JP2006286959A - Electrolytic capacitor - Google Patents

Electrolytic capacitor Download PDF

Info

Publication number
JP2006286959A
JP2006286959A JP2005105196A JP2005105196A JP2006286959A JP 2006286959 A JP2006286959 A JP 2006286959A JP 2005105196 A JP2005105196 A JP 2005105196A JP 2005105196 A JP2005105196 A JP 2005105196A JP 2006286959 A JP2006286959 A JP 2006286959A
Authority
JP
Japan
Prior art keywords
paper
separator
electrolytic capacitor
insulating paper
adhesive material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005105196A
Other languages
Japanese (ja)
Other versions
JP4697402B2 (en
Inventor
Koji Ashino
宏次 芦野
Mitsuo Kanda
光夫 神田
Hiroo Yamamoto
洋生 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemi Con Corp
Original Assignee
Nippon Chemi Con Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemi Con Corp filed Critical Nippon Chemi Con Corp
Priority to JP2005105196A priority Critical patent/JP4697402B2/en
Publication of JP2006286959A publication Critical patent/JP2006286959A/en
Application granted granted Critical
Publication of JP4697402B2 publication Critical patent/JP4697402B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a highly reliable electrolytic capacitor by preventing short circuit due to breakage of a separator in the electrolytic capacitor certainly and improving ESR in the low frequency region. <P>SOLUTION: The electrolytic capacitor comprises a capacitor element where a separator is interposed between a cathode foil and an anode foil connected with lead-out terminals, respectively. The separator has an insulating paper arranged at a part corresponding to the lead-out terminal wherein the insulating paper consists of a double paper of low density paper and a high density paper and being stuck to the separator through adhesive formed on the high density paper side. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、各種電子機器に利用されるアルミ電解コンデンサに関するものである。   The present invention relates to an aluminum electrolytic capacitor used in various electronic devices.

電解コンデンサは、引出端子が接続され、アルミニウムなどの皮膜形成性金属箔の表面をエッチング処理され、その表面に酸化皮膜を形成した陽極箔と、同じく引出端子が接続され、アルミニウムなどの皮膜形成性金属箔よりなる陰極箔とを、両者の間に電気絶縁性の電解紙などからなるセパレータを介して巻回または積層してコンデンサ素子を構成し、このコンデンサ素子に駆動用電解液を含浸するとともに、アルミニウムよりなる有底筒状の外装ケースに収納して開口部をゴムや樹脂材からなる封口部材に封口したものが知られている。   The electrolytic capacitor is connected to the lead terminal, and the surface of the film-forming metal foil such as aluminum is etched, and the anode foil having the oxide film formed on the surface is connected to the lead terminal, and the film-forming property such as aluminum is formed. A cathode foil made of a metal foil is wound or laminated with a separator made of electrically insulating electrolytic paper between them to form a capacitor element, and this capacitor element is impregnated with a driving electrolyte. In addition, there is known one that is housed in a bottomed cylindrical outer case made of aluminum and has an opening sealed with a sealing member made of rubber or a resin material.

この様な電解コンデンサでは、電極箔に接続される引出端子や該引出端子と電極箔との接続部には角部が存在し、電極箔を巻回又は積層してコンデンサ素子を形成する際には、前記角部の接触によりセパレータが損傷し、さらには巻回又は積層時の応力により、セパレータを突き破って対向する電極箔と接触してショート不良を生じる可能性があった。この対策として、セパレータにおける引出端子と対応する部位に宛て紙を貼り付けたコンデンサ素子構造が提案されている(特許文献1)。これによると引出端子と対応するセパレータの部位が宛て紙により二重構造となり、セパレータの破れによるショート不良が防止される。   In such an electrolytic capacitor, there is a corner in the lead terminal connected to the electrode foil and the connection part between the lead terminal and the electrode foil, and the capacitor element is formed by winding or laminating the electrode foil. May damage the separator due to the contact of the corners, and may cause a short circuit defect due to the stress at the time of winding or stacking and breaking through the separator to contact the opposing electrode foil. As a countermeasure, there has been proposed a capacitor element structure in which paper is attached to a portion of the separator corresponding to the lead terminal (Patent Document 1). According to this, the separator portion corresponding to the lead-out terminal has a double structure by the addressed paper, and a short circuit failure due to the tearing of the separator is prevented.

実開平6−86327号公報Japanese Utility Model Publication No. 6-86327

しかしながら、各種装置の小形化、高性能化の要求が高まっており、電解コンデンサにも小形化、高性能化が求められている。特に近年、サーボモータの普及に伴いこのサーボモータの制御用に電解コンデンサが多く使用されるようになってきている。このサーボモータでは、電解コンデンサは主に低周波数領域で多く使用され、この低周波領域においては、電解コンデンサに数Hz〜数十Hzの充放電が繰り返されることとなり、従来のセパレータに宛て紙を貼り付けた電解コンデンサでは、低周波領域でESR特性が悪化するという問題があった。   However, there is an increasing demand for miniaturization and high performance of various devices, and electrolytic capacitors are also required to be small and high performance. Particularly in recent years, with the widespread use of servo motors, electrolytic capacitors have been increasingly used for controlling the servo motors. In this servo motor, electrolytic capacitors are often used mainly in the low frequency region. In this low frequency region, the electrolytic capacitor is repeatedly charged and discharged at several Hz to several tens Hz. The attached electrolytic capacitor has a problem that the ESR characteristic deteriorates in a low frequency region.

そこで、本発明は、上記の従来の問題を解消するために提案されたもので、電解コンデンサにおけるセパレータの破れによるショート不良を確実に防止できるとともに、低周波領域でのESRを改善して信頼性の高い電解コンデンサを提供することを目的としている。   Therefore, the present invention has been proposed to solve the above-described conventional problems, and can reliably prevent short-circuit failure due to separator breakage in an electrolytic capacitor and improve reliability by improving ESR in a low frequency region. The purpose is to provide a high electrolytic capacitor.

