JP2012164983A - Method for manufacturing solid material for magnet - Google Patents

Method for manufacturing solid material for magnet Download PDF

Info

Publication number
JP2012164983A
JP2012164983A JP2012032884A JP2012032884A JP2012164983A JP 2012164983 A JP2012164983 A JP 2012164983A JP 2012032884 A JP2012032884 A JP 2012032884A JP 2012032884 A JP2012032884 A JP 2012032884A JP 2012164983 A JP2012164983 A JP 2012164983A
Authority
JP
Japan
Prior art keywords
magnet
solid material
magnetic
magnetic material
rare earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012032884A
Other languages
Japanese (ja)
Other versions
JP5339644B2 (en
Inventor
Etsuji Kakimoto
悦二 柿本
Nobuyoshi Imaoka
伸嘉 今岡
Takashi Chiba
昂 千葉
Kiyotaka Doke
清孝 道家
Ichiro Shibazaki
一郎 柴崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Chemicals Corp
Original Assignee
Asahi Kasei Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corp filed Critical Asahi Kasei Chemicals Corp
Priority to JP2012032884A priority Critical patent/JP5339644B2/en
Publication of JP2012164983A publication Critical patent/JP2012164983A/en
Application granted granted Critical
Publication of JP5339644B2 publication Critical patent/JP5339644B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a solid material for magnet based on rare-earth, iron, nitrogen, hydrogen and oxygen, which has a high density and a high magnetic characteristic and is excellent in thermal stability and oxygen resistance.SOLUTION: The method for manufacturing the solid material for the magnet containing a magnetic material based on rare-earth, iron, nitrogen, hydrogen and oxygen of 50-100 vol.% includes shock-compressing and solidifying a raw material powder of the magnetic material based on rare-earth, iron, nitrogen, hydrogen and oxygen by using underwater shock waves of 3-40 GPa, and obtaining the solid material for the magnet mainly containing the R-Fe-N-H-O-based magnetic material by utilizing the features such as ultra high pressure shearing performance, an activating action and a short-time phenomenon which a shock-compression technique has.

Description

本発明は、高密度で高磁気特性を有し、熱安定性、耐酸化性に優れた希土類−鉄−窒素−水素−酸素系磁石用固形材料に関する。
また、本発明は、磁性材料粉体を衝撃圧縮して、分解や脱窒を防止しながら高密度・高性能の永久磁石を得る、磁石用固形材料の製造方法に関する。
The present invention relates to a solid material for a rare earth-iron-nitrogen-hydrogen-oxygen magnet having high density, high magnetic properties, and excellent thermal stability and oxidation resistance.
The present invention also relates to a method for producing a solid material for a magnet, in which a magnetic material powder is impact-compressed to obtain a high-density and high-performance permanent magnet while preventing decomposition and denitrification.

高性能の希土類磁石としては、例えばSm−Co系磁石、Nd−Fe−B系磁石が知られている。前者は高い熱安定性と耐食性等により、また、後者は極めて高い磁気特性、低コスト、原料供給の安定性等によりそれぞれ広く用いられている。今日、更に高い熱安定性と高い磁気特性とを併せ持ち、原料コストの安価な希土類磁石が、電装用や各種FA用のアクチュエータ、あるいは回転機用の磁石として要望されている。   As high-performance rare earth magnets, for example, Sm—Co magnets and Nd—Fe—B magnets are known. The former is widely used because of its high thermal stability and corrosion resistance, and the latter is widely used because of its extremely high magnetic properties, low cost, and stability of raw material supply. Today, rare earth magnets having both higher thermal stability and higher magnetic properties and lower raw material costs are demanded as actuators for electrical equipment, various FAs, or magnets for rotating machines.

一方、菱面体晶又は六方晶の結晶構造を有する希土類−鉄化合物を、NHとHの混合ガス等の中で400〜600℃の比較的低温にて反応させる時、窒素原子及び水素原子が上記結晶、例えばThZn17型化合物の格子間位置に侵入して、キュリー温度や磁気異方性の顕著な増加を招来することが特許文献1に報告されている。
そして、近年、かかる希土類−鉄−窒素−水素系磁性材料が前記要望に沿う新磁石材料として、その実用化への期待が高まっている。
On the other hand, when a rare earth-iron compound having a rhombohedral or hexagonal crystal structure is reacted at a relatively low temperature of 400 to 600 ° C. in a mixed gas of NH 3 and H 2 , a nitrogen atom and a hydrogen atom Has been reported in Patent Document 1 to penetrate into interstitial positions of the above-mentioned crystal, for example, a Th 2 Zn 17- type compound, and cause a marked increase in Curie temperature and magnetic anisotropy.
In recent years, the rare earth-iron-nitrogen-hydrogen magnetic material is expected to be put to practical use as a new magnet material that meets the above-mentioned demand.

窒素と水素とを金属間化合物の格子間に含有し、前記菱面体晶又は六方晶の結晶構造を有する希土類−鉄−窒素−水素系磁性材料(以下R−Fe−N−H系磁性材料という)は、一般に粉体状態にて得られるが、常圧下約600℃以上の温度ではα−Fe分解相と希土類窒化物相とに分解し易いため、自己焼結により固化して磁石用固形材料とすることは、通常の工業的方法では非常に困難である。そこで、R−Fe−N−H系磁性材料を用いた磁石としては、樹脂をバインダとしたボンド磁石が生産され使用されている。しかし、当該材料を用いて作られた磁石は、多くは400℃以上のキュリー温度を有し、本来200℃以上の温度でも磁化を失わない磁性粉体を使用しているにもかかわらず、非特許文献1によると、12−ナイロン樹脂などのバインダの耐熱温度が低いことと保磁力の温度係数が−0.5%/℃程度であるのに対し保磁力が0.6MA/mと小さいことが主な原因となって不可逆減磁率が大きくなり、概ね100℃未満の温度でしか使用されていない。すなわち、最近の高負荷の要求に対して、150℃以上の高温の環境下で使用される動力源としてのブラシレスモータ等を作る場合、このボンド磁石は使用することができないという問題があった。   A rare earth-iron-nitrogen-hydrogen magnetic material (hereinafter referred to as R-Fe-N-H magnetic material) containing nitrogen and hydrogen in the intermetallic compound lattice and having the rhombohedral or hexagonal crystal structure. ) Is generally obtained in a powder state, but is easily decomposed into an α-Fe decomposition phase and a rare earth nitride phase at a temperature of about 600 ° C. or higher under normal pressure. It is very difficult to do so by ordinary industrial methods. Therefore, as a magnet using an R—Fe—N—H magnetic material, a bonded magnet using a resin as a binder is produced and used. However, many of the magnets made using this material have a Curie temperature of 400 ° C. or higher, and use magnetic powder that does not lose its magnetization even at temperatures of 200 ° C. or higher. According to Patent Document 1, the heat resistant temperature of a binder such as 12-nylon resin is low, and the coercive force temperature coefficient is about -0.5% / ° C, whereas the coercive force is as small as 0.6 MA / m. As a result, the irreversible demagnetization factor increases, and is generally used only at temperatures below 100 ° C. That is, when a brushless motor or the like as a power source used in a high temperature environment of 150 ° C. or higher is made in response to the recent demand for high loads, there is a problem that this bond magnet cannot be used.

また、樹脂をバインダとした圧縮成形ボンド磁石を製造する場合、充填率を向上させて高性能化するには、工業的に難しい1GPa以上の成形圧力が必要であり、金型寿命等を考慮すると、磁性材料の混合比率は体積分率で80%未満にせざるを得ない場合が多く、圧縮成形ボンド磁石によってはR−Fe−N−H系磁性材料の優れた基本磁気特性が十分に発揮できないという問題があった。
例えば、R−Fe−N−H系磁性材料を原料とするボンド磁石の中で、極めて高い磁気特性を有するものとして(BH)max=186kJ/mの圧縮成形ボンド磁石が非特許文献2にて報告されているが、従来のSm−Co系、Nd−Fe−B系焼結磁石等と比較して、R−Fe−N−H系磁性材料の高い基本磁気特性を十分に発揮しきれていない。
In addition, when producing a compression-bonded bonded magnet using a resin as a binder, an industrially difficult molding pressure of 1 GPa or more is required to improve the filling rate and improve the performance. In many cases, the mixing ratio of the magnetic material must be less than 80% in terms of volume fraction, and the excellent basic magnetic properties of the R—Fe—N—H magnetic material cannot be sufficiently exerted depending on the compression molded bond magnet. There was a problem.
For example, among bonded magnets made from R—Fe—N—H based magnetic materials, non-patent document 2 discloses a compression molded bonded magnet having (BH) max = 186 kJ / m 3 as having extremely high magnetic properties. However, compared to conventional Sm-Co-based and Nd-Fe-B-based sintered magnets, the high basic magnetic properties of R-Fe-NH magnetic materials can be fully demonstrated. Not.

以上の問題点を解決するために、樹脂バインダを含まない希土類−鉄−窒素系磁性材料を用いた永久磁石の製造方法が特許文献2に提案されている。 しかしながら、当該方法によると、衝撃圧縮後の残留温度をThZn17型希土類−鉄−窒素系磁性材料の分解温度以下に抑制するためには、衝撃圧縮の際の圧力を一定の狭い範囲に限定しなければならないという欠点があった。これは、従来の衝撃波を用いた場合には、衝撃波自体の持続時間が短いにもかかわらず、磁性材料の温度が高く且つ長い時間にわたって保持される結果、磁性材料が非常に分解され易いからである。 In order to solve the above problems, Patent Document 2 proposes a method of manufacturing a permanent magnet using a rare earth-iron-nitrogen based magnetic material that does not contain a resin binder. However, according to this method, in order to suppress the residual temperature after impact compression below the decomposition temperature of the Th 2 Zn 17 type rare earth-iron-nitrogen based magnetic material, the pressure during impact compression is kept within a certain narrow range. There was the disadvantage of having to limit. This is because when a conventional shock wave is used, although the duration of the shock wave itself is short, the temperature of the magnetic material is high and the magnetic material is very easily decomposed as a result of being held for a long time. is there.

しかも、当該方法によれば、得られたものの密度が、最高でも7.28g/cmにとどまるものであった。さらに、当該方法によれば、希土類−鉄−窒素系磁性材料の分解を十分に抑えられないため、保磁力も最高で0.21MA/mと低くとどまるものであった。
また、特許文献3には、大型でヒビや欠けのない成形体を得る目的で、円筒収束衝撃波を用いてThZn17型希土類−鉄−窒素系磁性材料を圧縮固化する方法が開示されているが、当該方法により得られる磁石においても、密度の最高値が7.43g/cm、保磁力の最高値が0.62MA/mと、まだ満足できるものではなかった。
In addition, according to the method, the density of the product obtained was only 7.28 g / cm 3 at the maximum. Furthermore, according to this method, since the decomposition of the rare earth-iron-nitrogen based magnetic material cannot be sufficiently suppressed, the coercive force is as low as 0.21 MA / m at the maximum.
Patent Document 3 discloses a method of compressing and solidifying a Th 2 Zn 17 type rare earth-iron-nitrogen based magnetic material using a cylindrical convergent shock wave for the purpose of obtaining a large and compact molded body free from cracks and chips. However, even in the magnet obtained by this method, the maximum density was 7.43 g / cm 3 and the maximum coercive force was 0.62 MA / m, which was not satisfactory.

他に、衝撃波圧縮により成形したThZn17型希土類−鉄−窒素系磁性材料の例としては、非特許文献3に報告されたものがあるが、10GPaでは充填率が低く20GPaではα−Fe分解相とSmN相への分解が進むため、各衝撃圧縮条件での成形体密度は必ずしも7.45g/cmを超えない場合が多く、又、磁気特性の最高値は保磁力0.57MA/m、(BH)max=134kJ/mと、ThZn17型R−Fe−N−H系ボンド磁石に対して十分高い磁気特性を有しているとは言えないものであった。
以上のように、高密度で分解がなく高磁気特性で、しかも熱安定性が良い磁石用固形材料が強く求められている。
In addition, as an example of a Th 2 Zn 17 type rare earth-iron-nitrogen based magnetic material formed by shock wave compression, there is one reported in Non-Patent Document 3, but the filling rate is low at 10 GPa and α-Fe at 20 GPa. Since the decomposition into the decomposition phase and the SmN phase proceeds, the density of the molded body under each impact compression condition often does not necessarily exceed 7.45 g / cm 3, and the maximum value of the magnetic characteristics is 0.57 MA / coercivity. m, (BH) max = 134 kJ / m 3, and it cannot be said that the Th 2 Zn 17 type R—Fe—N—H based bond magnet has sufficiently high magnetic properties.
As described above, there is a strong demand for solid materials for magnets having high density, no decomposition, high magnetic properties, and good thermal stability.

これらの高性能磁石向けとは別に、一方で、家電・OA機器や電気自動車への用途において、軽量高性能化の方向も求められている。Sm−Co系磁石の密度が8.4g/cm程度、Nd−Fe−B系磁石の密度が7.5g/cm程度とこれらの磁石を搭載すると機器・ロータなどの重量が大きくなりがちであり、エネルギー効率の劣るものとなる場合があった。また、用途によっては磁気特性に余裕があるため磁石の小型化による軽量化が可能であっても、加工による歩留まりを考慮するとコスト的に必ずしも有利とは言えないものであった。例えば、切削屑は切削面積に比例するので体積が小さくなるほど製品の単位体積当たりの歩留まりは悪くなってしまう。 Apart from these high-performance magnets, on the other hand, there is also a demand for light weight and high-performance in applications for home appliances / OA devices and electric vehicles. When these magnets are mounted, the density of Sm-Co magnets is about 8.4 g / cm 3 and the density of Nd-Fe-B magnets is about 7.5 g / cm 3. In some cases, the energy efficiency is inferior. In addition, depending on the application, there is a margin in the magnetic characteristics, so even if the weight can be reduced by downsizing the magnet, it is not necessarily advantageous in terms of cost in consideration of the yield by processing. For example, since the cutting waste is proportional to the cutting area, the yield per unit volume of the product becomes worse as the volume becomes smaller.

その欠点を補う各種ボンド磁石は上述のように熱安定性に劣るものなので、軽量でありながら高磁気特性であり、熱安定性に優れ、コストパフォーマンスの高い磁石はまだ開発されていない。
また、特許文献4に優れた磁気特性を有する希土類−鉄−窒素−水素−酸素系磁性材料(以下R−Fe−N−H−O系磁性材料という)が提案されており、酸素成分を制御することにより、磁気特性、耐食性ともに優れた材料とした材料である。保磁力の向上に伴う安定した磁気特性を有することと耐酸化性が比較的高いために錆が発生しにくいことが大きな特徴とされる。
As described above, various bonded magnets that compensate for the disadvantages are inferior in thermal stability, so that magnets that are lightweight but have high magnetic properties, excellent thermal stability, and high cost performance have not yet been developed.
Patent Document 4 proposes a rare earth-iron-nitrogen-hydrogen-oxygen based magnetic material (hereinafter referred to as R—Fe—N—H—O based magnetic material) having excellent magnetic properties, and controls the oxygen component. By doing so, it is a material having excellent magnetic properties and corrosion resistance. The main features are that it has stable magnetic properties accompanying an improvement in coercive force and that oxidation resistance is relatively high, and that rust is unlikely to occur.

しかし、このR−Fe−N−H−O系磁性材料は特許文献5及び特許文献6に開示されているように、前述のR−Fe−N−H系材料を好適にボンド磁石として用いるために発明されたものであり、磁石用固形材料として応用された例は未だ報告されていない。   However, this R—Fe—N—H—O-based magnetic material, as disclosed in Patent Document 5 and Patent Document 6, preferably uses the aforementioned R—Fe—N—H-based material as a bonded magnet. No examples have been reported yet, which have been invented as a solid material for magnets.

特許第2703281号公報Japanese Patent No. 2703281 特許第3108232号公報Japanese Patent No. 3108232 特開2001−6959号公報JP 2001-6959 A 特許第2708568号公報Japanese Patent No. 2708568 特許第2857476号公報Japanese Patent No. 2857476 特許第2708578号公報Japanese Patent No. 2708578 電気学会技術報告第729号、電気学会編、第41頁IEEJ Technical Report 729, IEEJ, 41 Appl.Phys.Lett.、第75巻、第11号、1601頁Appl. Phys. Lett. 75, No. 11, p. 1601 J.Appl.Phys.第80巻、第1号、356頁J. et al. Appl. Phys. Volume 80, Issue 1, Page 356

本発明の第1目的は、高密度で高磁気特性を有し、熱安定性、耐酸化性に優れたR−Fe−N−H−O系磁石用固形材料、及びその製造方法を提供することである。本発明は、着磁などよって磁化した状態である磁石も含んだ磁石用固形材料を提供する。   The first object of the present invention is to provide an R—Fe—N—H—O magnet solid material having high density, high magnetic properties, excellent thermal stability and oxidation resistance, and a method for producing the same. That is. The present invention provides a solid material for a magnet including a magnet that is magnetized by magnetization or the like.

本発明者等は、上記課題について、鋭意検討した結果、磁気特性及び耐酸化性が優れたR−Fe−N−H−O系磁性材料を、磁場中若しくは無磁場で圧粉成形体にした後、水中衝撃波を用いて衝撃圧縮固化し、衝撃圧縮の持つ超高圧剪断性、活性化作用、短時間現象などの特徴を活かして、R−Fe−N−H−O系磁性材料を主として含有する磁石用固形材料を得ることができることを見出し、本発明を完成した。   As a result of intensive studies on the above problems, the present inventors have made an R—Fe—N—H—O-based magnetic material excellent in magnetic properties and oxidation resistance into a green compact in a magnetic field or without a magnetic field. After that, it is solidified by impact compression using underwater shock waves, and mainly contains R-Fe-N-H-O-based magnetic materials, taking advantage of the features of shock compression such as ultra-high pressure shearing, activation and short-time phenomenon. The present invention has been completed by finding that a solid material for a magnet can be obtained.

また、本発明者等は、上記水中衝撃波を用いた場合、R−Fe−N−H−O系磁性材料と硬磁性及び/又は軟磁性の粉体や固体、或いは非磁性材料の粉体又は固形材料を容易に一体化できることも見出し、本発明を完成した。
また、本発明者らは、更に、菱面体晶または六方晶の結晶構造を有するR−Fe−N−H−O系磁性材料を含有し、軽量で磁気特性とその安定性が高い磁石用固形材料を得るために、原料組成と含有率、その製造方法について鋭意検討したところ、窒素だけでなく水素、酸素をも含む磁性材料粉体を用い、その体積分率を80〜97体積%として、磁場中で圧粉成形体にした後、前記圧粉体を一定の衝撃波圧力を有する水中衝撃波で衝撃圧縮し、密度6.15g/cm以上で100℃以上でも使用可能な、金属結合又はイオン結合により固化したR−Fe−N−H−O系磁石用固形材料を容易に得ることができるという知見を得て、本発明を完成した。
すなわち、本発明の態様は以下のとおりである。
In addition, when the above-described underwater shock wave is used, the present inventors have prepared an R—Fe—N—H—O based magnetic material and a hard magnetic and / or soft magnetic powder or solid, or a non-magnetic material powder or The inventors have also found that solid materials can be easily integrated and completed the present invention.
Further, the present inventors further include an R—Fe—N—H—O-based magnetic material having a rhombohedral or hexagonal crystal structure, which is lightweight and has high magnetic properties and high stability. In order to obtain the material, the raw material composition and the content rate, and the manufacturing method thereof were intensively studied. Using magnetic material powder containing not only nitrogen but also hydrogen and oxygen, the volume fraction was set to 80 to 97% by volume, After forming a green compact in a magnetic field, the green compact is shock-compressed with an underwater shock wave having a constant shock wave pressure, and can be used at a density of 6.15 g / cm 3 or higher and 100 ° C. or higher. The present invention was completed with the knowledge that a solid material for R—Fe—N—H—O magnets solidified by bonding can be easily obtained.
That is, the aspects of the present invention are as follows.

(1)希土類−鉄−窒素−水素−酸素系磁性材料を50〜100体積%含有した磁石用固形材料。
(2)磁性材料が菱面体晶または六方晶の結晶構造を有する希土類−鉄−窒素−水素−酸素系磁性材料を含有することを特徴とする上記(1)に記載の磁石用固形材料。
(3)希土類−鉄−窒素−水素−酸素系磁性材料が、一般式RαFe100−α−β−γ−δβγδで表され、Rは希土類元素から選ばれる少なくとも一種の元素であり、又、α、β、γ、δは原子百分率で、3≦α≦20、5≦β≦25、0.01≦γ≦5、0.01≦δ≦10である希土類−鉄−窒素−水素−酸素系磁性材料を含有する上記(1)又は(2)の磁石用固形材料。
(4)前記R及び/又はFeの10原子%以下をNi、Ti、V、Cr、Mn、Zn、Cu、Zr、Nb、Mo、Ta、W、Ru、Rh、Pd、Hf、Re、Os、Irから選ばれる少なくとも一種の元素と置換したことを特徴とする上記(1)〜(3)の磁石用固形材料。
(5)前記N及び/又はHの10原子%以下をC、P、Si、S、Alから選ばれる少なくとも一種の元素と置換したことを特徴とする上記(1)〜(4)のいずれかの磁石用固形材料。
(6)希土類−鉄−窒素−水素−酸素系磁性材料が、一般式RαFe100−α−β−γ−δβγδεで表され、RはYを含む希土類元素から選ばれる少なくとも一種の元素であり、MはLi、Na、K、Mg、Ca、Sr、Ba、Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Mn、Pd、Cu、Ag、Zn、B、Al、Ga、In、C、Si、Ge、Sn、Pb、Biから選ばれる少なくとも一種の元素及び/又はRの酸化物、フッ化物、炭化物、窒化物、水素化物、炭酸塩、硫酸塩、ケイ酸塩、塩化物、硝酸塩から選ばれる少なくとも一種であり、又、α、β、γ、δ、εはモル百分率で、3≦α≦20、5≦β≦30、0.01≦γ≦10、0.01≦δ≦10、0.1≦ε≦40であることを特徴とする上記(1)〜(5)に記載の磁石用固形材料。
(7)前記Rの50原子%以上がSmであることを特徴とする上記(1)〜(6)のいずれかの磁石用固形材料。
(8)前記Feの0.01〜50原子%をCoで置換したことを特徴とする上記(1)〜(7)のいずれかの磁石用固形材料。
(9)前記(1)〜(8)のいずれかの希土類−鉄−窒素−水素−酸素系磁石用固形材料で、結晶相(島)、及び酸素量が島より多い非晶質相(海)を含む海−島構造を有することを特徴とする磁石用固形材料。
(10)希土類−鉄−窒素−水素−酸素系磁性材料を含有した6.15g/cmより高い密度を有する上記(1)〜(9)のいずれかの磁石用固形材料。
(11)希土類−鉄−窒素−水素−酸素系磁性材料を80〜97体積%含有することを特徴とする上記(1)〜(9)のいずれかの磁石用固形材料。
(12)希土類−鉄−窒素−水素−酸素系磁性材料以外の成分が密度6.5g/cm以下の元素、化合物またはそれらの混合物であることを特徴とする上記(11)の磁石用固形材料。
(13)希土類−鉄−窒素−水素−酸素系磁性材料以外の部分に大気、不活性ガスのうち少なくとも1種を含有することを特徴とする上記(11)〜(12)のいずれかの磁石用固形材料。
(14)希土類−鉄−窒素−水素−酸素系磁性材料以外の部分に酸化物、フッ化物、炭化物、窒化物、水素化物、炭酸化物、硫酸塩、ケイ酸塩、塩化物、硝酸塩のうち少なくとも1種を含有することを特徴とする上記(11)〜(13)のいずれかの磁石用固形材料。
(15)希土類−鉄−窒素−水素−酸素系磁性材料以外の部分に有機物を含有することを特徴とする上記(11)〜(14)のいずれかの磁石用固形材料。
(16)常温の残留磁束密度B、常温の保磁力HcJ、磁石として使用するときのパーミアンス係数P及び最高使用温度Tmaxの関係が、μを真空の透磁率とするとき、
≦μcJ(P+1)(11000−50Tmax)/(10000−6Tmax
であることを特徴とする上記(1)〜(15)のいずれかの磁石用固形材料。
(17)保磁力HcJが0.76MA/m以上で、しかも角形比B/Jが95%以上であることを特徴とする上記(1)〜(16)のいずれかの磁石用固形材料。
(18)Fe、Co、Niから選ばれる少なくとも一種の元素を含む軟磁性材料が前記希土類−鉄−窒素−水素−酸素系磁性材料と均一に分散され、一体化していることを特徴とする上記(1)〜(17)のいずれかの磁石用固形材料。
(19)希土類−鉄−ほう素系磁性材料、希土類−コバルト系磁性材料、フェライト系磁性材料から選ばれる少なくとも一種の磁性材料が前記希土類−鉄−窒素−水素−酸素系磁性材料と均一に添加混合され、一体化していることを特徴とする上記(1)〜(18)のいずれかの磁石用固形材料。
(20)磁性材料の粒界に非磁性相が存在することを特徴とする上記(1)〜(19)のいずれかに記載の磁石用固形材料。
(21)上記(1)〜(20)のいずれかの磁石用固形材料と軟磁性の固形金属材料とを接合して一体化したことを特徴とする磁石用の固形材料。
(22)軟磁性層を有し、軟磁性層と上記(1)〜(21)のいずれかの磁石用固形材料とが交互に積層されて一体化していることを特徴とする磁石用の固形材料。
(23)上記(1)〜(22)のいずれかの磁石用固形材料の少なくとも一部が非磁性の固形材料で覆われたことを特徴とする磁石用の固形材料。
(24)磁気異方性を付与したことを特徴とする上記(1)〜(23)のいずれかの磁石用固形材料。
(25)角柱状、円筒状、リング状、円板状又は平板状に成形したことを特徴とする上記(1)〜(24)のいずれかの磁石用の固形材料。
(26)上記(1)〜(7)のいずれかの磁性材料の粒界又は表面にZnを反応させた磁性材料。
(27)希土類−鉄−窒素−水素−酸素系磁性材料の原料粉体を、水中衝撃波を用いて、衝撃圧縮固化することを特徴とする上記(1)〜(26)のいずれかの磁石用固形材料の製造方法。
(28)衝撃波圧力が3〜40GPaの水中衝撃波を用いて衝撃圧縮固化してなることを特徴とする上記(1)〜(26)のいずれかの磁石用固形材料の製造方法。
(29)衝撃波圧力が3〜30GPaの水中衝撃波を用いて衝撃圧縮固化してなることを特徴とする上記(9)の磁石用固形材料の製造方法。
(30)衝撃波圧力が8〜40GPaの水中衝撃波を用いて衝撃圧縮固化してなることを特徴とする上記(10)の磁石用固形材料の製造方法。
(31)衝撃波圧力が3〜22GPaの水中衝撃波を用いて衝撃圧縮固化してなることを特徴とする上記(11)〜(15)のいずれかの磁石用固形材料の製造方法。
(32)原料粉体の圧粉成形を磁場中で行うことを特徴とする上記(1)〜(26)のいずれかの磁石用固形材料の製造方法。
(33)原料粉体を圧粉成形した後、水中衝撃波を用いて衝撃圧縮固化することを特徴とする上記(1)〜(26)のいずれかの磁石用固形材料の製造方法。
(34)原料粉体を磁場中で圧粉成形した後、水中衝撃波を用いて衝撃圧縮固化することを特徴とする上記(1)〜(26)の磁石用固形材料の製造方法。
(35)切削加工及び/又は塑性加工により成形することを特徴とする上記(1)〜(26)の磁石用固形材料の製造方法。
(36)材料を少なくとも一度100℃以上且つ分解温度より低い温度で熱処理をする工程を含むことを特徴とする磁石用固形材料の(28)〜(36)のいずれかの製造方法。
(37)磁石の静磁場を利用する装置に使用するための部品であって、上記(1)〜(26)のいずれかの磁石用固形材料を用いた部品。
(38)磁石の静磁場を利用する最高使用温度Tmaxが100℃以上の装置であって、その部品として(38)の部品を使用することを特徴とする装置。
を提供するものである。
(1) A solid material for a magnet containing 50 to 100% by volume of a rare earth-iron-nitrogen-hydrogen-oxygen magnetic material.
(2) The solid material for a magnet according to (1) above, wherein the magnetic material contains a rare earth-iron-nitrogen-hydrogen-oxygen based magnetic material having a rhombohedral or hexagonal crystal structure.
(3) rare earth - iron - nitrogen - hydrogen - at least one oxygen-based magnetic material is represented by the general formula R α Fe 100-α-β -γ-δ N β H γ O δ, R is selected from rare earth elements In addition, α, β, γ, and δ are atomic percentages, 3 ≦ α ≦ 20, 5 ≦ β ≦ 25, 0.01 ≦ γ ≦ 5, and 0.01 ≦ δ ≦ 10. The solid material for magnets according to (1) or (2) above, which contains an iron-nitrogen-hydrogen-oxygen magnetic material.
(4) 10 atomic% or less of the R and / or Fe is Ni, Ti, V, Cr, Mn, Zn, Cu, Zr, Nb, Mo, Ta, W, Ru, Rh, Pd, Hf, Re, Os The solid material for magnets according to the above (1) to (3), wherein at least one element selected from Ir is substituted.
(5) Any one of (1) to (4) above, wherein 10 atomic% or less of N and / or H is substituted with at least one element selected from C, P, Si, S, and Al Solid material for magnets.
(6) a rare earth - iron - nitrogen - hydrogen - oxygen-based magnetic material is represented by the general formula R α Fe 100-α-β -γ-δ N β H γ O δ M ε, R is a rare earth element including Y At least one element selected from the group consisting of Li, Na, K, Mg, Ca, Sr, Ba, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Pd, Cu, At least one element selected from Ag, Zn, B, Al, Ga, In, C, Si, Ge, Sn, Pb, Bi and / or an oxide of oxide, fluoride, carbide, nitride, hydride, carbonic acid It is at least one selected from salts, sulfates, silicates, chlorides and nitrates, and α, β, γ, δ and ε are molar percentages, 3 ≦ α ≦ 20, 5 ≦ β ≦ 30, 0 .01 ≦ γ ≦ 10, 0.01 ≦ δ ≦ 10, 0.1 ≦ ε ≦ 40, (1) to ( Solid material for magnets as described in 5).
(7) The solid material for magnets according to any one of (1) to (6) above, wherein 50 atomic% or more of R is Sm.
(8) The solid material for a magnet according to any one of the above (1) to (7), wherein 0.01 to 50 atomic% of the Fe is substituted with Co.
(9) The solid material for a rare earth-iron-nitrogen-hydrogen-oxygen magnet according to any one of (1) to (8) above, wherein the crystalline phase (island) and the amorphous phase (sea A solid material for magnets having a sea-island structure including
(10) The solid material for a magnet according to any one of the above (1) to (9), which contains a rare earth-iron-nitrogen-hydrogen-oxygen based magnetic material and has a density higher than 6.15 g / cm 3 .
(11) The solid material for a magnet according to any one of (1) to (9) above, which contains 80 to 97% by volume of a rare earth-iron-nitrogen-hydrogen-oxygen based magnetic material.
(12) The solid for a magnet according to (11) above, wherein the component other than the rare earth-iron-nitrogen-hydrogen-oxygen based magnetic material is an element, a compound or a mixture thereof having a density of 6.5 g / cm 3 or less. material.
(13) The magnet according to any one of (11) to (12) above, wherein the portion other than the rare earth-iron-nitrogen-hydrogen-oxygen magnetic material contains at least one of air and inert gas. Solid material.
(14) The portion other than the rare earth-iron-nitrogen-hydrogen-oxygen-based magnetic material is at least one of oxide, fluoride, carbide, nitride, hydride, carbonate, sulfate, silicate, chloride, and nitrate. 1 type of solid material for magnets in any one of said (11)-(13) characterized by the above-mentioned.
(15) The magnet solid material according to any one of (11) to (14) above, wherein an organic substance is contained in a portion other than the rare earth-iron-nitrogen-hydrogen-oxygen magnetic material.
(16) When the relationship between the residual magnetic flux density B r at normal temperature, the coercive force H cJ at normal temperature, the permeance coefficient P c when used as a magnet, and the maximum operating temperature T max is μ 0 , the permeability of vacuum is
B r ≦ μ 0 H cJ (P c +1) (11000−50T max ) / (10000−6T max )
The solid material for magnets according to any one of (1) to (15) above, wherein
(17) The magnet solid according to any one of (1) to (16) above, wherein the coercive force H cJ is 0.76 MA / m or more and the squareness ratio B r / J s is 95% or more. material.
(18) The soft magnetic material containing at least one element selected from Fe, Co, and Ni is uniformly dispersed and integrated with the rare earth-iron-nitrogen-hydrogen-oxygen based magnetic material. (1) -Solid material for magnets in any one of (17).
(19) At least one magnetic material selected from a rare earth-iron-boron magnetic material, a rare earth-cobalt magnetic material, and a ferrite magnetic material is uniformly added to the rare earth-iron-nitrogen-hydrogen-oxygen magnetic material The magnet solid material according to any one of the above (1) to (18), which is mixed and integrated.
(20) The solid material for a magnet according to any one of (1) to (19) above, wherein a nonmagnetic phase is present at the grain boundary of the magnetic material.
(21) A solid material for a magnet, wherein the solid material for a magnet according to any one of (1) to (20) and a soft magnetic solid metal material are joined and integrated.
(22) A solid for a magnet having a soft magnetic layer, wherein the soft magnetic layer and the solid material for magnet of any one of (1) to (21) are alternately laminated and integrated. material.
(23) A solid material for a magnet, wherein at least a part of the solid material for a magnet according to any one of (1) to (22) is covered with a nonmagnetic solid material.
(24) The solid material for magnets according to any one of (1) to (23), wherein magnetic anisotropy is imparted.
(25) A solid material for a magnet according to any one of (1) to (24) above, which is formed into a prismatic shape, a cylindrical shape, a ring shape, a disc shape, or a flat plate shape.
(26) A magnetic material obtained by reacting Zn with the grain boundary or surface of any one of the magnetic materials (1) to (7).
(27) The raw material powder of a rare earth-iron-nitrogen-hydrogen-oxygen based magnetic material is shock-compressed and solidified using an underwater shock wave. A method for producing a solid material.
(28) The method for producing a solid material for a magnet according to any one of (1) to (26) above, wherein the shock wave is solidified by impact compression using an underwater shock wave having a shock wave pressure of 3 to 40 GPa.
(29) The method for producing a solid material for a magnet according to the above (9), wherein the shock wave is solidified by impact compression using an underwater shock wave having a shock wave pressure of 3 to 30 GPa.
(30) The method for producing a solid material for a magnet according to (10) above, wherein the shock wave is solidified by impact compression using an underwater shock wave having a shock wave pressure of 8 to 40 GPa.
(31) The method for producing a solid material for a magnet according to any one of the above (11) to (15), wherein the shock wave is compressed and solidified using an underwater shock wave having a shock wave pressure of 3 to 22 GPa.
(32) The method for producing a solid material for a magnet according to any one of the above (1) to (26), wherein the raw material powder is compacted in a magnetic field.
(33) The method for producing a solid material for a magnet according to any one of the above (1) to (26), wherein the raw material powder is compacted and then impact-compressed and solidified using an underwater shock wave.
(34) The method for producing a solid material for a magnet according to the above (1) to (26), wherein the raw material powder is compacted in a magnetic field and then subjected to impact compression solidification using an underwater shock wave.
(35) The method for producing a solid material for a magnet according to the above (1) to (26), wherein the method is formed by cutting and / or plastic working.
(36) The method for producing any one of (28) to (36) of a solid material for a magnet, comprising a step of heat-treating the material at least once at a temperature of 100 ° C. or higher and lower than a decomposition temperature.
(37) A component for use in an apparatus that uses a static magnetic field of a magnet, the component using the magnet solid material according to any one of (1) to (26) above.
(38) An apparatus having a maximum operating temperature T max that utilizes a static magnetic field of a magnet of 100 ° C. or higher, wherein the part (38) is used as the part.
Is to provide.

ここで言う固形材料とは、塊状の材料のことを指す。さらに、ここで言う磁石用固形材料とは、塊状の磁性材料のことを指し、磁石用固形材料を構成する磁性材料の粉末同士が直接、または金属相若しくは無機物相を介して、連続的に結合し、全体として塊状を成している状態の磁性材料である。着磁によって磁化し、残留磁束密度を発現している状態を特に磁石と呼ぶが、磁石も又ここで言う磁石用固形材料の範疇に属する。
ここでいう希土類元素とは、周期表第IIIa族のYおよび原子番号57から71までのLa系列の15元素、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Luを指す。
ここで言う分解とは、R−Fe−N−H−O系磁性材料粉体の結晶構造が変化するのに伴ってα−Fe分解相が生じることであり、このα−Fe分解相の存在は磁気特性に悪影響を及ぼすので、上記のような分解は防止すべき現象である。但し、本発明で用いる原料の製造工程並びに本発明の磁石用固形材料を製造する工程で、酸素を含む層が非晶質化することがあるが、この現象を本発明でいう分解と区別する。
The solid material here refers to a massive material. Furthermore, the solid material for magnets mentioned here refers to a massive magnetic material, and the magnetic material powders constituting the solid material for magnets are continuously bonded directly or via a metal phase or an inorganic phase. However, the magnetic material is in the form of a lump as a whole. The state of being magnetized by magnetization and expressing the residual magnetic flux density is particularly called a magnet, but the magnet also belongs to the category of the solid material for magnets mentioned here.
The rare earth element referred to here is Y in the periodic table group IIIa and La group 15 elements having atomic numbers 57 to 71, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho. , Er, Tm, Yb, and Lu.
The term “decomposition” as used herein means that an α-Fe decomposed phase is generated as the crystal structure of the R—Fe—N—H—O based magnetic material powder changes, and this α-Fe decomposed phase exists. Has a detrimental effect on the magnetic properties, so the above-mentioned decomposition should be prevented. However, the oxygen-containing layer may become amorphous in the manufacturing process of the raw material used in the present invention and the manufacturing process of the solid material for magnet of the present invention. This phenomenon is distinguished from the decomposition in the present invention. .

本発明のように、菱面体晶又は六方晶の結晶構造を有する希土類−鉄−窒素−水素−酸素系磁性粉体等を圧粉成形し、水中衝撃波を用いた衝撃圧縮をすることにより、バインダを必要とせず、自己焼結によらずに、又、分解、脱窒を防いで、高密度、高性能な磁石用固形材料を得ることを可能にする。さらに、軽量でありながら、高性能、特に磁気特性の安定性が高い磁石用固形材料を得ることを可能にする。   By compacting rare earth-iron-nitrogen-hydrogen-oxygen magnetic powder having a rhombohedral or hexagonal crystal structure as in the present invention, and compressing the impact using an underwater shock wave, the binder is obtained. Therefore, it is possible to obtain a high-density and high-performance solid material for magnets without using self-sintering and preventing decomposition and denitrification. Furthermore, it is possible to obtain a solid material for a magnet that is lightweight but has high performance, in particular, high stability of magnetic properties.

希土類−鉄−窒素−水素−酸素系磁性材料と軟磁性の固形状金属を接合して一体化して得られた磁石用の固形材料の断面の一例を示す説明図である。It is explanatory drawing which shows an example of the cross section of the solid material for magnets obtained by joining and integrating a rare earth-iron-nitrogen-hydrogen-oxygen type magnetic material and a soft magnetic solid metal. 希土類−鉄−窒素−水素−酸素系磁性材料層と軟磁性層が交互に積層され一体化した磁石用の固形材料の断面の一例を示す説明図である。It is explanatory drawing which shows an example of the cross section of the solid material for magnets which the rare earth-iron-nitrogen-hydrogen-oxygen type | system | group magnetic material layer and the soft-magnetic layer were laminated | stacked alternately, and were integrated. 希土類−鉄−窒素−水素−酸素系磁性材料を主として含有する層の周辺の一部又は全部を非磁性の固形状材料で覆った磁石用の固形材料の断面の例を示す説明図である。It is explanatory drawing which shows the example of the cross section of the solid material for magnets which covered a part or all of the circumference | surroundings of the layer mainly containing a rare earth-iron-nitrogen-hydrogen-oxygen type magnetic material with the nonmagnetic solid material. 磁石用固形材料の断面の一例を示す説明図である。It is explanatory drawing which shows an example of the cross section of the solid material for magnets. 本発明の磁石固形材料を永久磁石同期モータに使用する場合における、表面磁石構造ロータの回転軸断面構造の一例である。It is an example of the rotating shaft cross section structure of a surface magnet structure rotor in the case of using the magnet solid material of this invention for a permanent magnet synchronous motor. 本発明の磁石固形材料を永久磁石同期モータに使用する場合における、表面磁石構造ロータの回転軸断面構造の一例である。It is an example of the rotating shaft cross section structure of a surface magnet structure rotor in the case of using the magnet solid material of this invention for a permanent magnet synchronous motor. 本発明の磁石固形材料を永久磁石同期モータに使用する場合における、埋込磁石構造ロータの回転軸断面構造の一例である。It is an example of the rotating shaft cross section structure of an embedded magnet structure rotor in the case of using the magnet solid material of the present invention for a permanent magnet synchronous motor. 本発明の磁石固形材料を永久磁石同期モータに使用する場合における、埋込磁石構造ロータの回転軸断面構造の一例である。It is an example of the rotating shaft cross section structure of an embedded magnet structure rotor in the case of using the magnet solid material of the present invention for a permanent magnet synchronous motor. 本発明の磁石固形材料を永久磁石同期モータに使用する場合における、埋込磁石構造ロータの回転軸断面構造の一例である。It is an example of the rotating shaft cross section structure of an embedded magnet structure rotor in the case of using the magnet solid material of the present invention for a permanent magnet synchronous motor. 本発明の磁石固形材料を永久磁石同期モータに使用する場合における、埋込磁石構造ロータの回転軸断面構造の一例である。It is an example of the rotating shaft cross section structure of an embedded magnet structure rotor in the case of using the magnet solid material of the present invention for a permanent magnet synchronous motor. 本発明の磁石固形材料を永久磁石同期モータに使用する場合における、埋込磁石構造ロータの回転軸断面構造の一例である。It is an example of the rotating shaft cross section structure of an embedded magnet structure rotor in the case of using the magnet solid material of the present invention for a permanent magnet synchronous motor. 本発明の磁石固形材料を永久磁石同期モータに使用する場合における、埋込磁石構造ロータの回転軸断面構造の一例である。It is an example of the rotating shaft cross section structure of an embedded magnet structure rotor in the case of using the magnet solid material of the present invention for a permanent magnet synchronous motor. 水中衝撃波を用いた衝撃圧縮法を実施する手段の一例を示す説明図である。It is explanatory drawing which shows an example of the means to implement the impact compression method using an underwater shock wave. 比較例で使用した、爆薬の爆轟波を直接用いた衝撃圧縮法を実施する手段の一例を示す説明図である。It is explanatory drawing which shows an example of the means used in the comparative example which implements the impact compression method using the detonation wave of the explosive directly.

以下、本発明について、特に好ましい態様を中心に詳細を説明する。
本発明の磁石用固形材料に用いられるR−Fe−N−H−O系磁性材料は、公知の方法により調製される。
例えば、希土類−鉄合金を高周波法、超急冷法、R/D法、HDDR法、メカニカルアロイング法、メカニカルグラインディング法などで調製し、数十〜数百μm程度に粗粉砕した後、窒素−水素混合ガス、アンモニア−水素混合ガスなどの雰囲気下で窒化水素化処理を行って微粉砕を行い、R−Fe−N−H−O系磁性材料を調製する。これらの工程中では、酸素源の種類、濃度を制御することが重要である。磁性材料の組成、合金の処理法や窒化法によっては粗粉砕や微粉砕を行わない場合もある。
Hereinafter, the present invention will be described in detail focusing on particularly preferred embodiments.
The R—Fe—N—H—O-based magnetic material used for the solid material for a magnet of the present invention is prepared by a known method.
For example, a rare earth-iron alloy is prepared by a high frequency method, an ultra-quenching method, an R / D method, an HDDR method, a mechanical alloying method, a mechanical grinding method, etc., coarsely pulverized to about several tens to several hundreds μm, and then nitrogen. -A hydrogen nitride treatment is performed in an atmosphere such as a hydrogen mixed gas or an ammonia-hydrogen mixed gas to finely pulverize to prepare an R-Fe-N-H-O-based magnetic material. In these steps, it is important to control the type and concentration of the oxygen source. Depending on the composition of the magnetic material, the alloy processing method and the nitriding method, coarse pulverization or fine pulverization may not be performed.

本発明においては、工程のいずれかの段階で水素ガス、アンモニアガス、水素を含む化合物などの水素源と接触させ、窒素のみならず水素を導入することが重要である。即ち、R−Fe−N−H−O系磁性材料の水素量については、0.01原子%以上含むことが好ましい。この水素量が0.01原子%未満であると、しばしばα−Fe分解相及び希土類窒化物分解相が生じ、保磁力が低くなり、更に耐食性が低下する場合もあり好ましくない。水素量を0.1原子%以上含有しておれば、さらに好ましい磁石用固形材料の原料となる。   In the present invention, it is important to introduce hydrogen as well as nitrogen by bringing it into contact with a hydrogen source such as hydrogen gas, ammonia gas, or a compound containing hydrogen at any stage of the process. That is, the hydrogen content of the R—Fe—N—H—O based magnetic material is preferably 0.01 atomic% or more. When the amount of hydrogen is less than 0.01 atomic%, an α-Fe decomposition phase and a rare earth nitride decomposition phase are often generated, the coercive force is lowered, and the corrosion resistance may be further lowered. If it contains 0.1 atomic% or more of hydrogen, it will become a more preferable raw material of the solid material for magnets.

同様に、本発明においては、工程のいずれかの段階で粉体を処理する雰囲気、例えば粉砕工程中のガスや溶媒、容器等の粉砕治具、熱処理工程中のガス組成や真空度など、において溶存酸素、水分、酸化物など酸素を含む物質である酸素源と接触させ、制御しながら酸素を導入することが重要である。即ち、R−Fe−N−H−O系磁性材料の酸素量については、0.01原子%以上含むことが好ましい。この酸素量が0.01原子%未満であると、保磁力が低くなり、更に耐食性が低下する場合もあり好ましくない。さらに、保磁力が高く安定した材料を得るためには、この酸素量を好ましくは0.1原子%以上、さらに好ましくは1原子%以上とすることが望まれる。   Similarly, in the present invention, in the atmosphere in which the powder is processed at any stage of the process, for example, gas and solvent during the pulverization process, pulverization jig such as a container, gas composition and vacuum degree during the heat treatment process, etc. It is important to introduce oxygen while making contact with an oxygen source which is a substance containing oxygen such as dissolved oxygen, moisture, and oxide. That is, the oxygen content of the R—Fe—N—H—O based magnetic material is preferably 0.01 atomic% or more. If the oxygen content is less than 0.01 atomic%, the coercive force is lowered, and the corrosion resistance may be further lowered. Further, in order to obtain a stable material having a high coercive force, it is desired that the oxygen content is 0.1 atomic% or more, more preferably 1 atomic% or more.

また、粉砕雰囲気中の水蒸気量や水分量を制御するなどによって、水素と酸素を同時に制御しながら導入することも可能であるR−Fe−N−H−O系磁性材料の結晶構造としては、ThZn17型結晶構造等又はそれと同様な結晶構造を有する菱面体晶、又はThNi17、TbCu、CaZn型結晶構造等又はそれと同様な結晶構造を有する六方晶、さらにRFe14BN型、RFe14CN型やR(Fe1−y12型等又はそれと同様な結晶構造を有する正方晶などが挙げられ、そのうち少なくとも一種を含むことが必要である。この中でThZn17型結晶構造等又はそれと同様な結晶構造を有する菱面体晶、又はThNi17、TbCu、CaZn型結晶構造等又はそれと同様な結晶構造を有する六方晶が全体のR−Fe−N−H−O系磁性材料のうち50体積%以上含まれることが好ましく、ThZn17型結晶構造等又はそれと同様な結晶構造を有する菱面体晶が全体のR−Fe−N−H−O系材料のうち50体積%以上含まれることが最も好ましい。 In addition, as the crystal structure of the R—Fe—N—H—O-based magnetic material, which can be introduced while simultaneously controlling hydrogen and oxygen by controlling the amount of water vapor and moisture in the pulverizing atmosphere, A rhombohedral crystal having a Th 2 Zn 17 type crystal structure or the like or a crystal structure similar thereto, or a hexagonal crystal having a Th 2 Ni 17 , TbCu 7 , CaZn 5 type crystal structure or the like or a crystal structure similar thereto, and further R 2 Fe 14 BN x type, such as tetragonal with a R 2 Fe 14 CN x type and R (Fe 1-y M y ) 12 N x type, etc. or similar crystal structure and the like, must be of them containing at least one It is. Among them, a rhombohedral crystal having a Th 2 Zn 17 type crystal structure or the like or a crystal structure similar thereto, or a hexagonal crystal having a Th 2 Ni 17 , TbCu 7 , CaZn 5 type crystal structure or the like or a crystal structure similar thereto is entirely formed. The R—Fe—N—H—O based magnetic material is preferably contained in an amount of 50% by volume or more, and a rhombohedral crystal having a Th 2 Zn 17 type crystal structure or the like or a similar crystal structure is present in the entire R—Fe It is most preferable that 50% by volume or more of the —N—H—O-based material is contained.

本発明における全体の磁石用固形材料に対するR−Fe−N−H−O系磁性材料の体積分率は50〜100体積%とすることが好ましい。但し、R−Fe−N−H−O系磁性材料のみで磁石用固形材料が構成されている場合、或いは、ガス又は有機物との複合材料である場合は、全体の磁石用固形材料に対するR−Fe−N−H−O系磁性材料の体積分率は80〜100体積%であることが好ましい。80体積%未満であると磁性粉同士の連続的な結合が不十分であり、磁石用固形材料を成すことができない。但し、R−Fe−N−H−O系磁性材料以外に、希土類−鉄−ほう素系磁性材料などの硬磁性材料、Coなどの軟磁性材料、金属や無機物である非磁性相などが含まれるときは、それらの体積分率とR−Fe−N−H−O系磁性材料の体積分率を併せた値である固形材料体積分率が80〜100体積%の範囲にあれば良い。   In the present invention, the volume fraction of the R—Fe—N—H—O-based magnetic material with respect to the entire solid material for magnets is preferably 50 to 100% by volume. However, when the solid material for magnets is composed of only the R—Fe—N—H—O-based magnetic material, or when it is a composite material with gas or organic matter, the R— The volume fraction of the Fe—N—H—O based magnetic material is preferably 80 to 100% by volume. If it is less than 80% by volume, the continuous bonding between the magnetic powders is insufficient, and a solid material for magnets cannot be formed. However, in addition to R—Fe—N—H—O based magnetic materials, hard magnetic materials such as rare earth-iron-boron based magnetic materials, soft magnetic materials such as Co, and non-magnetic phases such as metals and inorganic substances are included. The solid material volume fraction, which is a value obtained by combining these volume fractions and the volume fraction of the R—Fe—N—H—O-based magnetic material, may be in the range of 80 to 100% by volume.

ここでいう体積分率とは、磁石用固形材料の空隙を含めた全体の体積に対して磁性材料が占有する体積の割合のことである。
以上のR−Fe−N−H−O系磁性材料は、好ましくは0.1〜100μmの平均粒径を有する粉体状として得られ、磁石用固形材料の原料として供給される。平均粒径が0.1μm未満であると、磁場配向性が不十分となりやすく、残留磁束密度が低くなる傾向がある。逆に平均粒径が100μmを超えると材料組成によっては保磁力が低くなる場合があり、また密度を高くする製造条件が厳しくなる場合があるため、実用性に乏しくなる傾向にある。優れた磁場配向性を付与させるために、更に好ましい平均粒径の範囲は1〜100μmである。
The volume fraction referred to here is the ratio of the volume occupied by the magnetic material to the entire volume including the gap of the magnet solid material.
The above R—Fe—N—H—O-based magnetic material is preferably obtained as a powder having an average particle diameter of 0.1 to 100 μm and supplied as a raw material for a solid material for a magnet. When the average particle size is less than 0.1 μm, the magnetic field orientation tends to be insufficient and the residual magnetic flux density tends to be low. On the other hand, if the average particle diameter exceeds 100 μm, the coercive force may be lowered depending on the material composition, and the manufacturing conditions for increasing the density may be severe, and thus the practicality tends to be poor. In order to impart excellent magnetic field orientation, a more preferable range of the average particle diameter is 1 to 100 μm.

また、R−Fe−N−H−O系磁性材料は、高い飽和磁化、高いキュリー点とともに、大きな磁気異方性を有することが特徴である。従って、単結晶粉体とすることができるR−Fe−N−H−O系磁性材料において、外部磁場により容易に磁場配向することができ、高い磁気特性を持つ異方性磁石用固形材料とすることができる。
高い磁化と保磁力を併せ持つ磁石用固形材料の原料として、R、Feの好ましい範囲は、それぞれ5≦α≦20、10≦β≦25である。
The R—Fe—N—H—O-based magnetic material is characterized by having high magnetic anisotropy as well as high saturation magnetization and high Curie point. Therefore, in an R—Fe—N—H—O-based magnetic material that can be made into a single crystal powder, a magnetic material can be easily oriented by an external magnetic field, and has a high magnetic property. can do.
As raw materials for the solid material for magnets having both high magnetization and coercive force, the preferred ranges of R and Fe are 5 ≦ α ≦ 20 and 10 ≦ β ≦ 25, respectively.

全体の充填率がほぼ100%で、本発明の方法で実現する強固な金属結合を有する磁石用固形材料を得るための原料粉体中のM成分の好ましい範囲は0.1≦ε≦10である。さらに金属バインダ磁石に比べ保磁力が高く、十分高い磁化を有する磁石用固形材料とするM成分の好ましい範囲は0.1≦ε≦5、更に好ましい範囲は0.1≦ε≦3である。磁化や(BH)max値を非常に高いものとするためには0.1≦ε≦1の範囲とすれば良いが、この場合保磁力の値が不安定になりやすい傾向がある。 The preferable range of the M component in the raw material powder for obtaining a solid material for a magnet having a solid metal bond with an overall filling rate of almost 100% and realized by the method of the present invention is 0.1 ≦ ε ≦ 10. is there. Furthermore, the preferable range of the M component that has a coercive force higher than that of the metal binder magnet and has a sufficiently high magnetization is 0.1 ≦ ε ≦ 5, and a more preferable range is 0.1 ≦ ε ≦ 3. In order to make the magnetization and (BH) max value very high, the range of 0.1 ≦ ε ≦ 1 is sufficient. In this case, however, the coercive force value tends to become unstable.

Nd−Fe−B系焼結磁石は、磁気特性が極めて高く、VCMなどのアクチュエータや各種モータに多用されているが、表面が常温の大気中でも容易に酸化してしまうため、錆落ち防止の目的でニッケルメッキやエポキシ樹脂コーティングなどにより表面処理することが必須となる。
これに対して、R−Fe−N−H−O系磁性材料を用いた磁石の場合、上記の表面処理を必要としないか、或いは簡便なものとすることができる。即ち、コスト的に有利であるだけでなく、アクチュエータやモータとして使用する場合、ステータとロータ間のギャップが磁性の低い表面層分だけ狭く取れるので、回転や反復運動のトルクを大きく取れる利点があり、磁石の磁力を最大限活かすことができる。このため、例えば常温の(BH)max値がNd−Fe−B系磁石より劣る場合であっても、同様なパフォーマンスを発揮することができる。R−Fe−N−H−O系磁性材料を含有した磁石においては、表面処理を必要としない場合、常温の(BH)max値が200kJ/m以上であればコストパフォーマンスの優れた好ましい磁石となり、240kJ/m以上であれば更に好ましい。但し、本発明の中で、ピンニング型の磁化反転機構を持つ磁石用固形材料においては、原料磁性粉自体が熱安定性、耐食性に非常に優れるため、高温扁平用途では特に、常温の(BH)max値が200kJ/m未満であっても好適に用いられるが、その場合であっても常温の(BH)max値が100kJ/m以上あることが望ましい。
Nd-Fe-B-based sintered magnets have extremely high magnetic properties and are widely used in actuators and various motors such as VCM. However, the surface is easily oxidized even in the air at room temperature, so the purpose of preventing rust removal Therefore, it is essential to perform surface treatment by nickel plating or epoxy resin coating.
On the other hand, in the case of a magnet using an R—Fe—N—H—O-based magnetic material, the above-described surface treatment is not required or can be simplified. That is, not only is it advantageous in terms of cost, but also when used as an actuator or motor, the gap between the stator and the rotor can be narrowed by the surface layer with low magnetism, so there is an advantage that a large torque can be obtained for rotation and repetitive motion. , Make the most of the magnet's magnetic force. For this reason, for example, even when the (BH) max value at room temperature is inferior to that of an Nd—Fe—B magnet, the same performance can be exhibited. In a magnet containing an R—Fe—N—H—O-based magnetic material, when a surface treatment is not required, a preferred magnet having excellent cost performance if the (BH) max value at room temperature is 200 kJ / m 3 or more. More preferably, it is 240 kJ / m 3 or more. However, in the present invention, in a solid material for a magnet having a pinning type magnetization reversal mechanism, the raw magnetic powder itself is very excellent in thermal stability and corrosion resistance. Even if the max value is less than 200 kJ / m 3 , it is preferably used, but even in that case, it is desirable that the (BH) max value at room temperature is 100 kJ / m 3 or more.

さらに、等方性の磁石用固形材料においては、さらなる低パーミアンス用途や多極着磁をして応用する場合に好適であって、その場合、常温の(BH)max値が150kJ/m未満であっても良いが、常温の(BH)max値が50kJ/m以上あることが望ましい。
本発明の磁石用固形材料における第1の態様は、7.45g/cmより高い密度を有することを特徴とするR−Fe−N−H−O系磁石用固形材料である。磁化及び磁束密度は充填率に比例するため、密度が小さくなるほど残留磁束密度が低くなり、最大エネルギー積が低下するので、一般に充填率が高い磁石用固形材料ほど高性能磁石用として好適に用いられる。また、R−Fe−N−H−O系磁石材料は多くの場合微粉体であるため、連続孔であるボイド等の酸素の通り道が多く存在すると、微粉体の表面が酸化劣化して保磁力が低下する要因となる。従って、材料組成・用途によっては、十分に密度を上昇させ、表面からの酸素の進入を防ぐことが必要であり、充填率は95%以上、好ましくは98%以上であることが要求され、特に表面近くの充填率は100%近いことが要求される場合がある。
Furthermore, isotropic solid materials for magnets are suitable for applications with further low permeance applications and multipolar magnetization, in which case the (BH) max value at room temperature is less than 150 kJ / m 3. However, it is desirable that the (BH) max value at room temperature is 50 kJ / m 3 or more.
The 1st aspect in the solid material for magnets of this invention is a solid material for R-Fe-N-O-type magnets characterized by having a density higher than 7.45 g / cm < 3 >. Since the magnetization and magnetic flux density are proportional to the filling factor, the residual magnetic flux density decreases and the maximum energy product decreases as the density decreases. Generally, a solid material for a magnet with a high filling factor is preferably used for a high-performance magnet. . In addition, since the R—Fe—N—H—O based magnet material is often a fine powder, if there are many passages of oxygen such as voids that are continuous holes, the surface of the fine powder is oxidized and deteriorated, resulting in a coercive force. Is a factor that decreases. Therefore, depending on the material composition and application, it is necessary to sufficiently increase the density and prevent the ingress of oxygen from the surface, and the filling rate is required to be 95% or more, preferably 98% or more. The filling rate near the surface may be required to be close to 100%.

ここに言う充填率とは、本発明の磁石用固形材料がR−Fe−N−H−O系磁性材料のみで構成されている場合、R−Fe−N−H−O系磁石用固形材料の密度と真密度との比である。また、ここで言う真密度とは、X線から求められる、R−Fe−Nユニットセルの体積vと、そのユニットセルを構成する原子の原子量の総和wから求められる密度w/vのことであり、一般にX線密度Dxと呼ばれるものであり、磁石用固形材料の密度Dmは、アルキメデス法や体積法などのマクロな方法で求めることができる。   The filling rate mentioned here means that when the solid material for magnet of the present invention is composed only of the R—Fe—N—H—O based magnetic material, the solid material for R—Fe—N—H—O based magnet is used. It is the ratio of the density to the true density. Moreover, the true density said here is density w / v calculated | required from the sum total w of the atomic weight of the atom which comprises the volume v of the R-Fe-N unit cell calculated | required from the X-ray, and the unit cell. Yes, it is generally called X-ray density Dx, and the density Dm of the magnet solid material can be determined by a macro method such as Archimedes method or volume method.

酸化劣化が顕著となる材料組成、用途の組み合わせにおいては、磁石用固形材料の密度は、7.45g/cmより大きいことが好ましく、7.50g/cmより大きいことが更に好ましく、7.55g/cmより大きいことが更に好ましく、7.60g/cm以上であることが最も好ましい。また、原料の組成にもよるが、密度が8.0g/cmを超えると、逆に、高磁気特性を有するR−Fe−N−H−O相以外の相が生じ、磁気特性が低下する場合が多いので好ましくない。なお、酸化劣化とは、外界の酸素源によって、磁石用固形材料の磁気特性などに対し望ましくない酸素付加とそれに伴うR−Fe−N−H−O系磁性材料の分解を伴う現象で、本磁石用固形材料並びにその原料粉体への酸素導入とは性質の異なるものである。 In a combination of material composition and application in which oxidative deterioration is significant, the density of the solid material for magnets is preferably greater than 7.45 g / cm 3, more preferably greater than 7.50 g / cm 3 , and More preferably, it is more than 55 g / cm 3, and most preferably 7.60 g / cm 3 or more. Also, depending on the composition of the raw material, when the density exceeds 8.0 g / cm 3 , conversely, a phase other than the R—Fe—N—H—O phase having high magnetic properties is generated, and the magnetic properties are deteriorated. This is not preferable because it often occurs. Oxidation degradation is a phenomenon that involves undesirable addition of oxygen to the magnetic properties of solid materials for magnets and the accompanying decomposition of R—Fe—N—H—O-based magnetic materials due to an external oxygen source. The solid material for magnets and the introduction of oxygen into the raw material powder have different properties.

製造方法や条件によっては、磁石用固形材料の体積が大きくなるほど、内部における充填率が下がる場合があるが、その場合であっても、表面層の充填率が充分上がっていてその厚みが充分大きければ、実用磁石として供することができる。
しかし、磁石用固形材料がR−Fe−N−H−O系材料のみで構成され、残部が大気である場合の密度が6.15g/cm以下であると、いかなる形態、体積の磁石を形成する場合においても磁石内にボイドを多く含み、しばしば衝撃や負荷により欠けや崩壊へと発展するヒビ、割れの原因となったり、上記のような保磁力低下をきたす傾向がある。
Depending on the manufacturing method and conditions, the filling rate in the interior may decrease as the volume of the solid material for the magnet increases, but even in that case, the filling rate of the surface layer is sufficiently increased and the thickness thereof is sufficiently large. For example, it can be used as a practical magnet.
However, if the solid material for the magnet is composed of only the R—Fe—N—H—O-based material and the density is 6.15 g / cm 3 or less when the balance is the atmosphere, any shape and volume of magnet can be obtained. Even when the magnet is formed, the magnet contains a lot of voids, and often tends to cause cracks and cracks that develop into chipping or collapse due to impact or load, or to reduce the coercive force as described above.

本発明の方法によれば、R−Fe−N−H−O系磁性材料のみを原料として5cm以下の磁石用固形材料を調製する場合、7.60g/cmを超える密度を有するものが比較的容易に得られるが、例えば0.1mの体積を有する磁石用固形材料を作製した場合において、形態によっては内部に7.45g/cm以下の密度の部分が生じることがある。しかし、そのような場合にあっても、表層部において一部でも7.60g/cmを超える密度を有する磁石用固形材料となっている場合は、耐酸化性を有し、高磁気特性であって、本発明の磁石用固形材料の範疇に属するものと言うことができる。 According to the method of the present invention, when preparing a solid material for a magnet of 5 cm 3 or less using only an R—Fe—N—H—O-based magnetic material as a raw material, a material having a density exceeding 7.60 g / cm 3 is used. For example, when a magnet solid material having a volume of 0.1 m 3 is produced, a portion having a density of 7.45 g / cm 3 or less may be formed inside depending on the form. However, even in such a case, if it is a solid material for a magnet having a density exceeding 7.60 g / cm 3 at least in the surface layer portion, it has oxidation resistance and high magnetic properties. Therefore, it can be said that it belongs to the category of the solid material for magnets of the present invention.

ところで、水素を含有しないThZn17型R−Fe−N系磁性材料は、磁気特性の最適化を図ろうとした場合、窒素量がRFe17当たり3個より少なくなり、熱力学的に不安定なRFe173−Δ相が生じる。この相は、熱的、機械的なエネルギーにより容易にα−Fe分解相と窒化希土類とへ分解する結果、従来の衝撃波圧縮法によっては高性能な磁石用固形材料とはなり得ない。
これに対し、水素が上記で規定される範囲内に制御されれば、通常、その主相は熱力学的に安定なRFe17相又は余剰な窒素を含むRFe173+Δ相(通常xは0.01〜2程度の範囲)になって熱的、機械的なエネルギーによるα−Fe分解相及び窒化希土類への分解は、Hを含まないThZn17型R−Fe−N系磁性材料に比べて顕著に抑制される。
By the way, the Th 2 Zn 17 type R—Fe—N based magnetic material containing no hydrogen has a nitrogen content of less than 3 per R 2 Fe 17 when the magnetic properties are to be optimized, An unstable R 2 Fe 17 N 3-Δ phase is formed. This phase is easily decomposed into an α-Fe decomposition phase and a rare earth nitride by thermal and mechanical energy. As a result, the conventional shock wave compression method cannot be a high-performance magnet solid material.
On the other hand, if the hydrogen is controlled within the range defined above, the main phase is usually a thermodynamically stable R 2 Fe 17 N 3 H x phase or R 2 Fe 17 containing excess nitrogen. Decomposition into an α-Fe decomposition phase and a rare earth nitride by thermal and mechanical energy in the N 3 + Δ H x phase (usually x is in the range of about 0.01 to 2) causes Th 2 Zn 17 not containing H. This is significantly suppressed as compared with the type R—Fe—N magnetic material.

このことは、密度が高く、高磁気特性で、熱安定性、耐酸化性の優れた磁石用固形材料を得るための重要な知見に他ならない。
また、R−Fe−N−H−O系原料粉体中の酸素はこの安定なRFe17相内に必ずしも全量含まれる必要はなく、この強磁性層の周りに局在し、R−Fe−N−H−O、R−Fe−H−O、R−Fe−O、R−Fe−N−H−O−M、R−Fe−H−O−M、R−Fe−O−MなどのR、Fe、N、H、Mのうち少なくとも1種とOを含む任意の組成の非晶質相を形成している構造を取ることが磁気特性の安定上好ましい場合がある。このような磁性粉体の構造の一例として、J.Alloys and Compounds.、第193巻、235頁には、ある条件で作製した強磁性を示すR−Fe−N−H−O微粉体の表面に、酸素が富化された100nm程度の非晶質層が存在する構造を取ることが報告されている。この酸素を多く含む層が分解し、α−Fe分解相に変化すると保磁力が大きく低下する。従来の衝撃波圧縮法によっては、この非晶質相の分解も誘発されるため、従来法によりR−Fe−N−H−O系材料が高性能な磁石用固形材料となりにくいもうひとつの理由になっている。
This is nothing but an important finding for obtaining a solid material for a magnet having a high density, high magnetic properties, excellent thermal stability and oxidation resistance.
Further, the oxygen in the R—Fe—N—H—O-based raw material powder does not necessarily need to be entirely contained in the stable R 2 Fe 17 N 3 H x phase, and is localized around the ferromagnetic layer. R—Fe—N—H—O, R—Fe—H—O, R—Fe—O, R—Fe—N—H—O—M, R—Fe—H—O—M, R— When it is preferable in terms of stability of magnetic properties to adopt a structure in which an amorphous phase having an arbitrary composition containing O and at least one of R, Fe, N, H, M such as Fe-OM is formed There is. As an example of the structure of such a magnetic powder, J.A. Alloys and Compounds. 193, 235, there is an amorphous layer of about 100 nm enriched with oxygen on the surface of R-Fe-N-H-O fine powder showing ferromagnetism produced under certain conditions. It has been reported to take a structure. When this oxygen-rich layer decomposes and changes to the α-Fe decomposition phase, the coercive force is greatly reduced. The conventional shock wave compression method also induces the decomposition of this amorphous phase, which is another reason why the R—Fe—N—H—O-based material is difficult to become a high-performance magnet solid material by the conventional method. It has become.

本発明で用いるR−Fe−N−H−O系磁性材料は、ニュークリエーション型、ピンニング型、エクスチェンジスプリング型、交換結合型など磁化反転のメカニズムが異なる各種磁性材料を磁石用固形材料とすることができる。これら全ての磁性材料は、いずれも600℃を超える温度で分解反応が生じるため、高温で高密度化する焼結法によっては磁石用固形材料とすることができないものであり、本発明の衝撃圧縮法を用いて成形することが非常に有効な材料群である。
上述のように、R−Fe−N−H−O系磁性材料はHを含まないR−Fe−N系磁性材料に比べて、熱的・機械的エネルギーによる分解が顕著に抑制されるが、仮に、これが分解して、約100nmを超える粒径の大きなα−Fe分解相と希土類窒化物相とが生じた場合、高価な希土類が多く含まれているのにも関わらず、α−Fe分解相が逆磁区の芽となり、保磁力が大きく低下して好ましくない。
The R—Fe—N—H—O based magnetic material used in the present invention is made of various magnetic materials having different magnetization reversal mechanisms, such as nucleation type, pinning type, exchange spring type, and exchange coupling type, as solid materials for magnets. Can do. Since all these magnetic materials undergo a decomposition reaction at a temperature exceeding 600 ° C., they cannot be made into a solid material for magnets by a sintering method in which the density is increased at a high temperature. It is a group of materials that are very effective to be molded using the method.
As described above, the R—Fe—N—H—O based magnetic material is significantly less decomposed by thermal and mechanical energy than the R—Fe—N based magnetic material containing no H, If this decomposes and an α-Fe decomposition phase and a rare earth nitride phase having a large particle diameter exceeding about 100 nm are produced, the α-Fe decomposition occurs despite the fact that a lot of expensive rare earths are contained. The phase becomes a bud of a reverse magnetic domain, and the coercive force is greatly reduced, which is not preferable.

そこで、予めR−Fe−N−H−O系磁性材料の副相として、Fe、Co、Fe−Co、パーマロイなどのFe−Ni、Fe−Co−Ni及びそれらの窒化物、さらに以上の成分と前記したM成分との合金、化合物などの軟磁性相を含有する場合、かかる軟磁性相の粒径または厚さが5〜100nm程度となるように調製することによって、実用的な保磁力を維持できる上に、高価な希土類の量を節約することができ、コストパフォーマンスの高い磁石が得られる。   Therefore, as a secondary phase of the R—Fe—N—H—O based magnetic material, Fe—Ni, Fe—Co—Ni such as Fe, Co, Fe—Co, and permalloy, and nitrides thereof, and more components And a soft magnetic phase such as an alloy or a compound with the above-described M component, by preparing the soft magnetic phase so that the particle size or thickness of the soft magnetic phase is about 5 to 100 nm, In addition to being able to maintain, the amount of expensive rare earths can be saved, and a magnet with high cost performance can be obtained.

これらの軟磁性副相は、特にR−Fe−N−H−O系磁性材料の残留磁束密度を向上させる効果を有する。しかし、軟磁性相の粒径または厚さが5nm未満であると飽和磁化が小さくなってしまい、又、100nmを超えると軟磁性相と硬磁性相並びに軟磁性相同士の交換結合による異方性を保持できなくなり、逆磁区の芽となって保磁力が低くなるので、好ましくない。
このような微構造を達成するために、R−Fe原料の作製法として、M成分を加え、超急冷法によりR−Fe−M原料とする公知の方法や、メカニカルアロイング法又はメカニカルグラインディング法などの公知の方法、又はそれに準じた粉砕法でR−Fe又はR−Fe−M原料を作製するなどの方法を採用できる。
また、このとき、軟磁性副相の量は5〜50体積%であることが好ましい。5体積%未満であると、保磁力は比較的高くなるが、残留磁束密度がR−Fe−N−H−O系材料単独の場合よりさほど高くならず、50体積%を超えると逆に残留磁束密度は高くなるが保磁力が低下し、何れも高い(BH)maxが得られない傾向がある。より好ましい軟磁性相量の範囲は10〜40体積%である。
These soft magnetic subphases have an effect of improving the residual magnetic flux density of the R—Fe—N—H—O based magnetic material. However, if the particle size or thickness of the soft magnetic phase is less than 5 nm, the saturation magnetization becomes small, and if it exceeds 100 nm, the soft magnetic phase, the hard magnetic phase, and the anisotropy due to exchange coupling between the soft magnetic phases. Is not preferable, and the coercive force is lowered due to buds of reverse magnetic domains.
In order to achieve such a microstructure, as a method for preparing the R-Fe raw material, a known method, a mechanical alloying method, or mechanical grinding, in which an M component is added and an R-Fe-M raw material is obtained by a rapid quenching method. A known method such as a method, or a method of producing an R—Fe or R—Fe—M raw material by a pulverization method according to the method can be employed.
At this time, the amount of the soft magnetic subphase is preferably 5 to 50% by volume. If it is less than 5% by volume, the coercive force is relatively high, but the residual magnetic flux density is not so high as in the case of the R—Fe—N—H—O-based material alone. Although the magnetic flux density is increased, the coercive force is decreased, and in any case, there is a tendency that a high (BH) max cannot be obtained. A more preferable range of the soft magnetic phase amount is 10 to 40% by volume.

更に、Nd−Fe−B系などの希土類−鉄−ほう素系磁性材料、SmCo系やSmCo17系のような希土類−コバルト系磁性材料、フェライト系磁性材料などの硬磁性粉体のうち一種又は二種以上を、50体積%以下の範囲内で、R−Fe−N−H−O系磁性材料と混合することにより、用途に応じて磁気特性、熱安定性、コストなどの各種実用化要件が最適化された磁石用固形材料を得ることができる。 Furthermore, such Nd-Fe-B type rare earth - iron - boron Motokei magnetic material, SmCo 5 type or Sm 2 Co 17 based rare earth such as - cobalt based magnetic material, the hard magnetic powder such as ferrite-based magnetic material By mixing one or more of them with an R—Fe—N—H—O-based magnetic material within a range of 50% by volume or less, various properties such as magnetic properties, thermal stability, cost, etc. depending on the application. It is possible to obtain a solid material for a magnet having optimized practical application requirements.

一般に、希土類−鉄−ほう素系材料を多く含む程、磁気特性全般が高くなるが、耐食性が低下する上にコスト高となり、希土類−コバルト系磁性材料を多く含む程、熱安定性が向上するが、磁気特性が低下し、コストが高くなり、フェライト系磁性材料を多く含む程、コストが安くなり、温度特性は向上するが磁気特性が大きく低下する。R−Fe−N−H−O系磁性材料と極端に粒径の異なる他の磁性材料を混合すると、充填率を上げる条件がより広くなる利点がある。
本発明の磁石用固形材料は、特に保磁力が高く角形比の高い磁石とすることを目的として、R−Fe−N−H−O系磁性材料の粒界に非磁相を存在させることができる。
In general, the more the rare earth-iron-boron-based material is included, the higher the overall magnetic properties, but the corrosion resistance is reduced and the cost is increased, and the more the rare-earth-cobalt-based magnetic material is included, the better the thermal stability. However, the magnetic properties are lowered, the cost is increased, and the more ferrite-based magnetic materials are contained, the lower the cost is and the temperature properties are improved, but the magnetic properties are greatly lowered. When the R—Fe—N—H—O based magnetic material and another magnetic material having extremely different particle diameters are mixed, there is an advantage that the condition for increasing the filling rate becomes wider.
The solid material for magnets of the present invention may have a non-magnetic phase present at the grain boundaries of the R—Fe—N—H—O based magnetic material for the purpose of forming a magnet having a high coercive force and a high squareness ratio. it can.

その方法としては、特許第2739860号公報及び特許第2705985号公報を初めとする公知の方法、例えば、磁性粉体と非磁性成分を混合して熱処理する方法、磁性粉体表面をメッキ処理する方法、磁性粉体表面に各種蒸着法により非磁性成分をコーティングする方法、磁性粉体を有機金属で処理し該有機金属を光分解させることにより金属成分として粉体表面をコーティングする方法等が挙げられる。さらに、R−Fe−N−H−O系磁性材料と非磁性成分を混合し圧縮成形した後、衝撃波により圧縮する方法も可能である。この磁石用固形材料の特徴は強固で緻密な粒界構造を有するため、金属バインダ磁石より少ないバインダで高い保磁力、充填率を達成でき、耐酸化性が良好となるのである。これらの材料において、R−Fe−N−H−O系磁性材料粉体同士が一部でも非磁性相を介さない強固な結合を有しておれば、機械的強度も満足する磁石用固形材料とすることができる。   As the method, known methods such as Japanese Patent No. 2739860 and Japanese Patent No. 2705985, for example, a method in which magnetic powder and a nonmagnetic component are mixed and heat-treated, and a method in which the surface of magnetic powder is plated are used. , A method of coating the surface of the magnetic powder with a non-magnetic component by various vapor deposition methods, a method of coating the surface of the powder as a metal component by treating the magnetic powder with an organic metal and photolyzing the organic metal. . Further, it is possible to use a method in which an R—Fe—N—H—O-based magnetic material and a nonmagnetic component are mixed and compression molded, and then compressed by a shock wave. Since the solid material for magnets has a strong and dense grain boundary structure, a high coercive force and a filling rate can be achieved with less binder than a metal binder magnet, and oxidation resistance is improved. In these materials, if the R—Fe—N—H—O-based magnetic material powder has a strong bond that does not involve any non-magnetic phase even if part of the powder, the solid material for magnets that satisfies the mechanical strength It can be.

非磁性成分としては、無機成分、有機成分のいずれも可能であるが、Zn、In、Sn、Ga等の融点が1000℃以下、好ましくは500℃以下の各低融点金属が好ましく、中でもZnを用いると飛躍的に保磁力が上昇し、熱安定性も向上する。高い磁気特性を実現するためには、予めR−Fe−N−H−O系磁性材料に含まれている量も含めて非磁性相の体積分率は、10体積%以下が好ましく、更に5体積%以下が好ましく、3体積%以下であると最も好ましい。又、0.1体積%未満であると保磁力に与える非磁性相の効果がほとんど見られなくなる。   As the non-magnetic component, either an inorganic component or an organic component can be used, but each low melting point metal having a melting point of 1000 ° C. or less, preferably 500 ° C. or less, such as Zn, In, Sn, Ga, etc. is preferable, and Zn is particularly preferable. When used, the coercive force is dramatically increased and the thermal stability is improved. In order to realize high magnetic properties, the volume fraction of the nonmagnetic phase including the amount previously contained in the R—Fe—N—H—O-based magnetic material is preferably 10% by volume or less, and further 5 The volume% or less is preferable, and the volume% or less is most preferable. On the other hand, if it is less than 0.1% by volume, the effect of the nonmagnetic phase on the coercive force is hardly observed.

本発明の磁石用固形材料は、軟磁性の固形金属材料と接合して一体化することにより、より高いコストパフォーマンスを実現することができる。Fe材、Fe−Co材、珪素鋼板などをR−Fe−N−H−O系磁石用固形材料と組み合わせることにより、磁束密度を増強することができ、更に、表面にそれらの材料やNi若しくはNiを含有する材料を張り合わせることで、加工性や耐食性をさらに増すこともできる。
R−Fe−N−H−O系磁石用固形材料と軟磁性材を接合一体化した例を図1、図2に示す。
The solid material for magnets of the present invention can realize higher cost performance by joining and integrating with a soft magnetic solid metal material. By combining Fe material, Fe—Co material, silicon steel plate and the like with solid material for R—Fe—N—H—O magnet, the magnetic flux density can be enhanced, and further, those materials, Ni or By laminating materials containing Ni, workability and corrosion resistance can be further increased.
An example in which a solid material for an R—Fe—N—H—O magnet and a soft magnetic material are joined and integrated is shown in FIGS.

図1は、R−Fe−N−H−O系磁性材料(硬磁性層)と軟磁性の固形状金属(軟磁性層)とを接合して一体化して得られた磁石用固形材料の断面の一例を示す。
図2は、R−Fe−N−H−O系磁性材料層(硬磁性層)と軟磁性層が交互に積層され一体化された磁石用固形材料の断面の一例を示す。図2のような構成にすると、磁石の表面磁束密度を損なうことなく、低コスト化が図れる。
FIG. 1 is a cross section of a solid material for a magnet obtained by joining and integrating an R—Fe—N—H—O based magnetic material (hard magnetic layer) and a soft magnetic solid metal (soft magnetic layer). An example is shown.
FIG. 2 shows an example of a cross section of a solid material for a magnet in which R—Fe—N—H—O-based magnetic material layers (hard magnetic layers) and soft magnetic layers are alternately laminated and integrated. When the configuration as shown in FIG. 2 is adopted, the cost can be reduced without impairing the surface magnetic flux density of the magnet.

本発明の特徴として、R−Fe−N−H−O系磁性材料粉体と軟磁性バルク材又は粉体とを混合することなく、同時に仕込んで衝撃波圧縮した場合、R−Fe−N−H−O系磁性材料の固化と軟磁性材との一体化を同時に行うことが出来、後工程で一体化の為の、切り出し、溶接、接着剤などによる接着を行う必要がないため、コストメリットが大きい。
本発明の磁石用固形材料は、図3に示すように、その表面の一部又は全部を非磁性の固形材料で覆うことができる。
As a feature of the present invention, when the R—Fe—N—H—O-based magnetic material powder and the soft magnetic bulk material or powder are mixed at the same time and subjected to shock wave compression, R—Fe—N—H -O-based magnetic material can be solidified and integrated with soft magnetic material at the same time, and there is no need to perform cutting, welding, adhesive bonding, etc. large.
As shown in FIG. 3, the solid material for magnets of the present invention can cover a part or all of its surface with a nonmagnetic solid material.

図3は、非磁性体で覆われた磁石用固形材料の断面を例示する。表面全てを非磁性体で覆うような磁石用固形材料は、耐食性を増す効果もあって、高温高湿の過酷な環境での用途では磁気特性を若干犠牲にしてでも非磁性体の被覆をした方が好適な場合もある。非磁性体としては、分解温度や融点の高い有機物、高分子、無機物、非磁性金属などが挙げられるが、熱安定性が特に要求される用途では非磁性金属や無機物による被覆が好ましい。この場合も又、R−Fe−N−H−O系磁性材料粉体と非磁性固形材料又は粉体とを混合することなく同時に仕込んで、衝撃波圧縮した場合、R−Fe−N−H−O系磁性材料の固化と非磁性材との一体化を同時に行うことができる。   FIG. 3 illustrates a cross section of a solid material for a magnet covered with a nonmagnetic material. The solid material for magnets that covers the entire surface with non-magnetic material also has the effect of increasing corrosion resistance, and for applications in harsh environments of high temperature and high humidity, it was coated with non-magnetic material even at the expense of some magnetic properties. In some cases, this is preferable. Examples of non-magnetic materials include organic substances, polymers, inorganic substances, non-magnetic metals and the like having a high decomposition temperature and melting point, but coating with non-magnetic metals or inorganic substances is preferred in applications where thermal stability is particularly required. Also in this case, when the R—Fe—N—H—O-based magnetic material powder and the non-magnetic solid material or powder are charged simultaneously without mixing and subjected to shock wave compression, R—Fe—N—H— Solidification of the O-based magnetic material and integration with the non-magnetic material can be performed simultaneously.

磁石用固形材料を異方性化し、磁石とするために、通常着磁を行うが、この際に磁石用固形材料に大きな衝撃が加わり、緻密に固化したR−Fe−N−H−O系磁石用固形材料をもってしても、割れ欠けの原因となる場合がある。そのため、着磁場や着磁方法によっては、磁石表面の一部又は全部を非磁性の固形材料で覆うことにより耐衝撃性の高い磁石用固形材料とすることが好ましい。   In order to make the solid material for magnets anisotropic and to make a magnet, normal magnetization is performed. At this time, the solid material for magnets is subjected to a large impact, and the R—Fe—N—H—O system is solidified densely. Even if it has a solid material for magnets, it may cause cracks. Therefore, depending on the magnetizing magnetic field and the magnetizing method, it is preferable to cover a part or all of the magnet surface with a non-magnetic solid material to obtain a solid material for a magnet having high impact resistance.

図4は、本発明の他の磁石用固形材料の断面の一例を示すものである。即ち、R−Fe−N−H−O系磁性材料と軟磁性体及び非磁性体を組み合わせることにより、図4に示すような磁石用固形材料を形成することもできる。
本発明の磁石用固形材料は、着磁後の磁気特性に優れることが特徴である。R−Fe−N−H−O系材料が磁気異方性材料であった場合、圧縮成形時に80kA/m以上、好ましくは800kA/m以上の磁場で、磁性粉体を磁場配向することが望ましい。更にまた、衝撃波圧縮成形後に1.6MA/m以上、より好ましくは2.4MA/m以上の静磁場若しくはパルス磁場で着磁することにより、残留磁束密度及び保磁力を増加させることが望ましい。
R−Fe−N−H−O系磁性材料が等方性材料である場合、圧縮成形時の磁場配向は不要であるが、上記のような着磁を行って、充分磁気的に異方化することが必須となる。
FIG. 4 shows an example of a cross section of another magnet solid material of the present invention. That is, a solid material for a magnet as shown in FIG. 4 can be formed by combining an R—Fe—N—H—O-based magnetic material with a soft magnetic material and a non-magnetic material.
The solid material for magnets of the present invention is characterized by excellent magnetic properties after magnetization. When the R—Fe—N—H—O-based material is a magnetic anisotropic material, it is desirable to orient the magnetic powder in a magnetic field of 80 kA / m or more, preferably 800 kA / m or more during compression molding. . Furthermore, it is desirable to increase the residual magnetic flux density and the coercive force by magnetizing with a static magnetic field or pulsed magnetic field of 1.6 MA / m or more, more preferably 2.4 MA / m or more after shock wave compression molding.
When the R—Fe—N—H—O-based magnetic material is an isotropic material, magnetic field orientation during compression molding is not necessary, but magnetization is performed as described above to make it sufficiently anisotropic. It is essential to do.

また、本磁石用固形材料を着磁し、磁石として使用する場合、その用途によっては多種多様な形状が要求される。本磁石用固形材料は、樹脂バインダを含まず、且つ密度が高く、切削加工及び/又は塑性加工により、任意の形状に、通常の加工機で容易に加工することができる。特に、工業的利用価値の高い角柱状、円筒状、リング状、円板状又は平板状の形状に、容易に加工できることが大きな特徴である。一旦これらの形状に加工した後、さらにそれらに切削加工などを施し、瓦状や任意の底辺形状を有する四角柱などに加工することも可能である。即ち、任意の形状から、円筒面を含む曲面、平面により囲まれたあらゆる形態に、容易に切削加工及び/塑性加工を施すにより成形することができるのである。ここで言う切削加工とは、一般的な金属材料の切削加工であり、鋸、旋盤、フライス盤、ボール盤、砥石などによる機械加工であり、塑性加工とは、プレスによる型抜きや成形、圧延、爆発成形などである。また、冷間加工後のひずみ除去の為に、当該磁性材料粉体の分解温度以下での焼き鈍し等の熱処理を行うことができる。磁性材料粉体の組成によっては、塑性加工により、磁気異方性を付与したり強化したりすることができ、また熱処理と組み合わせることにより保磁力の調整を行うことも可能である。熱処理は、後述する衝撃波圧縮の後、生じた歪みを焼鈍したり、微細組織の調整を行い各種磁気特性を向上させるために用いることができる。更に、R−Fe−N−H−O系磁性材料に低融点金属を含む場合などにおいて、圧粉成形と同時に或いはその前後に熱処理を行って磁性粉間の仮結合を強固なものとし、その後の取り扱いを容易にすること等にも利用できる。熱処理温度としては100℃以上且つ分解温度未満の範囲で選ばれ、上述の例以外にも本発明の磁石用固形材料を製造する各工程前、中、後、さらに本発明の磁石用固形材料用に選択した原料作製工程等の任意の段階で熱処理を実施することができる。   In addition, when the magnet solid material is magnetized and used as a magnet, various shapes are required depending on the application. The solid material for magnets does not contain a resin binder, has a high density, and can be easily processed into an arbitrary shape by a normal processing machine by cutting and / or plastic processing. In particular, it is a great feature that it can be easily processed into a prismatic shape, a cylindrical shape, a ring shape, a disc shape or a flat plate shape having high industrial utility value. Once these shapes are processed, they can be further processed by cutting or the like to form tiles or quadrangular columns having an arbitrary bottom shape. In other words, from any shape, any shape surrounded by a curved surface and a plane including a cylindrical surface can be easily formed by cutting and / or plastic working. The cutting process mentioned here is a general metal material cutting process, which is machining by a saw, a lathe, a milling machine, a drilling machine, a grindstone, etc., and a plastic process is a die cutting, forming, rolling, or explosion by a press. For example, molding. Further, in order to remove strain after cold working, heat treatment such as annealing at a temperature lower than the decomposition temperature of the magnetic material powder can be performed. Depending on the composition of the magnetic material powder, the magnetic anisotropy can be imparted or strengthened by plastic working, and the coercive force can be adjusted by combining with heat treatment. The heat treatment can be used for annealing the generated strain after shock wave compression, which will be described later, or adjusting various microstructures to improve various magnetic properties. Furthermore, when the low-melting point metal is included in the R—Fe—N—H—O-based magnetic material, heat treatment is performed simultaneously with or before and after the compacting to strengthen the temporary bond between the magnetic powders, and thereafter It can also be used to facilitate the handling of The heat treatment temperature is selected in the range of 100 ° C. or higher and lower than the decomposition temperature. Besides the above-mentioned examples, before, during and after each step of producing the magnet solid material of the present invention, further for the magnet solid material of the present invention The heat treatment can be performed at any stage such as the raw material manufacturing process selected in the above.

本発明の磁石用固形材料における第2の態様は、R−Fe−N−H−O系磁性材料を80〜97体積%含有した材料である。この態様は、軽量でありながら磁気特性とその安定性が優れる磁石用固形材料を提供しようというもので、第1の態様とはその目的が全く異なるものである。この態様においては、R−Fe−N−H−O系材料以外の3〜20体積%の部分は、用途や材料組成によっては大気であっても良いが、真空、或いは密度6.5g/cm以下の元素、化合物、またはそれらの混合物であってもよい。 The 2nd aspect in the solid material for magnets of this invention is a material which contained 80-97 volume% of R-Fe-N-H-O type magnetic materials. This aspect is intended to provide a solid material for a magnet that is lightweight and has excellent magnetic properties and stability, and its purpose is completely different from that of the first aspect. In this embodiment, the portion of 3 to 20% by volume other than the R—Fe—N—H—O-based material may be air, depending on the application and material composition, but may be vacuum or density 6.5 g / cm. It may be 3 or less elements, compounds, or a mixture thereof.

本発明の第2の態様である磁石用固形材料の密度は、その特徴を活かすために、6.15〜7.45g/cmとすることが好ましい。6.15g/cm未満であってもR−Fe−N−H−O系磁性材料の成分が80体積%以上となる場合は好ましい場合がある。また、R−Fe−N−H−O系磁性材料を97体積%以下としても7.45g/cmを越える場合があり、既存の固形磁石に比べ軽量である本発明の磁石用固形材料の特徴が活かせなくなることもある。例えば、SmFe170.1磁性材料の真密度は7.69g/cm(IEEE Trans.Magn.、MAG−28、2326頁、及びICDDによるPowderDiffraction File WZ1430を参照)であるが、磁性材料以外の部分が充分無視できるほど密度の低いガスなどであったとして、酸素量が0.1原子%以下で磁性材料の含有率が80〜97体積%のとき、R−Fe−N−H−O系磁石用固形材料の密度は6.15〜7.46となる。 The density of the magnet solid material according to the second aspect of the present invention is preferably 6.15 to 7.45 g / cm 3 in order to take advantage of the characteristics. Even if it is less than 6.15 g / cm 3 , it may be preferable if the component of the R—Fe—N—H—O-based magnetic material is 80% by volume or more. Further, even if the R—Fe—N—H—O-based magnetic material is 97% by volume or less, it may exceed 7.45 g / cm 3 , and the weight of the solid material for magnets of the present invention, which is lighter than existing solid magnets, Features may not be useful. For example, the true density of Sm 2 Fe 17 N 3 H 0.1 magnetic material is 7.69 g / cm 3 (see IEEE Trans. If the oxygen content is 0.1 atomic% or less and the content of the magnetic material is 80 to 97% by volume, assuming that the portion other than the magnetic material is sufficiently negligible, R-Fe-N The density of the solid material for the —HO—magnet is 6.15 to 7.46.

なお、本発明の磁石用固形材料は、多結晶体であり、R−Fe−N−H−O主相と異なった界面相を含む場合もあるため、ボイドが無い状態であってもDmは必ずしもDxに一致しない。従って、本発明においては、磁石用固形材料のパッキングの度合いを充填率Dm/Dxで判断するより、Dm自体の値を目安とする方が適切である場合が多い。
R−Fe−N−H−O系材料の組成や磁性材料以外の部分の種類により、R−Fe−N−H−O系材料の体積分率と密度の関係は変わるが、熱安定性の良い磁石用固形材料とするために80体積%以上の磁性材料含有率が求められ、軽量である磁石用固形材料とするために7.45g/cm以下の密度が求められるので、より好ましい磁石用固形材料は、R−Fe−N−H−O系磁性材料を80〜97体積%含有し、しかも密度が6.15〜7.45g/cmの範囲にあるものである。
In addition, since the solid material for magnets of the present invention is a polycrystal and may contain an interface phase different from the R—Fe—N—H—O main phase, Dm is It does not necessarily match Dx. Therefore, in the present invention, it is often appropriate to use the value of Dm itself as a guide rather than judging the degree of packing of the magnet solid material from the filling rate Dm / Dx.
Depending on the composition of the R—Fe—N—H—O based material and the type of the part other than the magnetic material, the relationship between the volume fraction and the density of the R—Fe—N—H—O based material varies, but the thermal stability A magnetic material content of 80% by volume or more is required to obtain a good solid material for magnets, and a density of 7.45 g / cm 3 or less is required to obtain a lightweight solid material for magnets. The solid material for use contains 80 to 97% by volume of an R—Fe—N—H—O-based magnetic material and has a density in the range of 6.15 to 7.45 g / cm 3 .

さらに好ましいR−Fe−N−H−O系磁性材料の体積分率または磁石用固形材料の密度の範囲を述べると、特に熱安定性が要求される用途には83〜97体積%であって密度6.35〜7.45g/cmの範囲が選ばれ、機械的強度、磁気特性、熱安定性に非常に優れる軽量な磁石とするためには、85〜96体積%であって密度6.50〜7.40g/cmの範囲が選ばれる。
本発明の磁石用固形材料において、R−Fe−N−H−O系磁性材料以外の成分は密度6.5g/cm以下の元素、化合物またはそれらの混合物であることが好ましい。密度が6.5g/cmを越える元素などであると、磁性材料の体積分率を80%に限定しても、磁石用固形材料全体の密度が7.45g/cmを越える場合が多く、軽量である本発明における第2の態様の特徴が活かせなくなるので好ましくない。
More specifically, the range of the volume fraction of the R—Fe—N—H—O-based magnetic material or the density of the solid material for the magnet is described, and it is 83 to 97% by volume particularly for applications requiring thermal stability. A density of 6.35 to 7.45 g / cm 3 is selected, and in order to obtain a lightweight magnet with excellent mechanical strength, magnetic properties, and thermal stability, the density is 85 to 96% by volume and the density is 6 A range of .50 to 7.40 g / cm 3 is selected.
In the solid material for magnets of the present invention, the components other than the R—Fe—N—H—O-based magnetic material are preferably elements, compounds or mixtures thereof having a density of 6.5 g / cm 3 or less. When the density is more than 6.5 g / cm 3 , the density of the whole solid material for magnets often exceeds 7.45 g / cm 3 even if the volume fraction of the magnetic material is limited to 80%. It is not preferable because the feature of the second aspect of the present invention, which is lightweight, cannot be used.

密度6.5g/cm以下の元素としては、Al、Ar、B、Be、Br、C、Ca、Cl、F、Ga、Ge、H、He、Kr、Mg、N、Ne、O、P、S、Se、Si、Te、Ti、V、Y、Zrなどが挙げられる。また、これらの化合物、合金や、密度6.5g/cm以上の元素が含まれている場合においても、Mn−Al−CやAl−Cu−Mg合金などのように化合物や合金において密度6.5g/cm以下となるもの、或いは体積比で1:1のBi−Alなどの混合物において密度6.5g/cm以下となるものなどを選択することが好ましい。
R−Fe−N−H−O系磁性材料以外の部分が密度6.5g/cm以下であるガス、例えば、窒素ガス、He、Ar、Neなどの不活性ガスのうち少なくとも1種や水素ガス、アンモニアガスのような還元性ガスであっても良い。これらの磁性材−ガス複合磁石用固形材料は軽量であることが特徴である。
Elements having a density of 6.5 g / cm 3 or less include Al, Ar, B, Be, Br, C, Ca, Cl, F, Ga, Ge, H, He, Kr, Mg, N, Ne, O, P , S, Se, Si, Te, Ti, V, Y, Zr and the like. Even when these compounds, alloys, and elements having a density of 6.5 g / cm 3 or more are contained, the density of the compounds and alloys such as Mn—Al—C and Al—Cu—Mg alloys is 6 .5g / cm 3 or less and comprising one or a volume ratio of 1: it is preferable to select such a density 6.5 g / cm 3 or less what will become in a mixture, such as 1 Bi-Al.
Gas other than the R—Fe—N—H—O-based magnetic material having a density of 6.5 g / cm 3 or less, for example, at least one of inert gases such as nitrogen gas, He, Ar, Ne, and hydrogen A reducing gas such as gas or ammonia gas may be used. These magnetic material-gas composite magnet solid materials are characterized by being lightweight.

また、R−Fe−N−H−O系磁性材料以外の部分が密度6.5g/cm以下のMgO、Al、ZrO、SiO、フェライトなどの酸化物、CaF、AlFなどのフッ化物、TiC、SiC、ZrCなどの炭化物、Si、ZnN、AlNなどの窒化物などであっても好ましく、その他、水素化物、炭酸化物、硫酸塩、ケイ酸塩、塩化物、硝酸塩またはそれらの混合物であっても良い。
この中で、特にBaO・6Fe系、SrO・6Fe系、La添加フェライト系などの硬磁性フェライト、場合によってはMn−Zn系、Ni−Zn系軟磁性フェライトなどを含有させることにより、磁気特性やその安定性を向上させることができる。これらの磁性材−無機物複合磁石用固形材料は機械的強度が高く、熱安定性や磁気特性に優れる。
Further, the portion other than the R—Fe—N—H—O-based magnetic material has a density of 6.5 g / cm 3 or less, such as MgO, Al 2 O 3 , ZrO 2 , SiO 2 , oxides such as ferrite, CaF 2 , AlF Preferred are fluorides such as 3 , carbides such as TiC, SiC, and ZrC, and nitrides such as Si 3 N 4 , ZnN, and AlN. Besides, hydrides, carbonates, sulfates, silicates, chlorides, etc. Products, nitrates or mixtures thereof.
Of these, especially BaO · 6Fe 2 O 3 system, SrO · 6Fe 2 O 3 system, hard magnetic ferrite such as La-added ferritic, optionally Mn-Zn-based, is contained and Ni-Zn-based soft magnetic ferrite As a result, the magnetic properties and the stability thereof can be improved. These solid materials for magnetic materials and inorganic composite magnets have high mechanical strength and are excellent in thermal stability and magnetic properties.

さらに、R−Fe−N−H−O系磁性材料以外の部分が密度6.5g/cm以下の有機物であっても良い。例えば、ポリアミド、ポリイミド、ポリフェニレンオキシド、全芳香族ポリエステルなどエンジニアリング樹脂と呼称される樹脂や液晶ポリマー、エポキシ樹脂、フェノール変性エポキシ樹脂、不飽和ポリエステル樹脂、アルキド樹脂、弗素樹脂など、耐熱性の熱可塑性或いは熱硬化性樹脂を初め、シリコーンゴムなどの有機ケイ素化合物、カップリング剤や滑剤などの有機金属化合物など、ガラス転移点、軟化点、融点、分解点が100℃以上の有機物であるならば本発明の磁石用固形材料の成分として用いることができる。 Further, the portion other than the R—Fe—N—H—O based magnetic material may be an organic substance having a density of 6.5 g / cm 3 or less. For example, resins called engineering resins such as polyamide, polyimide, polyphenylene oxide, wholly aromatic polyester, liquid crystal polymers, epoxy resins, phenol-modified epoxy resins, unsaturated polyester resins, alkyd resins, fluorine resins, etc. Or, if it is an organic substance having a glass transition point, softening point, melting point, and decomposition point of 100 ° C or higher, such as thermosetting resin, organosilicon compound such as silicone rubber, organometallic compound such as coupling agent and lubricant, etc. It can be used as a component of the solid material for magnets of the invention.

但し、その体積分率は20%以下、好ましくは17%以下、さらに好ましくは10%以下、最も好ましくは5%以下であって、R−Fe−N−H−O系磁性材料の金属結合による固化を妨げるものであってはならない。この磁性材−有機物複合磁石用固形材料は、軽量なわりに耐衝撃性に優れる。但し、高温高湿度の過酷な環境においては、磁性材−有機物複合磁石用固形材料を用いない方が良い場合がある。   However, the volume fraction is 20% or less, preferably 17% or less, more preferably 10% or less, and most preferably 5% or less, which is due to the metal bond of the R—Fe—N—H—O-based magnetic material. It must not prevent solidification. This solid material for a magnetic material-organic composite magnet is excellent in impact resistance in spite of its light weight. However, in a severe environment of high temperature and high humidity, it may be better not to use a solid material for a magnetic material-organic composite magnet.

本発明の磁石用固形材料のR−Fe−N−H−O系磁性材料以外の部分に、上記のガス、無機物、有機物のうち2種以上を同時に含有することができる。例えば、大気である空隙を有し、シリカを分散したシリコーンゴムを含有したR−Fe−N−H−O系磁性材−無機物−有機物複合磁石用固形材料、空隙に不活性ガスである窒素ガスを充填し、シリカを分散したシリコーンゴムを含有したR−Fe−N−H−O系磁性材−ガス−無機物−有機物複合磁石用固形材料などであり、それぞれの成分の特徴を活かして、用途により使い分けることが望ましい。   Two or more of the above gases, inorganic substances, and organic substances can be simultaneously contained in a portion other than the R—Fe—N—H—O-based magnetic material of the solid material for magnets of the present invention. For example, a solid material for R—Fe—N—H—O-based magnetic material-inorganic-organic composite magnet having an air gap and silica-dispersed silicone rubber, and nitrogen gas that is an inert gas in the gap R-Fe-N-H-O-based magnetic material containing a silicone rubber with silica dispersed therein-gas-inorganic-organic solid material for organic composite magnet, etc. It is desirable to use properly.

ところで、R−Fe−N−H−O系磁性材料を用いた本発明の磁石用固形材料のうちで、次のような特徴的な微構造を有する材料群がある。80体積%以上の充填率を有し、磁性粉同士連結し連続相を成していると同時に、酸素が富化された非晶質部分のみでも連続相を成し、大部分の原料粉体内に存在していた結晶相がそれぞれ非晶質相の中で孤立しているような構造である。結晶相があたかも島のように非晶質相の海に浮かんでいる、一種の海−島構造を成していると言える。
結晶相は酸素を含まないか、又は非晶質相より酸素量が少ない。この傾向から、結晶相は特に磁化の高い強磁性相となり、非晶質相は非磁性相又は常磁性体も含めた磁化の低い相となりやすい。しかもこの結晶相と非晶質相が強固に結合し一体となって本発明の磁石用固形材料を形成するため、機械的強度が高く、磁気特性、特に角形比が高く、磁気特性の安定性、特に保磁力の安定性が高い材料となる。
By the way, among the solid materials for magnets of the present invention using the R—Fe—N—H—O based magnetic material, there is a material group having the following characteristic microstructure. It has a filling rate of 80% by volume or more, and magnetic powders are connected to form a continuous phase, and at the same time, only an amorphous portion enriched with oxygen forms a continuous phase. In this structure, the crystal phases existing in each are isolated in the amorphous phase. It can be said that the crystal phase forms a kind of sea-island structure floating as if in an amorphous phase like an island.
The crystalline phase does not contain oxygen or has less oxygen than the amorphous phase. From this tendency, the crystal phase becomes a ferromagnetic phase with particularly high magnetization, and the amorphous phase tends to become a low magnetization phase including a nonmagnetic phase or a paramagnetic material. Moreover, since the crystalline phase and the amorphous phase are firmly bonded and united to form the solid material for a magnet of the present invention, the mechanical strength is high, the magnetic properties, particularly the squareness ratio is high, and the magnetic properties are stable. Especially, it becomes a material having high stability of coercive force.

この海−島構造におけるR−Fe−N−H系或いはR−Fe−N−H−O系結晶相の体積分率は25体積%以上で有る方が磁化及び(BH)maxが大きくて実用的である。好ましくは50体積%以上、さらに好ましくは75体積%以上である。勿論、海(非晶質相)、島(結晶相)双方とも本発明のR−Fe−N−H−O系磁性材料の一部を形成するものであるために、海と島の両方の体積分率を足した値が、また場合によってはそれにM成分の体積分率を加算した値が、R−Fe−N−H−O系磁性材料の磁石用固形材料全体に対する体積分率となる。
以上のような構造を有する磁石用固形材料を製造するときには、非晶質相が分解して磁気特性及びその安定性を悪化させないように衝撃波圧力を小さい範囲に制御する必要がある場合が多い。
In this sea-island structure, the volume fraction of the R—Fe—N—H or R—Fe—N—H—O crystal phase is greater than 25% by volume because the magnetization and (BH) max are larger and practical. Is. Preferably it is 50 volume% or more, More preferably, it is 75 volume% or more. Of course, since both the sea (amorphous phase) and the island (crystal phase) form part of the R—Fe—N—H—O based magnetic material of the present invention, both the sea and the island are used. The value obtained by adding the volume fraction, and in some cases, the value obtained by adding the volume fraction of the M component to the volume fraction of the entire solid material for magnets of the R—Fe—N—H—O based magnetic material. .
When manufacturing a solid material for a magnet having the above-described structure, it is often necessary to control the shock wave pressure within a small range so that the amorphous phase is not decomposed to deteriorate the magnetic properties and the stability thereof.

本発明の磁石用固形材料は、常温の残留磁束密度B、常温の保磁力HcJ、磁石として使用するときのパーミアンス係数P及び最高使用温度Tmaxの関係が、μを真空の透磁率とするとき、
≦μcJ(P+1)(11000−50Tmax)/(10000−6Tmax
であれば更に望ましい。
上記の関係式は、磁石が顕著な減磁をしない条件を定める式であるが、その意味について以下に補足する。ここに顕著な減磁とは、不可逆でかつ大きな減磁のことを指し、例えば1000時間以内に不可逆減磁率で−20%を越えるような減磁を言う。
In the solid material for magnets of the present invention, the relationship between the residual magnetic flux density B r at normal temperature, the coercive force H cJ at normal temperature, the permeance coefficient P c when used as a magnet, and the maximum operating temperature T max is such that μ 0 is not permeable to vacuum. When using magnetic susceptibility,
B r ≦ μ 0 H cJ (P c +1) (11000−50T max ) / (10000−6T max )
If so, it is more desirable.
The above relational expression is an expression that determines the conditions under which the magnet does not significantly demagnetize, and its meaning will be supplemented below. Here, remarkable demagnetization refers to irreversible and large demagnetization, for example, demagnetization such that the irreversible demagnetization rate exceeds −20% within 1000 hours.

