JPH06172849A - Heat treatment of cr-mo steel - Google Patents

Heat treatment of cr-mo steel

Info

Publication number
JPH06172849A
JPH06172849A JP35194992A JP35194992A JPH06172849A JP H06172849 A JPH06172849 A JP H06172849A JP 35194992 A JP35194992 A JP 35194992A JP 35194992 A JP35194992 A JP 35194992A JP H06172849 A JPH06172849 A JP H06172849A
Authority
JP
Japan
Prior art keywords
furnace
continuous
temperature
steel material
steel tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP35194992A
Other languages
Japanese (ja)
Inventor
Tetsuya Koshikawa
哲哉 越川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP35194992A priority Critical patent/JPH06172849A/en
Publication of JPH06172849A publication Critical patent/JPH06172849A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Articles (AREA)

Abstract

PURPOSE:To attain the same heat treatment effect as isothermal annealing and to reduce a processing time by using a continuous furnace specifically constituted and treating under the specific condition at the heat treatment, which changes a structure to be softened. CONSTITUTION:A vertical feeding type continuous quenching furnace 1 is connected to a horizontal feeding type continuous annealing furnace 5 with a trnsfer path 2 for air cooling and a transfer path 6 for air cooling is arranged on the downstream side of the continuous annealing furnace 5. After a Cr-Mo steel tube 8 containing, by weight, 0.5-10% Cr and 0.4-1.1% Mo is heated at >=austenitizing temp. for >=5 minute in the continuous quenching furnace 1, the steel tube is air-cooled at the transfer path 2. The transfer speed is adjusted in response with a heat capacity of the steel tube 8 and the steel tube is charged into the continuous annealing furnace 5 being kept in the temp. range of >=the martensitic transformation starting temp. and <= the AC transformation point. After the steel tube 8 is held at 700-780 deg.C for 1-4 hours therein, the steel tube is air-cooled at the transfer route 6.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、重量比でCr0.5〜1
0%、Mo0.4〜1.1%を含むCr−Mo鋼材の熱処理
方法に関し、特に、その鋼材をオーステナイトの状態か
らフェライトとパーライトの混合組織にして軟化させる
Cr−Mo鋼材の熱処理方法に関する。
The present invention relates to Cr 0.5-1 by weight.
The present invention relates to a heat treatment method for a Cr-Mo steel material containing 0% and 0.4 to 1.1% Mo, and more particularly to a heat treatment method for a Cr-Mo steel material which softens the steel material from an austenitic state to a mixed structure of ferrite and pearlite.

【0002】[0002]

【従来の技術】一般ボイラ用伝熱管等としてCr−Mo
鋼管が多用されている。しかし、そのCr−Mo鋼は圧
延のままでは硬く、靱性も低い。そのため、Cr−Mo
鋼管を例えば高速増殖炉蒸気発生器用伝熱管等に使用す
るにあたっては、オーステナイトの状態からフェライト
とパーライトの混合組織にして軟化させる熱処理が実施
される。
2. Description of the Related Art Cr-Mo is used as a heat transfer tube for general boilers.
Steel pipes are often used. However, the Cr-Mo steel is hard as rolled and has low toughness. Therefore, Cr-Mo
When the steel pipe is used, for example, as a heat transfer pipe for a steam generator of a fast breeder reactor, a heat treatment for softening the austenite state into a mixed structure of ferrite and pearlite is performed.

【0003】これまで、この熱処理はフルアニールと呼
ばれる方法で行われていた。フルアニール処理は、鋼を
オーステナイト化した後、一定の冷却速度で徐冷する方
法であるが、徐冷が必要なため、1バッチに要する時間
は、例えば24時間と極めて長かった。
Until now, this heat treatment has been performed by a method called full annealing. The full annealing treatment is a method of austenizing steel and then gradually cooling it at a constant cooling rate. However, since slow cooling is required, the time required for one batch was extremely long, for example, 24 hours.

【0004】そこで、オーステナイト化した鋼を725
〜750℃程度まで放冷し、その温度域で1時間以上保
持した後、放冷する所謂アイソサーマルアニール処理が
開発され、これについての改良提案も多くなされている
(特公昭56−21806号公報、特開昭59−438
21号公報等)。
Therefore, the austenitic steel 725
A so-called isothermal annealing treatment has been developed in which the material is allowed to cool to about 750 ° C., held in that temperature range for 1 hour or more, and then allowed to cool, and many proposals for improvement have been made (Japanese Patent Publication No. 56-21806). JP-A-59-438
No. 21, etc.).