本発明者らは、セパレータに貼り付ける絶縁紙及び粘着材を調査し鋭意研究した結果、従来の電解コンデンサでは、宛て紙をセパレータに貼り付けるための粘着材成分がESR特性を悪化させる要因であることをつきとめ、さらに研究を重ね、粘着材を構成する背面剥離材が駆動用電解液中のイオンの透過を阻害し、これにより電解コンデンサのESR特性を低下させていることを見出し、所望のセパレータへの絶縁紙の貼り付け状態を維持しつつ、いかに粘着材の塗布量を減らすかを検討した。   As a result of investigating and researching the insulating paper and the adhesive material to be attached to the separator, the present inventors have found that the adhesive component for attaching the addressed paper to the separator is a factor that deteriorates the ESR characteristics in the conventional electrolytic capacitor. As a result, further research has been conducted, and it has been found that the back surface release material constituting the adhesive material impedes the permeation of ions in the driving electrolyte solution, thereby reducing the ESR characteristics of the electrolytic capacitor. We examined how to reduce the amount of adhesive applied while maintaining the state of insulating paper affixed.

絶縁紙を構成する電解紙は、高密度紙と低密度紙からなり、密度の違いによりそれぞれ異なる表面状態であり、低密度紙側は繊維間が広いため表面が粗く凹凸状であるのに対し、高密度紙側は繊維間が狭く表面もほぼ平坦状である。従来では、コンデンサ素子を形成する際の巻回又は積層工程にて位置ずれを生じない程度の貼り付け強度を有する粘着材を絶縁紙の表面に容易に形成できることから絶縁紙の低密度紙側の表面に粘着材が形成されている。しかしながら、前記粘着材は、凹凸内に入り込んでしまうため、比較的その塗布量は多くなってしまい、ESR特性を悪化させていることがわかった。   Electrolytic paper that constitutes insulating paper consists of high-density paper and low-density paper, and has different surface states due to the difference in density, whereas the low-density paper side has a wide surface between fibers, while the surface is rough and uneven. On the high-density paper side, the distance between the fibers is narrow and the surface is almost flat. Conventionally, an adhesive material having a bonding strength that does not cause misalignment in the winding or laminating process when forming the capacitor element can be easily formed on the surface of the insulating paper. An adhesive material is formed on the surface. However, it was found that the pressure-sensitive adhesive material penetrates into the irregularities, so that the amount of coating is relatively large and the ESR characteristics are deteriorated.

そこで、本発明の電解コンデンサは、引出端子がそれぞれに接続された陰極箔と陽極箔との間にセパレータを介在したコンデンサ素子を備えた電解コンデンサにおいて、前記セパレータは、引出端子と対応する部位に絶縁紙が配置され、この絶縁紙は低密度紙及び高密度紙の2重紙からなり、前記高密度紙側に形成された粘着材を介して前記セパレータに貼着されていることを特徴としている。   Therefore, the electrolytic capacitor of the present invention is an electrolytic capacitor including a capacitor element in which a separator is interposed between a cathode foil and an anode foil each connected to a lead terminal, and the separator is disposed at a portion corresponding to the lead terminal. Insulating paper is arranged, and this insulating paper consists of double paper of low density paper and high density paper, and is stuck to the separator via an adhesive material formed on the high density paper side. Yes.

これによると、絶縁紙の高密度側の面に粘着材を形成することで、少ない塗布量にて所望の貼り付け強度が得られた。これは、電解紙の低密度側は、表面が凹凸状態であり、塗布された粘着材が前記凹凸内に入り込むため、粘着材の塗布量が多くなってしまうのに対し、電解紙の高密度側の面では、表面がほぼ平坦状であるため、該表面に最小限の粘着材の塗布量にて薄く形成することができ、従って電解液中のイオン透過の阻害が低減され、ESR特性は大幅に改善される。
特に低周波領域では、駆動用電解液中のイオンの移動量が大きいため、前記絶縁紙を通過するイオンも多くなり、従って絶縁紙への粘着材の形成構造を変えることで、前記駆動用電解液中のイオンを阻害することなく円滑に移動させることができ、低周波領域で良好なESR特性が得られると考えられる。
According to this, the desired sticking strength was obtained with a small coating amount by forming the adhesive material on the surface on the high density side of the insulating paper. This is because the low density side of the electrolytic paper has an uneven surface, and the applied adhesive material enters the unevenness, which increases the amount of adhesive applied, whereas the electrolytic paper has a high density. On the side surface, since the surface is almost flat, the surface can be formed thin with a minimum amount of adhesive material applied, so that the inhibition of ion permeation in the electrolyte is reduced, and the ESR characteristic is Greatly improved.
Especially in the low frequency region, the amount of ions moving in the driving electrolyte is large, so that more ions pass through the insulating paper. Therefore, by changing the formation structure of the adhesive material on the insulating paper, the driving electrolysis is changed. It is considered that ions in the liquid can be smoothly moved without being obstructed, and good ESR characteristics can be obtained in a low frequency region.

また、前記絶縁紙は、セパレータと引出端子との間に配置されていることを特徴としている。これによると、引出端子の角部が直接セパレータに触れることがなく、常に絶縁紙と接触しているため、セパレータの性能を維持できる。また引出端子には、絶縁紙の低密度紙側の凹凸状である表面が直に接し、この凹凸には駆動用電解液が満たされて保持されやすいことから、電解コンデンサのさらなるESR特性の向上が得られる。   Further, the insulating paper is characterized in that it is disposed between the separator and the lead terminal. According to this, since the corner portion of the lead terminal does not directly touch the separator and is always in contact with the insulating paper, the performance of the separator can be maintained. In addition, the surface that is uneven on the low-density paper side of the insulating paper is in direct contact with the lead-out terminal, and this unevenness is easily filled with the electrolyte for driving, so that the ESR characteristics of the electrolytic capacitor are further improved. Is obtained.

また、前記粘着材は、絶縁紙の表面が線状、波線状、点状などのように間欠的に形成されていることを特徴としている。これによると、粘着材の塗布量及び塗布面積が減り、駆動用電解液中のイオン透過を阻害する領域が減少するため、電解コンデンサのESR特性が改善される。
The pressure-sensitive adhesive material is characterized in that the surface of the insulating paper is intermittently formed in a line shape, a wavy line shape, a dot shape, or the like. According to this, the application amount and the application area of the adhesive material are reduced, and the region that inhibits ion permeation in the driving electrolyte solution is reduced, so that the ESR characteristic of the electrolytic capacitor is improved.

以上のように、本発明によれば、セパレータの引出端子と対応する部位に絶縁紙が配置され、この絶縁紙は、低密度紙及び高密度紙の2重紙からなり、前記高密度紙側に形成された粘着材を介して前記セパレータに貼着されることで、引出端子によるセパレータの損傷やショート不良を防止するとともに、前記粘着材の塗布量を減らすことができ、電解コンデンサの低周波領域におけるESR特性を改善することができる。   As described above, according to the present invention, the insulating paper is disposed at a portion corresponding to the lead-out terminal of the separator, and the insulating paper is composed of double paper of low density paper and high density paper, and the high density paper side Adhering to the separator via the adhesive material formed on the separator prevents damage to the separator and short-circuit failure due to the lead-out terminal, and reduces the amount of the adhesive material applied. ESR characteristics in the region can be improved.

この発明の実施の形態を図面に基づいて説明する。
図1に示すように、陽極側電極箔はアルミニウム等の弁作用金属からなり、エッチング処理により表面が粗面化されるとともに、その表面に酸化皮膜層が形成されている。陰極箔3は、陽極箔2と同様にアルミニウム等の弁作用金属からなり、エッチング処理により表面が粗面化されている。これら両極の電極には、アルミニウムからなる陽極側の引出端子4と、同じくアルミニウムからなる陰極側の引出端子がそれぞれステッチ、コールドウェルド、超音波溶接等の接続手法により電気的に接続されている。この引出端子4、5は、電極箔に接続される偏平部と外部接続用の引出部を有するものや、帯状体から構成され一方が電極箔に接続され、他方が外部引き出し用の別途封口体に設けられた外部端子に接続されるものがある。
Embodiments of the present invention will be described with reference to the drawings.
As shown in FIG. 1, the anode-side electrode foil is made of a valve metal such as aluminum, and the surface is roughened by an etching process, and an oxide film layer is formed on the surface. The cathode foil 3 is made of a valve action metal such as aluminum like the anode foil 2, and the surface thereof is roughened by an etching process. The anode-side lead terminal 4 made of aluminum and the cathode-side lead terminal similarly made of aluminum are electrically connected to these bipolar electrodes by a connection method such as stitching, cold weld, ultrasonic welding or the like. The lead terminals 4 and 5 have a flat part connected to the electrode foil and a lead part for external connection, or are composed of strips, one of which is connected to the electrode foil and the other is a separate sealing body for external lead. Some are connected to external terminals provided in the.

陰極箔3と陽極箔2の間に介在されるセパレータ6は電気絶縁性であり、マニラ麻紙、クラフト紙、エスパルト紙或いはこれらの混抄紙や、合成繊維や不織布あるいはこれらの混抄紙などからなる。巻回型のコンデンサ素子1では、それぞれ1以上の引出端子4、5が接続された陰極箔3及び陽極箔2を所定長さの帯状体から構成し、前記陰極箔3と陽極箔2の間にセパレータ6を介在して巻回して構成される。また、積層型のコンデンサ素子1では、それぞれ引出端子4、5が接続された陰極箔3及び陽極箔2を所定長さの平板状体から構成し、前記陰極箔3と陽極箔2とを間にセパレータ6を介在して交互に積み重ねて構成される。これらのコンデンサ素子には駆動用電解液が含浸されるとともにアルミニウムなどからなる有底筒状の金属ケースに収納され、開口部が弾性体や、弾性体と硬質体との複合部材からなる封口体によって加締め封口される。   The separator 6 interposed between the cathode foil 3 and the anode foil 2 is electrically insulating, and is made of Manila hemp paper, kraft paper, esparto paper or a mixed paper thereof, synthetic fiber, non-woven fabric, or a mixed paper thereof. In the wound capacitor element 1, each of the cathode foil 3 and the anode foil 2 to which one or more lead terminals 4 and 5 are connected is constituted by a belt-like body having a predetermined length, and between the cathode foil 3 and the anode foil 2. It is constituted by winding the separator 6 between them. In the multilayer capacitor element 1, the cathode foil 3 and the anode foil 2 to which the lead terminals 4 and 5 are respectively connected are formed of a flat plate having a predetermined length, and the cathode foil 3 and the anode foil 2 are interposed between the cathode foil 3 and the anode foil 2. Are alternately stacked with separators 6 interposed therebetween. These capacitor elements are impregnated with a driving electrolyte and housed in a bottomed cylindrical metal case made of aluminum or the like, and an opening is formed of an elastic body or a composite member of an elastic body and a hard body. It is sealed by crimping.

ここで、前記セパレータ6は、陽極箔2と陰極箔3に介在された際に各電極箔に接続された陽極側の引出端子4および/または陰極側の引出端子5に対応する部位に、絶縁紙7が粘着材を介して接続されている。絶縁紙7は、低密度紙10と高密度紙9の2重紙から構成され、それぞれ電気絶縁性であり、マニラ麻紙、クラフト紙、エスパルト紙、サイザル麻紙、ヘムプ紙、キュプラ、レーヨン、コットン或いはこれらの混抄紙より選択して用いられる。高密度紙9としては、主にクラフト紙、低密度紙10としては、マニラ麻紙、エスパルト紙が好適に用いられる。本発明では、絶縁紙7を構成する高密度紙9の密度は、粘着材の塗布量を低減可能となる表面形状とするため0.60g/cm以上が好ましく、低密度紙10の密度は、前記高密度紙9の密度に対し低いものを適宜用いることができる。この絶縁紙7を貼り付ける粘着材8は、フェノール系、エポキシ系、シアノアクリレート系、ポリイミド系、アクリル系、シリコーン系、ゴム系、あるいはホットメルト系などが挙げられる。なかでも、ポリプロピレンやポリビニルアルコールが好適に用いられる。 Here, when the separator 6 is interposed between the anode foil 2 and the cathode foil 3, the separator 6 is insulated at a portion corresponding to the anode-side lead terminal 4 and / or the cathode-side lead terminal 5 connected to each electrode foil. Paper 7 is connected via an adhesive material. The insulating paper 7 is composed of a double paper of a low density paper 10 and a high density paper 9 and is electrically insulating, respectively, Manila hemp paper, kraft paper, esparto paper, sisal hemp paper, hemp paper, cupra, rayon, cotton or These mixed papers are selected and used. As the high-density paper 9, kraft paper is mainly used, and as the low-density paper 10, Manila hemp paper and esparto paper are preferably used. In the present invention, the density of the high-density paper 9 constituting the insulating paper 7 is preferably 0.60 g / cm 3 or more in order to obtain a surface shape that can reduce the coating amount of the adhesive material, and the density of the low-density paper 10 is A material having a density lower than that of the high-density paper 9 can be used as appropriate. Examples of the adhesive material 8 to which the insulating paper 7 is attached include phenolic, epoxy-based, cyanoacrylate-based, polyimide-based, acrylic-based, silicone-based, rubber-based, and hot-melt-based materials. Of these, polypropylene and polyvinyl alcohol are preferably used.

この粘着材8は、塗布等により絶縁紙7の高密度紙9の面に形成されるが、形成方法としてはドクターブレード法が好ましい。具体的には、図3に示すように粘着材8が入った槽13内に、回転ローラー11を浸漬し、このローラーを回転することで、その表面に食刻により任意に設けられた凹部14内に粘着材8が保持されて移送され、回転ローラー11の一部に設けられたドクター刃12により、余分な粘着材8を削ぎ落とし、粘着材8を適量として回転ローラー11と弾性ローラー15の間に絶縁紙7を通過させることで、絶縁紙7表面に粘着材8を形成する。なお、前記回転ローラー11と弾性ローラー15との間に絶縁紙7の代わりに他の基材を通過させ、この基材の表面に粘着材8を貼り付け、この基材と絶縁紙7を張り合わせて、前記粘着材8を絶縁紙7の表面に転写させることもできる。前記回転ローラー11の凹部14により、絶縁紙7表面に形成される粘着材8は、間欠的に形成され、粘着材8の塗布量を低減できるとともに、電解液の絶縁紙7への浸透を良好とする。前記回転ローラー11の表面の凹部14を任意に形成することにより、絶縁紙7へ粘着材8を任意に形成できる。この絶縁紙7への粘着材8の形成形状は、図2の(b)及び(c)に示すように、線状、波線状、点状に形成できる。   The adhesive material 8 is formed on the surface of the high-density paper 9 of the insulating paper 7 by coating or the like, and a doctor blade method is preferable as a forming method. Specifically, as shown in FIG. 3, a concave roller 14 is arbitrarily provided on the surface by etching by immersing the rotating roller 11 in a tank 13 containing the adhesive material 8 and rotating the roller 11. The adhesive material 8 is held and transferred inside, and the doctor blade 12 provided in a part of the rotating roller 11 scrapes off the excess adhesive material 8, and uses the adhesive material 8 as an appropriate amount to rotate the rotating roller 11 and the elastic roller 15. By passing the insulating paper 7 between them, the adhesive material 8 is formed on the surface of the insulating paper 7. In addition, another base material is allowed to pass between the rotating roller 11 and the elastic roller 15 instead of the insulating paper 7, the adhesive material 8 is pasted on the surface of the base material, and the base material and the insulating paper 7 are bonded together. Thus, the adhesive material 8 can be transferred onto the surface of the insulating paper 7. The adhesive material 8 formed on the surface of the insulating paper 7 by the concave portion 14 of the rotating roller 11 is intermittently formed, so that the application amount of the adhesive material 8 can be reduced and the penetration of the electrolyte into the insulating paper 7 is good. And The adhesive material 8 can be arbitrarily formed on the insulating paper 7 by arbitrarily forming the concave portion 14 on the surface of the rotating roller 11. As shown in FIGS. 2B and 2C, the shape of the adhesive material 8 formed on the insulating paper 7 can be linear, wavy, or dotted.

絶縁紙7は、図1の(a)に示すように、電極箔に接続された引出端子4、5を覆うように、引出端子4、5と対向する他極の電極箔との間が2重になるようにセパレータ6に貼り付けられる。絶縁紙7は、セパレータ6の両面に貼り付けても良く、また一方の面にのみ貼り付けても良い。電解コンデンサの定格電圧が高い場合は、電極箔間の絶縁を確保するため、絶縁紙7をセパレータ6の両面に貼り付けることもあるが、その分コンデンサ素子1が大型化してしまうため、セパレータ6の一方の面にのみ絶縁紙7を設ける方が好ましい。また、絶縁紙7は、セパレータ6の電極箔に接続された引出端子4、5側の面に貼り付けられることが好ましい。これは、絶縁紙7によりセパレータ6が保護され、セパレータ6の損傷などにより本来セパレータ6が持つ耐電圧特性や絶縁性を損なうこと防止できるからである。また、前記絶縁紙7は、低密度紙10側の面が引出端子4、5に当接するため、低密度紙10側の凹凸には駆動用電解液が満たされて保持された状態を持続するため、電解コンデンサの電気的特性を維持できる。   As shown in FIG. 1A, the insulating paper 7 has a space of 2 between the lead terminals 4 and 5 and the opposite electrode foil so as to cover the lead terminals 4 and 5 connected to the electrode foil. Affixed to the separator 6 so as to overlap. The insulating paper 7 may be attached to both sides of the separator 6 or may be attached only to one side. When the rated voltage of the electrolytic capacitor is high, insulating paper 7 may be attached to both surfaces of the separator 6 in order to ensure insulation between the electrode foils. It is preferable to provide the insulating paper 7 only on one side. The insulating paper 7 is preferably attached to the surface of the lead terminals 4 and 5 connected to the electrode foil of the separator 6. This is because the separator 6 is protected by the insulating paper 7, and it is possible to prevent the breakdown voltage characteristics and insulation properties inherent to the separator 6 from being damaged due to damage to the separator 6 or the like. Further, since the surface of the insulating paper 7 on the low density paper 10 side comes into contact with the lead terminals 4 and 5, the unevenness on the low density paper 10 side is maintained filled with the driving electrolyte. Therefore, the electrical characteristics of the electrolytic capacitor can be maintained.

ここで、セパレータ6へ貼り付けられた絶縁紙7の剥離強度について検討する。これは、セパレータ6を電極箔とともに巻回又は積層装置により素子化される際に絶縁紙7の位置ずれが生じない程度の貼り付け強度を検討し、これにより粘着材8の塗布量の最適化を図るものである。従来は、絶縁紙7の低密度紙10側の面に粘着材8が形成されかつ全面に塗布されたものであり、この剥離強度は約70〜150g/cmであった。ここで必要となる粘着状態を維持できる剥離強度を検討した結果、5〜30g/cmであることが判明し、この強度を得られる範囲で粘着材8の塗布量を低減することが好ましいことがわかった。 Here, the peel strength of the insulating paper 7 attached to the separator 6 will be examined. This examines the adhesive strength that does not cause the displacement of the insulating paper 7 when the separator 6 is wound together with the electrode foil or formed into an element by a laminating device, thereby optimizing the application amount of the adhesive material 8. Is intended. Conventionally, the adhesive material 8 is formed on the surface of the insulating paper 7 on the low density paper 10 side and applied to the entire surface, and the peel strength is about 70 to 150 g / cm 2 . As a result of examining the peel strength that can maintain the necessary adhesive state, it was found to be 5 to 30 g / cm 2 , and it is preferable to reduce the coating amount of the adhesive material 8 within a range where this strength can be obtained. I understood.

次に、本発明における電解コンデンサについて具体的に説明する。なお、本発明の範囲はこれらの実施例により限定される物ではなく、実施例中の材料、使用量、割合、操作などは、本発明の趣旨を逸脱しない限り適宜変更することができる。   Next, the electrolytic capacitor in the present invention will be specifically described. It should be noted that the scope of the present invention is not limited by these examples, and materials, amounts used, ratios, operations, and the like in the examples can be changed as appropriate without departing from the spirit of the present invention.

(実施例1)
陽極箔2として、アルミニウムの表面をエッチング処理及び化成処理して表面にエッチング層及び酸化皮膜層を形成した帯状の金属箔を、陰極箔3としてアルミニウムよりなる金属箔の表面をエッチング処理してエッチング層を形成した帯状の金属箔を用いた。陰極箔3及び陽極箔2には、帯状の引出端子4、5の一端が超音波溶接により接続されている。前記陰極箔3と陽極箔2の間には、クラフト紙からなるセパレータ6が介在され、該セパレータ6の陽極側の引出端子4と対応する部位に、密度が0.85g/cm3である高密度のクラフト紙と密度が0.30g/cm3である低密度のマニラ麻紙を貼り合わせた絶縁紙7が、該絶縁紙7の高密度紙9側の表面にドクターブレード法により線状に塗布されたアクリル系粘着材8により貼り付けられている。粘着材8の塗布面積は、陽極箔2の箔面積に対して3%となるように形成されている。なお、前記絶縁紙7は、セパレータ6の陽極側の引出端子側の面に貼り付けられている。前記陽極箔2と陰極箔3は巻回されてコンデンサ素子1を形成し、駆動用電解液が含浸されるとともに、アルミニウムよりなる有底筒状の外装ケースに収納され、開口端をゴムよりなる封口体にて封止される。この実施例1の電解コンデンサは、陽極箔2の面積が880cm、絶縁紙7面積が合計65cm(陽極側の引出端子2箇所:32.5cm×2、陰極側の引出端子には絶縁紙無し)、粘着材8の合計面積は26cm(絶縁紙4箇所:13.0cm×2)である。
Example 1
As the anode foil 2, a strip-shaped metal foil having an etching layer and an oxide film layer formed on the surface by etching and conversion treatment on the surface of the aluminum is etched, and the surface of the metal foil made of aluminum is etched and etched as the cathode foil 3. A band-shaped metal foil having a layer formed thereon was used. One end of strip-shaped lead terminals 4 and 5 is connected to the cathode foil 3 and the anode foil 2 by ultrasonic welding. A separator 6 made of kraft paper is interposed between the cathode foil 3 and the anode foil 2, and the density is 0.85 g / cm 3 at a portion corresponding to the lead-out terminal 4 on the anode side of the separator 6. Insulating paper 7 in which low-density Manila hemp paper having a density of 0.30 g / cm 3 was bonded to the surface of the insulating paper 7 on the high-density paper 9 side was applied linearly by a doctor blade method. It is affixed with an acrylic adhesive material 8. The application area of the adhesive material 8 is formed to be 3% with respect to the foil area of the anode foil 2. The insulating paper 7 is affixed to the surface of the separator 6 on the anode-side lead-out terminal side. The anode foil 2 and the cathode foil 3 are wound to form a capacitor element 1, impregnated with a driving electrolyte, and housed in a bottomed cylindrical outer case made of aluminum, with an opening end made of rubber. Sealed with a sealing body. Electrolytic capacitor of Example 1, the area of the anode foil 2 is 880 cm 2, insulating paper 7 area total 65cm 2 (anode side of the lead terminal 2 places: 32.5cm 2 × 2, insulating the lead terminal of the cathode-side The total area of the adhesive material 8 is 26 cm 2 (4 places of insulating paper: 13.0 cm 2 × 2).

(比較例1)
実施例1の電解コンデンサにおいて、絶縁紙7のうち、高密度のクラフト紙に代えて、低密度のマニラ麻紙の表面にアクリル系粘着材8を間欠的に塗布したものであり、粘着材8の塗布面積は、陽極箔2の箔面積に対して3%としたものである。
(Comparative Example 1)
In the electrolytic capacitor of Example 1, instead of high-density kraft paper among the insulating paper 7, acrylic adhesive material 8 is intermittently applied to the surface of low-density Manila hemp paper. The application area is 3% with respect to the foil area of the anode foil 2.

(従来例1)
実施例1の電解コンデンサにおいて、絶縁紙7のうち、高密度のクラフト紙に代えて、低密度のクラフト紙の表面ほぼ全面に渡ってアクリル系粘着材8を塗布したものであり、粘着材8の塗布面積は、陽極箔2の箔面積に対して15%としたものである。
(Conventional example 1)
In the electrolytic capacitor of Example 1, an acrylic adhesive material 8 is applied over almost the entire surface of the low-density kraft paper in place of the high-density kraft paper in the insulating paper 7. The coating area is 15% with respect to the foil area of the anode foil 2.

本発明の実施例1、比較例1、従来例1をそれぞれ10個作成し、20℃、40℃条件での周波数毎のESR特性を測定した。なお、図4は周波数領域における20℃でのESR特性を示すグラフであり、図5は周波数領域における40℃でのESR特性を示すグラフである。   Ten pieces of each of Example 1, Comparative Example 1 and Conventional Example 1 of the present invention were prepared, and the ESR characteristics for each frequency under 20 ° C. and 40 ° C. conditions were measured. 4 is a graph showing the ESR characteristic at 20 ° C. in the frequency domain, and FIG. 5 is a graph showing the ESR characteristic at 40 ° C. in the frequency domain.

図4及び図5より、本発明の実施例1の電解コンデンサは、低周波領域でのESR特性が大幅に改善されていることが分かる。これは、絶縁紙7へ粘着材8を間欠的に塗布し、かつ前記絶縁紙7の平坦側の表面に粘着材8を塗布することで、粘着材8の塗布量を低減することができたと考えられる。   4 and 5, it can be seen that the ESR characteristic in the low frequency region of the electrolytic capacitor of Example 1 of the present invention is greatly improved. This is because the application amount of the adhesive material 8 can be reduced by intermittently applying the adhesive material 8 to the insulating paper 7 and applying the adhesive material 8 to the flat surface of the insulating paper 7. Conceivable.

次に、同じく本発明の各実施例、比較例、従来例をそれぞれ50個作成し、20℃、120Hz条件でのESR、CAP、tanδを測定し、各試料の特性分布を検討した。なお、図6は20℃、120HzでのCAPを示すグラフであり、図7は20℃、120HzでのESR特性を示すグラフであり、図8は20℃、120Hzでのtanδを示すグラフである。   Next, 50 examples, comparative examples, and conventional examples of the present invention were respectively prepared, ESR, CAP, and tan δ were measured under the conditions of 20 ° C. and 120 Hz, and the characteristic distribution of each sample was examined. 6 is a graph showing CAP at 20 ° C. and 120 Hz, FIG. 7 is a graph showing ESR characteristics at 20 ° C. and 120 Hz, and FIG. 8 is a graph showing tan δ at 20 ° C. and 120 Hz. .

図6、図7及び図8より、本発明の実施例1の電解コンデンサは、ESR特性、CAP及びtanδ値全て良好な結果が得られた。実施例1の電解コンデンサは、従来例1の電解コンデンサと比較しても、ESR特性は、約37%改善され、CAPは約5%、tanδ値は約30%も改善された。同じく比較例1の電解コンデンサと比較しても、ESR特性は約10%、CAPは約5%、tanδ値は約6%改善された。   6, 7, and 8, the electrolytic capacitor of Example 1 of the present invention has obtained good results in all of the ESR characteristics, CAP, and tan δ values. In comparison with the electrolytic capacitor of the conventional example 1, the ESR characteristic of the electrolytic capacitor of Example 1 was improved by about 37%, the CAP was improved by about 5%, and the tan δ value was improved by about 30%. Similarly, when compared with the electrolytic capacitor of Comparative Example 1, the ESR characteristic was improved by about 10%, the CAP was improved by about 5%, and the tan δ value was improved by about 6%.

