JPH06168808A - Magnetic material and manufacture thereof - Google Patents

Magnetic material and manufacture thereof

Info

Publication number
JPH06168808A
JPH06168808A JP4320882A JP32088292A JPH06168808A JP H06168808 A JPH06168808 A JP H06168808A JP 4320882 A JP4320882 A JP 4320882A JP 32088292 A JP32088292 A JP 32088292A JP H06168808 A JPH06168808 A JP H06168808A
Authority
JP
Japan
Prior art keywords
component
magnetic
magnetic material
alloy
main phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4320882A
Other languages
Japanese (ja)
Other versions
JP3209292B2 (en
Inventor
Nobuyoshi Imaoka
伸嘉 今岡
Yoshio Suzuki
淑男 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP32088292A priority Critical patent/JP3209292B2/en
Publication of JPH06168808A publication Critical patent/JPH06168808A/en
Application granted granted Critical
Publication of JP3209292B2 publication Critical patent/JP3209292B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/059Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and Va elements, e.g. Sm2Fe17N2
    • H01F1/0596Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and Va elements, e.g. Sm2Fe17N2 of rhombic or rhombohedral Th2Zn17 structure or hexagonal Th2Ni17 structure

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To provide high magnetic characteristic by specifying a composition of each component element of R-Fe-M-N magnetic alloy and by specifying a crystal structure forming a main phase of the alloy as rhombohedron or hexagon mainly composed of R, Fe and N. CONSTITUTION:This material is composed of a substance which is expressed by RwFexMyNz (wherein, R is at least one kind of element selected from rare earth elements containing Y, M is at least one kind of element selected from Cu and In, and w, x, y, z show atomic percentage of each component element and satisfy 3<=w<=20, 25<=x<=93.95, 0.05<=y<=50, 3<=z<=30, simultaneously.) and a crystal structure of its main phase forms a rhombohedral or hexagonal R, Fe and N-based polycrystal. It is a magnetic material which forms a fine structure wherein inclusion mainly composed of M element is dispersed within the main phase having an average distance between the inclusions of 0.01 to 0.5mum. Thereby, a magnetic material having both high magnetic characteristic and good oxidation resistance can be acquired.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、特に、小型モーター、
アクチュエーターなどの用途に最適な、高磁気特性を有
するとともに耐酸化性にも優れた希土類系磁性材料に関
するものである。
BACKGROUND OF THE INVENTION The present invention is particularly applicable to small motors,
The present invention relates to a rare earth-based magnetic material that has high magnetic properties and is excellent in oxidation resistance, which is optimal for applications such as actuators.

【0002】[0002]

【従来の技術】磁性材料は、家庭電化製品、音響製品、
自動車部品やコンピューターの周辺端末機まで、幅広い
分野で使用されており、エレクトロニクス材料としての
重要性は年々増大しつつある。特に最近、各種電気・電
子機器の小型化、高効率化が要求されてきたため、より
高性能の磁性材料が求められている。
2. Description of the Related Art Magnetic materials are used for home appliances, acoustic products,
It is used in a wide range of fields including automobile parts and peripheral devices for computers, and its importance as an electronic material is increasing year by year. In particular, recently, there has been a demand for miniaturization and high efficiency of various electric / electronic devices, so that a magnetic material with higher performance is required.

【0003】この時代の要請に応え、Sm−Co系、N
d−Fe−B系などの希土類系磁性材料の需要が急激に
増大している。しかし、Sm−Co系磁性材料は原料供
給が不安定で原料コストが高く、Nd−Fe−B系磁性
材料には、耐熱性や耐食性に劣るという問題点がある。
一方、新しい希土類系磁性材料として、希土類−Fe−
N磁性材料が提案されている(例えば、特開平2−57
663号公報参照)。この材料は、磁化、異方性磁界、
キュリー点が高く、前述のSm−Co系やNd−Fe−
B系磁性材料の欠点を補う磁性材料として期待されてい
る。
In response to the demands of this era, Sm-Co type, N
The demand for rare earth magnetic materials such as d-Fe-B is rapidly increasing. However, the Sm-Co based magnetic material has a problem that the raw material supply is unstable and the raw material cost is high, and the Nd-Fe-B based magnetic material is inferior in heat resistance and corrosion resistance.
On the other hand, as a new rare earth magnetic material, rare earth-Fe-
N magnetic materials have been proposed (for example, JP-A-2-57).
663). This material has a magnetization, an anisotropic magnetic field,
The Curie point is high, and the above-mentioned Sm-Co system and Nd-Fe-
It is expected as a magnetic material that supplements the drawbacks of B-based magnetic materials.

【0004】しかしながら、この希土類−Fe−N系材
料を細かく粉砕して使用する場合には、表面が酸化され
て保磁力が低下し、この材料が本来有している高磁気特
性を充分発揮することができないという問題があった。
この対策として、希土類−Fe−N系材料にCu、In
等の金属成分Mを含ませることにより、保磁力を向上さ
せる方法が考えられ、この希土類−Fe−M−N系材料
については、特開昭62−269303号公報、特開昭
62−136551号公報等に開示されている。
However, when this rare earth-Fe-N-based material is used after being finely pulverized, the surface is oxidized and the coercive force is lowered, and the high magnetic characteristics originally possessed by this material are sufficiently exhibited. There was a problem that I could not.
As a countermeasure against this, rare earth-Fe-N-based materials are added to Cu, In
A method of improving the coercive force by incorporating a metal component M such as the above is considered, and regarding this rare earth-Fe-M-N-based material, JP-A-62-269303 and JP-A-62-136551. It is disclosed in the gazette and the like.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、前述の
各公報に開示された希土類−Fe−M−N系磁性材料で
は、各成分元素の含有量を特定しているだけであって、
その結晶構造や微構造は特定されていない。また、前記
公報の開示によれば、これらの磁性材料は、各成分元素
とこれらの窒化物とを溶融,焼結することにより製造さ
れるため、実際には窒化鉄、α−鉄、窒化希土類、M、
及びMの窒化物を多く含有するものが得られる。従っ
て、保磁力を初めとする磁気特性は、期待されるほど改
善されずにむしろ劣化することが多かった。
However, in the rare earth-Fe-M-N based magnetic materials disclosed in the above-mentioned respective publications, only the contents of the respective component elements are specified,
Its crystal structure and microstructure are not specified. Further, according to the disclosure of the above-mentioned publication, since these magnetic materials are manufactured by melting and sintering each component element and their nitrides, iron nitride, α-iron, rare earth nitrides are actually used. , M,
And those containing a large amount of M nitride are obtained. Therefore, magnetic properties such as coercive force were often not improved as expected, but rather deteriorated.

【0006】本発明は、磁性材料を構成する各成分元素
の含有量を特定するだけでなく、結晶構造と微構造とを
特定することにより、高い磁気特性と優れた耐酸化性を
併せ持つ希土類−Fe−M−N系磁性材料とその製造方
法とを提供することを目的とする。
According to the present invention, not only the content of each component element constituting the magnetic material is specified, but also the crystal structure and the microstructure are specified so that a rare earth element having high magnetic properties and excellent oxidation resistance can be obtained. It is an object of the present invention to provide an Fe-MN magnetic material and a method for producing the same.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に、請求項1の磁性材料は、一般式Rw Fex y z
で表される物質からなり、(但し、RはYを含む希土類
元素から選ばれた少なくとも一種の元素、MはCuおよ
びInから選ばれた少なくとも一種の元素であり、w、
x、y、zは各成分元素の原子百分率を示し、下記
(1)〜(4)式を同時に満たす。) 3≦w≦20 ……(1) 25≦x≦93.95……(2) 0.05≦y≦50 ……(3) 3≦z≦30 ……(4) 主相の結晶構造が、前記R、Fe、及びNを主成分とす
る菱面体晶又は六方晶であるとともに、この主相内に前
記M成分を主体とする介在物が分散している微構造をな
し、前記介在物間の平均距離が0.01〜0.5μmで
あることを特徴とするものである。
In order to achieve the above object, the magnetic material according to claim 1 has the general formula R w Fe x M y N z.
(Wherein R is at least one element selected from rare earth elements including Y, M is at least one element selected from Cu and In, w,
x, y, and z represent atomic percentages of each component element, and simultaneously satisfy the following expressions (1) to (4). ) 3 ≦ w ≦ 20 (1) 25 ≦ x ≦ 93.95 (2) 0.05 ≦ y ≦ 50 (3) 3 ≦ z ≦ 30 (4) Crystal structure of main phase Is a rhombohedral or hexagonal crystal containing R, Fe, and N as main components, and has a microstructure in which inclusions mainly containing the M component are dispersed in the main phase. The average distance between objects is 0.01 to 0.5 μm.

