JPH0618157B2 - Method of manufacturing electrolytic capacitor - Google Patents
Method of manufacturing electrolytic capacitorInfo
- Publication number
- JPH0618157B2 JPH0618157B2 JP9295686A JP9295686A JPH0618157B2 JP H0618157 B2 JPH0618157 B2 JP H0618157B2 JP 9295686 A JP9295686 A JP 9295686A JP 9295686 A JP9295686 A JP 9295686A JP H0618157 B2 JPH0618157 B2 JP H0618157B2
- Authority
- JP
- Japan
- Prior art keywords
- foil
- coating film
- resin coating
- anode foil
- etching
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
- Organic Insulating Materials (AREA)
Description
【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明はスペーサを廃止した小形高性能で難燃化などの
市場要求に応え得た電解コンデンサの製造方法に関す
る。DETAILED DESCRIPTION OF THE INVENTION Object of the Invention (Industrial field of application) The present invention relates to a method of manufacturing an electrolytic capacitor, which has no spacer and is small in size, high in performance, and capable of meeting market demands such as flame retardancy.
(従来の技術) 従来、例えばアルミニウム電解コンデンサは99.99%以上
のアルミニウム箔を電気化学的にエッチングし表面拡大
し、化成処理により酸化皮膜を形成した陽極箔と、99%
程度のアルミニウム箔を前記陽極箔同様電気化学的にエ
ッチングし表面拡大した陰極箔間にスペーサを介在して
巻回して素子を形成し、該素子に駆動用電解液を含浸
し、しかるのちケースに収納し該ケース開口部を密封し
てなるものである。(Prior Art) Conventionally, for example, an aluminum electrolytic capacitor has an anode foil in which 999.99% or more of aluminum foil is electrochemically etched to expand the surface and an oxide film is formed by chemical conversion treatment, and 99%.
Similar to the above anode foil, aluminum foil is electrochemically etched to form a device by winding a spacer between cathode foils whose surface is enlarged, with a spacer interposed therebetween, and the device is impregnated with a driving electrolyte solution, and then in a case. It is housed and the opening of the case is sealed.
一般にスペーサを介在する目的は一対の陽・陰極箔相互
間の絶縁隔離および駆動用電解液の保持であり、乾式箔
形電解コンデンサにおいては重要な構成要件である。し
かして、一般に用いられているスペーサはクラフト紙で
あるが、該クラフト紙は密度が0.3〜0.8g/cm3
と密度が比較的高く、また繊維が平べったくつぶれてい
るため見掛け上の比抵抗が大きくなりtanδ特性を損
ね、またクラフト紙は抄紙技術上の問題で厚みは30μ
m以上あり、これ以上薄くできず小形化を阻害する要因
となっており、さらに過電圧,逆電圧印加などによるコ
ンデンサ破壊時に着火し継続燃焼のおそれがあるなどの
欠点をもっていた。そのため現在クラフト紙に変え低密
度のマニラ紙を用いる傾向にあり、tanδ特性改善に
大きく貢献しているが、マニラ紙はクラフト紙に比べて
価格が数倍と高く、加えて抄紙後の強度をコンデンサの
製造工程(特に巻取工程)に耐えうるためには厚さを4
0μm以上のものを用いなければならず小形化のネック
になると同時にスペーサとして紙を用いることに変わり
はなくコンデンサ破壊時に着火し継続燃焼の危険性は依
然として解消できず、さらに一対の陽陰極箔相互間にス
ペーサを介在させ巻回するためそれだけ巻取装置を複雑
化し、よってコンデンサ素子巻回作業の能率向上の阻害
要因となるなど実用上多くの欠点を抱える結果となって
いる。Generally, the purpose of interposing a spacer is to insulate and insulate a pair of positive and negative electrode foils and to retain a driving electrolytic solution, which is an important constituent factor in a dry foil electrolytic capacitor. The commonly used spacer is kraft paper, and the kraft paper has a density of 0.3 to 0.8 g / cm 3.
The density is relatively high, and the fibers are flat and crushed, so the apparent specific resistance becomes large and the tan δ characteristic is impaired. Also, kraft paper has a thickness of 30μ due to problems in papermaking technology.
