potassium ruthenate was dissolved in pure water, 100 cm 3 of ethanol was added, washed with water and dried to obtain a Ru oxide hydrate. The total amount of Ru oxide hydrate thus obtained and 153 g of the barium oxide reagent were mixed with a raking machine and baked in air at 800 ° C. for 1 hour to obtain 285 g of a ruthenium-barium composite oxide powder. It was confirmed from the X-ray diffraction pattern that this ruthenium-barium composite oxide was a mixture of BaRuO 3 <Hexagonal> and BaRuO 3 <Cubic>.
Moreover, when this composite oxide is observed by TEM, it is a plate-like powder having a major axis of 5 × 10 −6 to 10 × 10 −6 m and a thickness of 3 × 10 −7 to 5 × 10 −7 m. It could be confirmed.
Next, the obtained composite oxide of ruthenium and barium was mixed with 60 g of boron oxide using a cracker and heat-treated at 800 ° C. for 1 hour in air.
Thereafter, the obtained melt was put into a solution of 4.5 L of pure water and 500 cm 3 of nitric acid, and 130 g of ruthenium oxide fine powder was recovered. When this ruthenium oxide fine powder was identified by X-ray diffraction, it was confirmed that it was a single phase of RuO 2 <Rutile>. Moreover, the crystallite diameter was 1.7 × 10 −8 m. When the obtained ruthenium oxide powder is observed with a TEM, it is a plate-like powder having a major axis of 2 × 10 −6 to 3 × 10 −6 m and a thickness of 2 × 10 −7 to 3 × 10 −7 m. Was confirmed.
Further observation of a TEM image at a higher magnification confirmed that the plate-like powder was not a single crystal but a polycrystalline body in which fine primary particles were firmly bonded. This is supported by the fact that the crystallite diameter by X-ray diffraction is 1.7 × 10 −8 m.

(実施例2)
Ru粉末:100g、KOH:800g、KNO:100gを混合し、銀坩堝中において700℃、3時間溶融し、ルテニウム酸カリ(KRuO)を得た。このルテニウム酸カリを純水に溶解し、エタノール100cmを加え、水洗、乾燥をし、Ru酸化物の水和物を得た。このRu酸化物の水和物を600℃で1時間熱処理することによって、Ru酸化物を得た。このRu酸化物131gと炭酸バリウム試薬195gをらいかい機で混合し、空気中800℃で1時間焙焼してルテニウムとバリウムの複合酸化物粉末を283g得た。このルテニウムとバリウムの複合酸化物はX線回折パターンより、BaRuO<Hexagonal>とBaRuO<Cubic>の混合物であることが確認できた。また、この複合酸化物をTEMで観察すると、長径10×10−6〜15×10−6mであり、厚みが5×10−7〜7×10−7mである板状粉末である事が確認できた。
得られたルテニウムとバリウムの複合酸化物を酸化ホウ素283gとらいかい機で混合し、空気中800℃で1時間熱処理をおこなった。
得られた溶融物を4.5Lの純水と500cmの硝酸の溶液に入れ、ルテニウム酸化物微粉末を128g回収した。このルテニウム酸化物微粉末をX線回折によって物質同定するとRuO<Rutile>の単相である事が確認できた。また、結晶子径は2.0×10−8mであった。得られたルテニウム酸化物粉末をTEMで観察すると、長径3×10−6〜5×10−6mであり、厚みが3×10−7〜5×10−7mである板状の粉末である事が確認できた。
さらに倍率をあげたTEM像を観察すると、板状の粉末は単結晶ではなく、微細な1次粒子が強固に結合した多結晶体である事が確認できた。この事は、X線回折による結晶子径が2.0×10−8mである事からも裏付けられる。
(Example 2)
Ru powder: 100 g, KOH: 800 g, KNO 3 : 100 g were mixed and melted in a silver crucible at 700 ° C. for 3 hours to obtain potassium ruthenate (K 2 RuO 4 ). This potassium ruthenate was dissolved in pure water, 100 cm 3 of ethanol was added, washed with water and dried to obtain a Ru oxide hydrate. This Ru oxide hydrate was heat-treated at 600 ° C. for 1 hour to obtain a Ru oxide. 131 g of this Ru oxide and 195 g of the barium carbonate reagent were mixed with a cracker and baked in air at 800 ° C. for 1 hour to obtain 283 g of a ruthenium-barium composite oxide powder. It was confirmed from the X-ray diffraction pattern that this ruthenium-barium composite oxide was a mixture of BaRuO 3 <Hexagonal> and BaRuO 3 <Cubic>. Further, when this composite oxide is observed with a TEM, it is a plate-like powder having a major axis of 10 × 10 −6 to 15 × 10 −6 m and a thickness of 5 × 10 −7 to 7 × 10 −7 m. Was confirmed.
The obtained composite oxide of ruthenium and barium was mixed with 283 g of boron oxide using a cracking machine, and heat-treated at 800 ° C. for 1 hour in air.
The obtained melt was put into a solution of 4.5 L of pure water and 500 cm 3 of nitric acid, and 128 g of ruthenium oxide fine powder was recovered. When this ruthenium oxide fine powder was identified by X-ray diffraction, it was confirmed that it was a single phase of RuO 2 <Rutile>. The crystallite diameter was 2.0 × 10 −8 m. When the obtained ruthenium oxide powder is observed with a TEM, it is a plate-like powder having a major axis of 3 × 10 −6 to 5 × 10 −6 m and a thickness of 3 × 10 −7 to 5 × 10 −7 m. I was able to confirm that there was.
Further observation of a TEM image at a higher magnification confirmed that the plate-like powder was not a single crystal but a polycrystalline body in which fine primary particles were firmly bonded. This is supported by the fact that the crystallite diameter by X-ray diffraction is 2.0 × 10 −8 m.

