JPH06177144A - Bipolar transistor and fabrication thereof - Google Patents

Bipolar transistor and fabrication thereof

Info

Publication number
JPH06177144A
JPH06177144A JP32387892A JP32387892A JPH06177144A JP H06177144 A JPH06177144 A JP H06177144A JP 32387892 A JP32387892 A JP 32387892A JP 32387892 A JP32387892 A JP 32387892A JP H06177144 A JPH06177144 A JP H06177144A
Authority
JP
Japan
Prior art keywords
base
layer
type
base layer
junction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32387892A
Other languages
Japanese (ja)
Other versions
JP3186265B2 (en
Inventor
Akira Sato
佐藤  明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP32387892A priority Critical patent/JP3186265B2/en
Publication of JPH06177144A publication Critical patent/JPH06177144A/en
Application granted granted Critical
Publication of JP3186265B2 publication Critical patent/JP3186265B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Bipolar Transistors (AREA)

Abstract

PURPOSE:To prevent lowering of the breakdown voltage at C-B junction and increase of junction capacitance by providing a heavily doped semiconductor layer having the same conductivity type as the base on a region in the base where graft base is formed. CONSTITUTION:A buried layer 2 of N-type impurities is formed on a P-type semiconductor substrate 1 followed by formation of an N-type epitaxial layer 3. An isolation region 4 is then formed thereon, a collector contact part 5 is bored, and an N<+>-type heavily doped region 6 is formed immediately thereunder. Subsequently, a P-type base layer 7 is formed followed by formation of an oxide protective film 9 for forming graft base and formation of a graft base layer 10. Thereafter, oxide 11 is grown for example, a contact 12 is opened and polysilicon 13 is grown. This method can prevent breakdown voltage at C-B junction from lowering and the junction capacitance from increasing due to the graft base being provided in order to decrease base resistance of bipolar transistor.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、バイポーラトランジス
タおよびその製造方法に関し、特にICの構造及び製法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a bipolar transistor and its manufacturing method, and more particularly to the structure and manufacturing method of an IC.

【0002】[0002]

【従来の技術】近年バイポーラトランジスタの高速化・
高性能化が急速に進められている。バイポーラトランジ
スタの高性能化には、第1に微細化による寄生容量およ
びベース抵抗の低減、第2に接合を浅くすることによる
キャリア走行時間の短縮が試みられている。具体的に
は、fT (カットオフ周波数)の向上、rbb’(ベー
ス抵抗)の低下が性能の良否の指標となっている。ここ
でrbb’を例にとると、rbb’は次式のように表す
ことができる。 rbb’=(rb1 rb2 +rb3 /(エミッタ本数) ここでそれぞれrb1 、rb2 、rb3 は図3の17、
18、19の抵抗に相当する。 rb1 ;真性(エミッタ直下)ベース抵抗 rb2 ;外部ベース抵抗 rb3 ;コンタクト部ベース抵抗 ダブルベースの場合 rb1 =ρS1・S1 /(12・le) rb2 =ρS2・S2 /(2・le) rb3 =ρS3・S3 /(6・le) である。ここで ρS1;真性ベース層抵抗 ρS2;外部ベース層抵抗 ρS3;コンタクト部層抵抗 S1 ;エミッタ幅 S2 ;エミッタ・ベースコンタクト距離 S3 ;ベースコンタクト幅 le;エミッタ長 ここからベース抵抗を低減する方法として (1)エミッタ幅を細くする。 (2)ベース・エミッタ間を短くする。 (3)各ベース層抵抗を低くする。 等が挙げられる。ここで上述のバイポーラトランジスタ
の高性能化のための微細化は、(1)と(2)に貢献し
ている。また(3)の低減には、グラフト・ベース20
の採用などが行われている。
2. Description of the Related Art Recently, the speed of bipolar transistors has been increased.
Higher performance is being advanced rapidly. In order to improve the performance of a bipolar transistor, firstly, it has been attempted to reduce parasitic capacitance and base resistance by miniaturization and secondly shorten carrier transit time by making a junction shallow. Specifically, an improvement in f T (cutoff frequency) and a decrease in rbb ′ (base resistance) are indicators of performance. Here, taking rbb 'as an example, rbb' can be expressed by the following equation. rbb ′ = (rb 1 rb 2 + rb 3 / (number of emitters) where rb 1 , rb 2 and rb 3 are 17 in FIG. 3,
Equivalent to a resistance of 18, 19. rb 1 ; Intrinsic (directly below the emitter) base resistance rb 2 ; External base resistance rb 3 ; Contact part base resistance In case of double base rb 1 = ρS 1 · S 1 / (12 · le) rb 2 = ρS 2 · S 2 / (2 · le) rb is a 3 = ρS3 · S 3 / ( 6 · le). Where ρS1; intrinsic base layer resistance ρS2; external base layer resistance ρS3; contact layer resistance S 1 ; emitter width S 2 ; emitter-base contact distance S 3 ; base contact width le; emitter length reduce the base resistance from here As a method (1), the emitter width is reduced. (2) Shorten the distance between the base and emitter. (3) Lower the resistance of each base layer. Etc. Here, the miniaturization of the bipolar transistor for improving the performance contributes to (1) and (2). In order to reduce (3), the graft base 20
Are being adopted.

【0003】また、キャリア走行時間の短縮のために、
MBE等による薄いエピ厚をベースに適用することが行
われている。しかしながら、ベースの薄化に伴ない層抵
抗が増加し、ひいてはベース抵抗の増加を招くためグラ
フトベースの採用によるベース抵抗の低減が必須となっ
ている。図3に、MBEで形成した薄いベース層に、グ
ラフトベースを適用した従来例を示す。
Further, in order to shorten the carrier traveling time,
Application based on thin epi-thickness by MBE etc. is performed. However, as the base becomes thinner, the layer resistance increases, which in turn causes an increase in the base resistance. Therefore, it is essential to reduce the base resistance by adopting a graft base. FIG. 3 shows a conventional example in which a graft base is applied to a thin base layer formed by MBE.

【0004】[0004]

【発明が解決しようとする課題】従来グラフトベースの
形成にはイオン注入法、熱拡散法を用いるため、一般に
接合が深くなり、グラフトベース下部の実効的エピタキ
シャル層厚の低下をもたらし、結果としてC−B間の耐
圧の低下、C−B間の接合容量の増加を招いてしまうと
いう問題点があった。
Conventionally, the ion implantation method and the thermal diffusion method are used to form the graft base, so that the bond is generally deepened, resulting in a reduction in the effective epitaxial layer thickness under the graft base, resulting in C There are problems that the breakdown voltage between -B and the junction capacitance between C and B increase.

【0005】本発明の目的は、バイポーラトランジスタ
のベース抵抗を低減するために設けるグラフトベースに
よって生じるC−B間の接合耐圧の低下、接合容量の増
加を防ぐことができるバイポーラトランジスタおよびそ
の製造方法を提供することにある。
An object of the present invention is to provide a bipolar transistor and its manufacturing method which can prevent a decrease in the junction withstand voltage between C and B and an increase in the junction capacitance caused by a graft base provided to reduce the base resistance of the bipolar transistor. To provide.

【0006】[0006]

【課題を解決するための手段】本発明のバイポーラトラ
ンジスタはベース内のグラフトベースとなるべき領域の
上にベースと同一導電型の高濃度の半導体層を有するこ
とを特徴として構成される。また本発明のバイポーラト
ランジスタの製造製法は、バイポーラトランジスタのベ
ース内のグラフトベースとなるべき領域上にMBE又は
CYD法を用いて選択的に高濃度の半導体層を形成する
工程を含んで構成される。
The bipolar transistor of the present invention is characterized by having a high-concentration semiconductor layer of the same conductivity type as that of the base on a region to be a graft base in the base. Further, the method for manufacturing a bipolar transistor of the present invention is configured to include a step of selectively forming a high-concentration semiconductor layer by using the MBE or CYD method on a region to be a graft base in the base of the bipolar transistor. .

【0007】[0007]

【実施例】次に本発明について図面を参照して説明す
る。図1は本発明の一実施例を説明するために工程順に
示した半導体素子の断面図である。
The present invention will be described below with reference to the drawings. FIG. 1 is a cross-sectional view of a semiconductor device shown in the order of steps for explaining an embodiment of the present invention.

【0008】まず、図1(a)に示すように、P型半導
体基板1にN型の不純物の埋込み層2を形成したのち、
N型エピタキシャル層3を成長させる。次に素子分離領
域4をつくったあと、コレクタコンタクト部5をあけ
て、リンイオン抽入を行ってコレクタ直下にN+ 型高濃
度領域6を形成する。その後、P型のベース層7を例え
ば厚さ50nmホウ素を1×1018atom/cm3
つくる。
First, as shown in FIG. 1A, after a buried layer 2 of N-type impurities is formed on a P-type semiconductor substrate 1,
The N-type epitaxial layer 3 is grown. Next, after forming the element isolation region 4, the collector contact portion 5 is opened and phosphorus ions are extracted to form the N + -type high concentration region 6 immediately below the collector. After that, the P-type base layer 7 is made of boron having a thickness of 50 nm at 1 × 10 18 atom / cm 3 , for example.

【0009】次に図1(b)に示すように、例えば酸化
膜を用いてグラフトベース形成用保護膜9を作り、グラ
フトベース層10として例えば厚さ100nm、ホウ素
を1×1020atom/cm3 を形成させる。ここでベ
ース層及びグラフトベースの形成には、例えばMBE
(分子線エピタキシー法)、或いはCVD(化学的気相
成長)法などを使用する。
Next, as shown in FIG. 1B, a protective film 9 for forming a graft base is formed by using, for example, an oxide film, and the graft base layer 10 has a thickness of, for example, 100 nm and boron is 1 × 10 20 atom / cm. Form 3 . Here, for forming the base layer and the graft base, for example, MBE
(Molecular beam epitaxy method) or CVD (chemical vapor deposition) method is used.

【0010】次に図1(c)のように全面に例えば酸化
膜11(あるいは、酸化膜と窒化膜等の積層膜でもよ
い)を成長させた後、コンタクト12を開口し、多結晶
シリコン13を成長させる。その後、図1(d)のよう
にAs+ I/Iを行い、N+ 層のエミッタ14を形成
し、更にそれぞれの電極15を形成する。このときエミ
ッタ、コレクタの上部にN型不純物をドープした多結晶
シリコン13を残してもよい。
Next, as shown in FIG. 1C, for example, an oxide film 11 (or a laminated film of an oxide film and a nitride film or the like may be grown) is grown on the entire surface, a contact 12 is opened, and polycrystalline silicon 13 is formed. Grow. Thereafter, as shown in FIG. 1D, As + I / I is performed to form the emitter 14 of the N + layer and further the respective electrodes 15 are formed. At this time, the polycrystalline silicon 13 doped with N-type impurities may be left on the emitter and collector.

【0011】次に第2の実施例を図2を使用して説明す
る。第1の実施例では集積回路中でのトランジスタの形
成を行なうためコレクタ引き出し口が上部に位置してい
るが、この発明をディスクリートトランジスタに使用す
る場合コレクタ部を図2の16に配置する。この場合も
グラフトベースの製法は、第1の実施例と同様に行な
う。
Next, a second embodiment will be described with reference to FIG. In the first embodiment, the collector lead-out port is located at the upper part to form a transistor in an integrated circuit, but when the present invention is used for a discrete transistor, the collector part is arranged at 16 in FIG. Also in this case, the graft base manufacturing method is performed in the same manner as in the first embodiment.

【0012】[0012]

【発明の効果】以上説明したように本発明は、バイポー
ラトランジスタのベース上に、グラフトベースを形成す
ることにより従来のグラフトベースと異なり、デバイス
の接合容量の増加、接合耐圧の低下をもたらすことなし
にベース抵抗の低下を実現することを可能とした。これ
は即ち、デバイスの持つ性能を高周波特性、直流特性の
両面から向上させることにつながる。特に接合耐圧は従
来のグラフトベース有りのものから単純に約15%向上
し、接合容量は約20%向上すると計算できる。
As described above, according to the present invention, by forming the graft base on the base of the bipolar transistor, unlike the conventional graft base, the junction capacitance of the device is not increased and the junction breakdown voltage is not reduced. In addition, it has become possible to reduce the base resistance. This means that the performance of the device is improved in terms of both high frequency characteristics and direct current characteristics. In particular, it can be calculated that the junction withstand voltage is simply improved by about 15% and the junction capacity is improved by about 20% from the conventional one with the graft base.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を説明するために工程順に示
したバイポーラトランジスタ素子の断面図である。
FIG. 1 is a cross-sectional view of a bipolar transistor device shown in order of steps for explaining an embodiment of the present invention.

【図2】本発明の第2の実施例を示す断面図である。FIG. 2 is a sectional view showing a second embodiment of the present invention.

【図3】従来のバイポーラトランジスタの構造並びに製
造方法を説明するための半導体素子の断面図である。
FIG. 3 is a cross-sectional view of a semiconductor device for explaining a structure and a manufacturing method of a conventional bipolar transistor.

【符号の説明】[Explanation of symbols]

1 P型半導体基板 2 N+ 埋込層 3 N- エピタキシャル層 4 素子分離用酸化膜 5 コレクタ引出部 6 コレクタ直下高濃度域 7 P型ベース層 8 表面保護膜1 9 G/B形成用保護膜 10 G/B層 11 表面保護膜2 12 エミッタコンタクト 13 多結晶シリコン成長膜 14 高濃度エミッタ 15 電極 16 N型半導体基板 17 真性(エミッタ直下)ベース抵抗 18 外部ベース抵抗 19 コンタクト部ベース抵抗 20 従来のG/B層1 P-type semiconductor substrate 2 N + Buried layer 3 N - Epitaxial layer 4 Element isolation oxide film 5 Collector extraction part 6 High concentration region directly under collector 7 P-type base layer 8 Surface protective film 1 9 G / B formation protective film 10 G / B layer 11 Surface protection film 2 12 Emitter contact 13 Polycrystalline silicon growth film 14 High concentration emitter 15 Electrode 16 N-type semiconductor substrate 17 Intrinsic (directly under the emitter) base resistance 18 External base resistance 19 Contact part base resistance 20 Conventional G / B layer

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板の一主面に形成された一導電
型のベース層と、前記ベース層上に選択的に形成されか
つ前記ベース層と同一導電型で該ベース層より高濃度の
不純物を有するグラフトベース層とを有することを特徴
とするバイポーラトランジスタ。
1. A base layer of one conductivity type formed on one main surface of a semiconductor substrate, and an impurity selectively formed on the base layer and having the same conductivity type as the base layer and having a higher concentration than the base layer. And a graft base layer having:
【請求項2】 半導体基板の一主面に一導電型のベース
層を形成する工程と、前記ベース層上に該ベース層と同
一導電型で、かつ該ベース層より高濃度の不純物を有す
るグラフトベース層をMBE法又はCVD法を用いて選
択的に形成する工程とを含むことを特徴とするバイポー
ラトランジスタの製造方法。
2. A step of forming a base layer of one conductivity type on one main surface of a semiconductor substrate, and a graft having the same conductivity type as the base layer and a higher concentration of impurities than the base layer on the base layer. And a step of selectively forming the base layer by using the MBE method or the CVD method.
JP32387892A 1992-12-03 1992-12-03 Bipolar transistor and method of manufacturing the same Expired - Fee Related JP3186265B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32387892A JP3186265B2 (en) 1992-12-03 1992-12-03 Bipolar transistor and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32387892A JP3186265B2 (en) 1992-12-03 1992-12-03 Bipolar transistor and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH06177144A true JPH06177144A (en) 1994-06-24
JP3186265B2 JP3186265B2 (en) 2001-07-11

Family

ID=18159613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32387892A Expired - Fee Related JP3186265B2 (en) 1992-12-03 1992-12-03 Bipolar transistor and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3186265B2 (en)

Also Published As

Publication number Publication date
JP3186265B2 (en) 2001-07-11

Similar Documents

Publication Publication Date Title
JPH11297708A (en) Semiconductor device and manufacture thereof
JPH04266047A (en) Soi type semiconductor device and preparation thereof equivalent to production of a buried layer
US5411898A (en) Method of manufacturing a complementary bipolar transistor
EP0233202A1 (en) Fabricating a semiconductor device with buried oxide.
JPS63157475A (en) Semiconductor device and manufacture thereof
JPH05235014A (en) Semiconductor device
JP2803548B2 (en) Method for manufacturing semiconductor device
JPH06302610A (en) High gain mis transistor
JP2001135719A (en) Element isolation structure for semiconductor device
JP3186265B2 (en) Bipolar transistor and method of manufacturing the same
JP3778122B2 (en) Manufacturing method of semiconductor device
JPH0521442A (en) Semiconductor device
JP2004022555A (en) Insulated-gate field-effect transistor and manufacturing method thereof
JPH10294321A (en) Lateral p-n-p transistor and manufacture thereof
JPS61214569A (en) Semiconductor device
JP2817210B2 (en) Method for manufacturing semiconductor device
JP2888652B2 (en) Semiconductor integrated circuit device and method of manufacturing the same
JP2646856B2 (en) Manufacturing method of bipolar transistor
JP3120441B2 (en) Semiconductor device and manufacturing method thereof
JP2845469B2 (en) Semiconductor device
JPH05109745A (en) Semiconductor device
JPH05109748A (en) Semiconductor device and manufacture of the same
JPH0574790A (en) Semiconductor device and manufacture thereof
JPS61269373A (en) Semiconductor device
JPH03203333A (en) Semiconductor device and manufacture thereof

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010410

LAPS Cancellation because of no payment of annual fees