【0005】[0005]

【発明が解決しようとする課題】ところが、従来のアイ
ソサーマルアニール処理は、温度履歴が複雑なため、バ
ッチ炉で実施されるのが通例であった。そのため、処理
時間は、例えばフルアニールと処理で24時間を要する
材料の場合で、約10時間までしか短縮されず、連続炉
操業に比べると約1/3以下の能率でしかない。
However, since the conventional isothermal annealing process has a complicated temperature history, it was customary to carry out the process in a batch furnace. Therefore, the processing time is shortened to only about 10 hours in the case of a material that requires 24 hours for full annealing and processing, which is only about 1/3 or less of the efficiency in continuous furnace operation.

【0006】本発明の目的は、連続炉操業でアイソサー
マルアニールと同等の熱処理効果を得るCr−Mo鋼材
の熱処理方法を提供することにある。
It is an object of the present invention to provide a heat treatment method for a Cr-Mo steel material which has the same heat treatment effect as isothermal annealing in continuous furnace operation.

【0007】[0007]

【課題を解決するための手段】本発明者は、上記目的を
達成するため、アイソサーマルアニールを冶金面、能率
面の両面から再検討した。その結果、次のことが分かっ
た。
In order to achieve the above object, the present inventor reexamined isothermal annealing in terms of both metallurgy and efficiency. As a result, the following was found.

【0008】アイソサーマルアニールでは、図2に示す
ように、オーステナイト化のために、鋼が950℃×2
0分程度に加熱される。これをバッチ炉で行うと、95
0℃に至るまでの昇温時間が長いが、この昇温時間は、
オーステナイト化の上で特に重要ではなく、連続炉に材
料を装入してこれを急速に加熱しても、加熱温度が確保
されれば充分なオーステナイト化がおこり、むしろ加熱
保持時間はバッチ炉の場合の20分から5分程度まで短
縮される。
In the isothermal annealing, as shown in FIG. 2, the steel is 950 ° C. × 2 due to austenitization.
It is heated for about 0 minutes. When this is done in a batch furnace, 95
It takes a long time to raise the temperature to 0 ° C.
It is not particularly important for austenitization, and even if the material is charged into a continuous furnace and heated rapidly, sufficient austenitization will occur if the heating temperature is secured, and rather the heating and holding time will be longer than that of the batch furnace. It can be shortened from 20 minutes to about 5 minutes.

【0009】オーステナイト化後の放冷についても、バ
ッチ炉では時間がかかるが、連続炉から一旦材料を抽出
すれば効率の良い放冷が行われる。そして、材料を連続
炉から一旦抽出しても、その材料をマルテンサイト変態
が始まる前に別の連続炉に再装入して焼戻しすれば、1
時間以上、望ましくは2〜3時間程度の恒温保持でフェ
ライト化が完了し、更に、その後、連続炉から抽出して
炉外で放冷しても、組織上は何ら問題がない。
Regarding the cooling after austenitization, it takes time in the batch furnace, but once the material is extracted from the continuous furnace, efficient cooling is performed. Even if the material is once extracted from the continuous furnace, if the material is reloaded into another continuous furnace and tempered before the martensitic transformation starts,
There is no problem in terms of structure even if the ferritization is completed by keeping the temperature constant for more than an hour, preferably about 2 to 3 hours, and then extracted from the continuous furnace and allowed to cool outside the furnace.

【0010】以上より、2つの連続炉を放冷用の搬送路
でつなぎ、後段の連続炉の下流側に放冷用の搬送路を設
けた炉設備を用いれば、アイソサーマルアニールと同等
の熱処理効果が得られ、処理時間はアイソサーマルアニ
ールで約10時間を要する材料の場合で3〜4時間程度
に短縮される。
From the above, if two continuous furnaces are connected by a carrier path for cooling, and a furnace equipment having a carrier path for cooling is provided on the downstream side of the subsequent continuous furnace, heat treatment equivalent to isothermal annealing is performed. The effect is obtained, and the treatment time is shortened to about 3 to 4 hours in the case of a material which requires about 10 hours for isothermal annealing.