(実施例3)
Ru粉末:100g、KOH:800g、KNO:100gを混合し、銀坩堝中において700℃、3時間溶融し、ルテニウム酸カリ(KRuO)を得た。このルテニウム酸カリを純水に溶解し、エタノール100cmを加え、水洗、乾燥をし、Ru酸化物の水和物を得た。このRu酸化物の水和物全量と酸化バリウム試薬153gをらいかい機で混合し、空気中800℃で1時間焙焼してルテニウムとバリウムの複合酸化物粉末を285g得た。このルテニウムとバリウムの複合酸化物はX線回折パターンより、BaRuO<Hexagonal>とBaRuO<Cubic>の混合物であることが確認できた。また、この複合酸化物をTEMで観察すると、長径5×10−6〜10×10−6mであり、厚みが3×10−7〜5×10−7mである板状の粉末である事が確認できた。
得られたルテニウムとバリウムの複合酸化物と二酸化マンガン粉末86gを酸化ホウ素150gとらいかい機で混合し、空気中800℃で1時間熱処理をおこなった。
得られた溶融物を4.5Lの純水と500cmの硝酸の溶液に入れ、ルテニウム酸化物微粉末を157g回収した。このルテニウム酸化物微粉末をX線回折によって物質同定するとRuO<Rutile>の単相である事が確認できた。また、結晶子径は1.5×10−8mであった。得られたルテニウム酸化物粉末をTEMで観察すると、長径2×10−6〜3×10−6mであり、厚みが2×10−7〜3×10−7mである板状の粉末である事が確認できた。さらに倍率をあげたTEM像を観察すると、板状の粉末は単結晶ではなく微細な1次粒子が強固に結合した多結晶体である事が確認できた。この事は、X線回折による結晶子径が1.5×10−8mである事からも裏付けられる。
また、得られたルテニウム酸化物微粉末を過酸化ソーダと炭酸ソーダでアルカリ融解し、溶融物を塩酸で溶液にし、IPCで分析したところ、Mn含有量が11wt%であった。
(Example 3)
Ru powder: 100 g, KOH: 800 g, KNO 3 : 100 g were mixed and melted in a silver crucible at 700 ° C. for 3 hours to obtain potassium ruthenate (K 2 RuO 4 ). This potassium ruthenate was dissolved in pure water, 100 cm 3 of ethanol was added, washed with water and dried to obtain a Ru oxide hydrate. The total amount of the hydrate of Ru oxide and 153 g of the barium oxide reagent were mixed with a cracker, and baked in air at 800 ° C. for 1 hour to obtain 285 g of a ruthenium-barium composite oxide powder. It was confirmed from the X-ray diffraction pattern that this ruthenium-barium composite oxide was a mixture of BaRuO 3 <Hexagonal> and BaRuO 3 <Cubic>. Further, when this composite oxide is observed with a TEM, it is a plate-like powder having a major axis of 5 × 10 −6 to 10 × 10 −6 m and a thickness of 3 × 10 −7 to 5 × 10 −7 m. I was able to confirm.
The obtained composite oxide of ruthenium and barium and 86 g of manganese dioxide powder were mixed with 150 g of boron oxide using a cracking machine and heat-treated at 800 ° C. for 1 hour in the air.
The obtained melt was put into a solution of 4.5 L of pure water and 500 cm 3 of nitric acid, and 157 g of ruthenium oxide fine powder was recovered. When this ruthenium oxide fine powder was identified by X-ray diffraction, it was confirmed that it was a single phase of RuO 2 <Rutile>. Further, the crystallite diameter was 1.5 × 10 −8 m. When the obtained ruthenium oxide powder is observed with a TEM, it is a plate-like powder having a major axis of 2 × 10 −6 to 3 × 10 −6 m and a thickness of 2 × 10 −7 to 3 × 10 −7 m. I was able to confirm that there was. Further observation of a TEM image at a higher magnification confirmed that the plate-like powder was not a single crystal but a polycrystalline body in which fine primary particles were firmly bonded. This is supported by the fact that the crystallite diameter by X-ray diffraction is 1.5 × 10 −8 m.
Moreover, when the obtained ruthenium oxide fine powder was alkali-fused with sodium peroxide and sodium carbonate, the melt was made into a solution with hydrochloric acid and analyzed by IPC, the Mn content was 11 wt%.

(実施例4)
Ru粉末:100g、KOH:800g、KNO:100gを混合し、銀坩堝中において700℃、3時間溶融し、ルテニウム酸カリ(KRuO)を得た。このルテニウム酸カリを純水に溶解し、エタノール100cmを加え、水洗、乾燥をし、Ru酸化物の水和物を得た。このRu酸化物の水和物全量と酸化バリウム試薬153gをらいかい機で混合し、空気中800℃で1時間焙焼してルテニウムとバリウムの複合酸化物粉末を285g得た。このルテニウムとバリウムの複合酸化物はX線回折パターンより、BaRuO<Hexagonal>とBaRuO<Cubic>の混合物であることが確認できた。また、この複合酸化物をTEMで観察すると、長径5×10−6〜10×10−6mであり、厚みが3×10−7〜5×10−7mである板状の粉末である事が確認できた。
得られたルテニウムとバリウムの複合酸化物、および五酸化ニオブ粉末60gを酸化ホウ素150gとらいかい機で混合し、空気中800℃で1時間熱処理をおこなった。
得られた溶融物を4.5Lの純水と500cmの硝酸の溶液に入れ、ルテニウム酸化物微粉末を150g回収した。このルテニウム酸化物微粉末をX線回折によって物質同定すると、RuO<Rutile>の単相である事が確認できた。また、結晶子径は1.2×10−8mであった。得られたルテニウム酸化物粉末をTEMで観察すると、長径1.5×10−6〜2×10−6mであり、厚みが1.5×10−7〜2×10−7mである板状の粉末である事が確認できた。さらに倍率をあげたTEM像を観察すると、板状の粉末は単結晶ではなく微細な1次粒子が強固に結合した多結晶体である事が確認できた。この事は、X線回折による結晶子径が1.2×10−8mである事からも裏付けられる。
また、得られたルテニウム酸化物微粉末を過酸化ソーダと炭酸ソーダでアルカリ融解し、溶融物を塩酸で溶液にし、IPCで分析したところ、Nb含有量が20wt%であった。
Example 4
Ru powder: 100 g, KOH: 800 g, KNO 3 : 100 g were mixed and melted in a silver crucible at 700 ° C. for 3 hours to obtain potassium ruthenate (K 2 RuO 4 ). This potassium ruthenate was dissolved in pure water, 100 cm 3 of ethanol was added, washed with water and dried to obtain a Ru oxide hydrate. The total amount of the hydrate of Ru oxide and 153 g of the barium oxide reagent were mixed with a cracker, and baked in air at 800 ° C. for 1 hour to obtain 285 g of a ruthenium-barium composite oxide powder. It was confirmed from the X-ray diffraction pattern that this ruthenium-barium composite oxide was a mixture of BaRuO 3 <Hexagonal> and BaRuO 3 <Cubic>. Further, when this composite oxide is observed with a TEM, it is a plate-like powder having a major axis of 5 × 10 −6 to 10 × 10 −6 m and a thickness of 3 × 10 −7 to 5 × 10 −7 m. I was able to confirm.
The obtained composite oxide of ruthenium and barium and 60 g of niobium pentoxide powder were mixed with 150 g of boron oxide using a cracking machine, and heat-treated at 800 ° C. for 1 hour in air.
The obtained melt was put into a solution of 4.5 L of pure water and 500 cm 3 of nitric acid, and 150 g of ruthenium oxide fine powder was recovered. When this ruthenium oxide fine powder was identified by X-ray diffraction, it was confirmed that it was a single phase of RuO 2 <Rutile>. The crystallite diameter was 1.2 × 10 −8 m. When the obtained ruthenium oxide powder is observed with a TEM, a plate having a major axis of 1.5 × 10 −6 to 2 × 10 −6 m and a thickness of 1.5 × 10 −7 to 2 × 10 −7 m. It was confirmed that the powder was a powder. Further observation of a TEM image at a higher magnification confirmed that the plate-like powder was not a single crystal but a polycrystalline body in which fine primary particles were firmly bonded. This is supported by the fact that the crystallite diameter by X-ray diffraction is 1.2 × 10 −8 m.
The obtained ruthenium oxide fine powder was alkali-melted with sodium peroxide and sodium carbonate, and the melt was made into a solution with hydrochloric acid and analyzed by IPC. As a result, the Nb content was 20 wt%.

(実施例5)
Ru粉末:100g、KOH:800g、KNO:100gを混合し、銀坩堝中において700℃、3時間溶融し、ルテニウム酸カリ(KRuO)を得た。このルテニウム酸カリを純水に溶解し、エタノール100cmを加え、水洗、乾燥をし、Ru酸化物の水和物を得た。このRu酸化物の水和物全量と酸化バリウム試薬153gをらいかい機で混合し、空気中800℃で1時間焙焼してルテニウムとバリウムの複合酸化物粉末を285g得た。このルテニウムとバリウムの複合酸化物はX線回折パターンより、BaRuO<Hexagonal>とBaRuO<Cubic>の混合物であることが確認できた。また、この複合酸化物をTEMで観察すると、長径5×10−6〜10×10−6mであり、厚みが3×10−7〜5×10−7mである板状の粉末である事が確認できた。
得られたルテニウムとバリウムの複合酸化物、および五酸化タンタル粉末50gを酸化ホウ素150gとらいかい機で混合し、空気中800℃で1時間熱処理をおこなった。
得られた溶融物を4.5Lの純水と500cmの硝酸の溶液に入れ、ルテニウム酸化物微粉末を172g回収した。このルテニウム酸化物微粉末をX線回折によって物質同定すると、RuO<Rutile>の単相である事が確認できた。また、結晶子径は1.5×10−8mであった。得られたルテニウム酸化物粉末をTEMで観察すると、長径2×10−6〜3×10−6mであり、厚みが2×10−7〜3×10−7mである板状の粉末である事が確認できた。さらに倍率をあげたTEM像を観察すると、板状の粉末は単結晶ではなく、微細な1次粒子が強固に結合した多結晶体である事が確認できた。この事は、X線回折による結晶子径が1.5×10−8mである事からも裏付けられる。
また、得られたルテニウム酸化物微粉末を過酸化ソーダと炭酸ソーダでアルカリ融解し、溶融物を塩酸で溶液にし、IPCで分析したところ、Ta含有量が20wt%であった。
(Example 5)
Ru powder: 100 g, KOH: 800 g, KNO 3 : 100 g were mixed and melted in a silver crucible at 700 ° C. for 3 hours to obtain potassium ruthenate (K 2 RuO 4 ). This potassium ruthenate was dissolved in pure water, 100 cm 3 of ethanol was added, washed with water and dried to obtain a Ru oxide hydrate. The total amount of the hydrate of Ru oxide and 153 g of the barium oxide reagent were mixed with a cracker, and baked in air at 800 ° C. for 1 hour to obtain 285 g of a ruthenium-barium composite oxide powder. It was confirmed from the X-ray diffraction pattern that this ruthenium-barium composite oxide was a mixture of BaRuO 3 <Hexagonal> and BaRuO 3 <Cubic>. Further, when this composite oxide is observed with a TEM, it is a plate-like powder having a major axis of 5 × 10 −6 to 10 × 10 −6 m and a thickness of 3 × 10 −7 to 5 × 10 −7 m. I was able to confirm.
The obtained composite oxide of ruthenium and barium, and 50 g of tantalum pentoxide powder were mixed with 150 g of boron oxide using a cracker, and heat-treated at 800 ° C. for 1 hour in air.
The obtained melt was put into a solution of 4.5 L of pure water and 500 cm 3 of nitric acid, and 172 g of ruthenium oxide fine powder was recovered. When this ruthenium oxide fine powder was identified by X-ray diffraction, it was confirmed that it was a single phase of RuO 2 <Rutile>. Further, the crystallite diameter was 1.5 × 10 −8 m. When the obtained ruthenium oxide powder is observed with a TEM, it is a plate-like powder having a major axis of 2 × 10 −6 to 3 × 10 −6 m and a thickness of 2 × 10 −7 to 3 × 10 −7 m. I was able to confirm that there was. Further observation of a TEM image at a higher magnification confirmed that the plate-like powder was not a single crystal but a polycrystalline body in which fine primary particles were firmly bonded. This is supported by the fact that the crystallite diameter by X-ray diffraction is 1.5 × 10 −8 m.
The obtained ruthenium oxide fine powder was alkali-fused with sodium peroxide and sodium carbonate, and the melt was made into a solution with hydrochloric acid and analyzed by IPC. The Ta content was 20 wt%.

(実施例6)
Ru粉末:100g、KOH:800g、KNO:100gを混合し、銀坩堝中において700℃、3時間溶融し、ルテニウム酸カリ(KRuO)を得た。このルテニウム酸カリを純水に溶解し、エタノール100cmを加え、水洗、乾燥をし、Ru酸化物の水和物を得た。このRu酸化物の水和物全量と酸化バリウム試薬153gをらいかい機で混合し、空気中800℃で1時間焙焼してルテニウムとバリウムの複合酸化物粉末を285g得た。このルテニウムとバリウムの複合酸化物はX線回折パターンより、BaRuO<Hexagonal>とBaRuO<Cubic>の混合物であることが確認できた。また、この複合酸化物をTEMで観察すると、長径5×10−6〜10×10−6mであり、厚みが3×10−7〜5×10−7mである板状の粉末である事が確認できた。
得られたルテニウムとバリウムの複合酸化物、および二酸化チタン粉末64gを酸化ホウ素150gとらいかい機で混合し、空気中800℃で1時間熱処理をおこなった。
得られた溶融物を4.5Lの純水と500cmの硝酸の溶液に入れ、ルテニウム酸化物微粉末を193g回収した。このルテニウム酸化物微粉末をX線回折によって物質同定すると、RuO<Rutile>の単相である事が確認できた。また、結晶子径は1.2×10−8mであった。得られたルテニウム酸化物粉末をTEMで観察すると、長径2×10−6〜2.5×10−6mであり、厚みが2×10−7〜2.5×10−7mである板状の粉末である事が確認できた。さらに倍率をあげたTEM像を観察すると、板状の粉末は単結晶ではなく微細な1次粒子が強固に結合した多結晶体である事が確認できた。この事は、X線回折による結晶子径が1.2×10−8mである事からも裏付けられる。また、得られたルテニウム酸化物微粉末を過酸化ソーダと炭酸ソーダでアルカリ融解し、溶融物を塩酸で溶液にし、IPCで分析したところ、Ti含有量が21wt%であった。
(Example 6)
Ru powder: 100 g, KOH: 800 g, KNO 3 : 100 g were mixed and melted in a silver crucible at 700 ° C. for 3 hours to obtain potassium ruthenate (K 2 RuO 4 ). This potassium ruthenate was dissolved in pure water, 100 cm 3 of ethanol was added, washed with water and dried to obtain a Ru oxide hydrate. The total amount of the hydrate of Ru oxide and 153 g of the barium oxide reagent were mixed with a cracker, and baked in air at 800 ° C. for 1 hour to obtain 285 g of a ruthenium-barium composite oxide powder. It was confirmed from the X-ray diffraction pattern that this ruthenium-barium composite oxide was a mixture of BaRuO 3 <Hexagonal> and BaRuO 3 <Cubic>. Further, when this composite oxide is observed with a TEM, it is a plate-like powder having a major axis of 5 × 10 −6 to 10 × 10 −6 m and a thickness of 3 × 10 −7 to 5 × 10 −7 m. I was able to confirm.
The obtained composite oxide of ruthenium and barium and 64 g of titanium dioxide powder were mixed with 150 g of boron oxide using a cracker and heat-treated at 800 ° C. for 1 hour in air.
The obtained melt was put into a solution of 4.5 L of pure water and 500 cm 3 of nitric acid, and 193 g of ruthenium oxide fine powder was recovered. When this ruthenium oxide fine powder was identified by X-ray diffraction, it was confirmed that it was a single phase of RuO 2 <Rutile>. The crystallite diameter was 1.2 × 10 −8 m. When the obtained ruthenium oxide powder is observed with a TEM, it is a plate having a major axis of 2 × 10 −6 to 2.5 × 10 −6 m and a thickness of 2 × 10 −7 to 2.5 × 10 −7 m. It was confirmed that the powder was a powder. Further observation of a TEM image at a higher magnification confirmed that the plate-like powder was not a single crystal but a polycrystalline body in which fine primary particles were firmly bonded. This is supported by the fact that the crystallite diameter by X-ray diffraction is 1.2 × 10 −8 m. Moreover, when the obtained ruthenium oxide fine powder was alkali-fused with sodium peroxide and sodium carbonate, the melt was made into a solution with hydrochloric acid and analyzed by IPC, the Ti content was 21 wt%.

(実施例7)
Ru粉末:100g、KOH:800g、KNO:100gを混合し、銀坩堝中において700℃、3時間溶融し、ルテニウム酸カリ(KRuO)を得た。このルテニウム酸カリを純水に溶解し、エタノール100cmを加え、水洗、乾燥をし、Ru酸化物の水和物を得た。このRu酸化物の水和物全量と酸化バリウム試薬153gをらいかい機で混合し、空気中800℃で1時間焙焼してルテニウムとバリウムの複合酸化物粉末を285g得た。このルテニウムとバリウムの複合酸化物はX線回折パターンより、BaRuO<Hexagonal>とBaRuO<Cubic>の混合物であることが確認できた。また、この複合酸化物をTEMで観察すると、長径5×10−6〜10×10−6mであり、厚みが3×10−7〜5×10−7mである板状の粉末である事が確認できた。
得られたルテニウムとバリウムの複合酸化物、および二酸化スズ粉末50gを酸化ホウ素150gとらいかい機で混合し、空気中800℃で1時間熱処理をおこなった。
得られた溶融物を4.5Lの純水と500cmの硝酸の溶液に入れ、ルテニウム酸化物微粉末を165g回収した。このルテニウム酸化物微粉末をX線回折によって物質同定すると、RuO<Rutile>の単相である事が確認できた。また、結晶子径は1.7×10−8mであった。得られたルテニウム酸化物粉末をTEMで観察すると、長径2×10−6〜3×10−6mであり、厚みが2×10−7〜3×10−7mである板状の粉末である事が確認できた。さらに倍率をあげたTEM像を観察すると、板状の粉末は単結晶ではなく、微細な1次粒子が強固に結合した多結晶体である事が確認できた。この事は、X線回折による結晶子径が1.7×10−8mである事からも裏付けられる。
また、得られたルテニウム酸化物微粉末を過酸化ソーダと炭酸ソーダでアルカリ融解し、溶融物を塩酸で溶液にし、IPCで分析したところ、Sn含有量が17wt%であった。
(Example 7)
Ru powder: 100 g, KOH: 800 g, KNO 3 : 100 g were mixed and melted in a silver crucible at 700 ° C. for 3 hours to obtain potassium ruthenate (K 2 RuO 4 ). This potassium ruthenate was dissolved in pure water, 100 cm 3 of ethanol was added, washed with water and dried to obtain a Ru oxide hydrate. The total amount of the hydrate of Ru oxide and 153 g of the barium oxide reagent were mixed with a cracker, and baked in air at 800 ° C. for 1 hour to obtain 285 g of a ruthenium-barium composite oxide powder. It was confirmed from the X-ray diffraction pattern that this ruthenium-barium composite oxide was a mixture of BaRuO 3 <Hexagonal> and BaRuO 3 <Cubic>. Further, when this composite oxide is observed with a TEM, it is a plate-like powder having a major axis of 5 × 10 −6 to 10 × 10 −6 m and a thickness of 3 × 10 −7 to 5 × 10 −7 m. I was able to confirm.
The obtained composite oxide of ruthenium and barium and 50 g of tin dioxide powder were mixed with 150 g of boron oxide using a cracker and heat-treated at 800 ° C. for 1 hour in air.
The obtained melt was put into a solution of 4.5 L of pure water and 500 cm 3 of nitric acid, and 165 g of ruthenium oxide fine powder was recovered. When this ruthenium oxide fine powder was identified by X-ray diffraction, it was confirmed that it was a single phase of RuO 2 <Rutile>. Moreover, the crystallite diameter was 1.7 × 10 −8 m. When the obtained ruthenium oxide powder is observed with a TEM, it is a plate-like powder having a major axis of 2 × 10 −6 to 3 × 10 −6 m and a thickness of 2 × 10 −7 to 3 × 10 −7 m. I was able to confirm that there was. Further observation of a TEM image at a higher magnification confirmed that the plate-like powder was not a single crystal but a polycrystalline body in which fine primary particles were firmly bonded. This is supported by the fact that the crystallite diameter by X-ray diffraction is 1.7 × 10 −8 m.
The obtained ruthenium oxide fine powder was alkali-melted with sodium peroxide and sodium carbonate, and the melt was made into a solution with hydrochloric acid and analyzed by IPC. As a result, the Sn content was 17 wt%.

(比較例1)
実施例1と同様に、Ru粉末:100g、KOH:800g、KNO:100gを混合し、銀坩堝中において700℃、3時間溶融し、ルテニウム酸カリ(KRuO)を得た。このルテニウム酸カリを純水に溶解し、エタノール100cmを加え、水洗、乾燥をし、Ru酸化物の水和物を得た。次に、実施例1とは異なり、得られたRu酸化物の水和物全量と酸化バリウム試薬153gに対して、酸化ホウ素60gを追加し、らいかい機で混合し空気中800℃で1時間熱処理をおこなった。
得られた溶融物を4.5Lの純水と500cmの硝酸の溶液に入れ、ルテニウム酸化物微粉末を129g回収した。このルテニウム酸化物微粉末をX線回折によって物質同定するとRuO<Rutile>の単相である事が確認できた。また、結晶子径は1.0×10−8mであった。得られたルテニウム酸化物粉末をTEMで観察しても、板状の粉末ではなかった。さらに倍率をあげたTEM像を観察すると、粉末はほぼ結晶子径と一致する微細な粉末であった。
(Comparative Example 1)
In the same manner as in Example 1, Ru powder: 100 g, KOH: 800 g, KNO 3 : 100 g were mixed and melted in a silver crucible at 700 ° C. for 3 hours to obtain potassium ruthenate (K 2 RuO 4 ). This potassium ruthenate was dissolved in pure water, 100 cm 3 of ethanol was added, washed with water and dried to obtain a Ru oxide hydrate. Next, unlike Example 1, 60 g of boron oxide was added to the total amount of the Ru oxide hydrate obtained and 153 g of the barium oxide reagent, and the mixture was mixed with a separator and mixed in air at 800 ° C. for 1 hour. Heat treatment was performed.
The obtained melt was put into a solution of 4.5 L of pure water and 500 cm 3 of nitric acid, and 129 g of ruthenium oxide fine powder was recovered. When this ruthenium oxide fine powder was identified by X-ray diffraction, it was confirmed that it was a single phase of RuO 2 <Rutile>. The crystallite diameter was 1.0 × 10 −8 m. Even when the obtained ruthenium oxide powder was observed by TEM, it was not a plate-like powder. Further, when a TEM image with a higher magnification was observed, the powder was a fine powder almost identical to the crystallite diameter.

(実施例8)
上記実施例1で得られたルテニウム酸化物粉末36重量部とSiO:35wt%、B:20wt%、Al:5wt%、CaO:5wt%、BaO:20wt%、ZnO:15wt%であるガラスフリット24重量部と、有機ビヒクルとしてエチルセルロースをターピネオールに溶解したもの40重量部を3本ロールミルによって混練し、抵抗ぺーストを試作した。
次に、こうして試作した抵抗ぺーストを予めAg/Pdぺースト(Ag/Pd=98.5/1.5)によって電極を形成したアルミナ基板に印刷し、ピーク温度850℃、ピーク時間9分のベルト焼成炉によって焼成し、抵抗体を形成した。抵抗体サイズは幅0.3mm、電極間0.3mmとした。形成された抵抗体は、200pFのコンデンサに1kV、2kV、3kVで充電した静電気を10回放電し、抵抗値変化を測定した(この試験をESD試験と呼ぶ)。
形成された抵抗体の膜厚、静電気放電前の抵抗値(初期抵抗値)、25℃から125℃の間の抵抗温度係数(TCR)と、静電気放電後の抵抗値変化率(ESD変化率)を表1にまとめた。
(Example 8)
36 parts by weight of the ruthenium oxide powder obtained in Example 1 above, SiO 2 : 35 wt%, B 2 O 3 : 20 wt%, Al 2 O 3 : 5 wt%, CaO: 5 wt%, BaO: 20 wt%, ZnO: A resistance paste was made as a trial by kneading 24 parts by weight of glass frit of 15 wt% and 40 parts by weight of organic cellulose dissolved in terpineol as an organic vehicle using a three-roll mill.
Next, the resistor paste thus produced was printed on an alumina substrate on which electrodes were previously formed by Ag / Pd paste (Ag / Pd = 98.5 / 1.5), and the peak temperature was 850 ° C. and the peak time was 9 minutes. The resistor was formed by firing in a belt firing furnace. The resistor size was 0.3 mm width and 0.3 mm between the electrodes. The formed resistor was subjected to discharge of static electricity charged at 1 kV, 2 kV, and 3 kV to a 200 pF capacitor 10 times, and a change in resistance value was measured (this test is called an ESD test).
Film thickness of the formed resistor, resistance value before electrostatic discharge (initial resistance value), resistance temperature coefficient (TCR) between 25 ° C. and 125 ° C., and resistance value change rate (ESD change rate) after electrostatic discharge Are summarized in Table 1.

(実施例9)
上記実施例3で得られたルテニウム酸化物粉末36重量部と、SiO:35wt%、B:20wt%、Al:5wt%、CaO:5wt%、BaO:20wt%、ZnO:15wt%であるガラスフリット24重量部と、有機ビヒクルとしてエチルセルロースをターピネオールに溶解したもの40重量部を3本ロールミルによって混練し、抵抗体ぺーストを試作した。
次に、実施例8と同様にして、試作した抵抗体ぺーストから抵抗体を形成し、ESD試験を行い、結果を表1にまとめた。
Example 9
36 parts by weight of the ruthenium oxide powder obtained in Example 3 above, SiO 2 : 35 wt%, B 2 O 3 : 20 wt%, Al 2 O 3 : 5 wt%, CaO: 5 wt%, BaO: 20 wt%, ZnO A resistor paste was produced by kneading 24 parts by weight of glass frit of 15 wt% and 40 parts by weight of organic cellulose dissolved in terpineol as an organic vehicle using a three-roll mill.
Next, in the same manner as in Example 8, a resistor was formed from the prototype resistor paste, an ESD test was performed, and the results are summarized in Table 1.

(実施例10)
上記実施例4で得られたルテニウム酸化物粉末36重量部と、SiO:35wt%、B:20wt%、Al:5wt%、CaO:5wt%、BaO:20wt%、ZnO:15wt%であるガラスフリット24重量部と、有機ビヒクルとしてエチルセルロースをターピネオールに溶解したもの40重量部を3本ロールミルによって混練し、抵抗体ぺーストを試作した。
次に、実施例8と同様にして、試作した抵抗体ぺーストから抵抗体を形成し、ESD試験を行い、結果を表1にまとめた。
(Example 10)
36 parts by weight of the ruthenium oxide powder obtained in Example 4 above, SiO 2 : 35 wt%, B 2 O 3 : 20 wt%, Al 2 O 3 : 5 wt%, CaO: 5 wt%, BaO: 20 wt%, ZnO A resistor paste was produced by kneading 24 parts by weight of glass frit of 15 wt% and 40 parts by weight of organic cellulose dissolved in terpineol as an organic vehicle using a three-roll mill.
Next, in the same manner as in Example 8, a resistor was formed from the prototype resistor paste, an ESD test was performed, and the results are summarized in Table 1.

(実施例11)
上記実施例5で得られたルテニウム酸化物粉末36重量部と、SiO:35wt%、B:20wt%、Al:5wt%、CaO:5wt%、BaO:20wt%、ZnO:15wt%であるガラスフリット24重量部と、有機ビヒクルとしてエチルセルロースをターピネオールに溶解したもの40重量部を3本ロールミルによって混練し、抵抗体ぺーストを試作した。
次に、実施例8と同様にして、試作した抵抗体ぺーストから抵抗体を形成し、ESD試験を行い、結果を表1にまとめた。
(Example 11)
36 parts by weight of the ruthenium oxide powder obtained in Example 5 above, SiO 2 : 35 wt%, B 2 O 3 : 20 wt%, Al 2 O 3 : 5 wt%, CaO: 5 wt%, BaO: 20 wt%, ZnO A resistor paste was produced by kneading 24 parts by weight of glass frit of 15 wt% and 40 parts by weight of organic cellulose dissolved in terpineol as an organic vehicle using a three-roll mill.
Next, in the same manner as in Example 8, a resistor was formed from the prototype resistor paste, an ESD test was performed, and the results are summarized in Table 1.

(実施例12)
上記実施例6で得られたルテニウム酸化物粉末36重量部と、SiO:35wt%、B:20wt%、 Al:5wt%、CaO:5wt%、BaO:20wt%、ZnO:15wt%であるガラスフリット24重量部と、有機ビヒクルとしてエチルセルロースをターピネオールに溶解したもの40重量部を3本ロールミルによって混練し、抵抗体ぺーストを試作した。
次に、実施例8と同様にして、試作した抵抗体ぺーストから抵抗体を形成し、ESD試験を行い、結果を表1にまとめた。
(Example 12)
36 parts by weight of the ruthenium oxide powder obtained in Example 6 above, SiO 2 : 35 wt%, B 2 O 3 : 20 wt%, Al 2 O 3 : 5 wt%, CaO: 5 wt%, BaO: 20 wt%, ZnO A resistor paste was produced by kneading 24 parts by weight of glass frit of 15 wt% and 40 parts by weight of organic cellulose dissolved in terpineol as an organic vehicle using a three-roll mill.
Next, in the same manner as in Example 8, a resistor was formed from the prototype resistor paste, an ESD test was performed, and the results are summarized in Table 1.

(実施例13)
上記実施例7で得られたルテニウム酸化物粉末36重量部と、SiO:35wt%、B:20wt%、Al:5wt%、CaO:5wt%、BaO:20wt%、ZnO:15wt%であるガラスフリット24重量部と、有機ビヒクルとしてエチルセルロースをターピネオールに溶解したもの40重量部を3本ロールミルによって混練し抵抗体ぺーストを試作した。
次に、実施例8と同様にして、試作した抵抗体ぺーストから抵抗体を形成し、ESD試験を行い、結果を表1にまとめた。
(Example 13)
36 parts by weight of the ruthenium oxide powder obtained in Example 7 above, SiO 2 : 35 wt%, B 2 O 3 : 20 wt%, Al 2 O 3 : 5 wt%, CaO: 5 wt%, BaO: 20 wt%, ZnO A resistor paste was made by kneading 24 parts by weight of a glass frit of 15 wt% and 40 parts by weight of organic cellulose dissolved in terpineol as an organic vehicle by a three-roll mill.
Next, in the same manner as in Example 8, a resistor was formed from the prototype resistor paste, an ESD test was performed, and the results are summarized in Table 1.

(比較例2)
従来法により、Ru粉末:100g、KOH:800g、KNO:100gを混合し、銀坩堝中において700℃、3時間溶融し、ルテニウム酸カリ(KRuO)を得た。このルテニウム酸カリを純水に溶解し、エタノール100cmを加え、水洗、乾燥をし、Ru酸化物の水和物を得た。このRu酸化物の水和物を600℃で1時間熱処理することによって、ルテニウム酸化物を得た。ルテニウム酸化物の形状は、粒状であった。
得られたルテニウム酸化物粉末36重量部と、SiO:35wt%、B:20wt%、Al:5wt%、CaO:5wt%、BaO:20wt%、ZnO:15wt%であるガラスフリット24重量部と、有機ビヒクルとしてエチルセルロースをターピネオールに溶解したもの40重量部を3本ロールミルによって混練し、抵抗体ぺーストを試作した。
次に、実施例8と同様にして、試作した抵抗体ぺーストから抵抗体を形成し、ESD試験を行い、結果を表1にまとめた。
(Comparative Example 2)
According to a conventional method, Ru powder: 100 g, KOH: 800 g, KNO 3 : 100 g were mixed and melted in a silver crucible at 700 ° C. for 3 hours to obtain potassium ruthenate (K 2 RuO 4 ). This potassium ruthenate was dissolved in pure water, 100 cm 3 of ethanol was added, washed with water and dried to obtain a Ru oxide hydrate. The ruthenium oxide hydrate was heat-treated at 600 ° C. for 1 hour to obtain ruthenium oxide. The shape of the ruthenium oxide was granular.
36 parts by weight of the obtained ruthenium oxide powder, SiO 2 : 35 wt%, B 2 O 3 : 20 wt%, Al 2 O 3 : 5 wt%, CaO: 5 wt%, BaO: 20 wt%, ZnO: 15 wt%. 24 parts by weight of glass frit and 40 parts by weight of organic cellulose dissolved in terpineol as an organic vehicle were kneaded by a three-roll mill to produce a resistor paste.
Next, in the same manner as in Example 8, a resistor was formed from the prototype resistor paste, an ESD test was performed, and the results are summarized in Table 1.

(比較例3)
上記比較例1で得られた非板状のルテニウム酸化物粉末36重量部と、SiO:35wt%、B:20wt%、Al:5wt%、CaO:5wt%、BaO:20wt%、ZnO:15wt%であるガラスフリット24重量部と、有機ビヒクルとしてエチルセルロースをターピネオールに溶解したもの40重量部を3本ロールミルによって混練し、抵抗体ぺーストを試作した。
次に、実施例8と同様にして、試作した抵抗体ぺーストから抵抗体を形成し、ESD試験を行い、結果を表1にまとめた。
(Comparative Example 3)
36 parts by weight of the non-plate-like ruthenium oxide powder obtained in Comparative Example 1 above, SiO 2 : 35 wt%, B 2 O 3 : 20 wt%, Al 2 O 3 : 5 wt%, CaO: 5 wt%, BaO: A resistor paste was prototyped by kneading 24 parts by weight of glass frit of 20 wt% and ZnO: 15 wt% and 40 parts by weight of organic cellulose dissolved in terpineol as an organic vehicle using a three roll mill.
Next, in the same manner as in Example 8, a resistor was formed from the prototype resistor paste, an ESD test was performed, and the results are summarized in Table 1.

Figure 2013053030
Figure 2013053030

(実施例14)
上記実施例1で得られたルテニウム酸化物粉末70重量部と、レゾール型フェノール樹脂10重量部、ブチルセロソルブ20重量部を3本ロールミルによって混練し、抵抗体ペーストを試作した。
次に、試作した抵抗体ペーストを予めAg/Pdペースト(Ag/Pd=98.5/1.5)によって電極を形成したアルミナ基板に印刷し、温度200℃に保持したオーブンに30分間いれ、フェノール樹脂を硬化させ抵抗体を形成した。抵抗体サイズは幅0.3mm、電極間0.3mmとした。
形成された抵抗体の膜厚、抵抗値、25℃から125℃の間の抵抗温度係数(TCR)を表2にまとめた。
(Example 14)
70 parts by weight of the ruthenium oxide powder obtained in Example 1, 10 parts by weight of a resol type phenol resin, and 20 parts by weight of butyl cellosolve were kneaded by a three-roll mill to produce a resistor paste.
Next, the prototype resistor paste was printed on an alumina substrate on which an electrode was previously formed with an Ag / Pd paste (Ag / Pd = 98.5 / 1.5) and placed in an oven maintained at a temperature of 200 ° C. for 30 minutes. The phenol resin was cured to form a resistor. The resistor size was 0.3 mm width and 0.3 mm between the electrodes.
Table 2 shows the film thickness, resistance value, and resistance temperature coefficient (TCR) between 25 ° C. and 125 ° C. of the formed resistor.

(比較例4)
上記比較例1で得られたルテニウム酸化物粉末70重量部と、レゾール型フェノール樹脂10重量部、ブチルセロソルブ20重量部を3本ロールミルによって混練し、抵抗体ペーストを試作した。
次に、実施例14と同様にして、試作した抵抗体ペーストから抵抗体を形成し、形成された抵抗体の膜厚、抵抗値、25℃から125℃の間の抵抗温度係数(TCR)を表2にまとめた。
(Comparative Example 4)
70 parts by weight of the ruthenium oxide powder obtained in Comparative Example 1, 10 parts by weight of a resol type phenol resin, and 20 parts by weight of butyl cellosolve were kneaded by a three-roll mill to produce a resistor paste.
Next, in the same manner as in Example 14, a resistor was formed from the prototype resistor paste, and the film thickness, resistance value, and resistance temperature coefficient (TCR) between 25 ° C. and 125 ° C. were formed. The results are summarized in Table 2.

Figure 2013053030
Figure 2013053030

「評価」
表1の結果から明らかなように、本発明によって製造したルテニウム酸化物(実施例1〜7)を導電物とした厚膜抵抗体(実施例8〜13)は、ルテニウム酸化物が板状であるため、静電気の放電による抵抗値変化が少なく、抵抗体膜は3kVの静電気を放電しても抵抗体の焼成膜にクラックは確認されなかった。これに対し、従来法によって製造したルテニウム酸化物を導電物とした比較例2、3の抵抗体は、ルテニウム酸化物が粒状又は非板状であるため、焼成膜に微細なクラックが発生しており、静電気を放電すると、この微細なクラックが広がり抵抗値がプラスに変化し、さらに放電の電圧を高くしていくとクラックが更に広がり抵抗体の膜が破壊され、大きなプラスの抵抗値変化を示した。
また、表2から、実施例14で製造した本発明のルテニウム酸化物を導電物とした樹脂硬化型の厚膜抵抗体は抵抗値が低く、抵抗温度係数も0に近いことが判る。これに対し比較例4で製造したルテニウム酸化物を導電物とした樹脂硬化型の厚膜抵抗体は、抵抗値が極度に高く、抵抗温度係数もマイナスに大きい。これは、実施例14では、板状の導電粉末を用いているため導電粒子同士が面で接触しているのに対し、比較例4では、導電粒子同士が点で接触しているために非常に不安定になったものと考えられる。
"Evaluation"
As is apparent from the results in Table 1, the thick film resistors (Examples 8 to 13) using the ruthenium oxide (Examples 1 to 7) produced according to the present invention as conductive materials have a ruthenium oxide plate shape. Therefore, there was little change in the resistance value due to electrostatic discharge, and no crack was observed in the fired film of the resistor even when the resistor film was discharged with 3 kV static electricity. On the other hand, in the resistors of Comparative Examples 2 and 3 in which the ruthenium oxide manufactured by the conventional method is a conductive material, the ruthenium oxide is granular or non-plate-like, so that fine cracks are generated in the fired film. However, when static electricity is discharged, this fine crack spreads and the resistance value changes to positive, and when the discharge voltage is further increased, the crack further spreads and the resistor film is destroyed, resulting in a large positive resistance value change. Indicated.
Further, it can be seen from Table 2 that the resin-cured thick film resistor using the ruthenium oxide of the present invention produced in Example 14 as a conductive material has a low resistance value and a resistance temperature coefficient close to 0. On the other hand, the resin-cured thick film resistor using the ruthenium oxide manufactured in Comparative Example 4 as a conductive material has an extremely high resistance value and a large negative temperature coefficient of resistance. In Example 14, the conductive particles are in contact with each other because the plate-like conductive powder is used, whereas in Comparative Example 4, the conductive particles are in contact with each other at points. It is thought that it became unstable.

本発明の板状酸化ルテニウム粉末を用いた厚膜抵抗組成物は、導電成分である板状酸化ルテニウム粉末のガラス結合剤に対する配合比を高めても、焼成膜の構造が強固で、静電気やサージ電流が負荷されても抵抗値変化が小さいので、チップ抵抗器、厚膜ハイブリッドICや抵抗ネットワーク等の厚膜抵抗体の製造に広く用いることができる。これにより、本厚膜抵抗組成物は、近年、サイズの極小化が進むチップ抵抗器などの電子部品の製造に有用である。   The thick film resistor composition using the plate-like ruthenium oxide powder of the present invention has a strong structure of the fired film even when the compounding ratio of the plate-like ruthenium oxide powder, which is a conductive component, to the glass binder is increased. Since the change in resistance value is small even when a current is applied, it can be widely used in the manufacture of thick film resistors such as chip resistors, thick film hybrid ICs, and resistor networks. As a result, the thick film resistor composition is useful for the manufacture of electronic components such as chip resistors whose size has been miniaturized in recent years.

Claims (12)

ルテニウム化合物とバリウム化合物の混合物を、酸化雰囲気かつ400℃以上の温度で熱処理してルテニウムとバリウムの板状複合酸化物を合成する工程、次に、得られた板状複合酸化物に酸化ホウ素もしくはホウ酸を混合した後、500℃以上の温度で熱処理を行って板状複合酸化物を板状の酸化ルテニウム粉末と酸化ホウ素と酸化バリウムの溶融物中に生成させる工程、得られた溶融物に溶剤を添加し、酸化ホウ素と酸化バリウムを溶解して板状酸化ルテニウム粉末を回収する工程からなることを特徴とする板状酸化ルテニウム粉末の製造方法。 A step of synthesizing a plate-shaped composite oxide of ruthenium and barium by heat-treating a mixture of a ruthenium compound and a barium compound at an oxidizing atmosphere and at a temperature of 400 ° C. or higher. After mixing boric acid, a heat treatment is performed at a temperature of 500 ° C. or higher to form a plate-like composite oxide in the plate-like ruthenium oxide powder, boron oxide and barium oxide melt, and the resulting melt A method for producing a plate-like ruthenium oxide powder comprising a step of adding a solvent, dissolving boron oxide and barium oxide, and collecting the plate-like ruthenium oxide powder. ルテニウム化合物が、Ruを含む溶液から湿式合成されたRu酸化物であることを特徴とする請求項1に記載の板状酸化ルテニウム粉末の製造方法。 The method for producing a plate-like ruthenium oxide powder according to claim 1, wherein the ruthenium compound is a Ru oxide wet-synthesized from a solution containing Ru. バリウム化合物が、酸化バリウム、炭酸バリウム、硝酸バリウム、塩化バリウム、又は硫酸バリウムから選ばれる少なくとも1種であることを特徴とする請求項1に記載の板状酸化ルテニウム粉末の製造方法。 The method for producing a plate-like ruthenium oxide powder according to claim 1, wherein the barium compound is at least one selected from barium oxide, barium carbonate, barium nitrate, barium chloride, or barium sulfate. ルテニウム化合物とバリウム化合物の混合割合が、ルテニウム:バリウムのモル比で0.8:1.2〜1.2:0.8であることを特徴とする請求項1に記載の板状酸化ルテニウム粉末の製造方法。 2. The plate-like ruthenium oxide powder according to claim 1, wherein a mixing ratio of the ruthenium compound and the barium compound is 0.8: 1.2 to 1.2: 0.8 in a molar ratio of ruthenium: barium. Manufacturing method. 板状複合酸化物を合成する工程において、混合物の熱処理温度が400〜1000℃であることを特徴とする請求項1に記載の板状酸化ルテニウム粉末の製造方法。 The method for producing a plate-like ruthenium oxide powder according to claim 1, wherein, in the step of synthesizing the plate-like composite oxide, the heat treatment temperature of the mixture is 400 to 1000 ° C. 酸化ホウ素あるいはホウ酸が、酸化ホウ素に換算して、板状複合酸化物100重量部に対し20重量部以上であることを特徴とする請求項1に記載の板状酸化ルテニウム粉末の製造方法。 The method for producing a plate-like ruthenium oxide powder according to claim 1, wherein the boron oxide or boric acid is 20 parts by weight or more based on 100 parts by weight of the plate-like composite oxide in terms of boron oxide. 板状の複合酸化物を溶融する工程において、熱処理温度が500〜1000℃であることを特徴とする請求項1に記載の板状酸化ルテニウム粉末の製造方法。 The method for producing a plate-like ruthenium oxide powder according to claim 1, wherein the heat treatment temperature is 500 to 1000 ° C in the step of melting the plate-like composite oxide. 前記酸化ホウ素もしくはホウ酸に、さらにMn、Nb、Ta、Ti、又はSnから選ばれる少なくとも1種類以上を含む化合物を混合し熱処理を行う事によって、Mn、Nb、Ta、Ti、又はSn元素が固溶した板状酸化ルテニウム粉末を得ることを特徴とする請求項1に記載の板状酸化ルテニウム粉末の製造方法。 By mixing the boron oxide or boric acid with a compound further containing at least one selected from Mn, Nb, Ta, Ti, or Sn and performing a heat treatment, the Mn, Nb, Ta, Ti, or Sn element is changed. The method for producing a plate-like ruthenium oxide powder according to claim 1, wherein a solid-form plate-like ruthenium oxide powder is obtained. 板状酸化ルテニウム粉末を回収する工程において、添加される溶剤が、鉱酸あるいは有機酸の水溶液である事を特徴とする請求項1に記載の板状酸化ルテニウム粉末の製造方法。 The method for producing a plate-like ruthenium oxide powder according to claim 1, wherein in the step of collecting the plate-like ruthenium oxide powder, the solvent added is an aqueous solution of a mineral acid or an organic acid. 請求項1〜9のいずれかに記載の製造方法により得られた、長径が1×10−6〜5×10−6mであり、厚みが1.5×10−7〜5×10−7mである板状酸化ルテニウム粉末。 The major axis obtained by the production method according to claim 1 is 1 × 10 −6 to 5 × 10 −6 m, and the thickness is 1.5 × 10 −7 to 5 × 10 −7. A plate-like ruthenium oxide powder which is m. 請求項10に記載の板状酸化ルテニウム粉末に、ガラス粉末を配合してなる厚膜抵抗組成物。 A thick film resistance composition obtained by blending glass powder with the plate-like ruthenium oxide powder according to claim 10. 請求項10の板状酸化ルテニウム粉末に、熱硬化性樹脂及び/又は熱可塑性樹脂を配合してなる厚膜抵抗組成物。 A thick film resistor composition obtained by blending the plate-like ruthenium oxide powder of claim 10 with a thermosetting resin and / or a thermoplastic resin.
JP2011191439A 2011-09-02 2011-09-02 Plate-like ruthenium oxide powder and method for producing the same, and thick film resistor composition using the same Active JP5831055B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011191439A JP5831055B2 (en) 2011-09-02 2011-09-02 Plate-like ruthenium oxide powder and method for producing the same, and thick film resistor composition using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011191439A JP5831055B2 (en) 2011-09-02 2011-09-02 Plate-like ruthenium oxide powder and method for producing the same, and thick film resistor composition using the same

Publications (2)

Publication Number Publication Date
JP2013053030A true JP2013053030A (en) 2013-03-21
JP5831055B2 JP5831055B2 (en) 2015-12-09

Family

ID=48130377

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011191439A Active JP5831055B2 (en) 2011-09-02 2011-09-02 Plate-like ruthenium oxide powder and method for producing the same, and thick film resistor composition using the same

Country Status (1)

Country Link
JP (1) JP5831055B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018043895A (en) * 2016-09-12 2018-03-22 住友金属鉱山株式会社 Ruthenium dioxide powder and production method thereof, thick film resistor paste, and thick film resistor
CN107986341A (en) * 2017-12-18 2018-05-04 西安宏星电子浆料科技有限责任公司 Plate resistor slurry ruthenium-oxide powder and preparation method thereof
CN110494937A (en) * 2017-02-13 2019-11-22 大洲电子材料(株) Lead-free thick film resistor body and electronic component comprising it
JP2020193137A (en) * 2019-05-30 2020-12-03 住友金属鉱山株式会社 Method for producing lead ruthenate powder
JP2020193138A (en) * 2019-05-30 2020-12-03 住友金属鉱山株式会社 Method for producing lead ruthenate powder, lead ruthenate powder, and thick film resistor paste containing lead ruthenate powder
JP2021125303A (en) * 2020-01-31 2021-08-30 住友金属鉱山株式会社 Composition for thick film resistor, paste for thick film resistor and thick film resistor
WO2021221174A1 (en) * 2020-05-01 2021-11-04 住友金属鉱山株式会社 Thick film resistor paste, thick film resistor, and electronic component

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180038237A (en) 2016-10-06 2018-04-16 삼성전자주식회사 Composite material, method of forming the same and apparatus including composite material

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63130141A (en) * 1986-11-21 1988-06-02 Permelec Electrode Ltd Decomposition catalyst of hypochlorite and its preparation
JPH01294541A (en) * 1988-05-20 1989-11-28 Tanaka Kikinzoku Kogyo Kk Production of fine powder of ruthenium oxide
JPH0725620A (en) * 1993-07-07 1995-01-27 Sumitomo Metal Mining Co Ltd Production of ruthenium dioxide fine powder
JP2004259718A (en) * 2003-02-24 2004-09-16 Sumitomo Metal Mining Co Ltd Ru-Ti-O FINE POWDER, ITS MANUFACTURING METHOD, AND THICK-FILM RESISTOR COMPOSITION USING IT
JP2006069836A (en) * 2004-09-01 2006-03-16 Sumitomo Metal Mining Co Ltd Ruthenium complex oxide minute powder and its manufacturing method
JP2006298655A (en) * 2005-04-15 2006-11-02 Sumitomo Metal Mining Co Ltd Ruthenium compound oxide powder and method for manufacturing the same
JP2008174431A (en) * 2007-01-22 2008-07-31 Shinshu Univ Ruthenic acid nanosheet and its producing method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63130141A (en) * 1986-11-21 1988-06-02 Permelec Electrode Ltd Decomposition catalyst of hypochlorite and its preparation
JPH01294541A (en) * 1988-05-20 1989-11-28 Tanaka Kikinzoku Kogyo Kk Production of fine powder of ruthenium oxide
JPH0725620A (en) * 1993-07-07 1995-01-27 Sumitomo Metal Mining Co Ltd Production of ruthenium dioxide fine powder
JP2004259718A (en) * 2003-02-24 2004-09-16 Sumitomo Metal Mining Co Ltd Ru-Ti-O FINE POWDER, ITS MANUFACTURING METHOD, AND THICK-FILM RESISTOR COMPOSITION USING IT
JP2006069836A (en) * 2004-09-01 2006-03-16 Sumitomo Metal Mining Co Ltd Ruthenium complex oxide minute powder and its manufacturing method
JP2006298655A (en) * 2005-04-15 2006-11-02 Sumitomo Metal Mining Co Ltd Ruthenium compound oxide powder and method for manufacturing the same
JP2008174431A (en) * 2007-01-22 2008-07-31 Shinshu Univ Ruthenic acid nanosheet and its producing method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018043895A (en) * 2016-09-12 2018-03-22 住友金属鉱山株式会社 Ruthenium dioxide powder and production method thereof, thick film resistor paste, and thick film resistor
CN110494937A (en) * 2017-02-13 2019-11-22 大洲电子材料(株) Lead-free thick film resistor body and electronic component comprising it
CN110494937B (en) * 2017-02-13 2021-09-21 大洲电子材料(株) Lead-free thick film resistor and electronic component including the same
CN107986341A (en) * 2017-12-18 2018-05-04 西安宏星电子浆料科技有限责任公司 Plate resistor slurry ruthenium-oxide powder and preparation method thereof
JP2020193137A (en) * 2019-05-30 2020-12-03 住友金属鉱山株式会社 Method for producing lead ruthenate powder
JP2020193138A (en) * 2019-05-30 2020-12-03 住友金属鉱山株式会社 Method for producing lead ruthenate powder, lead ruthenate powder, and thick film resistor paste containing lead ruthenate powder
JP7215334B2 (en) 2019-05-30 2023-01-31 住友金属鉱山株式会社 Method for producing lead ruthenate powder
JP7247754B2 (en) 2019-05-30 2023-03-29 住友金属鉱山株式会社 Method for producing lead ruthenate powder and method for producing thick film resistor paste
JP2021125303A (en) * 2020-01-31 2021-08-30 住友金属鉱山株式会社 Composition for thick film resistor, paste for thick film resistor and thick film resistor
JP7367547B2 (en) 2020-01-31 2023-10-24 住友金属鉱山株式会社 Thick film resistor composition, thick film resistor paste, and thick film resistor
WO2021221174A1 (en) * 2020-05-01 2021-11-04 住友金属鉱山株式会社 Thick film resistor paste, thick film resistor, and electronic component

Also Published As

Publication number Publication date
JP5831055B2 (en) 2015-12-09

Similar Documents

Publication Publication Date Title
JP5831055B2 (en) Plate-like ruthenium oxide powder and method for producing the same, and thick film resistor composition using the same
JP6256636B2 (en) Method for producing ruthenium oxide powder
CN110461771B (en) Ruthenium oxide powder, composition for thick film resistor, paste for thick film resistor, and thick film resistor
JP2007103594A (en) Resistor composition and thick film resistor
JP6754430B2 (en) Lead-free thick film resistor composition, lead-free thick film resistor, and method for producing the same.
TWI662561B (en) Lead-free thick film resistor composition, lead-free thick film resistor and production method thereof
JP3474170B2 (en) Nickel powder and conductive paste
JP2009007199A (en) Thick film resistor composition, resistor paste, and thick film resistor
JP4692028B2 (en) Ru-Mn-O fine powder, method for producing the same, and thick film resistor composition using the same
JP4285315B2 (en) Ru-MO powder, method for producing the same, and thick film resistor composition using the same
JP7251068B2 (en) Composition for thick film resistor, paste for thick film resistor, and thick film resistor
JP6975246B2 (en) Lead-free thick film low antibody and electronic components containing it
JP5942791B2 (en) Method for producing nickel powder
JP4111000B2 (en) Ru-Ti-O fine powder, method for producing the same, and thick film resistor composition using the same
JP2009026903A (en) Thick film resistor composition, resistance paste, and thick film resistor
JP7183507B2 (en) Composition for thick film resistor, paste for thick film resistor, and thick film resistor
JP2007302498A (en) Ruthenium oxide powder and its production method
JP7279492B2 (en) Composition for thick film resistor, paste for thick film resistor, and thick film resistor
JP6740829B2 (en) Ruthenium dioxide powder, method for producing the same, thick film resistor paste, and thick film resistor
KR101166709B1 (en) Manufacturing method of paste composite for resistor, thick film resistor and manufacturing method of the resistor
JP7110671B2 (en) Composition for thick film resistor, paste for thick film resistor, and thick film resistor
JP2006069836A (en) Ruthenium complex oxide minute powder and its manufacturing method
JP2008218379A (en) Thick film resistor composition, resistance paste, and thick film resistor
CN115516579A (en) Thick film resistor paste, thick film resistor, and electronic component
JP2010015844A (en) Conductive particle powder for lead-free resistive paste and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141007

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141203

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20150508

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20150608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150707

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150929

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151012

R150 Certificate of patent or registration of utility model

Ref document number: 5831055

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150