JPS6378515A - Manufacture of electrolytic capacitor - Google Patents

Manufacture of electrolytic capacitor

Info

Publication number
JPS6378515A
JPS6378515A JP61222309A JP22230986A JPS6378515A JP S6378515 A JPS6378515 A JP S6378515A JP 61222309 A JP61222309 A JP 61222309A JP 22230986 A JP22230986 A JP 22230986A JP S6378515 A JPS6378515 A JP S6378515A
Authority
JP
Japan
Prior art keywords
foil
cathode
anode
coating
cathode foil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61222309A
Other languages
Japanese (ja)
Inventor
清志 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marcon Electronics Co Ltd
Original Assignee
Marcon Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Marcon Electronics Co Ltd filed Critical Marcon Electronics Co Ltd
Priority to JP61222309A priority Critical patent/JPS6378515A/en
Publication of JPS6378515A publication Critical patent/JPS6378515A/en
Pending legal-status Critical Current

Links

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Organic Insulating Materials (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明はスペーサを廃止した小形高性能で難燃化などの
市場要求に応え1qる電解コンデンサの!!I造方決方
法する。
[Detailed Description of the Invention] [Purpose of the Invention] (Field of Industrial Application) The present invention is a 1Q electrolytic capacitor that eliminates spacers and meets market demands for small, high performance, flame retardant, etc. ! I decide how to make it.

(従来の技術) 従来、乾式箔形電解コンデンサは、例えばアルミニウム
箔からなる一対の陽陰極箔に同じくアルミニウムからな
る一対の引出端子を接続し、前記一対の陽陰極箔相互間
にスペーサを介在させ巻回し、しかるのち駆動用電解液
を含浸しケースに収納し、該ケース開口部を密封してな
るものである。一般にスペーサを介在する目的は一対の
陽陰極箔相互間の絶縁隔離および駆動用電解液の保持で
あり、乾式箔形電解コンデンサにおいては重要な構成要
件である。しかして、一般に用いられているスペーサは
クラフト紙であるが、該クラフ]−紙は密度が0.3〜
0.8g/ era 3と密度が比較的高く、また繊維
が平べったくつぶれているため見掛は上の比抵抗が大ぎ
くなりtanδ特性を損ね、またクラフト紙は抄紙技術
上の問題で厚みは30μm以上あり、これ以上薄くでき
ず小形化をtill害ツる要因となっており、さらに過
電圧、逆電圧印加などによるコンデンサ破壊時に着火し
継続燃焼のおそれがあるなどの欠点をもっていた。その
ため現在クラフト紙に変え低密度のマニラ紙を用いる傾
向にあり、tanδ特性改善に大きく貢献しているが、
マニラ紙はクラフト紙に比べて価格が数倍と高く、加え
て抄組後の強度をコンデンサの製造工程(特に巻取工程
)に耐えうるためには厚さを40μm以上のものを用い
なければならず小形化のネックになると同時に、スペー
サとして紙を用いることに変わりはなくコンデンサ破壊
時に着火し継続燃焼の危険性は依然として解消できず、
さらに一対の陽陰極箔相互間にスペーサを介在させ巻回
するためそれだけ巻取装置を複雑化し、よってコンデン
サ素子巻回作業の能率向上の阻害要因となるなど実用上
多くの欠点をかかえる結果となっている。
(Prior Art) Conventionally, a dry foil type electrolytic capacitor connects a pair of anode and cathode foils made of aluminum foil to a pair of lead terminals also made of aluminum, with a spacer interposed between the pair of anode and cathode foils. It is wound, impregnated with a driving electrolyte, stored in a case, and the opening of the case is sealed. Generally, the purpose of interposing a spacer is to insulate and isolate a pair of anode and cathode foils and to retain a driving electrolyte, which is an important component in a dry foil electrolytic capacitor. However, the commonly used spacer is kraft paper, but the kraft paper has a density of 0.3 to
It has a relatively high density of 0.8 g/era 3, and the fibers are flattened, which increases the apparent resistivity and impairs the tan δ properties. The thickness is 30 μm or more, and it cannot be made any thinner, which hinders miniaturization.Furthermore, there is a risk of ignition and continued combustion when the capacitor is destroyed due to overvoltage or reverse voltage application. Therefore, there is currently a trend to use low-density manila paper instead of kraft paper, which greatly contributes to improving tanδ characteristics.
Manila paper is several times more expensive than kraft paper, and in order to have the strength after paper assembly to withstand the capacitor manufacturing process (especially the winding process), it must be 40 μm or thicker. At the same time, paper is still used as a spacer, and the risk of ignition and continued combustion when the capacitor breaks remains unresolved.
Furthermore, since winding is performed with a spacer interposed between a pair of anode and cathode foils, the winding device becomes more complicated, which results in many practical drawbacks such as hindering the efficiency improvement of capacitor element winding work. ing.

(発明が解決しようとする問題点) 以上のようにスペーサを用いるものは、小形化の阻害要
因となるばかりか燃焼の危険性があり、かつ巻取装置を
複雑化し素子巻回作業の能率向上の阻害要因となってい
た。
(Problems to be Solved by the Invention) As described above, the use of spacers not only obstructs miniaturization but also poses a risk of combustion, and also complicates the winding device and improves the efficiency of element winding work. This was a hindering factor.

本発明は、上記の点に鑑みてなされたもので、スペーサ
を使用することなく特性良好にして小形化、難燃化の市
場要求に応え得るとともに製造工程の簡略化によってコ
ストダウンに大きく貢献できる実用的価値の高い電解コ
ンデンサの製造方法を提供することを目的とするもので
ある。
The present invention has been made in view of the above points, and can meet market demands for miniaturization and flame retardancy by achieving good characteristics without using spacers, and can greatly contribute to cost reduction by simplifying the manufacturing process. The purpose of the present invention is to provide a method for manufacturing an electrolytic capacitor with high practical value.

[発明の構成] (問題点を解決するための手段) 本発明は弁作用金属からなる陽極箔、陰極箔のいずれか
一方の両面または両方の片面に感光性耐熱樹脂からなる
]−テング材料を塗布しブリベーキング後塗布膜面に任
意な形状で任意な大きさの複数の貫通孔を設けた網目状
マスクを密着し露光し、つぎに該マスクを取りはずし現
象しパターン抜きを行い、さらに前記塗布膜の前記貫通
孔部に位置する以外の部分を除去した後熱処理を施し電
極上に網目状樹脂塗膜を密着生成し、前記陽極箔、陰極
箔に引出端子を取着し該取着部および陽極箔と陰極箔の
仝端面を樹脂膜で包囲し、しかるのち陽極箔、陰極箔一
対を積56回しコンデンサ素子を形成Jることを特徴と
するものである。
[Structure of the Invention] (Means for Solving the Problems) The present invention provides a teng material consisting of a photosensitive heat-resistant resin on both sides of either an anode foil or a cathode foil made of a valve metal, or one side of both. After coating and baking, a mesh mask with a plurality of through holes of any shape and size is placed on the surface of the coated film and exposed to light.Then, the mask is removed and the pattern is cut out. After removing the parts of the membrane other than those located at the through-holes, heat treatment is performed to form a mesh-like resin coating on the electrodes, and lead terminals are attached to the anode foil and cathode foil, and the attachment parts and This method is characterized in that the end faces of the anode foil and the cathode foil are surrounded by a resin film, and then the pair of anode foil and cathode foil are stacked 56 times to form a capacitor element.

(作用) 以上のような手段によればスペーサに代え電極上に密着
形成したスペーサと比較し掻く薄い綱目状樹脂塗膜であ
るため小形化・難燃化に優れ、また引出端子取着部およ
び陽極箔と陰極箔の仝端面を樹脂膜で包囲しているため
ショートの危険性は皆無であり、さらに素子巻回作業も
大幅に向上できるものである。
(Function) According to the above-mentioned means, compared to a spacer formed tightly on the electrode instead of a spacer, a thin mesh-like resin coating is used, which is superior in miniaturization and flame retardancy. Since the end faces of the anode foil and the cathode foil are surrounded by a resin film, there is no risk of short-circuiting, and furthermore, the device winding work can be greatly improved.

(実施例) 以下本発明の一実施例につき詳細に説明する。(Example) An embodiment of the present invention will be described in detail below.

すなわち、まず例えばアルミニウム箔表面をエツチング
液で粗面化し表面積を拡大したのち陽極酸化皮膜を施し
陽極酸化皮膜を生成した陽極箔と、アルミニウム箔表面
を前記陽極箔同様エツチング液で粗面化し表面積を拡大
した陰極箔とを用意する。つぎに第2図に示すように、
該陰極箔(1)の両面にポリイミド系感光性耐熱樹脂、
ポリアミド系感光性耐熱樹脂、エポキシ系感光性耐熱樹
脂などからなるコーテング材T31を例えばローラーコ
ーテング、ドクターブレード。
That is, first, for example, the surface of an aluminum foil is roughened with an etching solution to increase the surface area, and then an anodized film is applied to produce an anodized film. Prepare an enlarged cathode foil. Next, as shown in Figure 2,
Polyimide-based photosensitive heat-resistant resin on both sides of the cathode foil (1),
Coating material T31 made of polyamide photosensitive heat resistant resin, epoxy photosensitive heat resistant resin, etc. is used, for example, by roller coating or doctor blade.

バーコータまたはスピンコードなどのいずれかの手段を
用いて塗布し塗布11!3(2)を形成し、ブリベーキ
ング後第3図に示すように前記塗布膜(2)面に第4図
に示ザように例えば複数の貫通孔(3)を設けた網目状
マスク(4)を密着させ紫外線(5)を照射し露光し、
しかるのち前記マスク(4)を取りはずし現像液にて現
像しパターン扱きを行い、さらにリンス溶液に浸漬((
常温空気中乾燥を行い、前記塗布膜(2)の露光−現像
部すなわち前記マスク(4)の1通孔(3)に位置した
部分以外を除去し100〜300℃で10〜303)間
熱処理を施し第5図および第6図に示すように陰極箔(
1)両面に厚さ2〜20μmの網目状樹脂塗膜(6)を
密着形成する。つぎに第7図〜第9図に示すように第5
図および第6図に示す如く陰極箔(1)の全端面に熱硬
化性ポリイミド樹脂液を塗布し180℃ 30分の加熱
条件下で厚さ10μmの樹脂膜(7)を形成する。一方
第10図〜第12図に示ザようにあらかじめ用意された
陽極箔(8)の全端面にも前述と同様の手段で厚さ10
μmの樹脂膜(9)を形成する。しかして、つぎに第1
図に示すように該樹脂膜(9)を形成した陽極箔(8)
と前記樹脂膜(7)を形成した陰極箔(1)をv1居し
巻取機(図示せず)を用いて巻回しコンデンサ素子(1
0)を構成する。なお巻回途中でステッチまたは超音波
溶接などによって陽極引出端子(11)を前&!陽極箔
(8)に、陰極引出端子(12)を前記陰極箔(1)に
それぞれ取着し、該取着部を熱硬化性ポリイミド樹脂液
を塗布し180℃ 30分の加熱条件下で形成した厚さ
10μmの樹脂膜C13)で包囲する。しかして、前記
コンテン+1素子(10)に駆動用電解液を含浸し、し
かるのち外装ケース(図示せず)に収納し、該外装ケー
ス開口部を封口体で封口し完成品としてなるものである
A coating 11!3 (2) is formed by coating using any means such as a bar coater or a spin code, and after baking, as shown in FIG. For example, a mesh mask (4) provided with a plurality of through holes (3) is placed in close contact with the mask and exposed to ultraviolet light (5).
After that, the mask (4) was removed, developed with a developer, treated as a pattern, and further immersed in a rinsing solution ((
Dry in air at room temperature, remove the exposed and developed part of the coating film (2), that is, the part other than the part located in the first hole (3) of the mask (4), and heat treat at 100 to 300°C for 10 to 30 minutes. As shown in Figures 5 and 6, the cathode foil (
1) A mesh resin coating film (6) with a thickness of 2 to 20 μm is closely formed on both sides. Next, as shown in Figures 7 to 9, the fifth
As shown in the figure and FIG. 6, a thermosetting polyimide resin liquid is applied to all end faces of the cathode foil (1), and a resin film (7) having a thickness of 10 μm is formed under heating conditions of 180° C. for 30 minutes. On the other hand, as shown in FIGS. 10 to 12, the entire end surface of the anode foil (8) prepared in advance was
A resin film (9) of μm is formed. However, next, the first
Anode foil (8) on which the resin film (9) is formed as shown in the figure
The cathode foil (1) on which the resin film (7) is formed is wound using a V1 winder (not shown) to form a capacitor element (1).
0). In addition, in the middle of winding, the anode lead terminal (11) is stitched or ultrasonic welded to the front &! Attach the cathode lead terminal (12) to the anode foil (8) and the cathode foil (1), respectively, apply a thermosetting polyimide resin liquid to the attachment portion, and form under heating conditions at 180° C. for 30 minutes. It is surrounded by a resin film C13) having a thickness of 10 μm. Then, the Content+1 element (10) is impregnated with a driving electrolyte, then stored in an outer case (not shown), and the opening of the outer case is sealed with a sealing body to form a finished product. .

以上のように構成してなる製造方法によって得られた電
解コンデンサは、陰極箔(1)に設けた網目状樹脂塗膜
(6)はコンデンサ素子(10)を構成する陽極箔(8
)と陰極箔(1)間に存在し、この間に駆動用電解液が
十分に保持され、陽極箔(8)と陰極箔(1)相互間の
絶縁隔離を1分に保持でき、スペーサを一切用いること
なくtanδを特徴とする特性向上に有効である。
In the electrolytic capacitor obtained by the manufacturing method configured as described above, the mesh resin coating (6) provided on the cathode foil (1) is different from the anode foil (8) constituting the capacitor element (10).
) and the cathode foil (1), and the driving electrolyte is sufficiently retained between them, and the insulation separation between the anode foil (8) and the cathode foil (1) can be maintained at 1 minute, and no spacer is required. It is effective in improving the characteristics characterized by tan δ without using it.

また網目状樹脂塗膜(6)はスペーサと比較し耐熱性に
優れているため過電圧、逆電圧印加などによるコンデン
サ破壊時にも分解ガスの一時的(1秒以下)なスパーク
または閃光にとどまりスペーサを用いたもののように着
火し燃焼することは皆無である。さらにスペーυを用い
る場合、前述のように種々の制約を受は現在実用化され
ているスペーサとしては厚さが最低でクラフト紙で30
μm、マニラ紙で40μmあるのに対し、網目状樹脂塗
膜(6)の場合、2〜20μmのもので十分に駆動用電
解液の保持そして陽極箔(8)と陰極箔(1)の絶縁隔
離を可能とするため大幅に小面化になるのに加えて、ス
ペーサを一切用いないで単に網目状樹脂塗膜(6)を形
成した陰極箔(1)とl!i極箔(8)との2枚を対向
積層し巻回するだけなので巻回作業が簡単になり作業性
向上によるコストダウンにも太き(貢献できると同時に
、陰極箔(1)の全端面を樹脂膜(7)で、陽極箔(8
)の全端面を樹脂膜(9)で陽極引出端子(11)およ
び陰極引出端子(12)の取着部を樹脂膜(13)で包
囲しているため、陰極箔(1)と陽極箔(8)はもとよ
り陽極引出端子(11)および陰極引出端子(12)の
取着部を介して対向電極箔と直接接触する危険性は皆無
となりショート防止上極めて有効であるなど多くの利点
を有する。
In addition, the mesh resin coating (6) has superior heat resistance compared to the spacer, so even if the capacitor is destroyed due to overvoltage or reverse voltage application, the only temporary spark or flash of decomposed gas (less than 1 second) will prevent the spacer from being removed. It never ignites and burns like the ones used. Furthermore, when using a spacer υ, there are various restrictions as mentioned above.
µm, whereas Manila paper has a thickness of 40 µm, in the case of the mesh resin coating (6), a thickness of 2 to 20 µm is sufficient to retain the driving electrolyte and insulate the anode foil (8) and cathode foil (1). In addition to being significantly smaller in size to enable isolation, the cathode foil (1) simply forms a mesh resin coating (6) without using any spacers. Since the two sheets of i-electrode foil (8) are simply laminated facing each other and wound, the winding work is simplified and the workability is improved, which contributes to cost reduction. with a resin film (7) and an anode foil (8).
), the resin film (9) surrounds the attachment parts of the anode lead terminal (11) and cathode lead terminal (12) with the resin film (13), so that the cathode foil (1) and the anode foil ( 8) It has many advantages, including the fact that there is no risk of direct contact with the counter electrode foil through the attachment parts of the anode lead terminal (11) and cathode lead terminal (12), which is extremely effective in preventing short circuits.

なお、上記実施例では網目状樹脂塗膜(6)を陰極箔(
1)の両面に形成し対向電極となる陽極箔(8)はその
ままのものを用いるものを例示して説明したが、網目状
樹脂塗膜を陽極箔の両面に形成し対向電極となる陰極箔
はそのままのものを用いた構成、または陽極箔および陰
極箔それぞれの一方面に網目状樹脂塗膜を形成した構成
としたものでも同効である。また網目状樹脂塗膜形状も
上記実施例にて例示したものに限定することなく、例え
ば円形、角形、菱形からなる複数のn通孔を無造作に設
けた網目状マスクを用い綱目状樹脂塗膜となる形状を種
々変更したものでも同効である。
In addition, in the above example, the mesh resin coating (6) was coated with a cathode foil (
Although the anode foil (8) formed on both sides of the anode foil (8) used as the counter electrode in 1) is used as it is, the cathode foil (8) formed on both sides of the anode foil is used as the counter electrode. The same effect can be obtained by using the same structure as it is, or by forming a network resin coating on one side of each of the anode foil and the cathode foil. Furthermore, the shape of the mesh-like resin coating film is not limited to those exemplified in the above embodiments. The same effect can be obtained even if the shape is changed in various ways.

さらに上記実施例では陽極箔(8)および陰極箔(1)
としてアルミニウム箔を用いたものを例示して説明した
が、例えばタンタル、チタン。
Furthermore, in the above embodiment, the anode foil (8) and the cathode foil (1)
The explanation has been given using aluminum foil as an example, but for example, tantalum or titanium may be used.

ニオブなどの弁作用金f!箔を用いたものに適用できる
ものである。
Valve metals such as niobium f! This can be applied to items using foil.

つぎに本発明の実施例と従来の参考例との比較の一例に
ついて述べる。
Next, an example of comparison between an embodiment of the present invention and a conventional reference example will be described.

実  施  例 陽極箔 アルミニウム箔表面を粗面化し表面積を拡大したのち陽
極酸化皮膜を生成し仝端面をポリイミド樹脂膜で包囲し
た陽g!箔。
Example Anode Foil After roughening the aluminum foil surface and expanding the surface area, an anodic oxide film was formed, and the end surface was surrounded by a polyimide resin film. foil.

陰極箔 アルミニウム箔表面を粗面化し表面積を拡大した陰極箔
の両面に固型分18%溶媒としてN−メチル−2ピロリ
ドンを含むポリイミド系感光性耐熱樹脂コーテング材料
にジエチレングリコールジメチルエーテルを用いポリマ
ー濃度18%、粘度100cpsに調整しローラーコー
テングで塗布膜を形成し、該塗布膜を直ちに80℃−1
0分間ブリベー、キング処理した後、前記塗布膜面に孔
径0.5ffill+の貫通孔を開孔率で67%設けた
アルミニウム製の網目状マスクを密着させ、水銀灯(3
00〜400 M )に10分間暴露し前記貫通孔部に
位置した塗布膜を露光する。つぎにN−メチル−2ピロ
リドン85部、メタノール15部の混合液を用い超音波
浸漬を2分間行い前記露光部を現像しパターン抜きを行
い、ついでメタノール溶液に10秒浸漬してリンスし塗
布膜の現像部以外を除去し常温空気中乾燥を行い、しか
るのも200℃−30分間放置し厚さ2μmの網目状樹
脂塗膜を密着形成し、かつ全端面をポリイミド樹脂膜で
包囲した陰極箔。
Cathode foil Aluminum foil The surface of the cathode foil has been roughened to increase its surface area.On both sides of the cathode foil, the solid content is 18%.Polyimide-based photosensitive heat-resistant resin containing N-methyl-2-pyrrolidone as a solvent is coated with diethylene glycol dimethyl ether, and the polymer concentration is 18%. , the viscosity was adjusted to 100 cps, a coating film was formed by roller coating, and the coating film was immediately heated to 80°C-1
After bribing and kinging for 0 minutes, an aluminum mesh mask with a 67% aperture ratio of through holes with a diameter of 0.5ffill was placed on the coated film surface, and a mercury lamp (3
00 to 400 M) for 10 minutes to expose the coating film located in the through hole. Next, ultrasonic immersion was performed for 2 minutes using a mixed solution of 85 parts of N-methyl-2-pyrrolidone and 15 parts of methanol, the exposed area was developed and the pattern was cut out, and then the coated film was immersed in a methanol solution for 10 seconds to rinse. The cathode foil was dried in air at room temperature, and left at 200°C for 30 minutes to form a 2 μm thick mesh resin coating, and all edges of the cathode foil were surrounded by a polyimide resin film. .

前記陽極箔と敗極箔を積層し、途中該陽極箔および陰極
箔それぞれに引出端子を取でし、該取着部に熱硬化性ポ
リイミド樹脂液を塗布−硬化して前記取着部を樹脂膜で
包囲し、第1図のような方法で巻回しコンデンサ素子を
形成し、駆動用電解液としてエチレングリコール−アジ
ピン酸系ペーストを含浸した定格25V−220μFの
電解コンデンサ(^)。
The anode foil and the defeating foil are laminated, a lead terminal is taken out from each of the anode foil and the cathode foil, and a thermosetting polyimide resin liquid is applied to the attachment portion and hardened to seal the attachment portion with resin. An electrolytic capacitor with a rating of 25V-220μF (^), surrounded by a membrane, formed into a wound capacitor element by the method shown in Figure 1, and impregnated with ethylene glycol-adipic acid paste as a driving electrolyte.

参考例 陽極箔 アルミニウム箔表面を粗面化し表面積を拡大したのち陽
極酸化皮膜を生成した陽極箔。
Reference Example Anode Foil Anode foil in which an anodized film is formed by roughening the aluminum foil surface and expanding the surface area.

