JP3439238B2 - Electrolytic capacitor - Google Patents

Electrolytic capacitor

Info

Publication number
JP3439238B2
JP3439238B2 JP19281693A JP19281693A JP3439238B2 JP 3439238 B2 JP3439238 B2 JP 3439238B2 JP 19281693 A JP19281693 A JP 19281693A JP 19281693 A JP19281693 A JP 19281693A JP 3439238 B2 JP3439238 B2 JP 3439238B2
Authority
JP
Japan
Prior art keywords
electrolytic capacitor
thermoplastic resin
dielectric
capacitor
electrolytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19281693A
Other languages
Japanese (ja)
Other versions
JPH0722290A (en
Inventor
輝恭 田辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichicon Capacitor Ltd
Original Assignee
Nichicon Capacitor Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichicon Capacitor Ltd filed Critical Nichicon Capacitor Ltd
Priority to JP19281693A priority Critical patent/JP3439238B2/en
Publication of JPH0722290A publication Critical patent/JPH0722290A/en
Application granted granted Critical
Publication of JP3439238B2 publication Critical patent/JP3439238B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は電解コンデンサ、とりわ
け安全性の高い電解コンデンサに関するものである。 【0002】 【従来の技術】従来の電解コンデンサの安全に関する対
策としては安全弁を付けることにより爆発の危険を防止
されていた。しかしながら、電解コンデンサを使用した
電子機器において、万一電解コンデンサが弁作動しても
直ちに電子機器の電源を開にすることが出来ないことが
多い。従って、電解コンデンサの弁作動後において短絡
等の二次的現象を発生せしめ、電子機器の破損に至るこ
とがあった。又、使用回路上で過電圧印加によって電解
コンデンサの誘電体が絶縁破壊を起こし、短絡に至るこ
ともある。 【0003】電解コンデンサは金属酸化皮膜を誘電体と
しているが、この酸化皮膜の誘電体の絶縁破壊によって
短絡現象に至る。一般に電解コンデンサは酸化皮膜を形
成した金属箔を指定された寸法に断裁し製作する。従っ
て断裁した切断面は気中酸化した酸化皮膜程度の極めて
薄い膜のため、使用に供する絶縁耐力を有していないた
め、断裁した箔を液中化成して切口にも酸化皮膜を形成
したり、あるいは電解液(ペースト)による酸化皮膜の
形成(エージング)を行って製品化されている。これら
の方法によって通常の使用には充分耐え得るものである
が、過電圧や許容以上の交流分が重畳されると誘電体が
絶縁破壊することがある。誘電体皮膜が全て均一に出来
上がっている場合には、過電圧が加わっても電流密度が
一定になるが、誘電体に若干の欠陥があったりする場
合、その部分の電流密度が大きくなり、電子なだれ的に
絶縁破壊をすることになる。通常、電解液が誘電体皮膜
表面に存在する場合は、酸化イオンの供給によって欠陥
部を修復してしまう。しかし、欠陥部における電流密度
が大きくなれば、電解液の抵抗分による発熱やイオンの
衝突が絶縁破壊の誘因となる。 【0004】 【発明が解決しようとする課題】本発明が解決しようと
する課題は、上述の誘電体酸化皮膜の絶縁破壊を抑止
し、電解コンデンサの短絡を防ぐことである。 【0005】 【課題を解決するための手段】本発明者は、上記課題を
解決するため様々な検討を行った結果、上記課題を解決
するための手段を見出すに至った。本発明の基本となる
考え方は、誘電体酸化皮膜の絶縁破壊に至る前に発熱エ
ネルギーを熱可塑性樹脂の融解熱とすることにより、絶
縁破壊を抑止せんとするものである。熱可塑性樹脂をコ
ンデンサ内部での構成については、通常のセパレータ紙
と重ねて巻回するものが最も良く、誘電体酸化皮膜に接
するように配するのが効果的であった。更に該セパレー
タでの抵抗は熱可塑性樹脂の電解液の透過性が良好なも
の程低い抵抗値となるため、繊維状のもの、または多孔
質を有するものを各々シート状にする必要があった。即
ち、陽極箔と陰極箔とを複数枚のセパレータを介して巻
回したコンデンサ素子を形成し、該素子に電解液を含浸
し、ケースに収納してなる電解コンデンサにおいて、繊
維状の熱可塑性樹脂シート、多孔質の熱可塑性樹脂シー
トのうち少なくとも一種とセパレータ紙とを重ねてセパ
レータとし、該熱可塑性樹脂シートを陽極箔に接して巻
回することを特徴とする電解コンデンサである。 【0006】 【作用】金属化プラスチックフィルムコンデンサにおけ
る熱可塑性フィルムの場合の瞬時破壊のときの炭化現象
がみられずフィルムが融解して破壊が自消することはよ
く知られている。本発明はこのことに着目して、電解コ
ンデンサに応用したものである。電解コンデンサが交流
分の印加による発熱によってコンデンサ内部の圧力を上
昇せしめ、弁作動したり、過電圧印加による急激な電流
の増加による内部圧力の上昇によって弁作動したり、又
は絶縁破壊によって短絡に至る。弁作動あるいは短絡に
至る直前は電流増加に伴う発熱によって、電解液がガス
化することも考えられ、従って誘電体である電極表面の
酸化アルミニウム皮膜の面はもはやアルミニウムを酸化
する能力を失って、誘電体が絶縁破壊し、セパレータを
も炭化し導通に至ることとなる。本発明は、誘電体であ
る酸化アルミニウム皮膜に接するところへ、熱可塑性樹
脂を混合した電解コンデンサ紙又は熱可塑性樹脂層を配
置することにより発熱エネルギーを融解熱として利用す
ることによって、電極間を擬似絶縁状態とし弁作動後の
瞬時短絡を防止し、機器の保護回路を安全に作動せしめ
ることが出来る。 【0007】 【実施例】以下、本発明の具体的実施例について述べ
る。定格400V 100μF品のCE69型アルミニ
ウム電解コンデンサを用い調査に供した。該製品のセパ
レータ部分を繊維状の熱可塑性樹脂シート40μm厚み
を陽極側に配し、マニラ紙30μm厚みの電解紙と重ね
て巻回したもの(実施例1)、多孔質の熱可塑性樹脂シ
ート40μm厚みを陽極側に配し、マニラ紙30μm厚
みの電解紙と巻回したもの(実施例2)をそれぞれ10
0ケずつ作製し、これに電解液を含浸し、定格400V
100μFのアルミ電解コンデンサとした。又、比較
のため、セパレータとして電解紙のみを巻回したものも
100ケ作製し、400V 100μFのコンデンサと
した。(従来例)それぞれのコンデンサに常温にて電流
8Aを流し、弁作動を誘発せしめ、それぞれのコンデン
サの破壊電圧を測定し、併せて短絡状況を調査した。そ
の結果を表1に示した。 【0009】 【表1】【0010】 【発明の効果】表1に示すように本発明を実施すれば、
従来品と比較して耐電圧が上昇するばかりでなく、弁作
動後の短絡現象を無くすことができ、その実用的価値は
大である。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrolytic capacitor, and more particularly to a highly safe electrolytic capacitor. [0002] As a measure against the safety of a conventional electrolytic capacitor, the risk of explosion has been prevented by attaching a safety valve. However, in an electronic device using an electrolytic capacitor, it is often impossible to immediately turn off the power supply of the electronic device even if the electrolytic capacitor operates. Therefore, a secondary phenomenon such as a short circuit may occur after the operation of the valve of the electrolytic capacitor, and the electronic device may be damaged. In addition, the dielectric of the electrolytic capacitor may cause dielectric breakdown due to application of an overvoltage on the circuit to be used, which may cause a short circuit. [0003] Electrolytic capacitors use a metal oxide film as a dielectric, but the dielectric breakdown of the oxide film causes a short circuit phenomenon. Generally, an electrolytic capacitor is manufactured by cutting a metal foil on which an oxide film is formed into a specified size. Therefore, since the cut surface is an extremely thin film of an oxide film that has been oxidized in the air, it does not have the dielectric strength to be used.Therefore, the cut foil is formed in liquid to form an oxide film on the cut surface. Alternatively, it has been commercialized by forming (aging) an oxide film with an electrolytic solution (paste). Although these methods can sufficiently withstand normal use, dielectric breakdown of the dielectric may occur when overvoltage or an unacceptable AC component is superimposed. If the dielectric film is all uniform, the current density will be constant even if an overvoltage is applied.However, if there is a slight defect in the dielectric, the current density in that part will increase and the electron avalanche will occur. This results in electrical breakdown. Normally, when the electrolytic solution is present on the surface of the dielectric film, the defective portion is repaired by supplying the oxide ions. However, when the current density in the defective portion is increased, heat generation due to the resistance of the electrolyte and collision of ions cause dielectric breakdown. [0004] The problem to be solved by the present invention is to suppress the above-mentioned dielectric breakdown of the dielectric oxide film and to prevent a short circuit of the electrolytic capacitor. The present inventor has conducted various studies to solve the above-mentioned problems, and as a result, has found a means for solving the above-mentioned problems. The basic idea of the present invention is to prevent the dielectric breakdown by using the heat generated by the heat of fusion of the thermoplastic resin before the dielectric breakdown of the dielectric oxide film. Regarding the structure of the thermoplastic resin inside the capacitor, it is best that the thermoplastic resin is wound on top of ordinary separator paper. Further, since the resistance of the separator becomes lower as the permeability of the electrolyte solution of the thermoplastic resin becomes better, it is necessary to form each of the fibrous material and the porous material into a sheet. That is, a capacitor element in which an anode foil and a cathode foil are wound through a plurality of separators is formed, and the element is impregnated with an electrolytic solution. An electrolytic capacitor characterized in that at least one of a sheet and a porous thermoplastic resin sheet is overlapped with a separator paper to form a separator, and the thermoplastic resin sheet is wound in contact with an anode foil. It is well known that in the case of a thermoplastic film in a metallized plastic film capacitor, the carbonization phenomenon at the moment of instantaneous destruction is not observed and the film melts and the destruction disappears. Focusing on this, the present invention is applied to an electrolytic capacitor. The electrolytic capacitor causes the pressure inside the capacitor to rise due to the heat generated by the application of the AC component, and causes the valve to operate, the valve to operate due to the rise in internal pressure due to a sudden increase in current due to the application of overvoltage, or a short circuit due to insulation breakdown. Immediately before the valve operation or short-circuit, the heat generated by the increase in current may cause gasification of the electrolyte, so that the surface of the dielectric aluminum oxide film on the electrode surface no longer has the ability to oxidize aluminum, The dielectric breakdown occurs, and the separator is carbonized, leading to conduction. According to the present invention, by arranging an electrolytic capacitor paper or a thermoplastic resin layer mixed with a thermoplastic resin at a place in contact with an aluminum oxide film serving as a dielectric, a heat generation energy is used as a heat of fusion to simulate a gap between electrodes. It can be insulated to prevent instantaneous short circuit after valve operation, and to safely operate the protection circuit of the equipment. Hereinafter, specific embodiments of the present invention will be described. The test was performed using a CE69 type aluminum electrolytic capacitor rated at 400 V and 100 μF. The separator portion of the product is a fibrous thermoplastic resin sheet having a thickness of 40 μm disposed on the anode side, and is wound around electrolytic paper having a thickness of 30 μm with manila paper (Example 1), and a porous thermoplastic resin sheet of 40 μm Thickness was placed on the anode side, and a roll of electrolytic paper with a thickness of 30 μm of manila paper (Example 2) was 10 pieces each.
0 pieces each, impregnated with electrolyte, and rated 400V
A 100 μF aluminum electrolytic capacitor was used. Further, for comparison, 100 separators in which only electrolytic paper was wound as separators were prepared, and a capacitor of 400 V and 100 μF was obtained. (Conventional example) A current of 8 A was applied to each capacitor at room temperature to induce a valve operation, the breakdown voltage of each capacitor was measured, and the short circuit condition was also investigated. The results are shown in Table 1. [Table 1] According to the present invention, as shown in Table 1,
Not only is the withstand voltage increased as compared with the conventional product, but also the short circuit phenomenon after the valve is operated can be eliminated, and its practical value is great.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01G 9/02 301 H01G 9/12 H01G 9/048 H01G 9/055 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) H01G 9/02 301 H01G 9/12 H01G 9/048 H01G 9/055

Claims (1)

(57)【特許請求の範囲】 【請求項1】 陽極箔と陰極箔とを複数枚のセパレータ
を介して巻回したコンデンサ素子を形成し、該素子に電
解液を含浸し、ケースに収納してなる電解コンデンサに
おいて、繊維状の熱可塑性樹脂シート、多孔質の熱可塑
性樹脂シートのうち少なくとも一種とセパレータ紙とを
重ねてセパレータとし、該熱可塑性樹脂シートを陽極箔
に接して巻回することを特徴とする電解コンデンサ。
(57) [Claims 1] A capacitor element in which an anode foil and a cathode foil are wound through a plurality of separators is formed, and the element is impregnated with an electrolytic solution and stored in a case. In an electrolytic capacitor, at least one of a fibrous thermoplastic resin sheet and a porous thermoplastic resin sheet and a separator paper are overlapped to form a separator, and the thermoplastic resin sheet is wound in contact with an anode foil. An electrolytic capacitor characterized by the following:
JP19281693A 1993-07-06 1993-07-06 Electrolytic capacitor Expired - Fee Related JP3439238B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19281693A JP3439238B2 (en) 1993-07-06 1993-07-06 Electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19281693A JP3439238B2 (en) 1993-07-06 1993-07-06 Electrolytic capacitor

Publications (2)

Publication Number Publication Date
JPH0722290A JPH0722290A (en) 1995-01-24
JP3439238B2 true JP3439238B2 (en) 2003-08-25

Family

ID=16297467

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19281693A Expired - Fee Related JP3439238B2 (en) 1993-07-06 1993-07-06 Electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP3439238B2 (en)

Also Published As

Publication number Publication date
JPH0722290A (en) 1995-01-24

Similar Documents

Publication Publication Date Title
US4408259A (en) Electrochemical double-layer capacitor
CA1193085A (en) Dielectric fluid for a capacitor
US20080151472A1 (en) Electrochemical double layer capacitor
US4480290A (en) Electrolytic capacitor including a composite separator between the anode and the cathode thereof
JP3439238B2 (en) Electrolytic capacitor
RU2686690C1 (en) Film capacitor
WO2022045122A1 (en) Electrolytic capacitor and method for producing electrolytic capacitor
JP4798478B2 (en) Electrolytic capacitor
JP3401983B2 (en) Manufacturing method of electrolytic capacitor
JP2010074083A (en) Electrolytic capacitor, and method of manufacturing the same
JP2798611B2 (en) High voltage capacitors for power
JP2006286959A (en) Electrolytic capacitor
JP2006278896A (en) Electrochemical device
JP3374641B2 (en) Manufacturing method of electrolytic capacitor
US4922375A (en) Electrical capacitor
JP2820414B2 (en) Film capacitor
JP2964008B2 (en) Electrolytic capacitor
JP2003173930A (en) Electrolytic capacitor
US2196057A (en) Electric capacitor
JPH0231777Y2 (en)
JP2853380B2 (en) Capacitor
JPH0754994Y2 (en) Gas-filled dry condenser
JPH07335498A (en) Electrolytic capacitor
JP2741604B2 (en) Electrolytic capacitor
Hudis Large aluminum electrolytic capacitor constructed with an electrochemical cathode

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080613

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090613

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100613

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120613

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130613

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees