JP3401983B2 - Manufacturing method of electrolytic capacitor - Google Patents
Manufacturing method of electrolytic capacitorInfo
- Publication number
- JP3401983B2 JP3401983B2 JP08867595A JP8867595A JP3401983B2 JP 3401983 B2 JP3401983 B2 JP 3401983B2 JP 08867595 A JP08867595 A JP 08867595A JP 8867595 A JP8867595 A JP 8867595A JP 3401983 B2 JP3401983 B2 JP 3401983B2
- Authority
- JP
- Japan
- Prior art keywords
- foil
- anode
- lead
- electrolytic capacitor
- cathode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000003990 capacitor Substances 0.000 title claims description 40
- 238000004519 manufacturing process Methods 0.000 title claims description 9
- 239000011888 foil Substances 0.000 claims description 48
- 239000000126 substance Substances 0.000 claims description 20
- 238000000034 method Methods 0.000 claims description 6
- 238000010030 laminating Methods 0.000 claims description 2
- 238000004804 winding Methods 0.000 claims 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 12
- 238000006243 chemical reaction Methods 0.000 description 11
- 229910052782 aluminium Inorganic materials 0.000 description 8
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 8
- 238000010306 acid treatment Methods 0.000 description 6
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 6
- 230000032683 aging Effects 0.000 description 5
- 238000005530 etching Methods 0.000 description 4
- 239000000123 paper Substances 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000008151 electrolyte solution Substances 0.000 description 3
- 238000004880 explosion Methods 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 2
- 230000002950 deficient Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 1
- IZJSTXINDUKPRP-UHFFFAOYSA-N aluminum lead Chemical compound [Al].[Pb] IZJSTXINDUKPRP-UHFFFAOYSA-N 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 1
- 239000004327 boric acid Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 239000002655 kraft paper Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 238000007788 roughening Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
Landscapes
- Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
Description
【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は、電解コンデンサの製造
方法に関し、特に大形の乾式アルミ電解コンデンサ等の
電解コンデンサの製造方法に関する。
【0002】
【従来の技術】乾式アルミ電解コンデンサ等の電解コン
デンサは、アルミ等のエッチング箔を所定の電圧で化成
した陽極箔と、エッチング箔からなる陰極箔とを電解紙
を介して積層し巻回して形成したコンデンサ素子を利用
する。このコンデンサ素子の陽極箔は、例えば、500
〜1000mm巾のエッチング箔を化成して化成膜を形成
し、その後、焼成処理やリン酸処理をし、所定の巾と長
さに切断して形成する。そしてこの陽極箔には陽極用リ
ードをコールドウェル等により接続し一端をコンデンサ
素子の端面から引き出している。陽極用リードは、短絡
を防止するために、箔を陽極箔の化成電圧よりも高い電
圧で化成処理し、さらに焼成処理やリン酸処理等を行な
い形成する。また、陰極箔には陰極用リードをコールド
ウェル等により接続し、その一端を陽極用リードと同一
方向にコンデンサ素子の端面から引き出している。陰極
用リードは、箔を化成処理をしない状態のまま、あるい
は数V程度の低電圧で化成した後、加熱処理をして形成
する。これによって、電解コンデンサを使用中に、含浸
した電解液と反応する作用を抑制し、ガス発生を軽減し
ている。そしてコンデンサ素子は電解液を含浸した後、
金属製ケースに収納する。収納後、蓋をケースに取り付
けて密閉している。この蓋には端子を貫通して設け、陽
極用リード及び陰極用リードを端子に接続している。
【0003】なお、ケースに蓋を取り付けて密閉した
後、高温雰囲気中で電圧を印加して(以下エージング処
理という)陽極箔表面に形成した化成膜を修復するとと
もに、陽極箔の切断面に化成膜を形成する。
【0004】上記の構成からなる電解コンデンサは、例
えば高圧回路に使用する場合、2個を直列に接続して耐
圧を確保している。
【0005】
【発明が解決しようとする課題】しかし、2個を直列に
接続した場合、どちらか一方がコンデンサとしての機能
を失ない短絡状態になると、他方の正常な電解コンデン
サに定格電圧の1.5倍〜2倍の過電圧が印加される。
そのため正常な方の電解コンデンサも漏れ電流が増大
し、異常に発熱して耐圧が降下し、短絡不良となる。
【0006】ところで、陽極箔は、表面には化成処理に
より形成した化成膜を設けているため耐圧が高いが、切
断面にはエージング処理の際に化成膜が形成されている
だけであり、この部分の耐圧が低くなっている。そのた
め、短絡不良は、ほとんどこの切断面で起こり、短絡電
流が切断面に集中して爆発するという形態を採る。そし
てこの爆発の圧力により、短絡箇所が蓋側にある場合に
は蓋が飛び、また、ケースの底面側にある場合にはコン
デンサ素子全体が飛び出しかつ燃焼してしまうという欠
点がある。
【0007】本発明の目的は、以上の欠点を改良し、陽
極箔の切断面での短絡不良を防止し、蓋やコンデンサ素
子が飛び燃焼するのを防止できる電解コンデンサの製造
方法を提供するものである。
【0008】
【課題を解決するための手段】本発明は、上記の目的を
達成するために、所定の大きさに切断した陽極箔と陰極
箔とに各々陽極用リード及び陰極用リードを接続し、前
記陽極箔と前記陰極箔とを電解紙を介して積層し巻回し
てコンデンサ素子を形成する電解コンデンサの製造方法
において、化成処理をしていない陽極用リードを陽極箔
に接続することを特徴とする電解コンデンサの製造方法
を提供するものである。
【0009】なお、陽極箔に接続する陽極用リードに
は、化成処理をしない箔を用いるが、この未化成の箔に
純水ボイル処理等の処理をした箔を用いてもよい。
【0010】
【作用】陽極用リードの表面及び陽極箔の切断面とも、
エージング処理の際に化成膜が形成される。しかし、前
者の方が後者よりも短絡し易い状態であることがわかっ
た。そのため、電解コンデンサに過電圧を加えると、陽
極箔の切断面でよりも陽極用リードの表面で短絡する。
そしてこの短絡箇所はほとんどコンデンサ素子の内部で
ある。従って、この短絡箇所で爆発が起っても、この爆
発による爆風は蓋やケースの底に至るまでに弱くなる。
それ故、蓋やコンデンサ素子が飛ぶのを防止できる。
【0011】
【実施例】以下、本発明を実施例に基づいて説明する。
なお、実施例は定格400V、5600μFの電解コン
デンサを製造する場合について説明する。先ず、陽極箔
は厚さ100μmのアルミ箔を処理して製造する。すな
わち、このアルミ箔を直流エッチング法によって粗面化
する。粗面化後、純水中でボイルする。ボイル後、ホウ
酸の化成液中において、600Vの化成電圧をかけて化
成し、化成膜を形成する。化成処理後、安定化するため
に、リン酸処理をし、ついで温度550℃で焼成処理を
する。焼成処理後、巾120mm、長さ8000mmの大き
さに切断して陽極箔とする。
【0012】また、陽極用リードには化成処理をしない
厚さ150μm、巾10mm、長さ160mmのアルミ箔を
用いる。そしてこの陽極用リードの100mmの長さの部
分を陽極箔に2000mmおきに4枚、コールドウェルに
より接続する。
【0013】陰極箔は、厚さ20μmのアルミ箔を20
0μF/cm2 になるように粗面化し、その後、リン酸処
理をする。リン酸処理後、巾120mm、長さ8300mm
の大きさに切断する。
【0014】陰極用リードは、アルミ箔を長さ150μ
m、巾1000mmに圧延し、次いで焼なまし、500mm
の巾に切断した後、さらに巾10mmの大きさに切断して
製造する。そしてこの陰極用リードを陰極箔に2000
mm間隔で4枚をコールドウェルにより接続する。
【0015】電解紙としては厚さ90μmのクラフト紙
を用いる。そしてこの電解紙を介して陽極箔と陰極箔と
を積層して巻回し、コンデンサ素子を形成する。コンデ
ンサ素子を形成後、有機酸系の電解液を含浸する。
【0016】電解液を含浸後、図1に示す通り、コンデ
ンサ素子1から引き出した陽極用リード2及び陰極用リ
ード3を、各々蓋4に貫通して設けた陽極端子5及び陰
極端子6に接続する。接続後、予じめ硬化前の固定剤7
を底の方に充填したケース8にコンデンサ素子1を収納
する。収納後、固定剤7を硬化するとともに、蓋4をケ
ース8の端に取り付けて、ケース8を密閉する。なお、
蓋4には防爆弁9が取り付けられている。ケース8を密
閉後、温度85℃の雰囲気中に放置して425Vの電圧
を加えてエージング処理をする。エージング処理後、ケ
ース8に絶縁性のチューブ10を被覆する。
【0017】次に、上記の実施例の方法によって製造し
た電解コンデンサ11について、従来の方法によって製
造したものとともに、650Vの過電圧をかけた場合の
短絡不良を測定した。
【0018】なお、従来の製造方法は、陽極用リードと
してアルミ箔を650V以上の陽極箔の化成電圧よりも
高い電圧で化成処理し、その後に温度550℃で加熱処
理し、かつリン酸処理を行ない、さらに650Vの電圧
で再化処理をして化成膜を形成したものを用いる以外
は、前記実施例と同一とする。また、試料数は、実施例
および従来例とも各々10個とする。
【0019】各試料に過電圧をかけた結果、実施例は、
9個が陽極用リードの表面で短絡し、1個が陽極箔の切
断箇所で短絡したが、蓋が飛んだり燃焼したりする不良
は0個であった。これに対して、従来例では10個とも
陽極箔の切断箇所で短絡した。そのため、3個が蓋が割
れ、また2個がコンデンサ素子が飛び出し不良品となっ
た。
【0020】
【発明の効果】以上の通り、本発明の製造方法によれ
ば、陽極箔に接続する陽極用リードに化成処理をしてい
ない箔を用いているために、過電圧がかかった場合に陽
極用リードの箇所で短絡し易く、蓋が割れたり飛んだり
し、燃焼する不良を防止できる電解コンデンサが得られ
る。Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing an electrolytic capacitor, and more particularly to a method of manufacturing an electrolytic capacitor such as a large-sized dry aluminum electrolytic capacitor. 2. Description of the Related Art An electrolytic capacitor such as a dry-type aluminum electrolytic capacitor is formed by laminating an anode foil formed by etching an aluminum foil or the like at a predetermined voltage and a cathode foil made of the etching foil via electrolytic paper. The capacitor element formed by turning is used. The anode foil of this capacitor element is, for example, 500
An etching foil having a width of up to 1000 mm is formed to form a chemical film, which is then subjected to a baking treatment or a phosphoric acid treatment, and cut into a predetermined width and length. An anode lead is connected to the anode foil by a cold well or the like, and one end is drawn out from an end face of the capacitor element. The anode lead is formed by subjecting the foil to a chemical conversion treatment at a voltage higher than the formation voltage of the anode foil and further performing a baking treatment, a phosphoric acid treatment, or the like, in order to prevent a short circuit. A cathode lead is connected to the cathode foil by a cold well or the like, and one end thereof is drawn out from the end face of the capacitor element in the same direction as the anode lead. The cathode lead is formed by subjecting the foil to a non-chemical conversion treatment or a chemical conversion at a low voltage of several volts, followed by a heat treatment. This suppresses the action of reacting with the impregnated electrolytic solution during use of the electrolytic capacitor, thereby reducing gas generation. And after the capacitor element is impregnated with the electrolyte,
Store in a metal case. After storage, the lid is attached to the case and sealed. The lid is provided with a terminal penetrating therethrough, and an anode lead and a cathode lead are connected to the terminal. After the lid is attached to the case and sealed, a voltage is applied in a high-temperature atmosphere (hereinafter referred to as aging treatment) to repair the formed film formed on the surface of the anode foil and to apply a voltage to the cut surface of the anode foil. A chemical film is formed. When the electrolytic capacitor having the above configuration is used, for example, in a high voltage circuit, two capacitors are connected in series to ensure a withstand voltage. [0005] However, if two capacitors are connected in series and one of them is short-circuited without losing the function as a capacitor, the other normal electrolytic capacitor is charged with a rated voltage of 1%. An overvoltage of 0.5 to 2 times is applied.
For this reason, the leakage current of the normal electrolytic capacitor also increases, and abnormal heat generation causes a decrease in withstand voltage, resulting in a short circuit failure. By the way, the anode foil has a high withstand voltage because a chemical film formed by a chemical conversion treatment is provided on the surface, but only a chemical film is formed on the cut surface during the aging treatment. The withstand voltage of this portion is low. Therefore, short-circuit failure occurs almost at the cut surface, and a short-circuit current is concentrated on the cut surface and explodes. The pressure of this explosion causes a drawback that the lid jumps out when the short-circuit portion is on the lid side, and that the whole capacitor element jumps out and burns when the short-circuited part is on the bottom side of the case. SUMMARY OF THE INVENTION An object of the present invention is to provide a method for manufacturing an electrolytic capacitor capable of improving the above-mentioned drawbacks, preventing a short-circuit failure at a cut surface of an anode foil, and preventing a lid or a capacitor element from burning and burning. It is. According to the present invention, in order to achieve the above object, an anode lead and a cathode lead are respectively connected to an anode foil and a cathode foil cut to a predetermined size. A method for producing an electrolytic capacitor in which the anode foil and the cathode foil are laminated and wound via electrolytic paper to form a capacitor element, wherein an anode lead not subjected to a chemical conversion treatment is connected to the anode foil. And a method for manufacturing an electrolytic capacitor. The anode lead connected to the anode foil is a foil that is not subjected to a chemical conversion treatment, but a foil that has been subjected to a treatment such as a pure water boil treatment for the unchemically formed foil may be used. The surface of the anode lead and the cut surface of the anode foil are both
During the aging process, a chemical film is formed. However, it turned out that the former is in a state where it is easier to short-circuit than the latter. Therefore, when an overvoltage is applied to the electrolytic capacitor, a short circuit occurs on the surface of the anode lead rather than on the cut surface of the anode foil.
This short-circuited portion is almost inside the capacitor element. Therefore, even if an explosion occurs at this short-circuit location, the blast due to the explosion is weakened to reach the lid and the bottom of the case.
Therefore, it is possible to prevent the lid and the capacitor element from flying. Hereinafter, the present invention will be described with reference to examples.
In the embodiment, a case where an electrolytic capacitor having a rating of 400 V and 5600 μF is manufactured will be described. First, the anode foil is manufactured by processing an aluminum foil having a thickness of 100 μm. That is, the aluminum foil is roughened by a DC etching method. After roughening, boil in pure water. After boiling, a chemical conversion is performed by applying a chemical conversion voltage of 600 V in a boric acid chemical solution to form a chemical film. After the chemical conversion treatment, a phosphoric acid treatment is performed for stabilization, and then a baking treatment is performed at a temperature of 550 ° C. After firing, the anode foil is cut into a piece having a width of 120 mm and a length of 8000 mm. An aluminum lead having a thickness of 150 μm, a width of 10 mm, and a length of 160 mm, which is not subjected to a chemical conversion treatment, is used for the anode lead. Four 100 mm long portions of the anode lead are connected to the anode foil at intervals of 2000 mm by a cold well. The cathode foil is made of 20 μm thick aluminum foil.
The surface is roughened to 0 μF / cm 2 , and then phosphoric acid treatment is performed. After phosphoric acid treatment, width 120mm, length 8300mm
Cut to size. The cathode lead is made of aluminum foil having a length of 150 μm.
m, rolled to a width of 1000 mm, then annealed, 500 mm
And then cut to a width of 10 mm. Then, this cathode lead is attached to the cathode foil for 2000
The four plates are connected with a cold well at mm intervals. As the electrolytic paper, kraft paper having a thickness of 90 μm is used. Then, the anode foil and the cathode foil are laminated and wound via the electrolytic paper to form a capacitor element. After the formation of the capacitor element, an organic acid-based electrolytic solution is impregnated. After impregnation with the electrolytic solution, as shown in FIG. 1, the anode lead 2 and the cathode lead 3 drawn from the capacitor element 1 are connected to the anode terminal 5 and the cathode terminal 6 provided through the cover 4 respectively. I do. Fixing agent 7 after connection and before curing
The capacitor element 1 is housed in a case 8 in which is filled at the bottom. After storage, the fixing agent 7 is cured, and the lid 4 is attached to the end of the case 8 to seal the case 8. In addition,
An explosion-proof valve 9 is attached to the lid 4. After sealing the case 8, it is left in an atmosphere at a temperature of 85 ° C. to apply a voltage of 425 V to perform aging treatment. After the aging treatment, the case 8 is covered with the insulating tube 10. Next, with respect to the electrolytic capacitor 11 manufactured by the method of the above embodiment, short-circuit failure when an overvoltage of 650 V was applied was measured together with that manufactured by the conventional method. In the conventional manufacturing method, as an anode lead, an aluminum foil is subjected to a chemical conversion treatment at a voltage higher than the formation voltage of the anode foil of 650 V or more, followed by a heat treatment at a temperature of 550 ° C. and a phosphoric acid treatment. This embodiment is the same as the above embodiment except that a film formed by performing a re-treatment at a voltage of 650 V and forming a chemical film is further used. The number of samples is 10 in each of the examples and the conventional example. As a result of applying an overvoltage to each sample,
Nine were short-circuited on the surface of the anode lead, and one was short-circuited at the cut point of the anode foil, but there were no defects such as flying or burning of the lid. On the other hand, in the conventional example, all ten pieces were short-circuited at the cut portions of the anode foil. As a result, three of the lids were cracked, and two of the capacitor elements protruded and were defective. As described above, according to the manufacturing method of the present invention, since an unchemically-treated foil is used for the anode lead connected to the anode foil, it is possible to prevent the occurrence of overvoltage. An electrolytic capacitor can be obtained that can easily short-circuit at the anode lead, prevent the lid from cracking or flying, and prevent defective burning.
【図面の簡単な説明】
【図1】本発明の実施例の方法により製造した電解コン
デンサの断面図を示す。
【符号の説明】
1…コンデンサ素子、 2…陽極用リード、 3…陰極
用リード、11…電解コンデンサ。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a sectional view of an electrolytic capacitor manufactured by a method according to an embodiment of the present invention. [Description of Signs] 1 ... capacitor element, 2 ... lead for anode, 3 ... lead for cathode, 11 ... electrolytic capacitor.
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平4−372108(JP,A) 特開 平4−233714(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01G 9/008 H01G 9/00 H01G 9/12 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-4-372108 (JP, A) JP-A-4-233714 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01G 9/008 H01G 9/00 H01G 9/12
Claims (1)
とに各々陽極用リード及び陰極用リードを接続し、前記
陽極箔と前記陰極箔とを電解紙を介して積層し巻回して
コンデンサ素子を形成する電解コンデンサの製造方法に
おいて、化成処理をしていない陽極用リードを陽極箔に
接続することを特徴とする電解コンデンサの製造方法。(57) [Claim 1] An anode lead and a cathode lead are respectively connected to an anode foil and a cathode foil cut to a predetermined size, and the anode foil and the cathode foil are electrolyzed. A method for manufacturing an electrolytic capacitor, comprising laminating and winding via a paper to form a capacitor element, wherein an anode lead not subjected to a chemical treatment is connected to an anode foil.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP08867595A JP3401983B2 (en) | 1995-03-23 | 1995-03-23 | Manufacturing method of electrolytic capacitor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP08867595A JP3401983B2 (en) | 1995-03-23 | 1995-03-23 | Manufacturing method of electrolytic capacitor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08264386A JPH08264386A (en) | 1996-10-11 |
JP3401983B2 true JP3401983B2 (en) | 2003-04-28 |
Family
ID=13949407
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP08867595A Expired - Lifetime JP3401983B2 (en) | 1995-03-23 | 1995-03-23 | Manufacturing method of electrolytic capacitor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3401983B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106449189B (en) * | 2016-12-02 | 2018-11-23 | 深圳市诚捷智能装备股份有限公司 | Capacitor producing device and capacitor manufacturing method |
CN106409537B (en) * | 2016-12-02 | 2018-10-02 | 深圳市诚捷智能装备股份有限公司 | Capacitor fabrication system and capacitor manufacturing method |
CN106409536B (en) * | 2016-12-02 | 2018-11-23 | 深圳市诚捷智能装备股份有限公司 | Capacitor producing device and capacitor manufacturing method |
CN106971848B (en) * | 2017-04-05 | 2018-09-28 | 东莞市承兴电子有限公司 | The preparation method of aluminium electrolutic capacitor |
CN108899208B (en) * | 2018-06-28 | 2023-10-31 | 常州华威电子有限公司 | Ultra-low-impedance compact patch electrolytic capacitor and preparation method thereof |
-
1995
- 1995-03-23 JP JP08867595A patent/JP3401983B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH08264386A (en) | 1996-10-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4916416B2 (en) | Electrolytic capacitor manufacturing method and electrolytic capacitor | |
US6552896B1 (en) | Solid electrolytic capacitor and method for manufacturing the same | |
JP2663544B2 (en) | Method for producing electrode foil for aluminum electrolytic capacitor | |
JP3401983B2 (en) | Manufacturing method of electrolytic capacitor | |
JP3411237B2 (en) | Electrode foil for solid electrolytic capacitor, method for producing the same, and solid electrolytic capacitor | |
JP3416637B2 (en) | Solid electrolytic capacitor and method of manufacturing the same | |
JP3401988B2 (en) | Manufacturing method of electrolytic capacitor | |
US3678345A (en) | Capacitor impregnated with electrolyte and oil containing depolarizer | |
JP3806503B2 (en) | Solid electrolytic capacitor | |
JP2000058389A (en) | Manufacture of solid electrolytic capacitor | |
JP3374641B2 (en) | Manufacturing method of electrolytic capacitor | |
JPH09232189A (en) | Electrolytic capacitor | |
US6707661B2 (en) | Ethylene glycol mixture and an aluminum electrolytic capacitor using the mixture | |
JPH0992576A (en) | Electrolytic capacitor | |
JP2853380B2 (en) | Capacitor | |
JP3170589B2 (en) | Electrolytic capacitor and method of manufacturing the same | |
JPH03231414A (en) | Solid electrolytic capacitor | |
JP3313188B2 (en) | Manufacturing method of electrolytic capacitor | |
JPS58153322A (en) | Condenser | |
JP3439238B2 (en) | Electrolytic capacitor | |
JP3483681B2 (en) | Method of manufacturing tab terminal for electrolytic capacitor | |
JP2000021690A (en) | Aluminum electrolytic capacitor, production thereof, electrode foil for aluminum electrolytic capacitor and production thereof | |
JP3459151B2 (en) | Method for manufacturing solid electrolytic capacitor | |
JP2874394B2 (en) | Capacitor | |
JP2022040754A (en) | Electrolytic capacitor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080229 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090228 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100228 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100228 Year of fee payment: 7 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100228 Year of fee payment: 7 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100228 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110228 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110228 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120229 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120229 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130228 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140228 Year of fee payment: 11 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |