JP6284036B2 - Electrolytic capacitor - Google Patents

Electrolytic capacitor Download PDF

Info

Publication number
JP6284036B2
JP6284036B2 JP2014500751A JP2014500751A JP6284036B2 JP 6284036 B2 JP6284036 B2 JP 6284036B2 JP 2014500751 A JP2014500751 A JP 2014500751A JP 2014500751 A JP2014500751 A JP 2014500751A JP 6284036 B2 JP6284036 B2 JP 6284036B2
Authority
JP
Japan
Prior art keywords
anode foil
foil
capacitor element
separator
paper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014500751A
Other languages
Japanese (ja)
Other versions
JPWO2013125613A1 (en
Inventor
芦野 宏次
宏次 芦野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemi Con Corp
Original Assignee
Nippon Chemi Con Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemi Con Corp filed Critical Nippon Chemi Con Corp
Publication of JPWO2013125613A1 publication Critical patent/JPWO2013125613A1/en
Application granted granted Critical
Publication of JP6284036B2 publication Critical patent/JP6284036B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/02Diaphragms; Separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/08Housing; Encapsulation
    • H01G9/12Vents or other means allowing expansion

Description

本発明は、コンデンサ素子の内部構造を改良した電解コンデンサに関する。   The present invention relates to an electrolytic capacitor having an improved internal structure of a capacitor element.

従来の電解コンデンサでは、陽極箔と陰極箔とをセパレータを介して巻回してコンデンサ素子を形成し、このコンデンサ素子には駆動用の電解液が含浸され、アルミニウム等の外装ケースに収納され、外装ケースの開口端を封口部材にて封止されて電解コンデンサが形成される。   In a conventional electrolytic capacitor, an anode foil and a cathode foil are wound through a separator to form a capacitor element, and this capacitor element is impregnated with a driving electrolyte solution and stored in an outer case such as aluminum. The open end of the case is sealed with a sealing member to form an electrolytic capacitor.

この種の電解コンデンサでは、使用時にコンデンサ素子の内部にて漏れ電流が発生し、それに伴い電解液成分の電気分解などにより、水素を中心としたガスが発生する場合がある。電解コンデンサは密閉された構造であるため、内部でガスが発生すると内圧が上昇して封口部材や外装ケースの変形、最後には破裂してしまうおそれもある。そのため、電解コンデンサでは外装ケースの底面に数条の溝を設けて機械的脆弱部とし、内圧が上昇した時にはこの機械的脆弱部に応力を集中させ、外装ケースを溝に沿って破断させて、内圧の上昇を開放する圧力弁が採用されている(例えば、特許文献1参照)。   In this type of electrolytic capacitor, a leakage current is generated inside the capacitor element during use, and gas accompanying hydrogen may be generated due to electrolysis of the electrolytic solution component. Since the electrolytic capacitor has a hermetically sealed structure, if gas is generated inside, the internal pressure may increase, and the sealing member and the outer case may be deformed and finally ruptured. Therefore, in an electrolytic capacitor, several grooves are provided on the bottom surface of the outer case to form a mechanical weakened part, and when the internal pressure rises, stress is concentrated on the mechanical weakened part, and the outer case is broken along the groove. A pressure valve that releases an increase in internal pressure is employed (see, for example, Patent Document 1).

また、封口部材に貫通孔を設け、その貫通孔をゴムなどの弾性部材で閉塞しておいて、電解コンデンサの内圧が上昇したときには、弾性部材が破断して内圧の上昇を開放する圧力弁も採用されている。   There is also a pressure valve in which a through-hole is provided in the sealing member and the through-hole is closed with an elastic member such as rubber, and when the internal pressure of the electrolytic capacitor rises, the elastic member breaks to release the increase in internal pressure. It has been adopted.

特開2001−244154号公報JP 2001-244154 A

ところで、新興国では電圧が安定しないために電圧が変化した時にも電子部品が駆動し続けることが求められており、このような電圧の不安定な状態、特に電解コンデンサに定格電圧を超えて過電圧が印加される場合があり、このような過電圧の印加によりコンデンサ素子の内部においてショートが発生する場合がある。このようにショートが発生すると、圧力弁の動作への影響があり、つまり圧力弁の動作がショートの発生の有無により、その圧力弁の動作電圧にバラツキが生じてしまう。   By the way, in emerging countries, it is required that electronic components continue to drive even when the voltage changes because the voltage is not stable, and this voltage is unstable, especially over the rated voltage of the electrolytic capacitor. May be applied, and the application of such an overvoltage may cause a short circuit inside the capacitor element. When a short circuit occurs in this way, there is an influence on the operation of the pressure valve, that is, the operation voltage of the pressure valve varies depending on whether or not the operation of the pressure valve occurs.

そこで本発明は、コンデンサ素子内部でのショートを防止し、所望電圧領域において確実に圧力弁を動作させ、信頼性の高い電解コンデンサを提供することにある。   SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a highly reliable electrolytic capacitor by preventing a short circuit inside a capacitor element and operating a pressure valve reliably in a desired voltage region.

前記目的を達成するために、本発明の電解コンデンサは、
引出端子が接続された陽極箔と陰極箔とをセパレータを介して巻回したコンデンサ素子を外装ケースに収納した電解コンデンサにおいて、
少なくとも陽極箔の外周側の面に隣接するセパレータの内周側の面に、素子内部より発生したガスを放出するガス放出経路を形成したことを特徴としている。
In order to achieve the above object, the electrolytic capacitor of the present invention comprises:
In an electrolytic capacitor in which a capacitor element in which an anode foil and a cathode foil to which a lead terminal is connected is wound through a separator is housed in an outer case,
A gas discharge path for discharging gas generated from the inside of the element is formed at least on the inner peripheral surface of the separator adjacent to the outer peripheral surface of the anode foil.

また、前記陽極箔は、250V以上の耐電圧を有することを特徴としている。   The anode foil has a withstand voltage of 250V or more.

また、前記陽極箔は、陰極箔の厚みの4倍以上の厚みを有することを特徴としている。   The anode foil is characterized in that it has a thickness that is four times or more the thickness of the cathode foil.

また、前記陽極箔には、その外周側に引出端子が接続されていることを特徴としている。   Further, the anode foil is characterized in that a lead terminal is connected to the outer peripheral side thereof.

また、陽極箔に接続された引出端子と対向するセパレータの間に、ガス放出経路を形成したあて紙が配置されていることを特徴としている。   Further, a paper having a gas discharge path is disposed between the separator facing the lead terminal connected to the anode foil.

さらに陰極箔の内周側に引出端子が接続され、この引出端子と、前記陽極箔の外周側に接続された引出端子との間に前記あて紙が配置されていることを特徴としている。   Further, a lead terminal is connected to the inner peripheral side of the cathode foil, and the address paper is arranged between the lead terminal and the lead terminal connected to the outer peripheral side of the anode foil.

本発明の電解コンデンサによれば、次の何れかの効果が得られる。   According to the electrolytic capacitor of the present invention, any of the following effects can be obtained.

(1)コンデンサ素子の内部に発生したガスをコンデンサ素子の端面より放出することができ、コンデンサ素子の内部での陽極箔、陰極箔又はそれらの引出端子間の接触やセパレータの絶縁低下によるショートを抑制できる。 (1) The gas generated inside the capacitor element can be released from the end face of the capacitor element, and short-circuiting due to contact between the anode foil, cathode foil or their lead terminals inside the capacitor element or due to a decrease in insulation of the separator Can be suppressed.

(2)コンデンサ素子が樽状に膨れるなどなどのコンデンサ素子の変形を防ぐことで、コンデンサ素子内部での陽極箔、陰極箔又はそれらの引出端子間の接触やセパレータの絶縁低下によるショートを抑制できる。 (2) By preventing deformation of the capacitor element, such as the capacitor element expanding in a barrel shape, it is possible to suppress short-circuits due to contact between the anode foil, the cathode foil, or their lead terminals inside the capacitor element, or a decrease in insulation of the separator. .

(3)少なくとも陽極箔の外周側に、ガス放出経路を設けることで、コンデンサ素子の内部で発生したガスが、コンデンサ素子の内部に留まりにくく、コンデンサ素子の端面より外部に放出される。特に陽極箔は陰極箔に比べて硬く、巻回された場合であってもその復元力によってコンデンサ素子の外周側に作用しやすいため、本願構成を陽極側に適用することが好ましい。 (3) By providing the gas discharge path at least on the outer peripheral side of the anode foil, the gas generated inside the capacitor element is difficult to stay inside the capacitor element, and is discharged from the end face of the capacitor element to the outside. In particular, the anode foil is harder than the cathode foil, and even when wound, it is easy to act on the outer peripheral side of the capacitor element due to its restoring force. Therefore, the configuration of the present application is preferably applied to the anode side.

(4)交流エッチングによりトンネル状のエッチングピットが形成される中高圧用途の陽極箔では硬度が高く、前述の陽極箔の巻回復元力も強いものとなる。特に250V以上の耐電圧を有する陽極箔では、金属箔の表面に形成される酸化皮膜層の厚みも0.3μm以上となり、陽極箔の硬度が高く、巻回復元力による陽極箔の外側への作用が顕著となるものであり、このような250V以上の耐電圧を有する陽極箔に用いるのが好適である。 (4) An anode foil for medium- and high-pressure applications in which tunnel-like etching pits are formed by AC etching has high hardness, and the above-described anode foil has a strong winding restoring force. In particular, in the anode foil having a withstand voltage of 250 V or more, the thickness of the oxide film layer formed on the surface of the metal foil is also 0.3 μm or more, the hardness of the anode foil is high, and the outside of the anode foil due to the winding restoring force is increased. The action becomes remarkable, and it is preferable to use it for such an anode foil having a withstand voltage of 250 V or more.

(5)コンデンサ素子の内部でのショートを抑制することで、所定の電圧領域において確実に圧力弁を動作させることができ、信頼性の高い電解コンデンサを提供できる。 (5) By suppressing a short circuit inside the capacitor element, the pressure valve can be reliably operated in a predetermined voltage region, and a highly reliable electrolytic capacitor can be provided.

(6)陽極箔の外周側に引出端子が接続されているため、陽極箔とセパレータとの間に間隙を確保でき、コンデンサ素子の内部で発生したガスが、効率よくコンデンサ素子の端面から放出される。また、コンデンサ素子の内部で発生したガスにより、陽極箔が外周側に押圧されても、引出端子が陽極箔の外周側に接続されているため、引出端子が陽極箔の内周側に配置されている場合と比べて、陽極箔が引出端子により傷つきにくく、信頼性の高い電解コンデンサが得られる。 (6) Since the lead terminal is connected to the outer peripheral side of the anode foil, a gap can be secured between the anode foil and the separator, and the gas generated inside the capacitor element is efficiently released from the end face of the capacitor element. The Further, even if the anode foil is pressed to the outer peripheral side by the gas generated inside the capacitor element, the extraction terminal is arranged on the inner peripheral side of the anode foil because the extraction terminal is connected to the outer peripheral side of the anode foil. Compared with the case where the anode foil is provided, the anode foil is less likely to be damaged by the lead terminal, and a highly reliable electrolytic capacitor can be obtained.

(7)陽極箔に接続された引出端子にガス放出経路を形成したあて紙を配置してもよい。 (7) You may arrange the address paper which formed the gas discharge path in the extraction terminal connected to anode foil.

(8)陰極箔の内周側に引出端子が接続され、この引出端子と、前記陽極箔の外周側に接続された引出端子に対向するように陽極箔と陰極箔の間に前記あて紙を配置することで、1枚のあて紙にて両引出端子を覆うことが可能となる。 (8) A lead terminal is connected to the inner peripheral side of the cathode foil, and the addressing paper is placed between the anode foil and the cathode foil so as to face the lead terminal and the lead terminal connected to the outer peripheral side of the anode foil. By arranging, both the lead terminals can be covered with one sheet of paper.

実施例のケース収納前のコンデンサ素子の一例を示す図である。It is a figure which shows an example of the capacitor | condenser element before the case accommodation of an Example. 変形例1の(a)は、コンデンサ素子の上面視図であり、(b)は、コンデンサ素子を展開した展開図である。(A) of Modification 1 is a top view of the capacitor element, and (b) is a development view in which the capacitor element is developed. 変形例2の(a)は、コンデンサ素子の上面視図であり、(b)は、コンデンサ素子を展開した展開図である。(A) of Modification 2 is a top view of the capacitor element, and (b) is a developed view of the capacitor element.

本発明に係る電解コンデンサを実施するための形態を実施例に基づいて以下に説明する。   EMBODIMENT OF THE INVENTION The form for implementing the electrolytic capacitor which concerns on this invention is demonstrated below based on an Example.

実施例に係る電解コンデンサにつき、図1から図3を参照して説明する。図1に示すように、陽極箔2はアルミニウム等の弁作用金属からなり、エッチング処理により表面が粗面化されるとともに、その表面に酸化皮膜層が形成されている。陰極箔3は、陽極箔2と同様にアルミニウム等の弁作用金属からなり、エッチング処理により表面が粗面化されている。これら両極の電極には、アルミニウム等の陽極側の引出端子4と、同じくアルミニウム等の陰極側の引出端子5がそれぞれステッチ、コールドウェルド、超音波溶接等の接続手法により電気的に接続されている。この引出端子4、5は、電極箔に接続される偏平部と外部接続用の引出部(CP線)を有するものや、帯状体から構成され一方が電極箔に接続され、他方が外部引き出し用の別途封口部材に設けられた外部端子に接続されるものがある。   The electrolytic capacitor according to the embodiment will be described with reference to FIGS. 1 to 3. As shown in FIG. 1, the anode foil 2 is made of a valve metal such as aluminum, the surface is roughened by an etching process, and an oxide film layer is formed on the surface. The cathode foil 3 is made of a valve action metal such as aluminum like the anode foil 2, and the surface thereof is roughened by an etching process. The anode-side lead terminal 4 made of aluminum or the like and the cathode-side lead terminal 5 made of aluminum or the like are electrically connected to these bipolar electrodes, respectively, by a connection method such as stitching, cold weld, or ultrasonic welding. . The lead terminals 4 and 5 have a flat part connected to the electrode foil and a lead part for external connection (CP wire), or are composed of a strip-like body, one of which is connected to the electrode foil and the other for external lead-out. There are those that are connected to external terminals provided on the separate sealing member.

陽極箔2及び陰極箔3の間に介在されるセパレータ6は電気絶縁性であり、マニラ麻紙、クラフト紙、エスパルト紙、サイザル麻紙、ヘンプ紙、キュプラ、レーヨン、コットン或いはこれらの混抄紙や、合成繊維や不織布あるいはこれらの混抄紙などからなり、一重のものや、高密度の素材(高密度紙)9と低密度の素材(低密度紙)10を重ね合わせた二重構造のものが挙げられる。高密度紙9としては、主にクラフト紙、低密度紙10としては、マニラ麻紙、エスパルト紙が好適に用いられる。低密度紙10としては、その密度が0.3〜0.5g/cmが好ましく、また高密度紙9としては、その密度が0.7〜0.9g/cmが好ましい。特に後述するコンデンサ素子1の内部で発生するガスの放出経路として低密度紙10を用いる場合は、その低密度紙10の密度を上記0.3〜0.5g/cmの範囲とすることが好ましい。The separator 6 interposed between the anode foil 2 and the cathode foil 3 is electrically insulative, and is made of Manila hemp paper, kraft paper, esparto paper, sisal hemp paper, hemp paper, cupra, rayon, cotton or a mixed paper of these, synthetic It consists of fibers, nonwoven fabrics, or mixed papers of these, and includes a single layer or a double structure in which a high density material (high density paper) 9 and a low density material (low density paper) 10 are overlapped. . As the high-density paper 9, kraft paper is mainly used, and as the low-density paper 10, Manila hemp paper and esparto paper are preferably used. The density of the low density paper 10 is preferably 0.3 to 0.5 g / cm 3 , and the density of the high density paper 9 is preferably 0.7 to 0.9 g / cm 3 . In particular, when the low density paper 10 is used as a discharge path of gas generated inside the capacitor element 1 to be described later, the density of the low density paper 10 may be in the range of 0.3 to 0.5 g / cm 3. preferable.

コンデンサ素子1では、それぞれ1以上の引出端子4、5が接続された陽極箔2及び陰極箔3を所定長さの帯状体から構成し、前記陽極箔2及び陰極箔3の間にセパレータ6を介在して巻回して構成される。このコンデンサ素子1には駆動用電解液が含浸されるとともにアルミニウムなどからなる有底筒状の外装ケース8に収納され、開口部が弾性体や、弾性体と硬質体との複合部材からなる封口部材11によって加締め封口される。   In the capacitor element 1, the anode foil 2 and the cathode foil 3, each having one or more lead terminals 4 and 5 connected thereto, are formed from a strip having a predetermined length, and a separator 6 is interposed between the anode foil 2 and the cathode foil 3. It is constructed by interposing and winding. The capacitor element 1 is impregnated with a driving electrolyte and housed in a bottomed cylindrical outer case 8 made of aluminum or the like, and the opening is a sealing member made of an elastic body or a composite member of an elastic body and a hard body. The member 11 is caulked and sealed.

ここで、このような巻回型のコンデンサ素子1を用いた電解コンデンサにおいて、定格電圧を超えて過電圧が印加された場合には、コンデンサ素子1の内部にガスが発生する。コンデンサ素子1は巻き止めテープによって一定の均定力で巻回保持されているものの内部ガスによって外周側に膨れる作用が生じる。これはコンデンサ素子1の中心付近においては、発生したガスがコンデンサ素子1の端面より放出されにくいため、陽極箔2と陰極箔3を外周側に押圧することによって生じる。つまり、コンデンサ素子1が樽状に変形することになる。このようにコンデンサ素子1の中心付近が膨らむことで、コンデンサ素子1を構成する陽極箔2や陰極箔3が外周側に作用し、特に硬い陽極箔2や角部を有する引出端子4、5が対向するセパレータ6を押圧し、セパレータ6を突き破って対向する他方の電極等と接触もしくはセパレータ6の絶縁低下を起こしてショートに至ると考えられる。   Here, in an electrolytic capacitor using such a wound capacitor element 1, gas is generated inside the capacitor element 1 when an overvoltage is applied exceeding the rated voltage. Although the capacitor element 1 is wound and held with a constant leveling force by the winding-stopping tape, an action of swelling to the outer peripheral side by the internal gas occurs. This is caused by pressing the anode foil 2 and the cathode foil 3 toward the outer peripheral side because the generated gas is unlikely to be released from the end face of the capacitor element 1 in the vicinity of the center of the capacitor element 1. That is, the capacitor element 1 is deformed into a barrel shape. In this way, the vicinity of the center of the capacitor element 1 swells so that the anode foil 2 and the cathode foil 3 constituting the capacitor element 1 act on the outer peripheral side, and the lead terminals 4 and 5 having particularly hard anode foil 2 and corner portions are provided. It is considered that the opposing separator 6 is pressed to break through the separator 6 and come into contact with the other opposing electrode or the like, or the insulation of the separator 6 is lowered, resulting in a short circuit.

通常、陽極箔2や陰極箔3の外周側に面するセパレータ6は、内部ガスが発生した際の陽極箔2や陰極箔3の外側への膨れの作用によるセパレータ6の押圧に対して、セパレータ6の高密度側の面を陽極箔2や陰極箔3の外周側に対向させることで、セパレータ6の強度や絶縁性を高め、ショートの抑制を図っている。しかしながら、定格電圧を超えて電圧が印加された場合には、陽極箔2や陰極箔3の外周側への膨れにより、セパレータ6の高密度側の面と密着することで、発生した内部ガスがコンデンサ素子1の内部に留まりコンデンサ素子1の端面から放出されにくいことが分かった。
特に陽極箔2は巻回後のその復元力によってコンデンサ素子1の外周側に作用しやすいため、上記の現象が生じやすくなる。また、陽極箔2は、その硬度によって復元力が変わり、内部ガスがコンデンサ素子1から放出されにくいのは、特に交流エッチングによりトンネル状のエッチングピットが形成される中高圧用途の陽極箔2である。これは、エッチング手法によるエッチングピットの状態と化成処理により形成される酸化皮膜の状況に依存する。特に250V以上の耐電圧を有する陽極箔2では、金属箔の表面に形成される酸化皮膜層の厚みも0.3μm以上となり、陽極箔2の硬度が高く、復元力による陽極箔2の外側への作用が顕著となる。
また、陽極箔2と陰極箔3との厚みによってもガスが放出されにくい場合がある。特に、陽極箔2の厚みが、陰極箔3の厚みの4倍以上の場合、陽極箔の巻回復元力が陰極箔に対して極めて高く陽極箔2とセパレータの密着度合いが高まるためと考えられる。陽極箔2の厚みは、90〜120μm、陰極箔3の厚みは、15〜30μmとなる。
Usually, the separator 6 facing the outer peripheral side of the anode foil 2 or the cathode foil 3 is separated from the pressure of the separator 6 due to the outward swell of the anode foil 2 or the cathode foil 3 when the internal gas is generated. The high density side surface of 6 is opposed to the outer peripheral side of the anode foil 2 and the cathode foil 3, thereby increasing the strength and insulation of the separator 6 and suppressing short circuit. However, when a voltage exceeding the rated voltage is applied, the generated internal gas is brought into close contact with the surface on the high density side of the separator 6 due to the swelling of the anode foil 2 and the cathode foil 3 to the outer peripheral side. It was found that it stayed inside the capacitor element 1 and was not easily released from the end face of the capacitor element 1.
In particular, since the anode foil 2 is likely to act on the outer peripheral side of the capacitor element 1 due to its restoring force after winding, the above phenomenon is likely to occur. In addition, the restoring force of the anode foil 2 varies depending on its hardness, and it is difficult to release the internal gas from the capacitor element 1 particularly in the anode foil 2 for medium to high pressure applications in which tunnel-like etching pits are formed by AC etching. . This depends on the state of the etching pit by the etching technique and the state of the oxide film formed by the chemical conversion treatment. In particular, in the anode foil 2 having a withstand voltage of 250 V or more, the thickness of the oxide film layer formed on the surface of the metal foil is also 0.3 μm or more, the anode foil 2 has high hardness, and the outside of the anode foil 2 due to the restoring force. The effect of is remarkable.
Further, depending on the thickness of the anode foil 2 and the cathode foil 3, the gas may not be easily released. In particular, when the thickness of the anode foil 2 is 4 times or more than the thickness of the cathode foil 3, it is considered that the winding restoring force of the anode foil is extremely high with respect to the cathode foil and the degree of adhesion between the anode foil 2 and the separator is increased. . The thickness of the anode foil 2 is 90 to 120 μm, and the thickness of the cathode foil 3 is 15 to 30 μm.

このため、実施例では、コンデンサ素子1の内部で発生した内部ガスが、陽極箔2及び陰極箔3の外周側と隣接するセパレータ6の面にガスの放出経路を設けている。このガス放出経路としては、例えば陽極箔2及び陰極箔3の外周側の面に隣接するセパレータ6の内周側の面にコンデンサ素子1の端面に通じる凹凸面、エンボス加工や溝加工を施し、内部ガスをコンデンサ素子1の軸方向を通過して端面より放出させることができる。また、このような物理的な加工をセパレータに施す以外にも、セパレータ6を低密度と高密度の二重構造とし、低密度側の面を陽極箔2及び陰極箔3の外周側に面するように配置することもできる。セパレータ6の低密度側の面によって、内部ガスがコンデンサ素子1の端面より開放される。特に好ましいのは、低密度紙の繊維が素子巻回方向に配向していないように形成されていることが好ましい。低密度紙においてその繊維が素子巻回方向に配向しているとガスの放出がされにくくなる。このようにガス放出経路を設けることで、コンデンサ素子1が樽状に膨らむことを抑え、コンデンサ素子1のショートを防止することができる。したがって、電解コンデンサの圧力弁の動作が安定し、信頼性の高い電解コンデンサを提供することができる。   For this reason, in the embodiment, the internal gas generated inside the capacitor element 1 is provided with a gas discharge path on the surface of the separator 6 adjacent to the outer peripheral sides of the anode foil 2 and the cathode foil 3. As this gas discharge path, for example, the inner surface of the separator 6 adjacent to the outer surfaces of the anode foil 2 and the cathode foil 3 is subjected to an uneven surface leading to the end surface of the capacitor element 1, embossing and groove processing, The internal gas can be discharged from the end face through the axial direction of the capacitor element 1. In addition to applying such physical processing to the separator, the separator 6 has a low-density and high-density double structure, and the surface on the low-density side faces the outer peripheral side of the anode foil 2 and the cathode foil 3. It can also be arranged. The internal gas is released from the end surface of the capacitor element 1 by the surface of the separator 6 on the low density side. It is particularly preferable that the low density paper fibers are formed so as not to be oriented in the element winding direction. In low density paper, if the fibers are oriented in the element winding direction, it is difficult to release gas. By providing the gas discharge path in this way, it is possible to prevent the capacitor element 1 from bulging into a barrel shape and to prevent the capacitor element 1 from being short-circuited. Therefore, the operation of the pressure valve of the electrolytic capacitor is stable, and a highly reliable electrolytic capacitor can be provided.

次に本実施例の変形例1の電解コンデンサについて説明する。図2の(a)はコンデンサ素子1の上面視図を示し、図2の(b)は、図2の(a)のコンデンサ素子1を展開した状態を示す図である。図2の(a)に示すように、コンデンサ素子1は、それぞれ引出端子4、5が接続された陽極箔2と陰極箔3とをセパレータ6を介して巻回して形成されている。この陽極側の引出端子4及び陰極側の引出端子5が接続されている部位を展開したものが図2の(b)である。図2の(b)において、図面の下側はコンデンサ素子1の内周側(中心側)X、図面の上側がコンデンサ素子1の外周側Yを示す。陽極箔2は、コンデンサ素子1の外周側Yの面に陽極側の引出端子4が接続されており、陰極箔3は、コンデンサ素子1の内周側Xの面に陰極側の引出端子5が接続されている。またコンデンサ素子1の内周側Xより、陽極箔2(交流エッチング:化成電圧250V)、二重構造のセパレータ6、陰極箔3、二重構造のセパレータ6の順で配置されている。ここで、セパレータ6は、高密度(高密度紙9)低密度(低密度紙10:素子巻回方向に繊維が配向していない形態)の二重構造とし、陽極箔2及び陰極箔3のコンデンサ素子1の外周側Yの面にそれぞれセパレータ6の低密度紙10が配置されている。   Next, an electrolytic capacitor according to Modification 1 of this embodiment will be described. 2A is a top view of the capacitor element 1, and FIG. 2B is a diagram illustrating a state in which the capacitor element 1 of FIG. 2A is developed. As shown in FIG. 2A, the capacitor element 1 is formed by winding an anode foil 2 and a cathode foil 3 to which lead terminals 4 and 5 are connected, respectively, via a separator 6. FIG. 2B is an expanded view of a portion where the anode-side extraction terminal 4 and the cathode-side extraction terminal 5 are connected. 2B, the lower side of the drawing shows the inner peripheral side (center side) X of the capacitor element 1, and the upper side of the drawing shows the outer peripheral side Y of the capacitor element 1. The anode foil 2 has an anode-side lead terminal 4 connected to the outer peripheral side Y surface of the capacitor element 1, and the cathode foil 3 has a cathode-side lead terminal 5 on the inner peripheral side X surface of the capacitor element 1. It is connected. Further, from the inner peripheral side X of the capacitor element 1, the anode foil 2 (AC etching: formation voltage 250 V), the double-structure separator 6, the cathode foil 3, and the double-structure separator 6 are arranged in this order. Here, the separator 6 has a double structure of high density (high density paper 9) and low density (low density paper 10: a form in which fibers are not oriented in the element winding direction). The low density paper 10 of the separator 6 is arranged on the outer peripheral side Y surface of the capacitor element 1.

このように、陽極箔2のコンデンサ素子1の外周側Yの面にセパレータ6の低密度紙10が配置されているため、硬度が高い陽極箔2を用いた場合であっても、コンデンサ素子1の内部に発生したガスが、この低密度紙10を通じて効率よくコンデンサ素子の端面から放出される。また、陽極箔2のコンデンサ素子1の外周側Yの面に陽極側の引出端子4が接続されており、引出端子4の厚みがあるため、陽極箔2とセパレータ6との間に隙間を確保でき、コンデンサ素子1の内部に発生したガスが、さらに効率よくコンデンサ素子1の端面から放出される。また、陽極側の引出端子4が陽極箔2の内周側Xに配置されている場合は、コンデンサ素子1の内部に発生したガスにより、陽極箔2が外周側Yに押圧されると、陽極側の引出端子4も外周側Yに押圧することになるが、この場合は引出端子4が陽極箔の内周側Xに設置されているため、引出端子4の角部が陽極箔2を押圧し、硬くて脆弱な陽極箔の面を傷をつける可能性があるが、変形例1では、陽極側の引出端子4は陽極箔2の外周側Yに配置されているため、前述の様な陽極箔2の損傷等はなく信頼性の高い電解コンデンサが得られる。なお、変形例1では、陰極側の引出端子5は、陰極箔3の内周側Xに形成しているが、陰極箔3自体は陽極箔2に比べて薄く弾性を有しているため、コンデンサ素子1の内部に発生したガスにより、陰極側の引出端子5によって押圧されてもその影響を低い。   Thus, since the low density paper 10 of the separator 6 is arranged on the surface of the outer peripheral side Y of the capacitor element 1 of the anode foil 2, even when the anode foil 2 having high hardness is used, the capacitor element 1 The gas generated inside is efficiently discharged from the end face of the capacitor element through the low density paper 10. Further, the anode-side lead terminal 4 is connected to the outer peripheral side Y surface of the capacitor element 1 of the anode foil 2, and since there is a thickness of the lead terminal 4, a gap is secured between the anode foil 2 and the separator 6. The gas generated inside the capacitor element 1 is released from the end face of the capacitor element 1 more efficiently. When the anode-side lead terminal 4 is arranged on the inner peripheral side X of the anode foil 2, the anode foil 2 is pressed against the outer peripheral side Y by the gas generated inside the capacitor element 1. In this case, since the lead terminal 4 is installed on the inner peripheral side X of the anode foil, the corner portion of the lead terminal 4 presses the anode foil 2. However, although the surface of the hard and fragile anode foil may be scratched, in the first modification, the lead-out terminal 4 on the anode side is disposed on the outer peripheral side Y of the anode foil 2, so that it is as described above. There is no damage to the anode foil 2 and a highly reliable electrolytic capacitor can be obtained. In Modification 1, the cathode-side lead terminal 5 is formed on the inner peripheral side X of the cathode foil 3, but the cathode foil 3 itself is thinner and more elastic than the anode foil 2, Even if the gas generated inside the capacitor element 1 is pressed by the lead-out terminal 5 on the cathode side, its influence is low.

次に本実施例の変形例2の電解コンデンサについて説明する。図3の(a)はコンデンサ素子1の上面視図を示し、図3の(b)は、図3の(a)のコンデンサ素子1を展開した状態を示す図である。変形例2では、コンデンサ素子1の陽極箔2のコンデンサ素子1の外周側Yの面に接続された引出端子4と陰極箔3のコンデンサ素子1の内周側Xの面に接続された引出端子5との間にセパレータ6とともにあて紙7が配置されている以外は、変形例1と同様である。   Next, an electrolytic capacitor according to Modification 2 of this embodiment will be described. 3A is a top view of the capacitor element 1, and FIG. 3B is a diagram illustrating a state in which the capacitor element 1 of FIG. 3A is developed. In the second modification, the lead terminal 4 connected to the outer peripheral side Y surface of the capacitor element 1 of the anode foil 2 of the capacitor element 1 and the lead terminal connected to the inner peripheral side X surface of the capacitor element 1 of the cathode foil 3. 5 is the same as that of the first modification except that the address paper 7 is disposed together with the separator 6.

あて紙7は陽極側の引出端子4とセパレータ6との間又は陰極側の引出端子5とセパレータ6の間に挟み込まれて入ればよい。また、あて紙7は粘着材を介してセパレータ6に配置されていてもよい。この変形例2では、あて紙7は、粘着材を介してセパレータ6の陽極箔側の面に配置されている。このあて紙7を貼り付ける粘着材としては、フェノール系、エポキシ系、シアノアクリレート系、ポリイミド系、アクリル系、シリコーン系、ゴム系、あるいはホットメルト系などが挙げられる。なかでも、ポリプロピレンやポリビニルアルコールが好適に用いられる。また、あて紙7は、前述のセパレータの素材と同様であり、一重のものや、低密度の素材と高密度の素材を重ね合わせた二重構造のものが用いられる。このあて紙7にもコンデンサ素子1の内部で発生したガスを放出するためのガス放出経路を形成するとよい。ガス放出経路としては前述したように凹凸加工、エンボス加工や溝加工を施すことができ、またあて紙7を低密度と高密度の二重構造とし、低密度側を陽極箔の外周面に配置することもできる(図3の(b)参照)。   The addressing paper 7 may be inserted between the anode-side extraction terminal 4 and the separator 6 or between the cathode-side extraction terminal 5 and the separator 6. Moreover, the address paper 7 may be arrange | positioned at the separator 6 through the adhesive material. In the second modification, the address paper 7 is arranged on the surface of the separator 6 on the anode foil side through an adhesive material. Examples of the adhesive material to which the addressing paper 7 is attached include phenol-based, epoxy-based, cyanoacrylate-based, polyimide-based, acrylic-based, silicone-based, rubber-based, and hot-melt-based materials. Of these, polypropylene and polyvinyl alcohol are preferably used. Further, the address paper 7 is the same as the material of the separator described above, and a single one or a double structure in which a low-density material and a high-density material are overlapped is used. A gas discharge path for discharging the gas generated inside the capacitor element 1 may be formed on the address sheet 7 as well. As described above, the gas discharge path can be processed with unevenness, embossing and grooving, and the paper 7 has a low density and high density dual structure, and the low density side is arranged on the outer peripheral surface of the anode foil. (See FIG. 3B).

なお、変形例2においては、図3の(b)に示すように、セパレータ6に粘着材を介してあて紙7が貼り付けられている。特に陽極箔2と陰極箔3との対向する面(陽極箔の外周側Yの面と陰極箔の内周側Xの面)にそれぞれ陽極側の引出端子4と陰極側の引出端子5が接続されており、この両極の引出端子4、5に対向するように、つまり両極の引出端子4、5と重なるように連続した帯状のあて紙7がセパレータ6に配置されている。変形例1による作用に加え、変形例2では、さらに内部ガスによるコンデンサ素子1の外周側Yへの膨れにより、両極の引出端子4、5によるセパレータ6への押圧をあて紙7が保護し、ショートの発生を抑えることができる。また、両極の引出端子4、5に対向するようにあて紙7を配置することで、引出端子毎に個別にあて紙を配置することなく、あて紙自体を1枚とすることができ、構造の簡略化を図ることができる。   In the modified example 2, as shown in FIG. 3B, the paper 7 is attached to the separator 6 via an adhesive material. In particular, the anode-side extraction terminal 4 and the cathode-side extraction terminal 5 are connected to the opposing surfaces of the anode foil 2 and the cathode foil 3 (the outer peripheral side Y surface of the anode foil and the inner peripheral side X surface of the cathode foil), respectively. A continuous strip-shaped paper 7 is disposed on the separator 6 so as to face the two lead-out terminals 4, 5, that is, to overlap the two-pole lead terminals 4, 5. In addition to the action of the first modification, in the second modification, the paper 7 protects against the pressure applied to the separator 6 by the lead terminals 4 and 5 of both poles due to the expansion of the capacitor element 1 to the outer peripheral side Y by the internal gas. The occurrence of short circuit can be suppressed. Further, by arranging the address paper 7 so as to face the lead terminals 4 and 5 of both poles, the address paper itself can be made into one sheet without arranging the address paper individually for each of the output terminals. Can be simplified.

1 コンデンサ素子
2 陽極箔
3 陰極箔
4 陽極側の引出端子
5 陰極側の引出端子
6 セパレータ
7 あて紙
8 外装ケース
9 高密度紙
10 低密度紙
11 封口部材
DESCRIPTION OF SYMBOLS 1 Capacitor element 2 Anode foil 3 Cathode foil 4 Anode-side lead-out terminal 5 Cathode-side lead-out terminal 6 Separator 7 Addressing paper 8 Outer case 9 High-density paper 10 Low-density paper 11 Sealing member

Claims (6)

引出端子が接続された陽極箔と陰極箔とをセパレータを介して巻回したコンデンサ素子を外装ケースに収納した電解コンデンサにおいて、
少なくとも陽極箔の外周側の面に隣接するセパレータの内周側の面に、素子内部より発生したガスを放出するガス放出経路を形成した電解コンデンサ。
In an electrolytic capacitor in which a capacitor element in which an anode foil and a cathode foil to which a lead terminal is connected is wound through a separator is housed in an outer case,
An electrolytic capacitor in which a gas discharge path for discharging a gas generated from the inside of an element is formed on at least an inner peripheral surface of a separator adjacent to an outer peripheral surface of an anode foil.
前記陽極箔は、250V以上の耐電圧を有する請求項1に記載の電解コンデンサ。 The electrolytic capacitor according to claim 1, wherein the anode foil has a withstand voltage of 250 V or more. 前記陽極箔は、陰極箔の厚みの4倍以上の厚みを有する請求項1又は2に記載の電解コンデンサ。   The electrolytic capacitor according to claim 1, wherein the anode foil has a thickness that is four times or more the thickness of the cathode foil. 前記陽極箔には、その外周側に引出端子が接続されている請求項1ないし3に記載の電解コンデンサ。   The electrolytic capacitor according to claim 1, wherein a lead terminal is connected to the anode foil on an outer peripheral side thereof. 陽極箔に接続された引出端子と対向するセパレータの間に、ガス放出経路を形成したあて紙が配置されている請求項4に記載の電解コンデンサ。 5. The electrolytic capacitor according to claim 4, wherein a paper having a gas discharge path is disposed between a separator facing the lead terminal connected to the anode foil. さらに陰極箔の内周側に引出端子が接続され、この引出端子と、前記陽極箔の外周側に接続された引出端子との間に前記あて紙が配置されている請求項4又は5に記載の電解コンデンサ。   The lead-out terminal is further connected to the inner peripheral side of the cathode foil, and the addressing paper is arranged between the lead-out terminal and the lead-out terminal connected to the outer peripheral side of the anode foil. Electrolytic capacitor.
JP2014500751A 2012-02-21 2013-02-21 Electrolytic capacitor Active JP6284036B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012035660 2012-02-21
JP2012035660 2012-02-21
PCT/JP2013/054261 WO2013125613A1 (en) 2012-02-21 2013-02-21 Electrolytic capacitor

Publications (2)

Publication Number Publication Date
JPWO2013125613A1 JPWO2013125613A1 (en) 2015-07-30
JP6284036B2 true JP6284036B2 (en) 2018-02-28

Family

ID=49005793

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014500751A Active JP6284036B2 (en) 2012-02-21 2013-02-21 Electrolytic capacitor

Country Status (5)

Country Link
JP (1) JP6284036B2 (en)
CN (1) CN104321843B (en)
BR (1) BR112014020551B1 (en)
IN (1) IN2014DN07074A (en)
WO (1) WO2013125613A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6433216B2 (en) * 2014-09-25 2018-12-05 日立エーアイシー株式会社 Aluminum electrolytic capacitor
CN107408463B (en) * 2015-03-30 2019-05-03 日本贵弥功株式会社 Capacitor and its manufacturing method
JP6996158B2 (en) * 2017-08-17 2022-01-17 日本ケミコン株式会社 Capacitors and their manufacturing methods
US11393639B2 (en) * 2017-12-20 2022-07-19 Nippon Chemi-Con Corporation Seal plate, capacitor and method for manufacturing seal plate

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2943290B2 (en) * 1990-09-10 1999-08-30 松下電器産業株式会社 Aluminum electrolytic capacitor
JP3291016B2 (en) * 1992-03-03 2002-06-10 ルビコン株式会社 Electrolytic capacitor
JPH0645202A (en) * 1992-07-01 1994-02-18 Far East Eng Kk Capacitor and its manufacturing method
JP2003173930A (en) * 2001-12-05 2003-06-20 Rubycon Corp Electrolytic capacitor
DE10302119A1 (en) * 2003-01-21 2004-07-29 Epcos Ag Electrodes for use in electrochemical cells are produced in continuous strip form of coated aluminum
JP4484056B2 (en) * 2004-12-28 2010-06-16 エルナー株式会社 Aluminum solid electrolytic capacitor element
JP5152643B2 (en) * 2005-11-15 2013-02-27 日本ケミコン株式会社 Electrolytic capacitor
JP2008047633A (en) * 2006-08-11 2008-02-28 Saga Sanyo Industries Co Ltd Electrolytic capacitor and its manufacturing method
JP2009152514A (en) * 2007-12-20 2009-07-09 Jcc Engineering Co Ltd Electronic component and method of manufacturing the same
JP2009206242A (en) * 2008-02-27 2009-09-10 Nichicon Corp Solid electrolytic capacitor
JP2009212283A (en) * 2008-03-04 2009-09-17 Hitachi Aic Inc Electrolytic capacitor and method of manufacturing the same
JP2011040698A (en) * 2009-08-17 2011-02-24 Jcc Engineering Co Ltd Electronic component and manufacturing method of the same

Also Published As

Publication number Publication date
CN104321843A (en) 2015-01-28
WO2013125613A1 (en) 2013-08-29
JPWO2013125613A1 (en) 2015-07-30
IN2014DN07074A (en) 2015-04-10
BR112014020551A2 (en) 2022-07-12
BR112014020551B1 (en) 2022-10-11
CN104321843B (en) 2018-03-02

Similar Documents

Publication Publication Date Title
JP6284036B2 (en) Electrolytic capacitor
US20180005768A1 (en) Capacitor and production method therefor
JP2011029425A (en) Electric double-layer capacitor and method of manufacturing the same
KR102555959B1 (en) Electrochemical energy storage device comprising external connecting terminal
JP4918804B2 (en) Capacitor
JP4697402B2 (en) Electrolytic capacitor
JP4895028B2 (en) Electric double layer capacitor
JP6364752B2 (en) Sealing member cap, power storage element, and method for manufacturing power storage element
JP2006286962A (en) Electrolytic capacitor
JP2009231551A (en) Electrolytic capacitor and method of manufacturing the same
JP2010098131A (en) Electrolytic capacitor and method for manufacturing the same
JP7272861B2 (en) Wound energy storage device and manufacturing method thereof
JP2010074083A (en) Electrolytic capacitor, and method of manufacturing the same
JP4953043B2 (en) Electrolytic capacitor
JP2010074089A (en) Electrolytic capacitor, and method of manufacturing the same
JP2012019061A (en) Electrolytic capacitor
JP7272859B2 (en) wound capacitor
JP4900765B2 (en) Electrolytic capacitor
JP7214964B2 (en) Capacitor manufacturing method
JP2011204725A (en) Aluminum electrolytic capacitor
KR102501502B1 (en) Electrochemical energy storage device
JP2006324641A (en) Capacitor and manufacturing method thereof
CN115662793A (en) Capacitor roll core, winding type capacitor and manufacturing method
JP2003217979A (en) Electrolytic capacitor
JP2945742B2 (en) Aluminum electrolytic capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170301

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20170414

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170629

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180118

R150 Certificate of patent or registration of utility model

Ref document number: 6284036

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150