陰極箔 アルミニウム鴎表面を粗面化し表面積を拡大した陰極箔
Cathode foil aluminum Cathode foil with a roughened surface to expand the surface area.

スペーサ J17さ40μmのマニラ紙。Spacer J17 40μm Manila paper.

前記陽極箔と前記陰極箔間に前記スペーりを介して巻回
し形成したコンデンサ素子に駆動用電解液としてエチレ
ングリコール−アジピン酸系ペーストを含浸した定格2
5V−220μFの電解コンデンサ(B)。
Rating 2, in which a capacitor element formed by winding between the anode foil and the cathode foil through the space is impregnated with an ethylene glycol-adipic acid paste as a driving electrolyte.
5V-220μF electrolytic capacitor (B).

しかして、上記本発明に係る実施例(A)の電解コンデ
ンサは従来の参考例(8)の電解コンデンサと比較して
体積化で約20%小さくできそれだけ小形化に貢献でき
る。また実施例(^)。
Therefore, the electrolytic capacitor of Example (A) according to the present invention can be reduced in volume by about 20% compared to the conventional electrolytic capacitor of Reference Example (8), which contributes to miniaturization. Also an example (^).

参考例(B)それぞれ試料として20個ずつ準備し定格
電圧の2倍の電圧を印加し破壊した場合の燃焼状況を調
べた結果、参考例(8)は20個全部スパークまたは閃
光を発し内8個が着火し継続燃焼したのに対し、実施例
(八)はスパークまたは閃光を発するにとどまり着火し
継続燃焼したのは1個もなく優れた難燃化特性を実証し
た。さらに巻回作業も単に陽極箔と陰極箔を巻回するだ
けなので簡単であり、巻回能率も大幅に向上できた。つ
ぎに実施例(A)と参考例(B)の温度に対する静電容
量変化率およびtanδさらには周波数−インピーダン
ス特性を調べた結果、第13図〜第15図に示すように
なった。
Reference example (B) As a result of preparing 20 samples for each sample and investigating the combustion situation when a voltage twice the rated voltage was applied to destroy them, it was found that in reference example (8), all 20 samples emitted sparks or flashes, and 8 of them emitted sparks or flashes. In contrast, in Example (8), only a spark or a flash of light was emitted, and none of the samples ignited and continued to burn, demonstrating excellent flame retardant properties. Furthermore, the winding operation was simple, as it was simply winding the anode foil and the cathode foil, and the winding efficiency was greatly improved. Next, the capacitance change rate with respect to temperature, tan δ, and frequency-impedance characteristics of Example (A) and Reference Example (B) were investigated, and the results were as shown in FIGS. 13 to 15.

第13図〜第15図から明らかなようにいずれの特性に
おいても実施例(A)は参考例(B)より安定している
ことがわかる。
As is clear from FIGS. 13 to 15, it can be seen that Example (A) is more stable than Reference Example (B) in all characteristics.

なお、上記特性比較とは別に本発明の実施例(A)と陰
極箔と陽極箔仝端面および陰・陽極引出端子取着部を樹
脂膜で包囲しない点を除いて、他は本発明と同一に構成
した参考例(C)とのショート不良発生状況を調べた結
果、下表のようになり、本発明のすぐれたショート防止
効果を実証した。
In addition, apart from the above characteristic comparison, Example (A) of the present invention was the same as the present invention except that the end faces of the cathode foil and anode foil and the attachment portions of the cathode and anode lead-out terminals were not surrounded with a resin film. As a result of investigating the occurrence of short-circuit failures with Reference Example (C) configured as shown in FIG.

以  下  余  白 [発明の効果] 本発明によればスペーサを一切使用することなく特性良
好にして小形化、難燃化はもとよりショートの危険性が
なく、かつ素子巻回の能率を大幅に向上できコストダウ
ンに貢献できる実用的価値の高い電解コンデンサの製造
方法を(〔することができる。
Margin below [Effects of the Invention] According to the present invention, the characteristics are improved without using any spacers, the device is made smaller, flame retardant, there is no risk of short circuit, and the efficiency of element winding is greatly improved. A method for manufacturing electrolytic capacitors with high practical value that can contribute to cost reduction.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第12図は本発明の一実施例に係る製造方法を
説明するための説明図で、第1図はコンデンサ素子を示
す展開図、第2図は両面に塗布膜を形成した状態の陰極
箔を示す一部切欠拡大斜視図、第3図は陰極箔両面に形
成した塗布膜部に網目状マスクを密着させ紫外線を照射
する状態を示す一部切欠拡大斜視図、第4図は網目状マ
スクを示す一部切欠拡大斜視図、第5図、13よび第6
図は両面に網目状樹脂塗膜を形成した陰極箔を示すもの
で第5図は一部切欠拡大斜視図、第6図は一部切欠拡大
正面図、第7図〜第9図は全端面に樹脂膜を形成した後
の途中を切欠した陰極箔を示すもので第7図は平面図、
第8図は第7図X−X所図、第9図は第7図Y−Y断面
図、第10図〜12図は全端面に樹脂膜を形成した後の
途中を欠した陽極箔を示すもので第10図は平面図、1
1図は第10図x’−x’断面図、第12図第10図Y
’−Y’断面図、第13図は温度−電容迅変化率特性曲
線図、第14図は温度−tnδ特性曲線図、第15図は
周波数−インビーンス特性曲線図である。 (1)・・・・・・陰極箔    (2)・・・・・・
塗布膜(3)・・・・・・貴通孔    (4)・・・
・・・網目状マスク(5)・・・・・・紫外線    
(6)・・・・・・網目状樹脂塗(7)・・・・・・樹
脂膜    (8)・・・・・・陽極箔(9)・・・・
・・樹脂膜    (10)・・・・・・コンデンサ素
(11)・・・・・・陽極引出端子 (12)・・・・
・・陰極引出端子(13)・・・・・・樹脂膜 特  許  出  願  人 マルコン電子株式会社 第6図 さ               S 第7図 X−x断囮の 第8図 第9図 4甲%を刀プこしr、襲−ギiaYig 1篠す己n第
10図 第11図 Y’−Y’断囮図 第12図
Figures 1 to 12 are explanatory diagrams for explaining a manufacturing method according to an embodiment of the present invention, in which Figure 1 is a developed view showing a capacitor element, and Figure 2 is a state in which a coating film is formed on both sides. FIG. 3 is an enlarged partially cutaway perspective view showing the cathode foil in which a mesh mask is brought into close contact with the coating film formed on both sides of the cathode foil and ultraviolet rays are irradiated. FIG. Partially cutaway enlarged perspective views showing the mesh mask, FIGS. 5, 13 and 6
The figures show a cathode foil with a mesh-like resin coating formed on both sides. Figure 5 is an enlarged partially cutaway perspective view, Figure 6 is a partially cutaway enlarged front view, and Figures 7 to 9 are full end faces. Figure 7 shows the cathode foil cut out in the middle after the resin film has been formed.
Figure 8 is a cross-sectional view taken along the line X-X in Figure 7, Figure 9 is a sectional view taken along Y-Y in Figure 7, and Figures 10 to 12 show the anode foil with a portion cut out after the resin film has been formed on the entire end surface. Figure 10 is a plan view, 1
Figure 1 is a cross-sectional view of Figure 10 x'-x', Figure 12 is Figure 10 Y
13 is a temperature-capacity change rate characteristic curve diagram, FIG. 14 is a temperature-tnδ characteristic curve diagram, and FIG. 15 is a frequency-inveneance characteristic curve diagram. (1)・・・Cathode foil (2)・・・・・・
Coating film (3)...Through hole (4)...
...mesh mask (5) ...ultraviolet rays
(6)...Mesh resin coating (7)...Resin film (8)...Anode foil (9)...
... Resin film (10) ... Capacitor element (11) ... Anode lead terminal (12) ...
... Cathode lead terminal (13) ...Resin film patent application Marukon Electronics Co., Ltd. Figure 6 S Figure 7 X-x decoy Figure 8 Figure 9 4 A% Pukoshir, attack-giaYig 1 Shino Sumi n Fig. 10 Fig. 11 Y'-Y' decoy drawing Fig. 12

Claims (1)

【特許請求の範囲】[Claims]  弁作用金属からなる陽極箔および陰極箔のいずれか一
方の両面または両方の片面に感光性耐熱樹脂からなるコ
ーテング材料を塗布−プリベーキングし塗布膜を形成す
る手段と、該手段によって形成した塗布膜面に複数の貫
通孔を設けた網目状マスクを密着し該マスク表面から紫
外線を照射し露光する手段と、該手段ののち前記マスク
を取りはずし現像液にて現像ししかるのちリンスー熱処
理を施し網目状樹脂塗膜を形成する手段と、前記陽極箔
と陰極箔とを対向積層し途中陽極引出端子を前記陽極箔
に陰極引出端子を陰極箔に取着する手段と、該取着部お
よび前記陽極箔と陰極箔の全端面を樹脂膜で包囲して巻
回しコンデンサ素子を形成する手段と、しかるのち前記
コンデンサ素子に駆動用電解液を含浸する手段とを具備
したことを特徴とする電解コンデンサの製造方法。
A means for forming a coating film by coating and prebaking a coating material made of a photosensitive heat-resistant resin on both sides of either one of an anode foil and a cathode foil made of a valve metal, or one side of both, and a coating film formed by the means means for exposing a mesh mask having a plurality of through holes on its surface by irradiating ultraviolet rays from the surface of the mask, and removing the mask after the means, developing with a developer, and then subjecting the mask to a rinse heat treatment to form a mesh pattern. means for forming a resin coating; means for stacking the anode foil and the cathode foil facing each other and attaching the anode lead terminal to the anode foil and the cathode lead terminal to the cathode foil; and the attachment portion and the anode foil. manufacturing an electrolytic capacitor, comprising: a means for surrounding all end faces of a cathode foil with a resin film to form a wound capacitor element; and a means for impregnating the capacitor element with a driving electrolyte. Method.
JP61222309A 1986-09-20 1986-09-20 Manufacture of electrolytic capacitor Pending JPS6378515A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61222309A JPS6378515A (en) 1986-09-20 1986-09-20 Manufacture of electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61222309A JPS6378515A (en) 1986-09-20 1986-09-20 Manufacture of electrolytic capacitor

Publications (1)

Publication Number Publication Date
JPS6378515A true JPS6378515A (en) 1988-04-08

Family

ID=16780339

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61222309A Pending JPS6378515A (en) 1986-09-20 1986-09-20 Manufacture of electrolytic capacitor

Country Status (1)

Country Link
JP (1) JPS6378515A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0419713U (en) * 1990-06-06 1992-02-19
JP2003173930A (en) * 2001-12-05 2003-06-20 Rubycon Corp Electrolytic capacitor
JP2020194825A (en) * 2019-05-24 2020-12-03 パナソニックIpマネジメント株式会社 Manufacturing method of solid electrolytic capacitor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54127563A (en) * 1978-03-27 1979-10-03 Nippon Electric Co Electrolytic condenser and method of producing same
JPS605572U (en) * 1983-06-21 1985-01-16 東邦鋼機株式会社 vending machine
JPS61171116A (en) * 1985-01-24 1986-08-01 マルコン電子株式会社 Manufacture of electrolytic capacitor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54127563A (en) * 1978-03-27 1979-10-03 Nippon Electric Co Electrolytic condenser and method of producing same
JPS605572U (en) * 1983-06-21 1985-01-16 東邦鋼機株式会社 vending machine
JPS61171116A (en) * 1985-01-24 1986-08-01 マルコン電子株式会社 Manufacture of electrolytic capacitor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0419713U (en) * 1990-06-06 1992-02-19
JP2003173930A (en) * 2001-12-05 2003-06-20 Rubycon Corp Electrolytic capacitor
JP2020194825A (en) * 2019-05-24 2020-12-03 パナソニックIpマネジメント株式会社 Manufacturing method of solid electrolytic capacitor

Similar Documents

Publication Publication Date Title
US3457478A (en) Wound film capacitors
US11545306B2 (en) Electrolytic capacitor
JP2860386B2 (en) Electrolytic capacitor and method of manufacturing the same
JPS6378515A (en) Manufacture of electrolytic capacitor
JP2943290B2 (en) Aluminum electrolytic capacitor
JPH0262929B2 (en)
JPS6334919A (en) Manufacture of electrolytic capacitor
JPH035048B2 (en)
JP3401983B2 (en) Manufacturing method of electrolytic capacitor
JPH09232189A (en) Electrolytic capacitor
JPH07272979A (en) Electrolytic capacitor
JPH0352219A (en) Solid electrolytic capacitor
JPH0618157B2 (en) Method of manufacturing electrolytic capacitor
JP3170589B2 (en) Electrolytic capacitor and method of manufacturing the same
JPH07226344A (en) Electrolytic capacitor
JP2943289B2 (en) Aluminum electrolytic capacitor
JP2874394B2 (en) Capacitor
JP3438900B2 (en) Solid electrolytic capacitors
JPH03231417A (en) Manufacture of solid electrolytic capacitor
JP2020191373A (en) Winding power storage device and manufacturing method thereof
JPH0262930B2 (en)
JPH03231415A (en) Solid electrolytic capacitor
JP2000114110A (en) Electrolytic capacitor and its manufacture
JPH07226346A (en) Electrolytic capacitor
JPH0413846B2 (en)