【0008】請求項2の磁性材料は、前記Fe成分の
0.01〜50原子%をCoで置換したことを有するこ
とを特徴とするものである。また、請求項3は、このよ
うな磁性材料の製造方法を提供するものであり、一般式
w/ (100-z)Fex/(100-z) y/(100-z) で表され、
(但し、RはYを含む希土類元素から選ばれた少なくと
も一種の元素、MはCuおよびInから選ばれた少なく
とも一種の元素であり、w、x、yは各成分元素の原子
百分率を示し、zは後から添加されるNの含有量〔原子
百分率〕を示し、w、x、y、zは下記(1)〜(4)
式を同時に満たす。) 3≦w≦20 ……(1) 25≦x≦93.95……(2) 0.05≦y≦50 ……(3) 3≦z≦30 ……(4) 主相の結晶構造がRおよびFeを主成分とする菱面体晶
又は六方晶であり、この主原料相にM成分が分散された
微構造をなすR−Fe−M系合金を、窒素ガス、アンモ
ニアガスのうち少なくとも一種を含む雰囲気下で、20
0〜650℃の温度条件により窒化処理することを特徴
とする。
The magnetic material according to claim 2 is characterized in that 0.01 to 50 atomic% of the Fe component is replaced with Co. Further, claim 3 provides a method for producing such a magnetic material, which is represented by the general formula Rw / (100-z) Fex / (100-z) My / (100-z) . Is
(However, R is at least one element selected from rare earth elements including Y, M is at least one element selected from Cu and In, and w, x, and y represent the atomic percentage of each component element, z represents the content [atomic percentage] of N added later, and w, x, y, and z are the following (1) to (4).
Satisfy the formula at the same time. ) 3 ≦ w ≦ 20 (1) 25 ≦ x ≦ 93.95 (2) 0.05 ≦ y ≦ 50 (3) 3 ≦ z ≦ 30 (4) Crystal structure of main phase Is a rhombohedral or hexagonal crystal containing R and Fe as main components, and an R-Fe-M-based alloy having a microstructure in which the M component is dispersed in the main raw material phase is at least selected from nitrogen gas and ammonia gas. 20 in an atmosphere containing one
It is characterized in that the nitriding treatment is performed under a temperature condition of 0 to 650 ° C.

【0009】請求項1および2における磁性材料の成分
元素である希土類元素(R)としては、Y、La、C
e、Pr、Nd、Pm、Sm、Eu、Gd、Tb、D
y、Ho、Er、Tm、Yb、およびLuが挙げられ
る。この磁性材料には、これらのうち少なくとも一種の
元素が含まれている必要がある。したがって、ミッシュ
メタルやジジム等のように、二種以上の希土類元素を含
有する物を用いても良い。好ましい希土類元素は、Y、
Ce、Pr、Nd、Sm、Gd、Dy、およびErであ
る。さらに好ましいものとしては、Y、Ce、Pr、N
d、およびSmが挙げられる。
The rare earth element (R) which is a component element of the magnetic material according to claims 1 and 2 is Y, La or C.
e, Pr, Nd, Pm, Sm, Eu, Gd, Tb, D
Examples include y, Ho, Er, Tm, Yb, and Lu. This magnetic material must contain at least one of these elements. Therefore, a substance containing two or more kinds of rare earth elements such as misch metal and didymium may be used. Preferred rare earth elements are Y,
Ce, Pr, Nd, Sm, Gd, Dy, and Er. More preferred are Y, Ce, Pr and N.
d, and Sm.

【0010】ここで用いる希土類元素(R)は、工業的
生産により入手可能な純度のものであればよく、製造上
混入が避けられない不純物、例えば、O、H、C、A
l、Si、F、Na、Mg、Ca、Liなどが存在して
いるものであっても差し支えない。前記磁性材料の成分
元素である鉄(Fe)は、この磁性材料において強磁性
を担う基本成分であり、25原子%以上含有する必要が
ある。また、鉄成分のうちの0.01〜50原子%をC
oで置換することができ、このCoの導入により、キュ
リー点と磁化とが上昇するとともに、耐酸化性も向上で
きる。以下においては、鉄成分と表記した場合、Feの
0.01〜50原子%をCoで置換したものを含むもの
とする。
The rare earth element (R) used here may be of a purity that can be obtained by industrial production, and impurities such as O, H, C, A which cannot be mixed in during production are inevitable.
It does not matter even if 1, 1, Si, F, Na, Mg, Ca, Li or the like is present. Iron (Fe), which is a component element of the magnetic material, is a basic component responsible for ferromagnetism in this magnetic material and must be contained in an amount of 25 atomic% or more. In addition, 0.01 to 50 atomic% of the iron component is C
O can be substituted, and the introduction of this Co can increase the Curie point and the magnetization and also improve the oxidation resistance. In the following, when expressed as an iron component, 0.01 to 50 atomic% of Fe is replaced with Co.

【0011】前記磁性材料の成分元素である金属(M)
は、CuおよびInから選ばれた少なくとも一種の元素
であるが、M’成分として、Ga、Al、Zn、Sn、
Mn、Cr、Ni、Li、Na、K、Mg、Ca、S
r、Ba、Ti、Zr、Hf、V、Nb、Ta、Mo、
W、Pd、Ag、B、C、Si、Ge、Pb、およびB
iの元素のうち一種または二種以上の元素を、Cuおよ
び/またはInとともに含有させても良い。この場合、
これらの含有量はCu、Inの合計量を超えない量であ
って、しかもCuおよび/またはInとの合計量が0.
05〜50原子%の範囲となるようにしなければならな
い。
Metal (M) which is a component element of the magnetic material
Is at least one element selected from Cu and In, but as M ′ component, Ga, Al, Zn, Sn,
Mn, Cr, Ni, Li, Na, K, Mg, Ca, S
r, Ba, Ti, Zr, Hf, V, Nb, Ta, Mo,
W, Pd, Ag, B, C, Si, Ge, Pb, and B
One or more of the elements of i may be contained together with Cu and / or In. in this case,
The content of these does not exceed the total amount of Cu and In, and the total amount of Cu and / or In is 0.
It should be in the range of 05 to 50 atomic%.

【0012】前記磁性材料における希土類元素、鉄成
分、M、および窒素の各組成は、希土類元素成分が3〜
20原子%、鉄成分が25〜93.95原子%、M成分
が0.05〜50原子%、窒素成分が3〜30原子%と
し、これらを同時に満たすものである。希土類元素成分
が3原子%未満のとき、鉄成分を多く含む軟磁性相が分
離し、窒化物の保磁力が低下して実用的な永久磁石とな
らない。また希土類元素成分が20原子%を超えると、
残留磁束密度が低下して好ましくない。
The composition of the rare earth element, the iron component, M, and nitrogen in the magnetic material is such that the rare earth element component is 3 to 3.
The content is 20 at%, the iron content is 25 to 93.95 at%, the M content is at 0.05 to 50 at%, and the nitrogen content is at 3 to 30 at%, which are simultaneously satisfied. When the rare earth element component is less than 3 atomic%, the soft magnetic phase containing a large amount of iron component is separated, and the coercive force of the nitride is lowered, so that a practical permanent magnet cannot be obtained. If the rare earth element content exceeds 20 atom%,
The residual magnetic flux density is lowered, which is not preferable.

【0013】R−Fe−N系磁性材料に対するM成分の
添加効果は、主に耐酸化性の向上である。M成分が0.
05原子%未満の場合は、前述のようなMの添加効果が
発揮されないため好ましくない。50原子%を超える
と、飽和磁化が低下するため好ましくなく、M成分量の
好ましい範囲は、0.1〜30原子%である。なお、M
成分の添加により、母合金の調製方法や条件によって
は、粒表面、粒界近傍、あるいはRFe3 相等のRリッ
チの窒化物相などの軟磁性を示す副相にM成分が凝縮さ
れて、前記副相が非磁性相化されることにより、窒化物
の角形比や保磁力を向上させることもある。
The effect of adding the M component to the R-Fe-N system magnetic material is mainly to improve the oxidation resistance. M component is 0.
If it is less than 05 atom%, the effect of adding M as described above cannot be exhibited, which is not preferable. When it exceeds 50 atom%, the saturation magnetization is lowered, which is not preferable, and the preferable range of the amount of M component is 0.1 to 30 atom%. In addition, M
Depending on the preparation method and conditions of the mother alloy, the addition of the component causes the M component to be condensed in the subsurface phase exhibiting soft magnetism, such as the grain surface, the vicinity of the grain boundary, or the R-rich nitride phase such as the RFe 3 phase. By making the sub-phase non-magnetic, the squareness ratio and coercive force of the nitride may be improved.

【0014】後述のように、R−Fe−M合金へ窒素を
導入することにより、R−Fe−M合金の結晶格子に膨
張が生じて、耐酸化性や磁気特性を向上できる。窒素成
分が3原子%未満では、このような作用を十分に発揮さ
せることができないため好ましくない。30原子%を超
えると磁化が低くなり、磁石材料用途としては実用性が
小さいものとなるため好ましくない。窒素成分の含有量
としてより好ましい範囲は、5〜25原子%であり、特
に好ましい範囲は10〜23原子%である。
As will be described later, by introducing nitrogen into the R-Fe-M alloy, expansion occurs in the crystal lattice of the R-Fe-M alloy, and oxidation resistance and magnetic properties can be improved. When the nitrogen component is less than 3 atomic%, such an effect cannot be sufficiently exhibited, which is not preferable. If it exceeds 30 atomic%, the magnetization becomes low, and the practical use as a magnet material becomes small, which is not preferable. A more preferable range for the content of the nitrogen component is 5 to 25 atom%, and a particularly preferable range is 10 to 23 atom%.