【0011】焼戻し炉に装入する際の材料温度は、マル
テンサイト変態開始温度以上で且つAC1 変態点以下と
する必要がある。即ち、焼入れ用の連続炉と焼戻し用の
連続炉とをつなぐ搬送路では、材料温度をオーステナイ
ト変態開始温度より下げ過ぎないようにするが、その一
方ではAC1 変態点より低くする必要もある。
The material temperature at the time of charging into the tempering furnace must be higher than the martensitic transformation start temperature and lower than the AC 1 transformation point. That is, in the conveying path connecting the continuous furnace for quenching and the continuous furnace for tempering, the material temperature should not be lowered below the austenite transformation start temperature, but on the other hand, it should be lower than the AC 1 transformation point.

【0012】しかし、搬送路での放冷速度は材料の熱容
量によって異なり、搬送路での材料移動速度が一定で
は、熱容量が小さい例えば薄肉管の場合には、その材料
がAC1 変態点以下まで放冷されても、熱容量の大きい
例えば厚肉管の場合には、放冷が不足して装入温度がA
1 変態点より高くなるおそれがある。そうなると、図
3に示すように、焼戻し炉内でのフェライト化時間が短
くなり、フェライト・パーライト変態が進行しない。こ
の対策としては、材料の熱容量に応じて搬送路における
材料移動速度を調節するのが良い。
However, the cooling rate in the conveying path depends on the heat capacity of the material, and if the material moving speed in the conveying path is constant, the heat capacity is small, for example, in the case of a thin-walled tube, the material is up to the AC 1 transformation point or lower. Even if it is allowed to cool, if it has a large heat capacity, such as a thick-walled tube, the cooling is insufficient and the charging temperature is A
It may be higher than the C 1 transformation point. Then, as shown in FIG. 3, the ferritization time in the tempering furnace is shortened, and the ferrite-pearlite transformation does not proceed. As a countermeasure against this, it is preferable to adjust the material moving speed in the conveying path according to the heat capacity of the material.

【0013】本発明は上記知見に基づきなされたもの
で、重量比でCr0.5〜10%、Mo0.4〜1.1%を含
むCr−Mo鋼材を、オーステナイトの状態からフェラ
イトとパーライトの混合組織にして軟化させるCr−M
o鋼材の熱処理方法であって、連続焼入炉の下流側に搬
送路を介して、連続焼戻し炉を設けると共に、連続焼戻
し炉の下流側に搬送路を設け、前記鋼材を連続焼入炉で
オーステナイト化温度以上に5分以上加熱した後、連続
焼入炉と連続焼戻し炉との間の搬送路で放冷して500
℃以上で連続焼戻し炉に装入し、ここで700〜780
℃に1〜4時間保持した後、連続焼戻し炉下流側の搬送
路で放冷することを特徴とするCr−Mo鋼材の熱処理
方法を要旨とする。
The present invention has been made based on the above findings, and a Cr-Mo steel material containing Cr 0.5 to 10% and Mo 0.4 to 1.1% by weight is mixed with ferrite and pearlite from the austenitic state. Cr-M to soften into tissue
o A heat treatment method for steel material, wherein a continuous tempering furnace is provided on the downstream side of the continuous quenching furnace via a conveying path, and a conveying path is provided on the downstream side of the continuous tempering furnace, so that the steel material is After heating to the austenitizing temperature or higher for 5 minutes or more, it is left to cool in the transfer path between the continuous quenching furnace and the continuous tempering furnace to 500
It is charged into a continuous tempering furnace at ℃ or more,
A heat treatment method for a Cr-Mo steel material is characterized in that it is held at 0 ° C for 1 to 4 hours and then allowed to cool in a conveying path on the downstream side of a continuous tempering furnace.

【0014】連続焼入炉と連続焼戻し炉との間の搬送路
においては、連続焼戻し炉装入時の鋼材温度がマルテン
サイト変態開始温度以上AC1 変態点以下となるよう
に、鋼材の熱容量に応じてその搬送速度を調節するのが
良い。
In the conveying path between the continuous quenching furnace and the continuous tempering furnace, the heat capacity of the steel material is adjusted so that the temperature of the steel material at the time of charging the continuous tempering furnace is not less than the martensite transformation start temperature and not more than the AC 1 transformation point. It is better to adjust the transport speed accordingly.

【0015】[0015]

【作用】本発明法が対象とする典型的なCr−Mo鋼材
は、重量比でC0.02〜0.2%、Si0.05〜1.0%、
Mn0.3〜0.8%、P0.03%以下、S0.03%以下、
Cr0.5〜10%、Mo0.4〜1.1%を含み、更に必要
に応じてCu0.1%以下、Ni0.5%以下、Al0.08
%以下の1種または2種以上を含み、残部Feおよび不
可避不純物からなる。ここで、各成分を上記の如く限定
した理由は以下のとおりである。
A typical Cr-Mo steel material targeted by the method of the present invention is C0.02-0.2% by weight, Si0.05-1.0%,
Mn 0.3-0.8%, P 0.03% or less, S 0.03% or less,
Cr 0.5 to 10%, Mo 0.4 to 1.1% are included, and if necessary, Cu 0.1% or less, Ni 0.5% or less, Al 0.08
% Or less, and the balance consists of Fe and unavoidable impurities. Here, the reason why each component is limited as described above is as follows.

【0016】Cは強度向上元素として不可欠であり、そ
のために0.02%以上を必要とする。しかし、0.2%を
超えると靱性、加工性が低下する。
C is indispensable as a strength improving element, and for this reason, 0.02% or more is required. However, if it exceeds 0.2%, the toughness and workability deteriorate.

【0017】Siは脱酸剤として0.05%以上含有され
る。しかし、1.0%を超えると靱性、表面性状、溶接性
が損なわれる。
Si is contained as a deoxidizing agent in an amount of 0.05% or more. However, if it exceeds 1.0%, the toughness, surface properties and weldability are impaired.

【0018】Mnは脱酸剤、脱硫剤として作用すると共
に、強度確保に寄与し、0.3%以上を必要とする。しか
し、0.8%を超えると、強度過剰となって加工性が低下
すると共に鋼の清浄度が損なわれる。
Mn acts as a deoxidizing agent and a desulfurizing agent, contributes to securing the strength, and requires 0.3% or more. However, if it exceeds 0.8%, the strength becomes excessive, workability is deteriorated, and the cleanliness of steel is impaired.

【0019】Pは鋼の清浄度を損ない、靱性および延性
を劣化させるため上限を0.03%とする。
The upper limit of P is 0.03% because it impairs the cleanliness of steel and deteriorates toughness and ductility.

【0020】SもPと同様に鋼の清浄度を損ない、靱性
および延性を劣化させるため0.03%以下に制限する。
Similar to P, S also impairs the cleanliness of steel and deteriorates toughness and ductility, so it is limited to 0.03% or less.

【0021】Crは高温強度および耐食性を確保するた
めに0.5%以上を必要とする。しかし、多量の含有は経
済的に不利なため10%以下とする。
Cr is required to be 0.5% or more in order to secure high temperature strength and corrosion resistance. However, a large amount is economically disadvantageous, so the content is made 10% or less.

【0022】MoもCrも同様に高温強度および耐食性
の確保に不可欠の元素であり、0.4%以上を必要とする
が、経済性も合わせて確保するため1.1%以下とする。
Similarly, Mo and Cr are elements indispensable for securing high temperature strength and corrosion resistance and require 0.4% or more, but in order to ensure economic efficiency as well, they are set to 1.1% or less.

【0023】Cuは耐食性向上に有効であるが、0.1%
を超えると赤熱脆化を生じる。
Cu is effective for improving corrosion resistance, but 0.1%
If it exceeds, red heat embrittlement occurs.

【0024】Niは強度、靱性および耐食性の向上に効
果がある。しかし、高温強度には有効でなく、また高価
なため上限を0.5%とする。
Ni is effective in improving strength, toughness and corrosion resistance. However, it is not effective for high temperature strength and is expensive, so the upper limit is made 0.5%.

【0025】Alは脱酸剤として添加し、また靱性確保
に有効な元素でもあるが、多量に含有されると鋼の清浄
度を損なうため0.08%以下とする。
Although Al is added as a deoxidizer and is an element effective for ensuring toughness, if it is contained in a large amount, the cleanliness of steel is impaired, so the content is set to 0.08% or less.

【0026】本発明法においては、Cr−Mn鋼材が連
続焼入炉に装入されてオーステナイト化温度以上まで急
速加熱され、加熱温度までの昇温時間が短縮される。連
続焼入炉内では、鋼材がオーステナイト化温度以上に5
分以上加熱される。加熱を終えた鋼材は、連続焼入炉と
連続焼戻し炉との間の搬送路を進行する間に効率よく放
冷されて連続焼戻し炉に装入される。ただし、その装入
温度はマルテンサイト変態開始温度以上AC1 変態点以
下に管理される。連続焼戻し炉内では、鋼材が700〜
780℃に1〜4時間保持される。加熱保持を終えた鋼
材は、その下流側の搬送路を進行する間に効率よく放冷
される。
In the method of the present invention, the Cr-Mn steel material is charged into the continuous quenching furnace and rapidly heated to a temperature above the austenitizing temperature, and the heating time to the heating temperature is shortened. In the continuous quenching furnace, the steel material rises above the austenitizing temperature 5
It is heated for more than a minute. The steel material that has been heated is efficiently left to cool and is charged into the continuous tempering furnace while proceeding along the transfer path between the continuous quenching furnace and the continuous tempering furnace. However, the charging temperature is controlled to be higher than the martensite transformation start temperature and lower than the AC 1 transformation point. In the continuous tempering furnace, the steel material
Hold at 780 ° C for 1-4 hours. The steel material that has been heated and held is efficiently cooled while traveling along the transport path on the downstream side.

【0027】本発明法において、オーステナイト化温度
以上での保持時間を5分以上としたのは、5分未満では
オーステナイト化が充分に進行しないためである。望ま
しい保持時間は、5〜20分である。
In the method of the present invention, the holding time at the austenitizing temperature or higher is set to 5 minutes or longer because the austenitization does not proceed sufficiently if the holding time is shorter than 5 minutes. A desirable holding time is 5 to 20 minutes.

【0028】連続焼戻し炉への装入温度をマルテンサイ
ト変態開始温度以上AC1 変態点以下としたのは、マル
テンサイト変態開始温度未満では焼戻しにおいて完全な
フェライト・パーライト組織が得られず、AC1 変態点
を超えた場合も焼戻し炉内でフェライト・パーライト変
態が進行せず、オーステナイト組織のままとなるためで
あある(図3参照)。
The charging temperature into the continuous tempering furnace is set to be not less than the martensitic transformation start temperature and not more than the AC 1 transformation point, because a perfect ferrite / pearlite structure cannot be obtained in tempering at a temperature below the martensite transformation start temperature, and thus AC 1 This is because even if the transformation point is exceeded, the ferrite-pearlite transformation does not proceed in the tempering furnace and the austenite structure remains (see FIG. 3).

【0029】連続焼戻し炉での焼戻し温度は、700℃
未満では、オーステナイトをフェライトに変態させるの
に長時間を要し、生産性が低下する。また、780℃を
超えてもフェライト変態に時間がかかり、生産性が低下
する。従って、焼戻し温度は700〜780℃とした。
The tempering temperature in the continuous tempering furnace is 700 ° C.
If it is less than the above, it takes a long time to transform austenite into ferrite, and the productivity is lowered. Further, even if the temperature exceeds 780 ° C., it takes time for the ferrite transformation, and the productivity is lowered. Therefore, the tempering temperature was 700 to 780 ° C.

【0030】焼戻し温度での保持時間を1〜4時間とし
たのは、1時間未満ではフェライト変態が完了せず、4
時間超では必要以上の加熱となり、生産性が低下するか
らである。
The holding time at the tempering temperature is set to 1 to 4 hours because the ferrite transformation is not completed in less than 1 hour.
This is because if the time is exceeded, heating will be performed more than necessary and productivity will be reduced.

【0031】[0031]

【実施例】以下に本発明の実施例を説明する。図1は本
発明法の実施に適した炉設備および同設備によるヒート
パターンを示した模式図である。
EXAMPLES Examples of the present invention will be described below. FIG. 1 is a schematic diagram showing a furnace equipment suitable for carrying out the method of the present invention and a heat pattern by the equipment.

【0032】バレルタイプの4続焼入炉1の下流側に
は、搬送路2を介してウォーキングビームタイプの連続
焼戻し炉5が設けられている。オーステナイト化を終え
て連続焼入炉1から抽出されたCr−Mn鋼材としての
鋼管8は、搬送路2のスキッド3により横送りされて、
連続焼戻し炉5に装入される。
A walking beam type continuous tempering furnace 5 is provided on the downstream side of the barrel type four continuous quenching furnace 1 via a conveying path 2. The steel pipe 8 as a Cr—Mn steel material extracted from the continuous quenching furnace 1 after completion of austenitization is laterally fed by the skid 3 of the transport path 2,
It is charged into the continuous tempering furnace 5.

【0033】このとき、鋼管8が熱容量の小さい薄肉材
の場合は、その特に先端温度が下がり過ぎてマルテンサ
イト変態が開始しないように、搬送路2での搬送速度を
速くし、且つ連続焼戻し炉5の入口で鋼管8の表面温度
を温度計4にて管理する。鋼管8が熱容量の大きい厚肉
材の場合は、特に後端温度がAC1 変態点を超えないよ
うに、搬送路2での搬送速度を遅くし、且つその温度を
温度計4にて管理する。
At this time, in the case where the steel pipe 8 is a thin material having a small heat capacity, the conveying speed in the conveying passage 2 is increased and the continuous tempering furnace is set so that the tip temperature of the steel pipe 8 does not drop too much and martensite transformation does not start. The surface temperature of the steel pipe 8 is controlled by the thermometer 4 at the inlet of 5. When the steel pipe 8 is a thick material having a large heat capacity, the transport speed in the transport path 2 is slowed and the temperature is controlled by the thermometer 4 so that the rear end temperature does not exceed the AC 1 transformation point. .

【0034】連続焼戻し炉5では、鋼管8は搬送路2で
の進行方向とは逆の方向に横送りされ、フェライト変態
を完了させる。連続焼戻し炉5から抽出された鋼管8
は、連続焼戻し炉5の下流側に設けた搬送路6のスキッ
ド7上を横送りされる間に放冷される。
In the continuous tempering furnace 5, the steel pipe 8 is transversely fed in the direction opposite to the traveling direction in the transport path 2 to complete the ferrite transformation. Steel pipe 8 extracted from continuous tempering furnace 5
Is allowed to cool while being laterally fed on the skid 7 of the transfer path 6 provided on the downstream side of the continuous tempering furnace 5.

【0035】図1の炉設備を用いて、表1に材質を示し
表2に寸法を示す同材質2サイズのCr−Mn鋼管を連
続熱処理した。熱処理条件および熱処理後の機械的性質
を表3に示す。比較のために、バッチ炉によるアイソサ
ーマルアニール処理も行った。その処理条件および処理
後の機械的性質を表3に並記する。
Using the furnace equipment of FIG. 1, Cr-Mn steel pipes of the same material 2 size whose materials are shown in Table 1 and whose dimensions are shown in Table 2 were continuously heat-treated. Table 3 shows the heat treatment conditions and the mechanical properties after the heat treatment. For comparison, an isothermal annealing process using a batch furnace was also performed. The processing conditions and the mechanical properties after the processing are shown in Table 3.

【0036】[0036]

【表1】 [Table 1]

【0037】[0037]

【表2】 [Table 2]

【0038】[0038]

【表3】 [Table 3]

【0039】本発明法による連続処理は、アイソサーマ
ルアニールに比して、特に、オーステナイト化での昇温
時間および保持時間、更に放冷時間が短く、処理時間を
1/3に短縮でき、処理能率(Ton/hr)を3倍に
高めることができる。また、バッチ炉のような炉の加
熱、冷却の繰り返しを必要としないので、熱処理コスト
をアイソサーマルアニールの1/10以下に節減でき
る。そして、熱処理後の鋼管品質は、アイソサーマルア
ニール品と同等である(本発明例A) 。
Compared with isothermal annealing, the continuous treatment according to the method of the present invention is particularly short in temperature rising time and holding time in austenitization, and further in cooling time, and the treatment time can be shortened to 1/3. The efficiency (Ton / hr) can be tripled. Further, since heating and cooling of a furnace such as a batch furnace are not required, heat treatment cost can be reduced to 1/10 or less of that of isothermal annealing. Then, the quality of the steel pipe after the heat treatment is equivalent to that of the isothermal annealed product (invention example A).

【0040】ただし、連続処理の場合も焼入れ炉と焼戻
し炉との間の搬送路で厚肉材を薄肉材と同じ速度で搬送
したときは、焼戻し炉装入時の材料温度がAC1 変態点
を超え、熱処理後の機械的性質が悪化した。しかし、そ
の搬送時間を3分から10分に延長することで、この悪
化は阻止され、薄肉材と同等の良好な機械的性質が得ら
れた。なお、搬送時間の延長により全体の処理時間が長
くなるが、その度合いは全体の処理時間で見れば約1.5
%であり無視できるレベルである(本発明例B)。
However, even in the case of continuous treatment, when the thick material is conveyed at the same speed as the thin material in the conveying path between the quenching furnace and the tempering furnace, the material temperature at the time of charging in the tempering furnace is the AC 1 transformation point. And the mechanical properties after heat treatment deteriorated. However, by extending the transportation time from 3 minutes to 10 minutes, this deterioration was prevented, and good mechanical properties equivalent to those of thin-walled materials were obtained. The total processing time will be longer due to the extension of the transportation time, but the degree is about 1.5 in terms of the total processing time.
%, Which is a level that can be ignored (Example B of the present invention).

【0041】[0041]

【発明の効果】以上の説明から明らかなように、本発明
のCr−Mn鋼材の熱処理方法は、連続炉操業で、バッ
チ炉によるアイソサーマルアニールと同等の熱処理品質
を得ることが出来、処理能率の向上および処理コストの
低減に大きな効果を発揮する。
As is apparent from the above description, the heat treatment method for Cr—Mn steel according to the present invention can obtain the heat treatment quality equivalent to that of the isothermal annealing in the batch furnace in the continuous furnace operation and the treatment efficiency. It has a great effect on the improvement of temperature and the reduction of processing cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明法の実施に適した炉設備のレイアウトお
よび同設備による熱処理パターンを示す模式図である。
FIG. 1 is a schematic view showing a layout of furnace equipment suitable for carrying out the method of the present invention and a heat treatment pattern by the equipment.

【図2】アイソサーマルアニールのヒートパターン図で
ある。
FIG. 2 is a heat pattern diagram of isothermal annealing.

【図3】薄肉材と薄肉材について示したCr−Mo鋼材
のTTT線図である。
FIG. 3 is a TTT diagram of a thin material and a Cr—Mo steel material showing the thin material.

【符号の説明】[Explanation of symbols]

1 連続焼入炉 2,6 搬送路 5 連続焼戻し炉 8 鋼管(Cr−Mo鋼材) 1 Continuous quenching furnace 2,6 Conveying path 5 Continuous tempering furnace 8 Steel pipe (Cr-Mo steel material)

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 C22C 38/00 301 Z 302 Z 38/22 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Internal reference number FI technical display location C22C 38/00 301 Z 302 302 Z 38/22

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 重量比でCr0.5〜10%、Mo0.4〜
1.1%を含むCr−Mo鋼材を、オーステナイトの状態
からフェライトとパーライトの混合組織にして軟化させ
るCr−Mo鋼材の熱処理方法であって、連続焼入炉の
下流側に搬送路を介して、連続焼戻し炉を設けると共
に、連続焼戻し炉の下流側に搬送路を設け、前記鋼材を
連続焼入炉でオーステナイト化温度以上に5分以上加熱
した後、連続焼入炉と連続焼戻し炉との間の搬送路で放
冷してマルテンサイト変態開始温度以上AC1 変態点以
下の温度で連続焼戻し炉に装入し、ここで700〜78
0℃に1〜4時間保持した後、連続焼戻し炉下流側の搬
送路で放冷することを特徴とするCr−Mo鋼材の熱処
理方法。
1. A weight ratio of Cr 0.5 to 10% and Mo 0.4 to
A Cr-Mo steel material heat treatment method for softening a Cr-Mo steel material containing 1.1% from an austenitic state to a mixed structure of ferrite and pearlite, which is downstream of a continuous quenching furnace via a conveying path. , A continuous tempering furnace is provided, and a conveying path is provided on the downstream side of the continuous tempering furnace, and the steel material is heated in the continuous quenching furnace at a temperature above the austenitizing temperature for 5 minutes or more, and then the continuous quenching furnace and the continuous tempering furnace are combined. It is allowed to cool in the conveyance path between them and charged into a continuous tempering furnace at a temperature not lower than the martensitic transformation start temperature and not higher than the AC 1 transformation point, where 700 to 78
A method for heat treating a Cr—Mo steel material, which comprises holding the material at 0 ° C. for 1 to 4 hours and then allowing it to cool in a conveying path on the downstream side of a continuous tempering furnace.
【請求項2】 連続焼入炉と連続焼戻し炉との間の搬送
路において、連続焼戻し炉装入時の鋼材温度がマルテン
サイト変態開始温度以上AC1 変態点以下となるよう
に、鋼材の熱容量に応じてその搬送速度を調節すること
を特徴とする請求項1に記載のCr−Mo鋼材の熱処理
方法。
2. The heat capacity of the steel material so that the temperature of the steel material at the time of charging the continuous tempering furnace is not less than the martensitic transformation start temperature and not more than the AC 1 transformation point in the conveying path between the continuous quenching furnace and the continuous tempering furnace. The heat treatment method for a Cr-Mo steel material according to claim 1, wherein the conveying speed is adjusted according to the above.
JP35194992A 1992-12-08 1992-12-08 Heat treatment of cr-mo steel Pending JPH06172849A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35194992A JPH06172849A (en) 1992-12-08 1992-12-08 Heat treatment of cr-mo steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35194992A JPH06172849A (en) 1992-12-08 1992-12-08 Heat treatment of cr-mo steel

Publications (1)

Publication Number Publication Date
JPH06172849A true JPH06172849A (en) 1994-06-21

Family

ID=18420731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35194992A Pending JPH06172849A (en) 1992-12-08 1992-12-08 Heat treatment of cr-mo steel

Country Status (1)

Country Link
JP (1) JPH06172849A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102876875A (en) * 2012-09-29 2013-01-16 攀钢集团成都钢钒有限公司 Method for performing full annealing heat treatment for alloy steel pipe
JP5129249B2 (en) * 2007-06-20 2013-01-30 高周波熱錬株式会社 Hybrid heat treatment machine and method thereof
CN105648189A (en) * 2016-03-23 2016-06-08 攀钢集团成都钢钒有限公司 Heat treatment method for small-bore seamless steel pipe for high-pressure hydrogenation device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5289516A (en) * 1976-01-22 1977-07-27 Nippon Steel Corp Preparation of low alloy steel pipe

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5289516A (en) * 1976-01-22 1977-07-27 Nippon Steel Corp Preparation of low alloy steel pipe

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5129249B2 (en) * 2007-06-20 2013-01-30 高周波熱錬株式会社 Hybrid heat treatment machine and method thereof
CN102876875A (en) * 2012-09-29 2013-01-16 攀钢集团成都钢钒有限公司 Method for performing full annealing heat treatment for alloy steel pipe
CN105648189A (en) * 2016-03-23 2016-06-08 攀钢集团成都钢钒有限公司 Heat treatment method for small-bore seamless steel pipe for high-pressure hydrogenation device

Similar Documents

Publication Publication Date Title
JPH0250910A (en) Production of steel plate for die having good heat fatigue characteristic
JP2000017389A (en) Cr-Mo SERIES LOW ALLOY SEAMLESS STEEL PIPE EXCELLENT IN TOUGHNESS AND ITS Cr-Mo SERIES LOW ALLOY STEEL
JPH07331328A (en) Production of high tensile strength steel excellent in toughness at low temperature
JPH05320749A (en) Production of ultrahigh strength steel
JPH06172849A (en) Heat treatment of cr-mo steel
JPH039168B2 (en)
JPS6383249A (en) Hot working tool steel and its manufacture
JPH05125436A (en) Method for heat-treating cr-mo steel pipe
JP2735161B2 (en) High-strength, high-toughness non-heat treated steel for hot forging
JPS6067623A (en) Preparation of high strength low carbon seamless steel pipe by direct hardening method
JPH11310822A (en) Production of high strength martensitic stainless steel tube excellent in low temperature toughness
JP3687249B2 (en) 2.25Cr steel softening heat treatment method
JPS63161117A (en) Production of hot rolled steel products having high strength and high toughness
JP2001200313A (en) Method for producing electric resistance welded tube for cold forging excellent in workability
JPH07113126B2 (en) Method for producing stainless steel with excellent resistance to stress corrosion cracking
JPH09291312A (en) Production of high strength non-heat treated wire rod for bolt
JP3804087B2 (en) Manufacturing method of hot-bending steel pipe
JP2593857B2 (en) High strength non-heat treated forged tough steel
JP4010017B2 (en) Method for producing martensitic stainless steel pipe with excellent SSC resistance
JPH07110970B2 (en) Method for producing acicular ferritic stainless steel with excellent resistance to stress corrosion cracking
JPH0229727B2 (en) DORIRUKARAAYOBOKONOSEIZOHOHO
JPH09256038A (en) Heat treatment before stress relieving annealing treatment for thick steel plate
JP7256371B2 (en) Steel manufacturing method and tempering equipment
JPH09263831A (en) Production of extra thick high strength bent pipe excellent in toughness at low temperature
JPS62149814A (en) Production of low-carbon high-strength seamless steel pipe by direct hardening method