Since the thickness is more than m, it cannot be made thinner anymore, which is a factor for hindering miniaturization. Further, there is a drawback that ignition may occur at the time of capacitor breakdown due to application of overvoltage or reverse voltage, and continuous combustion may occur. For this reason, there is a tendency to use low-density manila paper instead of kraft paper, which greatly contributes to the improvement of tan δ characteristics, but the cost of manila paper is several times higher than kraft paper, and the strength after papermaking is also increased. In order to withstand the manufacturing process of capacitors (especially the winding process), the thickness should be 4
Since the size of 0 μm or more must be used, it becomes a bottleneck for downsizing, and at the same time, the use of paper as a spacer remains unchanged, and the risk of ignition due to capacitor destruction and continued combustion cannot be eliminated. Since a spacer is interposed between the coils and the coil is wound, the coiling device is complicated, and as a result, it becomes a factor that hinders the efficiency improvement of the capacitor element winding work, resulting in many practical defects.
しかして、出願人は上記のようなスペーサを用いること
により各種欠点を除去する目的とし特願昭60−122
05号にて出願した技術がある。すなわち該先願技術は
エッチング処理を施したアルミニウムからなる陽極箔お
よび陰極箔のいずれか一方の両面または両方の片面に感
光性耐熱樹脂を網目状に塗布して塗布膜を形成し、該塗
布膜に紫外線を照射し、しかるのち熱処理を施し密着形
成した網目状樹脂塗膜をスペーサとしての役目を果たさ
せるようにしたものであり、特性改善および小形・難燃
化の要求に大きく貢献するものである。しかしながら、
上記構成になる技術は、陽極箔および陰極箔に対する感
光性耐熱樹脂の塗布膜形成がエッチングによる粗面化後
に行われるため、塗布膜形成時感光性耐熱樹脂の粘度と
して高粘度のものを使用したとしても毛細管現象により
エッチングピットに樹脂塗膜が被覆されることになり、
箔のcm2当りの静電容量を減少させ、所望の小形化を果
たすための疎外要因となっていた。Therefore, the Applicant aims to eliminate various defects by using the spacers as described above.
There is a technology applied for in No. 05. That is, the prior-art technique is to form a coating film by applying a photosensitive heat-resistant resin in a mesh form on one surface or both surfaces of one or both of an anode foil and a cathode foil made of aluminum that has been subjected to etching treatment. It is designed such that the network resin coating film that is closely formed by irradiating the surface with ultraviolet light and then subjecting it to heat treatment serves as a spacer, which greatly contributes to the demands for improved characteristics and compactness and flame retardancy. Is. However,
In the technology having the above-mentioned configuration, since the coating film of the photosensitive heat-resistant resin on the anode foil and the cathode foil is formed after the surface is roughened by etching, a high-viscosity photosensitive heat-resistant resin is used when forming the coating film. As a result, the resin film is coated on the etching pit due to the capillary phenomenon,
It was an alienation factor for reducing the capacitance per cm 2 of the foil and achieving the desired miniaturization.
(発明が解決しようとする問題点) 以上のようにエッチング処理を施した陽極箔および陰極
箔に網目状樹脂塗膜を密着形成しスペーサとしての役目
を果たすことによって、スペーサを介在したものと比較
しtanδ特性改善および難燃化さらにはある程度の小
形化に応えることができるが、エッチングピットへの塗
布樹脂の入り込みによって箔のcm2当りの静電容量減少
により、より有効な小形化が期待できるものではなかっ
た。(Problems to be solved by the invention) Compared to the case where a spacer is interposed by closely forming a mesh-like resin coating film on the anode foil and the cathode foil that have been subjected to the etching treatment as described above, and serving as a spacer. It is possible to improve tan δ characteristics and flame retardancy, and to a certain extent, but it is possible to expect a more effective miniaturization due to the reduction of the capacitance per cm 2 of the foil due to the coating resin entering the etching pits. It wasn't something.
本発明は以上の点に鑑みてなされたもので、箔のcm2当
りの有効な静電容量を確保し、大幅な小形化に貢献でき
るセパレータを廃止した電解コンデンサの製造方法を提
供することを目的とするものである。The present invention has been made in view of the above points, and secures an effective capacitance per cm 2 of the foil, and provides a method of manufacturing an electrolytic capacitor in which a separator that can contribute to a large size reduction is eliminated. It is intended.
[発明の構成] (問題点を解決するための手段) 本発明の電解コンデンラの製造方法は、一対の弁作用金
属原箔それぞれの片面またはいずれか一方の両面に網目
状または線状の樹脂塗膜を密着形成する工程と、該工程
ののち一方の金属原箔の前記樹脂塗膜を形成しない部分
をエッチングし表面積を拡大し陰極箔とし、他方の金属
原箔の前記樹脂塗膜を形成しない部分をエッチング−化
成処理しエッチング面に酸化皮膜を形成し陽極箔とする
工程と、次に前記陽極箔および陰極箔の任意な箇所に引
出端子を取着し前記樹脂塗膜面同志が接することなく陽
極箔と陰極箔とを積層巻回しコンデンサ素子を形成する
工程とを順次経ることを特徴とするものである。[Structure of the Invention] (Means for Solving Problems) A method for producing an electrolytic condensor according to the present invention comprises a mesh-shaped or linear resin coating on one surface or both surfaces of each of a pair of valve action metal foils. A step of forming a film in close contact, and after the step, a portion of one metal raw foil on which the resin coating film is not formed is etched to increase the surface area to form a cathode foil, and the other metal raw foil does not form the resin coating film. A step of etching-forming chemical conversion treatment to form an oxide film on the etched surface to form an anode foil, and then attaching lead terminals to arbitrary portions of the anode foil and the cathode foil and contacting the resin coating surfaces. It is characterized in that it sequentially undergoes a process of forming a capacitor element by laminating and winding an anode foil and a cathode foil.
(作用) 以上のように構成してなる電解コンデンサの製造方法に
よれば、樹脂塗膜形成後のエッチング、陽極の場合は化
成処理をする方法であるため、陽極箔および陰極箔とも
樹脂塗膜が密着形成されている部分はマスクとなり、エ
ッチングのときこの部分はエッチングピットが成長(浸
蝕)さず、樹脂塗膜が形成されていない部分にはエッチ
ングピットが成長するが、この部分に樹脂が入り込むこ
となく静電容量減少の要因は除去できる。(Function) According to the method of manufacturing an electrolytic capacitor configured as described above, since the method is to perform etching after forming the resin coating film and chemical conversion treatment in the case of an anode, both the anode foil and the cathode foil are coated with the resin coating film. Is a mask, the etching pits do not grow (erosion) in this part during etching, and the etching pits grow in the part where the resin coating film is not formed. The factor of the capacitance reduction can be removed without entering.
(実施例) 以下、本発明の詳細を図面を参照して説明する。(Example) Hereinafter, the detail of this invention is demonstrated with reference to drawings.
実施例1 第2図に示すように例えば99.99%以上の高純度アルミニ
ウム原箔1の片面にポリイミド系感光性耐熱樹脂、ポリ
アミド系感光性耐熱樹脂、エポキシ系感光性耐熱樹脂な
どからなるコーテング材料を例えばローラーコーテン
グ,ドクターブレード,バーコータまたはスピンコート
などのいずれかの手段を用いて塗布し塗布膜2を形成
し、プリーベーキング後第3図に示すように前記塗布膜
2面に第4図に示すように例えば複数の貫通孔3を設け
た網目状マスク4を密着させ紫外線5を照射し、しかる
のち前記マスク4を取りはずし現像液にて現像しパター
ン抜きを行い、さらにリンス溶液に浸漬後常温空気中乾
燥を行い、前記塗布膜2の露光−現像部すなわち前記マ
スク4の貫通孔3に位置した部分以外を除去し100〜
300℃で10〜30分間熱処理を施し第5図に示すよ
うに2〜10μm厚の網目状樹脂塗膜6を密着形成し、
つぎに電気化学的にエッチング処理し他面および前記網
目状樹脂塗膜6を形成しない部分を粗面化し、しかるの
ち化成処理し該粗面化面に陽極酸化皮膜を形成した陽極
箔7と、第6図に示すように例えば99%純度のアルミニ
ウム原箔8の片面に前記陽極箔7形成と同様のコーテン
グ材を用い、以下陽極箔7形成と同様の手段を講じて2
〜10μm厚の網目状樹脂塗膜9を密着形成し、つぎに
電気化学的にエッチング処理し、他面および網目状樹脂
塗膜9を形成しない部分を粗面化してなる陽極箔10と
を準備する。つぎに第1図に示すように前記陽極箔7お
よび陰極箔10に引出端子11,12を取着し、前記網
目状樹脂塗膜6と網目状樹脂塗膜9が接することなく積
層巻回しコンデンサ素子13を構成する。しかして、該
素子13に駆動用電解液を含浸し、しかるのち外装ケー
ス(図示せず)に収納し、該外装ケース開口部を封口体
で封口する。Example 1 As shown in FIG. 2, for example, a coating material composed of a polyimide-based photosensitive heat-resistant resin, a polyamide-based photosensitive heat-resistant resin, an epoxy-based photosensitive heat-resistant resin, etc. For example, a coating film 2 is formed by coating using any means such as roller coating, doctor blade, bar coater or spin coating, and after pre-baking, as shown in FIG. 3, the coating film 2 surface is shown in FIG. As described above, for example, a mesh-like mask 4 having a plurality of through-holes 3 is brought into close contact with it and irradiated with ultraviolet rays 5, and then the mask 4 is removed, a pattern is removed by developing with a developing solution, and further immersed in a rinsing solution, followed by room temperature air. Medium drying is performed to remove portions other than the exposed-developed portion of the coating film 2, that is, the portion of the mask 4 located in the through hole 3 to 100-
Heat treatment is performed at 300 ° C. for 10 to 30 minutes to closely form a network resin coating film 2 having a thickness of 2 to 10 μm as shown in FIG.
Next, the other surface and the portion where the network resin coating film 6 is not formed are subjected to electrochemical etching to roughen the surface, followed by chemical conversion treatment to form an anodic oxide film on the roughened surface. As shown in FIG. 6, for example, the same coating material as used for forming the anode foil 7 is used on one surface of the original aluminum foil 8 having a purity of 99%.
An anode foil 10 is prepared, in which a mesh resin coating film 9 having a thickness of 10 μm is formed in close contact, and then electrochemically etched to roughen the other surface and a portion where the mesh resin coating film 9 is not formed. To do. Next, as shown in FIG. 1, the lead-out terminals 11 and 12 are attached to the anode foil 7 and the cathode foil 10, and the laminated winding capacitor without the mesh resin coating film 6 and the mesh resin coating film 9 contacting each other. The element 13 is formed. Then, the element 13 is impregnated with the driving electrolytic solution, and then housed in an outer case (not shown), and the outer case opening is sealed with a sealing body.
実施例2 第7図に示すように例えば99.99%以上の高純度アルミニ
ウム原箔14の片面にエポキシなどからなる熱硬化性樹
脂を網目状にパターン印刷し、85〜105℃で加熱処
理を施し2〜10μm厚の網目状樹脂塗膜15を密着形
成し、つぎに電気化学的にエッチング処理し他面および
前記網目状樹脂塗膜15を形成しない部分を粗面化し、
しかるのち化成処理し該粗面化面に陽極酸化皮膜を形成
した陽極箔16と第8図に示すように例えば99%純度の
アルミニウム原箔17の片面に前記陽極箔16形成と同
様の手段を講じて2〜10μm厚の網目状樹脂塗膜18
を密着形成し、つぎに電気化学的にエッチンク処理し他
面および網目状樹脂塗膜18を形成しない部分を粗面化
してなる陽極箔19とを準備する。つぎに上記実施例同
様の手段を講じて電解コンデンサを得る。Example 2 As shown in FIG. 7, for example, a thermosetting resin made of epoxy or the like is pattern-printed in a mesh pattern on one surface of a high-purity aluminum raw foil 14 having a purity of 99.99% or more, and a heat treatment is applied at 85 to 105 ° C. 2 A mesh resin coating film 15 having a thickness of 10 μm is formed in close contact, and then electrochemically etched to roughen the other surface and a portion where the mesh resin coating film 15 is not formed,
Then, as shown in FIG. 8, an anode foil 16 having a roughened surface and anodized film formed on the roughened surface and, for example, 99% pure aluminum original foil 17 are provided with the same means for forming the anode foil 16 on one surface thereof. Take a 2-10 μm thick net-like resin coating film 18
Then, an anode foil 19 is prepared, which is formed by closely adhering, and then is electrochemically etched to roughen the other surface and the portion where the network resin coating film 18 is not formed. Next, the same means as in the above embodiment is taken to obtain an electrolytic capacitor.
以上のような手段によって得られた電解コンデンサは、
陽極箔7,16および陰極箔10,19を構成する網目
状樹脂塗膜6,9および15,18形成後エッチング処
理をしたものであるため、第9図に示すようにエッチン
グ時前記網目状樹脂塗膜6,9および15,18が密着
形成されている部分はエッチングに対するマスクとな
り、この部分はエッチングされず、それ以外の部分すな
わち網目状樹脂塗膜6,9および15,18が形成され
ていない部分のみエッチングによるピット20成長があ
る構造であり、エッチングによるピット成長部にはもと
もと網目状樹脂塗膜がないためエッチングによるピット
成長部への樹脂の入り込みは皆無となり、静電容量の減
少は解消される。The electrolytic capacitor obtained by the above means is
Since the net-like resin coating films 6, 9 and 15, 18 forming the anode foils 7 and 16 and the cathode foils 10 and 19 are subjected to an etching treatment after formation, the net-like resin at the time of etching as shown in FIG. The portions where the coating films 6, 9 and 15, 18 are formed in close contact serve as a mask for etching, and this portion is not etched, and the other portions, that is, the network resin coating films 6, 9, 15 and 18 are formed. It has a structure in which pits 20 grow by etching only in the non-existing portion. Since there is no network resin coating film originally in the pit growing portion due to etching, there is no resin entering the pit growing portion due to etching, and the capacitance decreases. Will be resolved.
つぎに本発明(A) と参考例(B) および従来例(C) の製品
寸法および電気特性の比較について述べる。Next, a comparison of the product dimensions and electrical characteristics of the present invention (A), the reference example (B) and the conventional example (C) will be described.
本発明 陽極箔−純度99.99%のアルミニウム原箔の片面に固形分
%溶媒としてN−メチル−2ピロリドンを含むポリイミ
ド系感光性耐熱樹脂コーテング材料にジエチレングリコ
ールジメチルエーテルを用いポリマー濃度18%粘度1
00cps に調整しローラーコーテングで塗布膜を形成
し、該塗布膜を直ちに80℃−10分間ポリベーキンス
処理した後、前記塗布膜面に孔径0.5mmの貫通孔を開
孔率で67%設けたアルミニウム製の網目状マスクを密
着させ、水銀灯(300〜400mm)に10分間暴露し
前記貫通孔部に位置した塗布膜を露光する。つぎにN−
メチル−2ピロリドン85部,メタノール15部の混合
液を用い超音波浸漬を2分間行い前記露光部を現像しパ
ターン抜きを行い、ついでメタノール溶液に10秒浸漬
してリンスし塗布膜の現像部以外を除去し常温空気中乾
燥を行い、しかるのち200℃−30分間放置し厚さ2
μmの網目状樹脂塗膜を密着形成した後、通常の手段で
エッチング−化成処理を施した陽極箔。The anode foil of the present invention-Aluminum original foil having a purity of 99.99% and one side of solid content% N-methyl-2pyrrolidone as a solvent are used. Polyimide-based photosensitive heat-resistant resin coating material is diethylene glycol dimethyl ether. Polymer concentration is 18% and viscosity is 1.
The coating film was adjusted to 00 cps to form a coating film by roller coating, the coating film was immediately polybaked at 80 ° C. for 10 minutes, and aluminum having a through hole with a hole diameter of 0.5 mm was provided at a porosity of 67% on the coating film surface. The mesh mask made of the above is adhered and exposed to a mercury lamp (300 to 400 mm) for 10 minutes to expose the coating film located in the through hole portion. Then N-
Ultrasonic dipping was performed for 2 minutes using a mixed solution of 85 parts of methyl-2pyrrolidone and 15 parts of methanol to develop the exposed area and pattern removal, and then dip in a methanol solution for 10 seconds to rinse and rinse the coated film except the developed area. And dry in air at room temperature, and then leave at 200 ° C for 30 minutes to obtain a thickness of 2
An anode foil in which a mesh-shaped resin coating film of μm is formed in close contact and then subjected to etching-chemical conversion treatment by a usual means.
陽極箔−純度99%のアルミニウム原箔の片面に前記陽極
箔と同一手段にて厚さ2μmの網目状樹脂塗膜を密着形
成した後通常の手段でエッチングを施した陰極箔。Anode foil-a cathode foil in which a 2 μm-thick network resin coating film was adhered and formed on one surface of an original aluminum foil having a purity of 99% by the same means as the above-mentioned anode foil and then etched by usual means.
前記陽極箔と陰極箔それぞれに引出端子を取着し巻回し
駆動用電解液としてエチレングリコール−アジピン酸径
ペーストを含浸りアルミニウムケースに収納した定格2
5VDC−220μFの電解コンデンサ(A) 。Lead terminals are attached to each of the anode foil and the cathode foil, wound, and impregnated with an ethylene glycol-adipic acid diameter paste as a driving electrolytic solution and housed in an aluminum case. Rating 2
5VDC-220μF electrolytic capacitor (A).
参考例 陽極箔−純度99.99%のアルミニウム箔表面を粗面化し表
面を拡大し、つぎに陽極酸化皮膜を生成した後片面に前
記本発明と同一手段にて厚さ2μmの網目状樹脂塗膜を
密着形成した陽極箔。Reference Example Anode Foil-Aluminum foil having a purity of 99.99% was roughened to enlarge the surface, and then an anodic oxide film was formed. Then, a mesh resin coating film having a thickness of 2 μm was formed on one side by the same means as that of the present invention. Anode foil formed in close contact.
陰極箔−純度99%のアルミニウム箔表面を粗面化し表面
を拡大した後片面に陽極箔と同一手段にて厚さ2μmの
網目状樹脂塗膜を密着形成した陰極箔。Cathode foil-A cathode foil in which a surface of a 99% pure aluminum foil is roughened, the surface is enlarged, and a 2 μm-thick network resin coating film is adhered and formed on one surface by the same means as the anode foil.
前記陽極箔と陰極箔それぞれに引出端子を取着し巻回し
駆動用電解液としてエチレングリコール−アジピン酸系
ペーストを含浸しアルミニウムケースに収納した定格2
5VDC−220μFの電解コンデンサ(B) 。Lead terminals are attached to each of the anode foil and the cathode foil, wound, and impregnated with an ethylene glycol-adipic acid paste as a driving electrolytic solution and housed in an aluminum case. Rating 2
5VDC-220μF electrolytic capacitor (B).
従来例 陽極箔−純度99.99%のアルミニウム箔表面を粗面化し表
面積を拡大したのち陽極酸化皮膜を生成した陽極箔。Conventional example Anode foil-Anode foil with a 99.99% pure aluminum foil surface roughened to increase the surface area and then form an anodized film.
陰極箔−純度99%のアルミニウム箔表面を粗面化表面積
を拡大した陰極箔。Cathode foil-A cathode foil with a 99% pure aluminum foil roughened surface area.
スペーサ−厚さ40μmのマニラ紙。Spacer-Manila paper with a thickness of 40 μm.
前記陽極箔と前記陰極箔間に前記スペーサを介して巻回
し形成したコンデンサ素子に駆動用電解液としてエチレ
ングリコール−アジピン酸系ペーストを含浸した定格2
5VDC−220μFの電解コンデンサ(C) 。Rating 2 in which a capacitor element formed by winding the anode foil and the cathode foil with the spacer interposed therebetween is impregnated with an ethylene glycol-adipic acid paste as a driving electrolyte.
5VDC-220μF electrolytic capacitor (C).
しかして、上記本発明(A) ,参考例(B) ,従来例(C) そ
れぞれの電解コンデンサと製品寸法と電気的特性を比較
した結果、表に示すようになった。Then, as a result of comparison between the electrolytic capacitor of the present invention (A), the reference example (B), and the conventional example (C), product dimensions and electrical characteristics, the results are shown in the table.
上表から明らかなように、本発明(A) は静電容量,損失
および漏れ電流ともすぐれており、参考例(B) および従
来例(C) と比較し、より小形化が可能であり、昨今の短
小軽薄指向の市場要求に大きく貢献できる結果を示し
た。しかして本発明(A) の小形化の根拠は、陽極箔の単
位面積当りの静電容量すなわち従来例(C) 5.4〜5.
5μF/cm2,参考例(B) 4.4〜4.5μF/cm2,本
発明(A) 5.2〜5.3μF/cm2と差と従来例(C) の
場合、スペーサを用いなければならないことによるもの
であった。 As is clear from the above table, the present invention (A) has excellent capacitance, loss, and leakage current, and can be made smaller than the reference example (B) and the conventional example (C). We have shown the results that can greatly contribute to the market demand for short, small, light and thin products. However, the reason for miniaturization of the present invention (A) is that the capacitance per unit area of the anode foil, that is, the conventional example (C) 5.4 to 5.
5μF / cm 2, Reference Example (B) 4.4~4.5μF / cm 2, if the invention of (A) 5.2~5.3μF / cm 2 and a difference in the conventional example (C), using spacers It had to be done.
なお、上記実施例では網目状樹脂塗膜を陽極箔および陰
極箔それぞれの片面に設けるものを例示して説明した
が、網目状樹脂塗膜を陽極箔の両面または陰極箔の両面
に形成し、それぞれ対向電極となる方をそのままのもの
とした構成としたものでも同効である。また網目状樹脂
塗膜形状も上記実施例にて例示したものに限定すること
なく、種々の形状からなる網目状樹脂塗膜はもとより、
単なる線状の樹脂塗膜であってもよいことは勿論であ
る。さらに、上記実施例では陽極箔および陰極箔として
アルミニウム箔を用いるものを例示して説明したが、例
えばタンタル,チタン,ニオブなどの弁作用金属箔を用
いたものを適用できるものである。In the above examples, the explanation was given by exemplifying the one in which the mesh resin coating film is provided on each of the anode foil and the cathode foil, but the mesh resin coating film is formed on both surfaces of the anode foil or both surfaces of the cathode foil, The same effect can be obtained even if the opposite electrodes are used as they are. Further, the mesh resin coating film shape is not limited to those exemplified in the above examples, and not only the mesh resin coating film having various shapes,
Needless to say, it may be a simple linear resin coating film. Further, in the above-mentioned embodiment, the case where the aluminum foil is used as the anode foil and the cathode foil has been described as an example, but the one using the valve action metal foil such as tantalum, titanium, and niobium can be applied.
[発明の効果] 以上述べたように本発明によれば、すぐれた諸特性を維
持し小形化に大きく貢献できる実用的価値の高い電解コ
ンデンサの製造方法を得ることができる。[Effects of the Invention] As described above, according to the present invention, it is possible to obtain a method of manufacturing an electrolytic capacitor having high practical value, which is capable of maintaining excellent various characteristics and greatly contributing to miniaturization.
第1図〜第6図は本発明の一実施例に係る電解コンデン
サの製造方法を説明するための説明図で第1図はコンデ
ンサ素子を示す展開図、第2図はアルミニウム原箔の片
面に塗布膜を形成した状態を示す一部切欠拡大斜視図、
第3図は塗布膜面に網目状マスクを密着させ紫外線を照
射する状態を示す一部切欠拡大斜視図、第4図は網目状
マスクを示す一部切欠拡大斜視図、第5図は片面に網目
状樹脂塗膜を形成した陽極箔を示す一部切欠拡大斜視
図、第6図は片面に網目状樹脂塗膜を形成した陰極箔を
示す一部切欠拡大斜視図、第7図および第8図は本発明
の他の実施例による電解コンデンサの製造方法の説明に
係るもので第7図は片面に網目状樹脂塗膜を形成した陽
極箔を示す一部切欠拡大斜視図、第8図は片面に網目状
樹脂塗膜を形成した陰極箔を示す一部切欠拡大斜視図、
第9図は本発明によって得られた陽極箔または陰極箔の
エッチングによるピット状態を示す拡大断面図である。 1,8,14,17……アルミニウム原箔 6,9,15,18……網目状樹脂塗膜 7,16……陽極箔 10,19……陰極箔 11,12……引出端子 13……コンデンサ素子1 to 6 are explanatory views for explaining a method of manufacturing an electrolytic capacitor according to an embodiment of the present invention. FIG. 1 is a development view showing a capacitor element, and FIG. 2 is one surface of an aluminum original foil. A partially cutaway enlarged perspective view showing a state in which a coating film is formed,
FIG. 3 is a partially cutaway enlarged perspective view showing a state in which a mesh mask is brought into close contact with the coating film surface and irradiated with ultraviolet rays, FIG. 4 is a partially cutaway enlarged perspective view showing the mesh mask, and FIG. FIG. 6 is a partially cutaway enlarged perspective view showing an anode foil having a mesh resin coating film formed thereon. FIG. 6 is a partially cutaway enlarged perspective view showing a cathode foil having a mesh resin coating film formed on one surface thereof. FIG. 7 relates to a method of manufacturing an electrolytic capacitor according to another embodiment of the present invention. FIG. 7 is a partially cutaway enlarged perspective view showing an anode foil having a mesh resin coating film formed on one surface, and FIG. A partially cutaway enlarged perspective view showing a cathode foil having a mesh resin coating film formed on one surface,
FIG. 9 is an enlarged sectional view showing a pit state due to etching of the anode foil or the cathode foil obtained by the present invention. 1,8,14,17 …… Aluminum original foil 6,9,15,18 …… Resin resin coating 7,16 …… Anode foil 10,19 …… Cathode foil 11,12 …… Lead terminal 13 …… Capacitor element
Claims (1)
はいずれか一方の両面に網目状または線状の樹脂塗膜を
密着形成する工程と、該工程ののち一方の金属原箔の前
記樹脂塗膜を形成しない部分をエッチングし表面積を拡
大し陰極箔とし、他方の金属原箔の前記樹脂塗膜を形成
しない部分をエッチング−化成処理しエッチング面に酸
化皮膜を形成し陽極箔とする工程と、次に前記陽極箔お
よび陰極箔の任意な箇所に引出端子を取着し前記樹脂塗
膜面同志が接することなく陽極箔と陰極箔とを積層巻回
しコンデンサ素子を形成する工程とを順次経ることを特
徴とする電解コンデンサの製造方法。1. A step of closely forming a mesh-like or linear resin coating film on one surface or both surfaces of each of a pair of valve action metal raw foils, and the resin of one metal raw foil after the step. A step of etching a part where a coating film is not formed to expand the surface area to form a cathode foil, and a part of the other metal raw foil where the resin coating film is not formed to be subjected to etching-chemical conversion treatment to form an oxide film on the etched surface to form an anode foil. Then, a step of sequentially forming a capacitor element by attaching lead-out terminals to arbitrary portions of the anode foil and the cathode foil and winding the anode foil and the cathode foil in a laminated manner without the resin coating surface surfaces contacting each other. A method of manufacturing an electrolytic capacitor, characterized in that
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9295686A JPH0618157B2 (en) | 1986-04-21 | 1986-04-21 | Method of manufacturing electrolytic capacitor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9295686A JPH0618157B2 (en) | 1986-04-21 | 1986-04-21 | Method of manufacturing electrolytic capacitor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62248215A JPS62248215A (en) | 1987-10-29 |
JPH0618157B2 true JPH0618157B2 (en) | 1994-03-09 |
Family
ID=14068906
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9295686A Expired - Lifetime JPH0618157B2 (en) | 1986-04-21 | 1986-04-21 | Method of manufacturing electrolytic capacitor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0618157B2 (en) |
-
1986
- 1986-04-21 JP JP9295686A patent/JPH0618157B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS62248215A (en) | 1987-10-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2860386B2 (en) | Electrolytic capacitor and method of manufacturing the same | |
JPH0618157B2 (en) | Method of manufacturing electrolytic capacitor | |
JP3339511B2 (en) | Method for manufacturing solid electrolytic capacitor | |
JPH03250723A (en) | Manufacture of solid electrolytic capacitor | |
US3270254A (en) | Electrical capacitors and method of making the same | |
JPH01251605A (en) | Solid electrolytic capacitor | |
JPH04119623A (en) | Solid electrolytic capacitor and manufacture thereof | |
JPS6334919A (en) | Manufacture of electrolytic capacitor | |
US3245888A (en) | Method of electroforming an electrolytic capacitor electrode | |
JPS6378515A (en) | Manufacture of electrolytic capacitor | |
JP2995109B2 (en) | Method for manufacturing solid electrolytic capacitor | |
JP3158448B2 (en) | Method for manufacturing solid electrolytic capacitor | |
JPS61171116A (en) | Manufacture of electrolytic capacitor | |
JPH03297120A (en) | Electrolytic capacitor | |
JPH0451466Y2 (en) | ||
JP4287680B2 (en) | Capacitor element, solid electrolytic capacitor and manufacturing method thereof | |
JP2924310B2 (en) | Manufacturing method of capacitor | |
JPS6276711A (en) | Manufacturing electrolytic condenser | |
JPH0262930B2 (en) | ||
JPH0321006A (en) | Manufacture of solid electrolytic capacitor | |
JPH035048B2 (en) | ||
JPH02303017A (en) | Manufacture of solid state electrolytic capacitor | |
JPH03231415A (en) | Solid electrolytic capacitor | |
JPH0352218A (en) | Manufacture of solid electrolytic capacitor | |
JPH0547612A (en) | Production of solid electrolytic capacitor |