【0015】窒素成分の最適な含有量は、目的とするR
−Fe−M−N系磁性材料のR−Fe−M組成比や、主
相の存在比、および結晶構造などによって異なり、例え
ば菱面体構造を有するPr12.2Fe79.0In8.8 を原料
合金として選ぶ場合には、窒素成分の最適な含有量は1
4〜15原子%付近となる。ここでいう最適な窒素量と
は、目的に応じて異なるが、得られる磁性材料における
耐酸化性や多数の磁気特性の内いくつかが最適となる窒
素量であり、磁気特性が最適というのは、保磁力の温度
変化率、熱減磁率の絶対値、および磁気異方性比につい
ては極小となり、その他の磁気特性については、極大と
なることである。
The optimum content of nitrogen component is the target R
In the case where Pr 12.2 Fe 79.0 In 8.8 having a rhombohedral structure is selected as the raw material alloy, it depends on the R-Fe-M composition ratio of the -Fe-MN magnetic material, the abundance ratio of the main phase, and the crystal structure. The optimum nitrogen content is 1
It is around 4 to 15 atom%. The optimum nitrogen amount here depends on the purpose, but the optimum amount of nitrogen is the oxidation resistance and some of the many magnetic properties of the resulting magnetic material. , The temperature change rate of coercive force, the absolute value of the thermal demagnetization rate, and the magnetic anisotropy ratio are minimum, and other magnetic characteristics are maximum.

【0016】一方、請求項1および2の磁性材料におい
ては、主相の結晶構造を、前記R、Fe、及びNを主成
分とする菱面体晶又は六方晶に特定している。このよう
な結晶構造の主相は、菱面体晶又は六方晶とほぼ同じ対
称性を有する結晶構造のR−Fe−M合金(母合金)に
窒素を導入することにより、すなわち窒素を前記結晶の
格子間に侵入させるか、いずれかの成分元素(主にM)
と置換させることにより得られる。
On the other hand, in the magnetic materials of claims 1 and 2, the crystal structure of the main phase is specified as a rhombohedral or hexagonal crystal containing R, Fe, and N as main components. The main phase of such a crystal structure is obtained by introducing nitrogen into an R-Fe-M alloy (mother alloy) having a crystal structure having almost the same symmetry as that of a rhombohedral crystal or a hexagonal crystal, that is, nitrogen is added to the crystal of the above crystal. Either enter the interstitial lattice or one of the constituent elements (mainly M)
It is obtained by substituting

【0017】このような母合金への窒素の導入により、
結晶格子が多くの場合膨張する。そして、この結晶格子
の膨張によって、耐酸化性や以下に示す各磁気特性のう
ち少なくとも一つが向上する。磁気特性としては、材料
の飽和磁化(4πIs)、残留磁束密度(Br)、磁気
異方性磁界(Ha)、磁気異方性エネルギー(Ea)、
磁気異方性比、キュリー点(Tc)、固有保磁力(iH
c)、角形比(Br/4πIs)、最大エネルギー積
[(BH)max]、熱減磁率(α)、保磁力の温度変
化率(β)が挙げられる。ここで、磁気異方性比とは、
外部磁場を15kOe印加した時の困難磁化方向の磁化
(a)と容易磁化方向の磁化(b)との比(a/b)で
あり、磁気異方性比が小さいもの程、磁気異方性エネル
ギーが高いと評価される。
By introducing nitrogen into such a master alloy,
The crystal lattice often expands. The expansion of the crystal lattice improves the oxidation resistance and at least one of the following magnetic characteristics. The magnetic properties include the saturation magnetization (4πIs) of the material, the residual magnetic flux density (Br), the magnetic anisotropic magnetic field (Ha), the magnetic anisotropic energy (Ea),
Magnetic anisotropy ratio, Curie point (Tc), intrinsic coercive force (iH
c), squareness ratio (Br / 4πIs), maximum energy product [(BH) max], thermal demagnetization rate (α), and coercive force temperature change rate (β). Here, the magnetic anisotropy ratio is
It is the ratio (a / b) of the magnetization (a) in the difficult magnetization direction and the magnetization (b) in the easy magnetization direction when an external magnetic field of 15 kOe is applied. The smaller the magnetic anisotropy ratio, the greater the magnetic anisotropy. It is evaluated as high in energy.

【0018】例えば、母合金として、菱面体構造を有す
るSm17.1Fe74.6Cu8.3 を選んだ場合、窒素を導入
することによって、結晶磁気異方性が、面内異方性から
硬磁性材料として好適な一軸異方性に変化し、磁気異方
性エネルギーを初めとする磁気特性と耐酸化性とが向上
する。請求項1および2の磁性材料には、前述のような
結晶構造の主相を50体積%以上含有する必要があり、
これ以外に副相として、別の結晶構造を有するR、F
e、及びNを主成分とした相、または別の組成からなる
相を含有してもよい。
For example, when Sm 17.1 Fe 74.6 Cu 8.3 having a rhombohedral structure is selected as the mother alloy, by introducing nitrogen, the crystal magnetic anisotropy is suitable as a hard magnetic material due to its in-plane anisotropy. Uniaxial anisotropy, and the magnetic characteristics including the magnetic anisotropy energy and the oxidation resistance are improved. The magnetic material according to claims 1 and 2 must contain 50% by volume or more of the main phase having the above-described crystal structure,
In addition to this, R and F having another crystal structure as a subphase
A phase mainly composed of e and N or a phase having a different composition may be contained.

【0019】例えば、RFe12-yM’y z 相のよう
な、正方晶を取る磁性の高い窒化物相を含んでいても良
いが、前記主相による作用を充分に発揮させるために
は、その含有量を主相の含有量より低く抑える必要があ
り、主相の含有量が75体積%を超えることが、実用上
極めて好ましい。また、母合金の製造条件を選ぶことに
よって、この主相内にM成分を含む介在物を分散させる
ことができる。特定の製造条件により前記主相内にM成
分を主体とする介在物が分散された母合金を製造し、こ
の母合金に窒素を導入して得られた合金は、ピンニング
型のR−鉄−M−窒素系磁性材料となる。ピンニング型
の磁性材料は、若干の酸化によって粒表面に軟磁性成分
が生じても、保磁力の低下を小さくすることができるも
のであるため耐酸化性が極めて高い材料となる。
For example, it is possible to include a highly magnetic nitride phase having a tetragonal structure, such as the RFe 12-y M ′ y N z phase, but in order to fully exert the action of the main phase. However, it is necessary to suppress the content thereof to be lower than the content of the main phase, and it is extremely preferable in practice that the content of the main phase exceeds 75% by volume. Further, by selecting the manufacturing conditions of the mother alloy, inclusions containing the M component can be dispersed in this main phase. An alloy obtained by producing a mother alloy in which inclusions mainly composed of the M component are dispersed in the main phase under specific production conditions and introducing nitrogen into the mother alloy is a pinning type R-iron- It becomes an M-nitrogen based magnetic material. The pinning type magnetic material is a material having extremely high oxidation resistance because it can reduce a decrease in coercive force even if a soft magnetic component is generated on the grain surface due to slight oxidation.

【0020】そして、請求項1および2の磁性材料にお
いては、前記介在物間の平均距離を0.01〜0.5μ
mとする。この平均距離が0.5μmを超えると、ピン
ニング型となることによる保磁力低下を防ぐ効果がほと
んど見られず、また0.01μm未満であると、保磁力
および磁化の絶対値が小さくなるため好ましくない。さ
らに好ましい介在物間平均距離は0.03〜0.1μm
である。
In the magnetic materials of claims 1 and 2, the average distance between the inclusions is 0.01 to 0.5 μm.
m. If this average distance exceeds 0.5 μm, the effect of preventing the coercive force from decreasing due to the pinning type is hardly seen, and if it is less than 0.01 μm, the coercive force and the absolute value of the magnetization become small, which is preferable. Absent. More preferable average distance between inclusions is 0.03 to 0.1 μm.
Is.

【0021】なお、介在物間の平均距離は、一つの介在
物とそれに最も近い介在物との中央同士を結んだ距離を
n個の介在物について計測し、算術平均を求めた値であ
る。nの値は、材料の均質性の度合によって適宜定めら
れるが、同一のM成分分散度を有すると予測される領域
をいくつかにグループ分けし、それぞれからその領域を
代表する部分を選び出して、各n>5で介在物間平均距
離を算出する。
The average distance between inclusions is a value obtained by measuring the distance connecting the centers of one inclusion and the nearest inclusion to each other for n inclusions and calculating the arithmetic mean. The value of n is appropriately determined depending on the degree of homogeneity of the material, but the regions predicted to have the same M component dispersion degree are divided into several groups, and a portion representative of the region is selected from each of the regions. The average distance between inclusions is calculated for each n> 5.

【0022】この介在物による前記作用を十分に発揮さ
せるためには、主相のうち、介在物間の平均距離が0.
01〜0.5μmである相が50体積%以上を占めるこ
とが好ましい。より好ましくは、前記割合を75体積%
以上とする。このようなR−Fe−M−N系磁性材料
に、水素(H)を0.01〜15原子%の範囲で含むこ
とが好ましく、さらには、酸素(O)も0.01〜15
原子%の範囲で含むことが好ましい。より好ましい水素
含有量及び酸素含有量は、共に0.1〜10原子%の範
囲である。
In order to sufficiently exert the above-mentioned action by the inclusions, the average distance between the inclusions in the main phase is 0.
It is preferable that the phase having a diameter of 01 to 0.5 μm accounts for 50% by volume or more. More preferably, the ratio is 75% by volume.
That is all. It is preferable that the R—Fe—M—N magnetic material contains hydrogen (H) in a range of 0.01 to 15 atom%, and further oxygen (O) is also included in a range of 0.01 to 15.
It is preferably contained in the range of atomic%. A more preferable hydrogen content and oxygen content are both in the range of 0.1 to 10 atom%.

【0023】したがって、請求項1および2におけるR
−Fe−M−N系磁性材料の特に好ましい組成は、Rw
Fex y z u v で表わしたとき、各成分元素の
原子百分率を示すw、x、y、z、u、vが下記(5)
〜(10)を同時に満たすものである。 3≦w≦20 ……(5) 25≦x≦92 ……(6) 0.1≦y≦30 ……(7) 10≦z≦23 ……(8) 0.1≦u≦10 ……(9) 0.1≦v≦10 ……(10) 請求項3の製造方法では、主原料相の結晶構造がRおよ
びFeを主成分とする菱面体晶又は六方晶であり、この
主原料相にM成分が分散された微構造をなすR−Fe−
M系合金を、窒素ガス、アンモニアガスのうち少なくと
も一種を含む雰囲気下で、200〜650℃の温度条件
により窒化処理するが、より具体的な方法を、項目毎に
分けながら以下に述べる。 <母合金の調製>R−Fe−M合金の製造法としては、
イ)全成分金属を高周波により溶解し、鋳型などに鋳込
む高周波溶解法、ロ)銅などからなるボートに全成分金
属を仕込み、アーク放電により溶かし込むアーク溶解
法、ハ)高周波溶解した溶湯を回転させた銅ロール上に
落とすことにより、リボン状の合金を得る超急冷法、
ニ)高周波溶解した溶湯をガスで噴霧して合金粉体を得
るガスアトマイズ法、ホ)Fe成分および/またはM成
分の粉体、もしくはFe−M合金粉体と、Rおよび/ま
たはMの酸化物粉体と、還元剤とを高温下で反応させ、
RもしくはR及びMを還元しながら、RもしくはR及び
Mを、Feおよび/またはFe−M合金粉末中に拡散さ
せるR/D法、ヘ)各成分金属の単体および/または合
金を、ボールミルなどで微粉砕しながら反応させるメカ
ニカルアロイング法、ト)上記何れかの方法で得た合金
を水素雰囲気下で加熱し、一旦Rおよび/またはMの水
素化物と、Feおよび/またはMもしくはFe−M合金
とに分解し、この後高温下で低圧にして水素を追い出し
ながら再結合させ合金化するHDDR法のいずれを用い
てもよい。
Therefore, R in claims 1 and 2
A particularly preferable composition of the —Fe—MN magnetic material is R w
When expressed in Fe x M y N z H u O v, w representing the atomic percentage of each component element, x, y, z, u , v are the following (5)
To (10) are satisfied at the same time. 3 ≦ w ≦ 20 (5) 25 ≦ x ≦ 92 (6) 0.1 ≦ y ≦ 30 (7) 10 ≦ z ≦ 23 (8) 0.1 ≦ u ≦ 10 ... (9) 0.1 ≦ v ≦ 10 (10) In the manufacturing method of claim 3, the crystal structure of the main raw material phase is a rhombohedral or hexagonal crystal containing R and Fe as main components. R-Fe-having a fine structure in which the M component is dispersed in the raw material phase
The M-based alloy is subjected to a nitriding treatment under a temperature condition of 200 to 650 ° C. in an atmosphere containing at least one of nitrogen gas and ammonia gas, and a more specific method will be described below for each item. <Preparation of mother alloy> As a method for producing the R-Fe-M alloy,
A) High frequency melting method in which all component metals are melted by high frequency and cast into a mold, b) Arc melting method in which all component metals are charged in a boat made of copper and melted by arc discharge, c) High frequency molten metal A superquenching method to obtain a ribbon-shaped alloy by dropping it on a rotated copper roll.
D) A gas atomization method for obtaining alloy powder by spraying a high-frequency molten metal with a gas, e) Fe component and / or M component powder, or Fe-M alloy powder, and R and / or M oxide The powder and the reducing agent are reacted at high temperature,
R / D method of diffusing R or R and M into Fe and / or Fe-M alloy powder while reducing R or R and M, f) simple substance and / or alloy of each component metal, ball mill, etc. Mechanical alloying method of reacting while finely pulverizing with, g.) The alloy obtained by any of the above methods is heated in a hydrogen atmosphere, and once with R and / or M hydride, Fe and / or M or Fe- Any of the HDDR methods of decomposing into an M alloy and then recombining while decompressing hydrogen at a high temperature under a low pressure to form an alloy may be used.

【0024】高周波溶解法やアーク溶解法を用いた場合
には、溶融状態から合金が凝固する際に、Fe主体の軟
磁性成分が析出しやすい。この軟磁性成分は、特に窒化
工程を経た後も保磁力の低下を引き起こすものである。
したがって、溶融条件や、鋳型の材質とその空隙部の厚
みなどを適宜調節して、冷却速度が充分速くなる方法を
講じることが望ましい。
When the high frequency melting method or the arc melting method is used, when the alloy is solidified from the molten state, the soft magnetic component mainly composed of Fe is likely to precipitate. This soft magnetic component causes a decrease in coercive force especially after the nitriding step.
Therefore, it is desirable to appropriately adjust the melting conditions, the material of the mold and the thickness of the voids, and the like, and it is desirable to take a method of sufficiently increasing the cooling rate.

【0025】さらに、アルゴン、ヘリウムなどの不活性
ガス中もしくは真空中、600℃〜1300℃の温度範
囲で焼鈍を行えば、この軟磁性成分を消失させたり、得
られる合金の微構造を制御することができる。この方法
で作製した合金は、超急冷法などで作製した場合と比べ
て結晶性が良好であり、高い残留磁束密度を有してい
る。
Further, annealing in an inert gas such as argon or helium or in vacuum at a temperature in the range of 600 ° C. to 1300 ° C. eliminates the soft magnetic component and controls the microstructure of the obtained alloy. be able to. The alloy produced by this method has better crystallinity and higher residual magnetic flux density than those produced by the ultra-quenching method.

【0026】超急冷法を用いた場合には、微細な結晶粒
が得られ、条件によってはサブミクロンの粒子も調製で
きる。但し、冷却速度が大きい場合には、合金の非晶質
化が起こり、窒化後においても磁化などの磁気特性が低
下する。この場合にも、前述のような合金調製後の焼鈍
が有効である。ガスアトマイズ法により得られた合金
は、結晶粒が球状の形態を取ることが多いため、ガスの
流量や溶湯の温度条件等によりその粒径を微粉体から粗
粉体まで広範囲に調製することが可能である。この場合
も、条件によっては前述のような焼鈍を行い、結晶性を
良好にすることが必要となる。
When the ultraquenching method is used, fine crystal grains are obtained, and submicron particles can be prepared depending on the conditions. However, when the cooling rate is high, the alloy becomes amorphous and the magnetic properties such as magnetization are deteriorated even after nitriding. Also in this case, the annealing after the alloy preparation as described above is effective. Since alloys obtained by the gas atomization method often have spherical crystal grains, the grain size can be adjusted in a wide range from fine powder to coarse powder depending on the gas flow rate and the temperature condition of the molten metal. Is. Also in this case, depending on the conditions, it is necessary to perform the above-mentioned annealing to improve the crystallinity.

【0027】R/D法、メカニカルアロイング法、およ
びHDDR法により調製した合金は、結晶粒を0.01
〜3μmの微細な大きさに調整したり、M成分主体相の
組成や分布状態を任意に調節したりすることが可能であ
るため、主相にM成分を主体とする介在物を分散させや
すい。母合金を焼鈍する条件は、母合金の組成や目的と
する磁性材料の特性に応じ、前述の範囲内において選定
される。例えば、Sm2 Fe17X 主相中に、大きさが
0.5μm以下である細かいM成分主体相を分散させ
て、保磁力が酸化により劣化することを抑えたい場合に
は、不活性ガス雰囲気下600〜1000℃の温度範囲
で熱処理することが望ましい。 <粗粉砕及び分級>上記の方法で作製した合金インゴッ
トを直接窒化,熱処理することも可能であるが、結晶粒
径が500μmより大きいと窒化処理時間が長くなるた
め、粗粉砕を行ってから窒化する方が効率的である。
The alloy prepared by the R / D method, the mechanical alloying method, and the HDDR method has a crystal grain of 0.01.
Since it can be adjusted to a fine size of up to 3 μm and the composition and distribution state of the M component main phase can be arbitrarily adjusted, it is easy to disperse inclusions mainly containing the M component in the main phase. . The conditions for annealing the mother alloy are selected within the above range depending on the composition of the mother alloy and the characteristics of the target magnetic material. For example, when it is desired to disperse a fine M-component main phase having a size of 0.5 μm or less in the Sm 2 Fe 17 N X main phase to suppress deterioration of coercive force due to oxidation, an inert gas is used. It is desirable to perform heat treatment in a temperature range of 600 to 1000 ° C. in an atmosphere. <Coarse crushing and classification> It is possible to directly nitride and heat treat the alloy ingot produced by the above method, but if the crystal grain size is larger than 500 μm, the nitriding time will be longer, so after performing coarse crushing, nitriding is performed. It is more efficient to do so.

【0028】粗粉砕は、ジョ−クラッシャー、ハンマ
ー、スタンプミル、ローターミル、ピンミル、コーヒー
ミルなどを用いて行う。また、ボールミルやジェットミ
ルなどのような粉砕機を用いても、条件次第では、窒化
処理に適当な大きさの合金粉末を調製することができ
る。また、粗粉砕を行った後に、ふるいや、振動式ある
いは音波式の分級機、サイクロンなどにより粒度調整を
行うと、窒化処理がより均質に行われる。
The coarse pulverization is carried out by using a jaw crusher, a hammer, a stamp mill, a rotor mill, a pin mill, a coffee mill or the like. Even if a crusher such as a ball mill or a jet mill is used, an alloy powder having a size suitable for nitriding can be prepared depending on the conditions. In addition, after coarsely pulverizing, if the particle size is adjusted with a sieve, a vibrating or sonic classifier, a cyclone, or the like, the nitriding treatment is performed more uniformly.