さらに実施例1、従来例1、比較例1の電解コンデンサの各試料の特性分布を検討すると、ESR、CAP及びtanδ全てにおいて、実施例1の電解コンデンサは、従来例1及び比較例1の電解コンデンサと比較して、バラツキが極めて小さく、従って信頼性の高い製品を実現できる。具体的には実施例1の電解コンデンサの標準偏差は、比較例1の電解コンデンサに対して、tanδにおいては約30%、CAPにおいては約20%改善されている。   Further, when the characteristic distribution of each sample of the electrolytic capacitor of Example 1, Conventional Example 1 and Comparative Example 1 is examined, the electrolytic capacitor of Example 1 is the electrolytic capacitor of Conventional Example 1 and Comparative Example 1 in all of ESR, CAP and tan δ. Compared with a capacitor, the variation is extremely small, and therefore a highly reliable product can be realized. Specifically, the standard deviation of the electrolytic capacitor of Example 1 is improved by about 30% in tan δ and about 20% in CAP with respect to the electrolytic capacitor of Comparative Example 1.

次に、電解コンデンサの絶縁紙7に塗布された粘着材8の塗布面積を一定とし、陽極箔2の箔面積を代えてESR特性を測定した。
ここで、絶縁紙7としてマニラ麻紙を用い、絶縁紙7の平坦側の面にアクリル系粘着材8を間欠的に塗布したものである。陽極箔2の箔面積を10cm〜200cmの間で代え、絶縁紙7の面積を3cmとし、該絶縁紙7の平坦側の面に塗布された粘着材8の塗布面積を2cmとした。20℃、120HzでのESRを測定した。なお、図9は陽極箔面積に対する粘着材の面積とESR特性を示すグラフである。
Next, the application area of the adhesive material 8 applied to the insulating paper 7 of the electrolytic capacitor was made constant, and the ESR characteristics were measured by changing the foil area of the anode foil 2.
Here, Manila hemp paper is used as the insulating paper 7, and the acrylic adhesive material 8 is intermittently applied to the flat surface of the insulating paper 7. The foil area of the anode foil 2 in place between 10cm 2 ~200cm 2, the area of the insulating sheet 7 and 3 cm 2, the application area of the adhesive material 8 coated on the surface of the flat side of the insulating sheet 7 and 2 cm 2 did. ESR was measured at 20 ° C. and 120 Hz. FIG. 9 is a graph showing the area of the adhesive material and the ESR characteristic with respect to the anode foil area.

図9より、絶縁紙7に塗布される粘着材8の塗布面積が小さいほど低周波領域でのESRが良好であることがわかる。特に粘着材8の塗布面積が6%を越えると急激に悪化することが分かり、6%以下であれば良好な結果がえられ、塗布面積が小さいほど好ましいが、3%以下であればESRの上昇が余り見られず、またセパレータ6への絶縁紙7の貼り付け強度を考慮すると、粘着材8の塗布面積は0.5%以上が好ましい。   FIG. 9 shows that the smaller the application area of the adhesive 8 applied to the insulating paper 7, the better the ESR in the low frequency region. In particular, it is found that when the application area of the adhesive 8 exceeds 6%, it rapidly deteriorates. When the application area is 6% or less, good results are obtained. The smaller the application area, the better. Considering the strength of the insulating paper 7 applied to the separator 6 with little increase, the application area of the adhesive material 8 is preferably 0.5% or more.

本発明の実施の形態における電解コンデンサの巻回状態を示す斜視図である。It is a perspective view which shows the winding state of the electrolytic capacitor in embodiment of this invention. (a)は、本発明の実施の形態における陽極箔、陽極引出端子、セパレータ及び絶縁紙の配置状態を示す断面図である。(b)は、本発明の実施例の形態におけるセパレータに貼り付けられる絶縁紙を示す図面である。(c)は、本発明の他の実施の形態におけるセパレータに貼り付けられる絶縁紙を示す図面である。(A) is sectional drawing which shows the arrangement | positioning state of the anode foil in the embodiment of this invention, an anode extraction terminal, a separator, and insulating paper. (B) is drawing which shows the insulating paper affixed on the separator in the form of the Example of this invention. (C) is drawing which shows the insulating paper affixed on the separator in other embodiment of this invention. 本発明の実施例における絶縁紙への粘着材の形成工程を示す図面である。It is drawing which shows the formation process of the adhesive material to the insulating paper in the Example of this invention. 周波数領域における20℃でのESR特性を示すグラフである。It is a graph which shows the ESR characteristic in 20 degreeC in a frequency domain. 周波数領域における40℃でのESR特性を示すグラフである。It is a graph which shows the ESR characteristic in 40 degreeC in a frequency domain. 20℃、120HzでのCAPを示すグラフである。It is a graph which shows CAP in 20 degreeC and 120 Hz. 20℃、120HzでのESR特性を示すグラフである。It is a graph which shows the ESR characteristic in 20 degreeC and 120 Hz. 20℃、120Hzでのtanδを示すグラフである。It is a graph which shows tan-delta in 20 degreeC and 120 Hz. 陽極箔面積に対する粘着材の面積とESR特性を示すグラフである。It is a graph which shows the area and ESR characteristic of the adhesive material with respect to an anode foil area.

符号の説明Explanation of symbols

1 コンデンサ素子
2 陽極箔
3 陰極箔
4 陽極側の引出端子
5 陰極側の引出端子
6 セパレータ
7 絶縁紙
8 粘着材
9 高密度紙
10 低密度紙
11 回転ローラー
12 ドクター刃
13 槽
14 食刻凹部
15 弾性ローラー
DESCRIPTION OF SYMBOLS 1 Capacitor element 2 Anode foil 3 Cathode foil 4 Extraction terminal 5 on the anode side Extraction terminal 6 on the cathode side Separator 7 Insulating paper 8 Adhesive material 9 High density paper 10 Low density paper 11 Rotating roller 12 Doctor blade 13 Tank 14 Etching recess 15 Elastic roller

Claims (3)

引出端子がそれぞれに接続された陰極箔と陽極箔との間にセパレータを介在したコンデンサ素子を備えた電解コンデンサにおいて、
前記セパレータは、引出端子と対応する部位に絶縁紙が配置され、この絶縁紙は低密度紙及び高密度紙の2重紙からなり、前記高密度紙側に形成された粘着材を介して前記セパレータに貼着された電解コンデンサ。
In an electrolytic capacitor provided with a capacitor element having a separator interposed between a cathode foil and an anode foil each connected to a lead terminal,
In the separator, insulating paper is disposed at a portion corresponding to the lead terminal, and the insulating paper is made of double paper of low density paper and high density paper, and the adhesive paper is formed on the high density paper side through the adhesive material. Electrolytic capacitor affixed to the separator.
前記絶縁紙は、セパレータと引出端子との間に配置されている請求項1に記載の電解コンデンサ。 The electrolytic capacitor according to claim 1, wherein the insulating paper is disposed between a separator and a lead terminal. 前記粘着材は、絶縁紙の表面に間欠的に形成されている請求項1又は2に記載の電解コンデンサ。
The electrolytic capacitor according to claim 1, wherein the adhesive material is intermittently formed on a surface of insulating paper.
JP2005105196A 2005-03-31 2005-03-31 Electrolytic capacitor Active JP4697402B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005105196A JP4697402B2 (en) 2005-03-31 2005-03-31 Electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005105196A JP4697402B2 (en) 2005-03-31 2005-03-31 Electrolytic capacitor

Publications (2)

Publication Number Publication Date
JP2006286959A true JP2006286959A (en) 2006-10-19
JP4697402B2 JP4697402B2 (en) 2011-06-08

Family

ID=37408522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005105196A Active JP4697402B2 (en) 2005-03-31 2005-03-31 Electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP4697402B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008198837A (en) * 2007-02-14 2008-08-28 Hitachi Aic Inc Aluminum electrolytic capacitor
US8795879B2 (en) 2011-02-17 2014-08-05 Panasonic Corporation Electronic component and method of manufacturing the same
JP2015207682A (en) * 2014-04-22 2015-11-19 日本ケミコン株式会社 Capacitor and method for manufacturing the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5922316A (en) * 1982-07-29 1984-02-04 エルナ−株式会社 Electrolytic condenser
JPH04352311A (en) * 1991-05-29 1992-12-07 Nichicon Corp Electrolytic capacitor
JPH0686327U (en) * 1993-05-25 1994-12-13 日本ケミコン株式会社 Electrolytic capacitor element
JPH10256091A (en) * 1997-03-10 1998-09-25 Matsushita Electric Ind Co Ltd Electrolytic capacitor
JP2003173930A (en) * 2001-12-05 2003-06-20 Rubycon Corp Electrolytic capacitor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5922316A (en) * 1982-07-29 1984-02-04 エルナ−株式会社 Electrolytic condenser
JPH04352311A (en) * 1991-05-29 1992-12-07 Nichicon Corp Electrolytic capacitor
JPH0686327U (en) * 1993-05-25 1994-12-13 日本ケミコン株式会社 Electrolytic capacitor element
JPH10256091A (en) * 1997-03-10 1998-09-25 Matsushita Electric Ind Co Ltd Electrolytic capacitor
JP2003173930A (en) * 2001-12-05 2003-06-20 Rubycon Corp Electrolytic capacitor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008198837A (en) * 2007-02-14 2008-08-28 Hitachi Aic Inc Aluminum electrolytic capacitor
US8795879B2 (en) 2011-02-17 2014-08-05 Panasonic Corporation Electronic component and method of manufacturing the same
JP2015207682A (en) * 2014-04-22 2015-11-19 日本ケミコン株式会社 Capacitor and method for manufacturing the same

Also Published As

Publication number Publication date
JP4697402B2 (en) 2011-06-08

Similar Documents

Publication Publication Date Title
WO2008096932A1 (en) Metal electrolytic capacitor and method manufacturing thereof
KR20100033937A (en) Winding-type electrolytic capacitor and a method of manufacturing the same
US8208242B2 (en) Electrode foil and capacitor using the same
JP4697402B2 (en) Electrolytic capacitor
JPWO2010029598A1 (en) Capacitor electrode foil, electrolytic capacitor using the same, and method for producing capacitor electrode foil
CN101490773B (en) Electric double layer capacitor and method for manufacturing same
JP4798478B2 (en) Electrolytic capacitor
JP6284036B2 (en) Electrolytic capacitor
JP4953043B2 (en) Electrolytic capacitor
JP6718874B2 (en) Electrochemical device
JP4900765B2 (en) Electrolytic capacitor
US8659875B2 (en) Capacitor and manufacturing method therefor
JP2009212283A (en) Electrolytic capacitor and method of manufacturing the same
US8373972B2 (en) Solid electrolytic capacitor having a protective structure and method for manufacturing the same
JP2010074089A (en) Electrolytic capacitor, and method of manufacturing the same
JP2012019061A (en) Electrolytic capacitor
JP2010074083A (en) Electrolytic capacitor, and method of manufacturing the same
JP2008177199A (en) Solid electrolytic capacitor
JP2015207682A (en) Capacitor and method for manufacturing the same
JP7272861B2 (en) Wound energy storage device and manufacturing method thereof
JP2018170479A (en) Electrolytic capacitor and method for manufacturing the same
WO2023163134A1 (en) Capacitor and method for producing same
JP2006279078A (en) Electric double layer capacitor
JP5164325B2 (en) Manufacturing method of solid electrolytic capacitor
WO2009051297A1 (en) Metal capacitor and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100901

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110215

R150 Certificate of patent or registration of utility model

Ref document number: 4697402

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150