【0029】なお、粗粉砕,分級して得られた磁性粉に
対して、不活性ガスや水素中で焼鈍を行うと、構造の欠
陥を除去することができる場合がある。 <窒化・焼鈍>上記の方法により得られたR−Fe−M
合金の粉体またはインゴットに、アンモニアガス、窒素
ガスなどの窒素源を含むガスを接触させて、結晶構造内
に窒素を導入する。
If the magnetic powder obtained by coarse pulverization and classification is annealed in an inert gas or hydrogen, it may be possible to remove structural defects. <Nitriding / annealing> R-Fe-M obtained by the above method
A gas containing a nitrogen source such as ammonia gas or nitrogen gas is brought into contact with the alloy powder or ingot to introduce nitrogen into the crystal structure.

【0030】このとき、窒化雰囲気ガス中に水素を共存
させると、窒化効率が高いうえに、結晶構造が安定なま
まで窒化できるため好ましい。また、窒化反応を制御す
るために、アルゴン、ヘリウム、ネオンなどの不活性ガ
スを共存させてもよい。窒化反応は、ガス組成、加熱温
度、加熱処理時間、および加圧力などの条件を変えるこ
とにより制御することができる。
At this time, it is preferable to make hydrogen coexist in the nitriding atmosphere gas because the nitriding efficiency is high and the nitriding can be performed while the crystal structure remains stable. Moreover, in order to control the nitriding reaction, an inert gas such as argon, helium, or neon may be allowed to coexist. The nitriding reaction can be controlled by changing conditions such as gas composition, heating temperature, heat treatment time, and pressure.

【0031】加熱温度は、母合金組成や窒化雰囲気によ
って異なるが、200〜650℃の範囲とする。好まし
い温度範囲は250〜600℃である。また、窒化を行
った後、不活性ガスおよび/または水素ガス中で焼鈍す
ると、磁気特性をさらに向上できる。窒化・焼鈍装置と
しては、横型または縦型の管状炉、回転式反応炉、密閉
式反応炉などが挙げられる。特に、窒素組成分布の揃っ
た粉体を得るためには回転式反応炉を用いるのが好まし
い。
The heating temperature varies depending on the mother alloy composition and the nitriding atmosphere, but is in the range of 200 to 650 ° C. A preferable temperature range is 250 to 600 ° C. Further, after nitriding, annealing in an inert gas and / or hydrogen gas can further improve the magnetic characteristics. Examples of the nitriding / annealing device include a horizontal or vertical tubular furnace, a rotary reaction furnace, and a closed reaction furnace. In particular, it is preferable to use a rotary reactor in order to obtain a powder having a uniform nitrogen composition distribution.

【0032】反応に用いるガスの供給方法としては、ガ
ス組成を一定に保ちながら1気圧以上の気流を反応炉の
送り込む気流方式、容器内に0.01〜70気圧でガス
を封入する封入方式、或いはそれらを組合せた方法があ
る。このような窒化処理における最適な処理条件は、母
合金がインゴットであるか粉体であるかにより、粉体で
ある場合には、表面状態、結晶粒径、粉砕粒径、および
微構造等により、インゴットである場合には表面状態や
微構造等により異なる。
As a method of supplying the gas used in the reaction, an airflow method in which an airflow of 1 atm or more is fed into the reaction furnace while keeping the gas composition constant, an encapsulation method in which the gas is sealed at 0.01 to 70 atm, Alternatively, there is a method that combines them. The optimum treatment conditions in such nitriding treatment depend on whether the mother alloy is an ingot or a powder, and when it is a powder, it depends on the surface condition, the crystal grain size, the pulverized grain size, and the microstructure. In the case of an ingot, it depends on the surface condition, microstructure, and the like.

【0033】特に、実用的な硬磁性材料とするために
は、上記の処理の後に、以下に示すような微粉砕、磁場
成形、および着磁を行う場合がある。 <微粉砕>微粉砕方法は、磁性材料に含有される水素や
酸素の量、及び目標とする粉砕粒径に応じて選定され
る。使用される粉砕装置としては、回転ボールミル、振
動ボールミル、遊星ボールミル、ウエットミル、ジェッ
トミル、カッターミル、ピンミル、および自動乳鉢が挙
げられる。これらを組合せて二段階以上に分けて粉砕し
てもよい。
In particular, in order to obtain a practical hard magnetic material, the following treatment may be followed by the following pulverization, magnetic field molding, and magnetization. <Fine pulverization> The fine pulverization method is selected according to the amount of hydrogen or oxygen contained in the magnetic material and the target pulverized particle size. The crushing device used includes a rotary ball mill, a vibrating ball mill, a planetary ball mill, a wet mill, a jet mill, a cutter mill, a pin mill, and an automatic mortar. These may be combined and pulverized in two or more stages.

【0034】なお、この工程でM成分をさらに添加し、
次の<磁場成形>工程の前あるいは後に熱処理を行って
各種磁石材料とすれば、角形比や保磁力の絶対値が向上
できる。 <磁場成形>このようにして得られた磁性粉体を異方性
ボンド磁石に応用する場合には、熱硬化性樹脂や金属バ
インダーと混合した後、磁場中で圧縮成形したり、熱可
塑性樹脂と共に混練してから磁場中で射出成形を行った
りすることにより磁場成形を行う。このような磁場成形
は、充分な磁場配向を得るために、好ましくは10kO
e以上、さらに好ましくは15kOe以上の磁場中で行
う。
In this step, M component is further added,
By performing heat treatment before or after the next <magnetic field forming> step to obtain various magnet materials, the squareness ratio and the absolute value of the coercive force can be improved. <Magnetic field molding> When the magnetic powder thus obtained is applied to an anisotropic bonded magnet, it is mixed with a thermosetting resin or a metal binder and then compression-molded in a magnetic field or a thermoplastic resin. Magnetic field molding is performed by, for example, performing injection molding in a magnetic field after kneading. Such magnetic field shaping is preferably 10 kO in order to obtain sufficient magnetic field orientation.
e or more, and more preferably in a magnetic field of 15 kOe or more.

【0035】また、異方性ボンド磁石を作製する場合に
は、M成分を金属バインダーや表面処理剤としても使用
する。 <着磁>焼結磁石材料や、上記のようにして得られた異
方性ボンド磁石材料は、通常、着磁を行って、その磁石
性能を高める。
When producing an anisotropic bonded magnet, the M component is also used as a metal binder or a surface treatment agent. <Magnetization> The sintered magnet material or the anisotropic bonded magnet material obtained as described above is usually magnetized to enhance its magnet performance.

【0036】この着磁は、例えば、静磁場を発生する電
磁石、パルス磁場を発生するコンデンサー着磁器などを
用いて行う。充分な着磁を行うためには、磁場強度を、
好ましくは15kOe以上、さらに好ましくは30kO
e以上とする。
This magnetization is performed using, for example, an electromagnet that generates a static magnetic field, a condenser magnetizer that generates a pulsed magnetic field, and the like. In order to perform sufficient magnetization, set the magnetic field strength to
Preferably 15 kOe or more, more preferably 30 kOe
e or more.

【0037】[0037]

【作用】請求項1によれば、R−Fe−M−N系磁性材
料における各成分元素の組成を、(1)〜(4)の式に
より特定することと、前記合金の主相をなす結晶構造を
R、Fe、及びNを主成分とする菱面体晶又は六方晶に
特定することとにより、R−Fe−M−N系磁性材料に
高い磁気特性を付与することができる。
According to claim 1, the composition of each component element in the R-Fe-MN magnetic material is specified by the equations (1) to (4) and forms the main phase of the alloy. By specifying the crystal structure as a rhombohedral or hexagonal crystal containing R, Fe, and N as the main components, high magnetic properties can be imparted to the R—Fe—M—N magnetic material.

【0038】また、この磁性材料の微構造を、前記主相
内にM成分を含む介在物が分散しているものとし、前記
介在物間の平均距離を0.01〜0.5μmに特定する
ことにより、この磁性材料をピンニング型とすることが
できるため、細かく粉砕して使用する場合に若干の酸化
によって粒子表面に軟磁性成分が生じても、保磁力の低
下を小さくすることができる。
The microstructure of this magnetic material is such that inclusions containing the M component are dispersed in the main phase, and the average distance between the inclusions is specified to be 0.01 to 0.5 μm. As a result, since this magnetic material can be made into a pinning type, even if a soft magnetic component is generated on the surface of the particles due to slight oxidation when finely crushed and used, the decrease in coercive force can be suppressed.

【0039】請求項2によれば、Coの導入により、キ
ュリー点と磁化とが上昇するとともに、耐酸化性も向上
できる。請求項3によれば、主相の結晶構造が、Rおよ
びFeを主成分とする菱面体晶又は六方晶であり、この
主相にM成分が分散された微構造をなすR−Fe−M系
合金を、窒素ガス、アンモニアガスのうち少なくとも一
種を含む雰囲気下、200〜650℃の温度条件で窒化
処理することにより、窒素がR−Feからなる主相の結
晶格子間に侵入するか、M成分をなす元素と置換して、
主相の結晶構造が、前記R、Fe、及びNを主成分とす
る菱面体晶又は六方晶であるとともに、この主相内に前
記M成分を主体とする介在物が分散している微構造のR
−Fe−M−N系磁性材料を得ることができる。
According to the second aspect, by introducing Co, the Curie point and the magnetization are increased, and the oxidation resistance can be improved. According to claim 3, the crystal structure of the main phase is a rhombohedral or hexagonal crystal containing R and Fe as main components, and R-Fe-M having a microstructure in which the M component is dispersed in the main phase. Nitrogen infiltrates between the crystal lattices of the main phase composed of R-Fe by nitriding the alloy at a temperature of 200 to 650 ° C in an atmosphere containing at least one of nitrogen gas and ammonia gas, Substituting the elements that make up the M component,
A microstructure in which the crystal structure of the main phase is a rhombohedral or hexagonal crystal containing R, Fe, and N as main components, and the inclusions mainly containing the M component are dispersed in the main phase. R
A -Fe-MN magnetic material can be obtained.

【0040】[0040]

【実施例】以下に、本発明の実施例を示す。各特性の測
定方法および評価方法は、以下のとおりである。 《磁気特性》固有保磁力により評価した。
EXAMPLES Examples of the present invention will be shown below. The measuring method and the evaluating method of each characteristic are as follows. << Magnetic Properties >> The intrinsic coercive force was evaluated.

【0041】すなわち、平均粒径約7μmのR−Fe−
M−N系磁性粉体を、外部磁場15kOe中、12to
n/cm2 で5mm×10mm×2mm程度に成形し、
この成形体を室温の下、60kOeの磁場でパルス着磁
した後、振動試料型磁力計(VSM)により固有保磁力
(iHc/kOe)を測定した。 《窒素量、酸素量、及び水素量》窒素量及び酸素量は、
Si3 4 (SiO2 を定量含む)を標準試料として、
不活性ガス融解法により定量した。水素量は、高純度水
素ガス(99.999%)を標準ガスとして、不活性ガ
ス融解法により定量した。 《平均粒径》リー・ナース比表面積計を用いて測定し
た。 《耐酸化性能−1》110℃で200時間保持した前後
における固有保磁力の保持率(%)により評価した。
That is, R-Fe- having an average particle size of about 7 μm
MN magnetic powder in an external magnetic field of 15 kOe for 12 to
Molded to a size of 5 mm x 10 mm x 2 mm at n / cm 2 ,
The molded body was pulse-magnetized under a magnetic field of 60 kOe at room temperature, and then the intrinsic coercive force (iHc / kOe) was measured by a vibrating sample magnetometer (VSM). <Nitrogen amount, oxygen amount, and hydrogen amount> The nitrogen amount and oxygen amount are
Si 3 N 4 (containing a fixed amount of SiO 2 ) as a standard sample,
It was quantified by the inert gas melting method. The amount of hydrogen was quantified by an inert gas melting method using high-purity hydrogen gas (99.999%) as a standard gas. << Average particle size >> Measured using a Lee-Nurse specific surface area meter. << Oxidation resistance-1 >> The intrinsic coercive force retention rate (%) before and after holding at 110 ° C. for 200 hours was evaluated.

【0042】すなわち、前述のようにして固有保磁力
(A)を評価した成形品を、110℃の恒温槽に入れて
200時間保持した後に、前記と同様にして固有保磁力
(B)を測定し、B/Aを算出した。保持率の高いもの
ほど、耐酸化性能が高い。特に、本試験では各種バイン
ダーを添加せずに評価しているため、保持率70%を越
えるものは、例えばボンド磁石とした時の実用物性とし
て充分使用可能な材料と判定できる。 《耐酸化性能−2》平均粒径15μmに調整した粗粉体
試料10mgを熱天秤に入れ、50ml/minの空気
気流中、10℃/minの速度で50℃から250℃ま
で昇温させた時の重量変化率(重量%)を測定した。重
量変化率の小さいものほど酸化されにくい。 <実施例1>純度99.9%のSm、純度99.9%の
Fe、及び純度99.9%のCuを用いてアルゴンガス
雰囲気下、高周波溶解炉で溶解混合し、さらにアルゴン
雰囲気中で、920℃で50時間、続いて800℃で7
5時間焼鈍することにより、Sm13.2Fe78.1Cu8.7
組成の合金を調製した。
That is, the molded product whose intrinsic coercive force (A) was evaluated as described above was placed in a thermostat at 110 ° C. and held for 200 hours, and then the intrinsic coercive force (B) was measured in the same manner as described above. Then, B / A was calculated. The higher the retention rate, the higher the oxidation resistance performance. In particular, in this test, evaluation was performed without adding various binders, so that a material having a retention rate of more than 70% can be determined to be a material that can be sufficiently used as a practical physical property when used as a bonded magnet, for example. << Oxidation resistance-2 >> 10 mg of a coarse powder sample adjusted to have an average particle size of 15 μm was placed in a thermobalance and heated from 50 ° C. to 250 ° C. at a rate of 10 ° C./min in an air stream of 50 ml / min. The rate of change in weight (% by weight) was measured. The smaller the weight change rate, the less likely it is to be oxidized. <Example 1> Sm having a purity of 99.9%, Fe having a purity of 99.9%, and Cu having a purity of 99.9% were melt-mixed in a high-frequency melting furnace under an argon gas atmosphere, and further in an argon atmosphere. , 920 ° C for 50 hours, then 800 ° C for 7 hours
Sm 13.2 Fe 78.1 Cu 8.7 by annealing for 5 hours
An alloy of composition was prepared.

【0043】この合金をジョークラッシャーにより粉砕
し、次いで窒素雰囲気中ローターミルでさらに粉砕した
後、ふるいで粒度を調整して、平均粒径約50μmの粉
体を得た。このSm−Fe−Cu合金粉体を横型管状炉
に仕込み、450℃において、アンモニア分圧0.32
atm、水素ガス0.68atmの混合気流中で加熱処
理し、続いてアルゴン気流中で焼鈍したのち、平均粒径
約15μmに調整した。次いで、この粗粉体をジェット
ミルにより平均粒径約7μmに粉砕した。
This alloy was crushed with a jaw crusher and then further crushed with a rotor mill in a nitrogen atmosphere, and the particle size was adjusted with a sieve to obtain a powder having an average particle size of about 50 μm. This Sm-Fe-Cu alloy powder was charged into a horizontal tubular furnace and the ammonia partial pressure was 0.32 at 450 ° C.
After heat treatment in a mixed gas flow of atm and hydrogen gas of 0.68 atm, followed by annealing in an argon gas flow, the average particle size was adjusted to about 15 μm. Next, this coarse powder was pulverized by a jet mill to an average particle size of about 7 μm.

【0044】このとき、粉砕ガスとしては、窒素を主体
とし、一部酸素及び水蒸気を混入させたガスを用いた。
得られたSm−Fe−Cu−N系粉体の組成と、耐酸化
性能の評価結果とを表1に併せて示す。また、7μmに
粉砕したSm−Fe−Cu−N系粉体の成形体の固有保
磁力は9.8kOe、残留磁束密度は7.6kGであっ
た。なお、X線回折法により解析した結果、この材料の
結晶構造は主として菱面体晶であった。また、SEM及
びTEM写真による解析の結果、菱面体晶相内にCuを
主体とする介在物の分散が認められ、介在物間平均距離
は0.10μmであることが判った。 <実施例2>純度99.9%のSm、純度99.9%の
Fe、および純度99.9%のInを用いてアルゴンガ
ス雰囲気下、高周波溶解炉で溶解混合し、さらにアルゴ
ン雰囲気中で、880℃で10時間、続いて850℃で
20時間、さらに630℃で120時間焼鈍することに
より、Sm12.7Fe81.2In6.1 組成の合金を調製し
た。
At this time, as the crushing gas, a gas mainly containing nitrogen and partially mixed with oxygen and water vapor was used.
Table 1 also shows the composition of the obtained Sm-Fe-Cu-N-based powder and the evaluation result of the oxidation resistance performance. The intrinsic coercive force of the Sm-Fe-Cu-N-based powder compact pulverized to 7 μm was 9.8 kOe, and the residual magnetic flux density was 7.6 kG. As a result of analysis by an X-ray diffraction method, the crystal structure of this material was mainly rhombohedral. As a result of analysis by SEM and TEM photographs, it was found that inclusions mainly containing Cu were dispersed in the rhombohedral phase, and the average distance between inclusions was 0.10 μm. <Example 2> Sm having a purity of 99.9%, Fe having a purity of 99.9%, and In having a purity of 99.9% were melt-mixed in a high-frequency melting furnace in an argon gas atmosphere, and further in an argon atmosphere. An alloy having a composition of Sm 12.7 Fe 81.2 In 6.1 was prepared by annealing at 880 ° C. for 10 hours, 850 ° C. for 20 hours, and 630 ° C. for 120 hours.

【0045】以下、実施例1と同様にして平均粒径15
μmの粗粒子を得、表1に示す組成の平均粒径7μmの
Sm−Fe−In−N系粉体を得た。7μmの粉体から
なる成形体の固有保磁力は6.9kOe、残留磁束密度
は7.1kGであった。なお、X線回折法により解析し
た結果、この材料の結晶構造は主として菱面体晶であっ
た。また、SEM及びTEM写真による解析の結果、菱
面体晶相内にInを主体とする介在物の分散が認めら
れ、介在物間平均距離は0.30μmであることが判っ
た。 <実施例3>純度99.9%のSm、純度99.9%の
Fe、純度99.9%のCo、及び純度99.9%のI
nを用いてアルゴンガス雰囲気下、高周波溶解炉で溶解
混合し、さらにアルゴン雰囲気中で、900℃で70時
間、続いて850℃で100時間焼鈍することにより、
Sm12.8Fe60.8Co20.3In6.1 組成の合金を調製し
た。
Thereafter, in the same manner as in Example 1, the average particle size is 15
Coarse particles of μm were obtained, and Sm—Fe—In—N-based powder having the composition shown in Table 1 and an average particle size of 7 μm was obtained. The intrinsic coercive force of the molded body made of 7 μm powder was 6.9 kOe and the residual magnetic flux density was 7.1 kG. As a result of analysis by an X-ray diffraction method, the crystal structure of this material was mainly rhombohedral. In addition, as a result of analysis by SEM and TEM photographs, it was found that inclusions mainly containing In were dispersed in the rhombohedral phase and the average distance between inclusions was 0.30 μm. <Example 3> Sm having a purity of 99.9%, Fe having a purity of 99.9%, Co having a purity of 99.9%, and I having a purity of 99.9%.
n in an argon gas atmosphere in a high frequency melting furnace for melting and mixing, and further in an argon atmosphere at 900 ° C. for 70 hours, followed by annealing at 850 ° C. for 100 hours,
An alloy of Sm 12.8 Fe 60.8 Co 20.3 In 6.1 composition was prepared.

【0046】以下、実施例1と同様にして平均粒径15
μmの粗粒子を得、表1に示す組成の平均粒径7μmの
Sm−Fe−Co−In−N系粉体を得た。7μmの粉
体からなる成形体の固有保磁力は9.4kOe、残留磁
束密度は8.8kGであった。なお、X線回折法により
解析した結果、この材料の結晶構造は主として菱面体晶
であった。また、SEM及びTEM写真による解析の結
果、菱面体晶相内にInを主体とする介在物の分散が認
められ、介在物間平均距離は0.08μmであることが
判った。 <実施例4>純度99.9%のSm、純度99.9%の
Fe、及び純度99.9%のCuを実施例1と同様な方
法で溶解混合して、Sm−Fe−Cu合金を得た。
Thereafter, in the same manner as in Example 1, the average particle size is 15
Coarse particles of μm were obtained, and Sm-Fe-Co-In-N-based powder having the composition shown in Table 1 and an average particle size of 7 μm was obtained. The intrinsic coercive force of the molded body made of 7 μm powder was 9.4 kOe and the residual magnetic flux density was 8.8 kG. As a result of analysis by an X-ray diffraction method, the crystal structure of this material was mainly rhombohedral. In addition, as a result of analysis by SEM and TEM photographs, it was found that inclusions mainly containing In were dispersed in the rhombohedral phase, and the average distance between inclusions was 0.08 μm. <Example 4> Sm having a purity of 99.9%, Fe having a purity of 99.9%, and Cu having a purity of 99.9% were dissolved and mixed in the same manner as in Example 1 to form an Sm-Fe-Cu alloy. Obtained.

【0047】この合金を石英ノズルに仕込み、アルゴン
ガス雰囲気下で高周波溶解した後、その溶湯を、回転速
度1000rpmで回転させてある直径25cm、幅2
cmの銅製ロール上に落とすことにより、薄片状の試料
を調整した。さらに、この試料を、アルゴン雰囲気中8
70℃で15分間、続いて700℃で4時間焼鈍するこ
とにより、Sm13.3Fe78.7Cu8.0 組成の合金を調製
した。
This alloy was charged into a quartz nozzle and subjected to high-frequency melting under an argon gas atmosphere, and then the melt was rotated at a rotation speed of 1000 rpm to have a diameter of 25 cm and a width of 2.
A flaky sample was prepared by dropping it onto a copper roll of cm. Furthermore, this sample was placed in an argon atmosphere for 8 hours.
An alloy of Sm 13.3 Fe 78.7 Cu 8.0 composition was prepared by annealing at 70 ° C. for 15 minutes and then at 700 ° C. for 4 hours.

【0048】この薄片状の試料を、実施例1と同様の方
法で窒化,焼鈍,粉砕することにより、平均粒径約15
μmの粗粉体と平均粒径約7μmの粉体とを得た。得ら
れた7μmSm−Fe−Cu−N系粉体の組成と、耐酸
化性能の評価結果とを表1に併せて示す。また、7μm
に粉砕したSm−Fe−Cu−N系粉体の成形体の固有
保磁力は10.7kOe、残留磁束密度は7.5kGで
あった。なお、X線回折法により解析した結果、この材
料の結晶構造は主として菱面体晶であった。また、SE
M及びTEM写真による解析の結果、菱面体晶相内にC
uを主体とする介在物の分散が認められ、介在物間平均
距離は0.05μmであることが判った。 <比較例1>Cuを加えない以外は実施例1と同様にす
ることにより、表1に示した組成のSm−Fe−N系粉
体を得た。得られた粉体の耐酸化性能の評価結果も、表
1に併せて示す。
This flaky sample was nitrided, annealed and pulverized in the same manner as in Example 1 to give an average particle size of about 15
A coarse powder of μm and a powder having an average particle size of about 7 μm were obtained. Table 1 also shows the composition of the obtained 7 μm Sm-Fe-Cu-N-based powder and the evaluation result of the oxidation resistance performance. Also, 7 μm
The intrinsic coercive force of the green compact of the Sm-Fe-Cu-N-based powder was 10.7 kOe and the residual magnetic flux density was 7.5 kG. As a result of analysis by an X-ray diffraction method, the crystal structure of this material was mainly rhombohedral. Also, SE
As a result of analysis by M and TEM photographs, C was found in the rhombohedral phase.
Dispersion of inclusions mainly containing u was observed, and it was found that the average distance between inclusions was 0.05 μm. <Comparative Example 1> Sm-Fe-N-based powder having the composition shown in Table 1 was obtained in the same manner as in Example 1 except that Cu was not added. Table 1 also shows the evaluation results of the oxidation resistance of the obtained powder.

【0049】また、7μmに粉砕したSm−Fe−N系
粉体の成形体の固有保磁力は2.7kOe、残留磁束密
度は8.2kGであった。以上の結果を、以下の表1に
併せて示す。
The intrinsic coercive force of the Sm-Fe-N-based powder compact pulverized to 7 μm was 2.7 kOe and the residual magnetic flux density was 8.2 kG. The above results are also shown in Table 1 below.

【0050】[0050]

【表1】 [Table 1]

【0051】表1の結果より、実施例1〜4では固有保
磁力の保持率が90%以上と高く、重量変化率は0.0
4〜0.07重量%と小さかった。これに比べて比較例
1では、固有保磁力の保持率が64%と低く、重量変化
率は0.26重量%と大きかった。 <比較例2>比較例1で得た平均粒径7μmのSm−F
e−N系粉体をさらに2μmまで粉砕した。得られた微
粉体についての固有保磁力の保持率(耐酸化性能−1)
は53%であり、成形体とした時の固有保磁力は9.5
kOe、残留磁束密度は7.6kGであった。 <比較例3>実施例2で得られた、粒径約7μmのSm
10.6Fe67.6In5.1 14.60.51.6 組成の粉体
を、2ton/cm2 、15kOeの条件で磁場成形し
た後、アルゴン雰囲気下、1100℃、1時間の条件で
熱処理を行った。これを急冷した後の成形体の固有保磁
力は0.1kOe以下であった。この成形体を再び約7
μmに粉砕した粉体の固有保磁力は0.1kOe以下で
あった。
From the results in Table 1, in Examples 1 to 4, the retention rate of the intrinsic coercive force was as high as 90% or more, and the weight change rate was 0.0.
It was as small as 4-0.07% by weight. On the other hand, in Comparative Example 1, the intrinsic coercive force retention rate was as low as 64%, and the weight change rate was as large as 0.26% by weight. <Comparative Example 2> Sm-F having an average particle size of 7 μm obtained in Comparative Example 1
The eN powder was further pulverized to 2 μm. Retention rate of intrinsic coercive force of the obtained fine powder (oxidation resistance-1)
Is 53%, and the intrinsic coercive force of the formed body is 9.5.
The kOe and the residual magnetic flux density were 7.6 kG. <Comparative Example 3> Sm obtained in Example 2 having a particle size of about 7 μm
A powder having a composition of 10.6 Fe 67.6 In 5.1 N 14.6 H 0.5 O 1.6 was magnetically molded under the conditions of 2 ton / cm 2 and 15 kOe, and then heat-treated under an argon atmosphere at 1100 ° C. for 1 hour. The intrinsic coercive force of the molded body after quenching was 0.1 kOe or less. This molded body is again about 7
The intrinsic coercive force of the powder pulverized to μm was 0.1 kOe or less.

【0052】なお、この材料の結晶構造をX線回折によ
り解析した結果、α−鉄、窒化鉄に対応する回折線が主
に検出された。
As a result of analyzing the crystal structure of this material by X-ray diffraction, diffraction lines mainly corresponding to α-iron and iron nitride were detected.

【0053】[0053]

【発明の効果】以上説明したように、請求項1によれば
R−Fe−M−N系磁性材料における各成分元素の組成
を特定することと、前記合金の主相をなす結晶構造を
R、Fe、及びNを主成分とする菱面体晶又は六方晶に
特定することとにより、R−Fe−M−N系合金に高い
磁気特性を付与することができる。
As described above, according to claim 1, the composition of each component element in the R-Fe-MN magnetic material is specified, and the crystal structure forming the main phase of the alloy is defined as R. By specifying a rhombohedral or hexagonal crystal containing Fe, Fe, and N as main components, high magnetic properties can be imparted to the R—Fe—M—N-based alloy.

【0054】また、この磁性材料の微構造を、前記主相
内にM成分を含む介在物が分散しているものとし、前記
介在物間の平均距離を0.01〜0.5μmに特定する
ことにより、この磁性材料をピンニング型とすることが
できるため、細かく粉砕して使用する場合に若干の酸化
によって粒子表面に軟磁性成分が生じても、保磁力の低
下を小さくすることができる。
Further, the microstructure of this magnetic material is such that inclusions containing the M component are dispersed in the main phase, and the average distance between the inclusions is specified to be 0.01 to 0.5 μm. As a result, since this magnetic material can be made into a pinning type, even if a soft magnetic component is generated on the surface of the particles due to slight oxidation when finely crushed and used, the decrease in coercive force can be suppressed.

【0055】その結果、高い磁気特性と優れた耐酸化性
を併せ持つ希土類−Fe−M−N系磁性材料を提供する
ことができる。請求項2によれば、キュリー点と磁化と
が上昇され、耐酸化性もより改善された磁性材料が得ら
れる。請求項3によれば、主相の結晶構造がRおよびF
eを主成分とする菱面体晶又は六方晶であり、この主相
にM成分が分散された微構造をなすR−Fe−M系合金
を、窒素ガス、アンモニアガスのうち少なくとも一種を
含む雰囲気下、200〜650℃の温度条件で窒化処理
することにより、高い磁気特性と優れた耐酸化性を併せ
持つ希土類−Fe−M−N系磁性材料が得られる。
As a result, it is possible to provide a rare earth-Fe-MN magnetic material having both high magnetic properties and excellent oxidation resistance. According to the second aspect, a magnetic material having an increased Curie point and magnetization and improved oxidation resistance can be obtained. According to claim 3, the crystal structure of the main phase is R and F.
An atmosphere containing at least one of nitrogen gas and ammonia gas, which is a rhombohedral crystal or hexagonal crystal containing e as a main component, and an R-Fe-M-based alloy having a microstructure in which an M component is dispersed in the main phase. By nitriding under a temperature condition of 200 to 650 ° C, a rare earth-Fe-MN magnetic material having high magnetic characteristics and excellent oxidation resistance can be obtained.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 一般式Rw Fex y z で表される物
質からなり、(但し、RはYを含む希土類元素から選ば
れた少なくとも一種の元素、MはCuおよびInから選
ばれた少なくとも一種の元素であり、w、x、y、zは
各成分元素の原子百分率を示し、下記(1)〜(4)式
を同時に満たす。) 3≦w≦20 ……(1) 25≦x≦93.95……(2) 0.05≦y≦50 ……(3) 3≦z≦30 ……(4) 主相の結晶構造が、前記R、Fe、及びNを主成分とす
る菱面体晶又は六方晶であるとともに、この主相内に前
記M成分を主体とする介在物が分散している微構造をな
し、前記介在物間の平均距離が0.01〜0.5μmで
あることを特徴とする磁性材料。
1. A substance represented by the general formula R w Fe x M y N z , wherein R is at least one element selected from rare earth elements including Y, and M is selected from Cu and In. W, x, y, and z are at least one element, and w, x, y, and z represent the atomic percentage of each component element and simultaneously satisfy the following formulas (1) to (4).) 3 ≦ w ≦ 20 (1) 25 ≦ x ≦ 93.95 (2) 0.05 ≦ y ≦ 50 (3) 3 ≦ z ≦ 30 (4) The crystal structure of the main phase contains R, Fe, and N as main components. And a rhombohedral or hexagonal crystal having a microstructure in which the inclusions mainly containing the M component are dispersed in the main phase, and the average distance between the inclusions is 0.01 to 0. A magnetic material having a thickness of 5 μm.
【請求項2】前記Fe成分の0.01〜50原子%をC
oで置換したことを有することを特徴とする請求項1記
載の磁性材料。
2. 0.01 to 50 atomic% of the Fe component is C
The magnetic material according to claim 1, which is substituted with o.
【請求項3】一般式Rw/ (100-z)Fex/(100-z)
y/(100-z) で表され、(但し、RはYを含む希土類元素
から選ばれた少なくとも一種の元素、MはCuおよびI
nから選ばれた少なくとも一種の元素であり、w、x、
yは各成分元素の原子百分率を示し、zは後から添加さ
れるNの含有量〔原子百分率〕を示し、w、x、y、z
は下記(1)〜(4)式を同時に満たす。) 3≦w≦20 ……(1) 25≦x≦93.95……(2) 0.05≦y≦50 ……(3) 3≦z≦30 ……(4) 主相の結晶構造がRおよびFeを主成分とする菱面体晶
又は六方晶であり、この主相にM成分が分散された微構
造をなすR−Fe−M系合金を、窒素ガス、アンモニア
ガスのうち少なくとも一種を含む雰囲気下で、200〜
650℃の温度条件により窒化処理することを特徴とす
る磁性材料の製造方法。
3. The general formula R w / (100-z) Fe x / (100-z) M
y / (100-z) (wherein R is at least one element selected from rare earth elements including Y, M is Cu and I
at least one element selected from n, w, x,
y represents the atomic percentage of each component element, z represents the content [atomic percentage] of N added later, and w, x, y, z
Satisfy the following expressions (1) to (4) at the same time. ) 3 ≦ w ≦ 20 (1) 25 ≦ x ≦ 93.95 (2) 0.05 ≦ y ≦ 50 (3) 3 ≦ z ≦ 30 (4) Crystal structure of main phase Is a rhombohedral or hexagonal crystal containing R and Fe as main components, and an R-Fe-M-based alloy having a microstructure in which the M component is dispersed in the main phase is at least one of nitrogen gas and ammonia gas. In an atmosphere containing
A method of manufacturing a magnetic material, which comprises performing a nitriding treatment under a temperature condition of 650 ° C.
JP32088292A 1992-11-30 1992-11-30 Magnetic material and its manufacturing method Expired - Lifetime JP3209292B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32088292A JP3209292B2 (en) 1992-11-30 1992-11-30 Magnetic material and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32088292A JP3209292B2 (en) 1992-11-30 1992-11-30 Magnetic material and its manufacturing method

Publications (2)

Publication Number Publication Date
JPH06168808A true JPH06168808A (en) 1994-06-14
JP3209292B2 JP3209292B2 (en) 2001-09-17

Family

ID=18126323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32088292A Expired - Lifetime JP3209292B2 (en) 1992-11-30 1992-11-30 Magnetic material and its manufacturing method

Country Status (1)

Country Link
JP (1) JP3209292B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012164983A (en) * 2012-02-17 2012-08-30 Asahi Kasei Chemicals Corp Method for manufacturing solid material for magnet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012164983A (en) * 2012-02-17 2012-08-30 Asahi Kasei Chemicals Corp Method for manufacturing solid material for magnet

Also Published As

Publication number Publication date
JP3209292B2 (en) 2001-09-17

Similar Documents

Publication Publication Date Title
EP0101552B2 (en) Magnetic materials, permanent magnets and methods of making those
JP2005527989A (en) Nanocrystalline rare earth permanent magnet materials, nanocomposite rare earth permanent magnet materials, and methods for producing these magnet materials
WO2004029996A1 (en) R-t-b based rare earth element permanent magnet
JPH11186016A (en) Rare-earth element-iron-boron permanent magnet and its manufacture
JPH06346101A (en) Magnetically anisotropic powder and its production
JP2004253697A (en) Permanent magnet and material thereof
JPH1041116A (en) R-t-m-n permanent magnetic powder and manufacture of anisotropic bond magnet
JP3560387B2 (en) Magnetic material and its manufacturing method
JP2586198B2 (en) Rare earth-Fe-B permanent magnet powder and bonded magnet with excellent magnetic anisotropy and corrosion resistance
JPH09190909A (en) Manufacture of r-t-n permanent magnet powder and of anisotropic bond magnet
Liu et al. Compositional optimization and new processes for nanocrystalline NdFeB-based permanent magnets
JP3367726B2 (en) Manufacturing method of permanent magnet
JP3645312B2 (en) Magnetic materials and manufacturing methods
JP3784085B2 (en) Magnetic material having stable coercive force and method for producing the same
JP3209291B2 (en) Magnetic material and its manufacturing method
JPH06124812A (en) Nitride magnet powder and its synthesizing method
JP3209292B2 (en) Magnetic material and its manufacturing method
JP2002043110A (en) Magnetic anisotropic agglomerate of r2t17nx magnet material, its manufacturing method, and bonded magnet
JP3294645B2 (en) Nitride magnetic powder and its production method
JPH06112019A (en) Nitride magnetic material
JP2739860B2 (en) MAGNETIC MATERIAL, MAGNET COMPRISING THE SAME, AND PROCESS FOR PRODUCING THEM
JP3037917B2 (en) Radial anisotropic bonded magnet
JPH045739B2 (en)
JP3295674B2 (en) Method for producing rare earth-iron-cobalt-nitrogen based magnetic material
JP3157302B2 (en) Nitride magnetic materials

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010619

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090713

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 9

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 9

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110713

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110713

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120713

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130713

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130713

Year of fee payment: 12