磁石の逆磁場に対する磁化の変化を表すB−H曲線上における屈曲点のH座標は、角形比がほぼ100%であるとき、ほぼHcJの値となる。磁石の動作点が、屈曲点より高磁場側に来ると急激に減磁して、磁石の有する性能を有効に発揮させることができないので、動作点は屈曲点よりも低磁場側にあるべきである。従って、磁石の形状によって決まる反磁場に対する磁束密度の比を内部パーミアンス係数Pc0、磁石として磁気回路や装置に組み込んだ後、運転中磁石に掛かる逆磁場の大きさによって定まる各動作点でのパーミアンス係数の中で最小のパーミアンス係数をPとするとき、Pc0とPのうち小さい方の値をPcminとすれば、少なくとも下記式(1)の範囲内でなければ、顕著な減磁が生じてしまう。 The H coordinate of the bending point on the BH curve representing the change in magnetization with respect to the reverse magnetic field of the magnet is approximately H cJ when the squareness ratio is approximately 100%. If the operating point of the magnet comes to the higher magnetic field side than the bending point, it will demagnetize suddenly and the performance of the magnet cannot be exhibited effectively, so the operating point should be on the lower magnetic field side than the bending point. is there. Accordingly, the ratio of the magnetic flux density to the demagnetizing field determined by the shape of the magnet is incorporated into a magnetic circuit or device as an internal permeance coefficient P c0 , and then the permeance at each operating point determined by the magnitude of the reverse magnetic field applied to the magnet during operation. When the smallest permeance coefficient among the coefficients is P c , if the smaller value of P c0 and P c is P cmin , at least if it is not within the range of the following formula (1), significant demagnetization Will occur.

Figure 2012164983
Figure 2012164983

(1)式は室温における条件式であり、温度T℃においては、残留磁束密度の温度係数[α(B)]、保磁力の温度係数[α(HcJ)]を用いて、下記式(2)と書き改めることにより、大幅な減磁が生じない条件が決定される。 Equation (1) is a conditional equation at room temperature. At a temperature T ° C., the temperature coefficient [α (B r )] of the residual magnetic flux density and the temperature coefficient [α (H cJ )] of the coercive force are used. By rewriting as (2), the conditions under which no significant demagnetization occurs are determined.

Figure 2012164983
Figure 2012164983

ここでPc0がPより小さく、着磁しても磁場を取り去るとすぐに減磁してしまう場合は、予めヨークなどに磁石を組み込んでから着磁することによって顕著な減磁を回避することができるが、少なくとも(2)式によって定める条件を満たしていなくては磁石の使用による顕著な減磁を免れることはできない。
R−Fe−N−H−O系材料の組成や温度領域によってα(B)、α(HcJ)の値は変わるが、ほぼα(B)は−0.06%/℃、α(HcJ)は−0.5%/℃である。α(B)の値に比べてα(HcJ)の値の方が絶対値が大きく、両者とも負の値なので、Tが高いほど(2)式を満たす正の値の組み合わせ(B、HcJ)の領域は小さくなる。従って、本発明の磁石用固形材料を用いて成る磁石が、パーミアンス係数Pの条件で使用される場合、動作中最も高くなる温度Tmax℃により決定される(2)式の範囲にB及びHcJを制御することにより、磁石の減磁を緩和することができることになる。
(2)式にT=Tmax、α(B)=−0.06、α(HcJ)=−0.5を代入し、整理すると下記式(3)のようになる。
Here, when P c0 is smaller than P c and demagnetization occurs immediately after the magnetic field is removed even after magnetization, significant demagnetization is avoided by magnetizing after incorporating a magnet in a yoke or the like in advance. However, significant demagnetization due to the use of a magnet cannot be avoided unless at least the condition defined by equation (2) is satisfied.
The values of α (B r ) and α (H cJ ) vary depending on the composition and temperature range of the R—Fe—N—H—O-based material, but almost α (B r ) is −0.06% / ° C., α (H cJ ) is −0.5% / ° C. Since the absolute value of α (H cJ ) is larger than the value of α (B r ) and both are negative values, the higher the T, the higher the combination of positive values (B r , H cJ ) region becomes smaller. Accordingly, magnet made using a magnet for solid materials of the present invention, when used under the condition of permeance coefficient P c, B in a range that is determined in (2) below the temperature T max ° C. which is greatest during operation r And by controlling H cJ , demagnetization of the magnet can be mitigated.
Substituting T = T max , α (B r ) = − 0.06, α (H cJ ) = − 0.5 into the equation (2) and rearranging, the following equation (3) is obtained.

Figure 2012164983
Figure 2012164983

即ち、磁石としたとき、B、HcJ、P、Tmax が(3)式を満たせば、顕著な減磁が起こらない磁石であるということができる。また、(3)式によれば、HcJが大きいほど、Bの取りうる値は大きくなる。熱安定性が高く、高磁気特性の磁石とするためには、HcJが0.62MA/mを越える磁石用固形材料とする方が好ましい。 That is, when a magnet is used, if B r , H cJ , P c , and T max satisfy the expression (3), it can be said that the magnet does not cause significant demagnetization. Further, according to the equation (3), as H cJ is large, the possible values of B r increases. High thermal stability, in order to magnet high magnetic properties, who H cJ is a solid material for a magnet exceeding 0.62MA / m are preferred.

本発明の磁石用固形材料において、最も好ましい態様は、磁性材料体積分率を上げることにより、Brを増加させた磁石用固形材料、具体的には、ThZn17型結晶構造等又はそれと同様な結晶構造を有する菱面体晶を有するR−Fe−N−H−O系磁性材料を、充填率を95%以上、好ましくは98%以上、最も好ましくは99%以上とすることで、磁石用固形材料の密度を、7.45g/cm以上、より好ましくは7.50g/cm以上、最も好ましくは7.60g/cm以上とし、常温における最大エネルギー積(BH)maxを高くした磁石用固形材料が、目的とする使用環境において(3)式を満足する磁気特性を有する磁石用固形材料である。 In the solid material for magnets of the present invention, the most preferable aspect is that the solid material for magnets with increased Br by increasing the magnetic material volume fraction, specifically, the Th 2 Zn 17 type crystal structure or the like or the like. The R—Fe—N—H—O-based magnetic material having rhombohedral crystals having a simple crystal structure has a filling rate of 95% or more, preferably 98% or more, and most preferably 99% or more. the density of the solid material, 7.45 g / cm 3 or more, more preferably 7.50 g / cm 3 or more, and most preferably a 7.60 g / cm 3 or more, and a high maximum energy product (BH) max at room temperature magnet The solid material for a magnet is a solid material for a magnet having magnetic properties satisfying the expression (3) in the intended use environment.

ところで、磁性材料の体積分率を上げることにより、Bを大きくして常温の最大エネルギー積(BH)maxが高い磁石用固形材料としたとしても、Tmaxが例えば100℃以上であるような高い温度であって(3)式の範囲を逸脱すれば、減磁が顕著となり、磁性材料の体積分率が低くBの小さい磁石用固形材料とパフォーマンスが変わらなくなってしまう場合がある。つまり、PとTmaxの組み合わせと磁石用固形材料のHcJによっては、R−Fe−N−H−O系磁性材料の体積分率を上げてBを大きく取る意味がない。むしろ、磁性材料の体積分率を下げた方が軽量でコストパフォーマンスの高い磁石用固形材料となるのである。 By the way, even if the volume fraction of the magnetic material is increased so that Br is increased to obtain a solid material for a magnet having a high maximum energy product (BH) max at room temperature, T max is, for example, 100 ° C. or more. If departing from the scope of the high a temperature (3), demagnetization becomes remarkable, there is a case where the volume fraction of the magnetic material can no longer change is less solid material for a magnet and performance of low B r. That is, by the H cJ of P c and T max combinations and solid material for a magnet, it is meaningless to increase the R-Fe-N-H- O system B r to increase the volume fraction of the magnetic material. Rather, lowering the volume fraction of the magnetic material results in a magnet solid material that is lighter and has higher cost performance.

具体的な例を挙げて説明する。HcJ=0.62MA/mであるようなR−Fe−N−H−O系磁性粉体を原料とし、衝撃波圧縮を用いれば、ある条件でほぼ100%の体積分率を有する磁石用固形材料とすることができる。このときのBは1.2Tを越える。
しかし、P=1、Tmax=100℃である用途の場合、(3)式から、Bを0.99T以上とする必要はない。即ち、この場合、0.99Tより高いBを有した磁石用固形材料であったとしても磁石の動作又は使用によって減磁して、0.99TのBを有した磁石とパフォーマンスは変わらなくなるのである。従って、磁性体の体積分率をむしろ83〜85%程度に下げて、B=0.99T程度の磁石とし、軽量かつコストの安い磁石とする方が好ましい。
A specific example will be described. Using R—Fe—N—H—O-based magnetic powder with H cJ = 0.62 MA / m as a raw material and using shock wave compression, a solid for magnets having a volume fraction of almost 100% under certain conditions Can be a material. B r at this time exceeds 1.2 T.
However, if the P c = 1, T max = 100 ℃ at which application (3) from the equation, it is not necessary to attach more than 0.99T and B r. That is, in this case, demagnetized by the operation or use of the magnet as was the solid material for a magnet having high B r than 0.99T, the magnet and performance having a B r of 0.99T is not changed It is. Therefore, it is preferable to lower the volume fraction of the magnetic material to about 83 to 85% to make a magnet of B r = 0.99T, and to make it a lightweight and inexpensive magnet.

上記は、磁石の形状または磁気回路、動作によって決まる最小のパーミアンス係数、及びB、HcJ、α(B)、α(HcJ)といった磁性材料の磁気的な特性によって決まる熱安定性について述べたものであり、一般に磁石の温度特性とも言われる性質である。
この他に、熱安定性が低下する大きな原因としては、磁性粉体同士が、充分金属結合により接合して固化していないことが挙げられる。本来、永久磁石は外界に静磁ポテンシャルを作るために、結晶の容易磁化方向を揃えているが、磁気的に非平衡な状態であるため、磁性粉体同士が充分結合され固定されていない状態であると、各磁性粉がマトリックスの中で回転するなどして容易磁化方向の向きを変え、蓄えられた静磁エネルギーが徐々に小さくなっていく。
The above describes the minimum permeance coefficient determined by the shape or magnetic circuit of the magnet, the operation, and the thermal stability determined by the magnetic properties of the magnetic material such as B r , H cJ , α (B r ), α (H cJ ). This is a property that is generally referred to as a temperature characteristic of a magnet.
In addition to this, a major cause of a decrease in thermal stability is that the magnetic powders are not sufficiently solidified by bonding with metal bonds. Originally, permanent magnets have the same easy magnetization direction of crystals in order to create a magnetostatic potential in the outside world, but they are in a magnetically non-equilibrium state, so the magnetic powders are not sufficiently bonded and fixed. If this is the case, each magnetic powder rotates in the matrix and changes the direction of the easy magnetization direction, and the stored magnetostatic energy gradually decreases.

磁性粉充填率が80%未満の材料、例えばボンド磁石などは、100℃以上の高温で樹脂が軟化あるいは劣化すると比較的容易に上記のような緩和が起こり、顕著な減磁が生じることになる。ボンド磁石は、その名のとおり、バインダによりボンディングされている磁石であって、金属結合やイオン結合により固化された磁石ではない。熱安定性の不足はそのことに起因する問題点であるといえる。一方、本発明の材料のうち、磁性粉体積分率が80%以上、好ましくは83%以上、更に好ましくは90%以上、最も好ましくは95%以上であれば、磁性粉同士が金属結合で固化しており、このような緩和は起こらない。以上のように、100℃以上で満足する熱安定性を達成するためには、その材料の磁気特性と用途に応じて、磁性材料の体積分率の下限と上限を特定の範囲に設定する必要がある。   For materials with a magnetic powder filling rate of less than 80%, such as bonded magnets, if the resin is softened or deteriorated at a high temperature of 100 ° C. or higher, the above relaxation occurs relatively easily, and significant demagnetization occurs. . As the name suggests, a bonded magnet is a magnet bonded by a binder, not a magnet solidified by metal bonding or ionic bonding. It can be said that the lack of thermal stability is a problem resulting from this. On the other hand, among the materials of the present invention, if the magnetic powder integration rate is 80% or more, preferably 83% or more, more preferably 90% or more, and most preferably 95% or more, the magnetic powders are solidified by metal bonds. And such mitigation does not occur. As described above, in order to achieve satisfactory thermal stability at 100 ° C. or higher, it is necessary to set the lower limit and upper limit of the volume fraction of the magnetic material within a specific range according to the magnetic properties and applications of the material. There is.

本発明の磁石用固形材料は、特別な方法によらなくとも、磁石としたときの保磁力HcJが0.76MA/m以上で、しかも角形比B/Jが95%以上である磁石用固形材料とすることもできる。但し、Jは常温の飽和磁化であり、本発明においては外部磁場を1.2MA/mとしたときの磁化の値とする。
例えば、SmFe170.1材料は、ニュークリエーション型の磁場反転機構を持つため粒径と保磁力HcJがほぼ反比例するような関係を持つ。2μm未満になると保磁力が0.76MA/mを越えるが、この領域では、磁性粉の粒径が小さくなるに従って凝集しやすくなり、通常工業的に利用されている磁場では磁性粉体の磁場配向度が急激に落ちて、角形比が低下する。
The solid material for a magnet of the present invention has a coercive force HcJ of 0.76 MA / m or more and a squareness ratio B r / J s of 95% or more without using a special method. It can also be used as a solid material. However, J s is saturation magnetization at room temperature, and in the present invention, it is a magnetization value when the external magnetic field is 1.2 MA / m.
For example, since the Sm 2 Fe 17 N 3 H 0.1 O x material has a nucleation-type magnetic field reversal mechanism, the particle size and the coercive force H cJ have a substantially inversely proportional relationship. If it is less than 2 μm, the coercive force exceeds 0.76 MA / m, but in this region, the magnetic powder tends to aggregate as the particle size of the magnetic powder becomes smaller. The degree drops sharply and the squareness ratio decreases.

ボールミルでSmFe170.1粗粉体を粉砕して得たR−Fe−N−H−O系磁性材料(酸素量0.1〜5原子%)を1.2MA/mの外部磁場で磁場圧縮成形した充填率80%の圧粉体においては、HcJが0.74MA/mを越えると角形比が急激に低下し、HcJが0.76MA/m以上の領域で95%以下となる。
本発明の磁石用固形材料であると、衝撃波圧縮固化した際に組織を微細化することができるために、保磁力が0.76MA/m未満の磁性粉体を用いて角形比の高い圧粉体を調製し、これを衝撃波圧縮固化すると同時に保磁力を向上させ、高い角形比と高い保磁力を併せ持つ磁石用固形材料とすることができる。保磁力が0.8〜1.2MA/mの範囲の場合、角形比を95%から、磁場配向の方法と磁性材料の成分などの工夫を加えることによりほぼ100%の範囲で調整することが可能である。
An R—Fe—N—H—O-based magnetic material (oxygen content of 0.1 to 5 atom%) obtained by pulverizing Sm 2 Fe 17 N 3 H 0.1 coarse powder with a ball mill is 1.2 MA / m. in compact filling of 80% was formed a magnetic field compressed external magnetic field of, H cJ is reduced abruptly squareness ratio exceeds 0.74MA / m, H cJ is in more areas 0.76MA / m 95% or less.
The solid material for magnets according to the present invention can make the structure finer when the shock wave is compressed and solidified. Therefore, a compact with a high squareness ratio using a magnetic powder having a coercive force of less than 0.76 MA / m. A body is prepared, and this is compressed and solidified by shock waves, and at the same time the coercive force is improved, and a solid material for a magnet having both a high squareness ratio and a high coercive force can be obtained. When the coercive force is in the range of 0.8 to 1.2 MA / m, the squareness ratio can be adjusted in the range of approximately 100% from 95% by adding devices such as the magnetic field orientation method and the magnetic material components. Is possible.

次に、本発明の磁石用固形材料の製造法、特にその中で本発明の磁石用固形材料の実現を可能とした衝撃波圧縮について述べる。但し、本発明の製造法は、これに限定されるわけではない。
水中衝撃波による衝撃圧縮方法としては、二重管の最内部に当該粉体を圧粉成形し、中間部に水を入れ、外周部に爆薬を配置し、爆薬を爆轟させることで、前記中間部の水中に衝撃波を導入し、最内部の当該粉体を圧縮する方法や、当該粉体を密閉容器中へ圧粉成形し、水中へ投入し、爆薬を水中にて爆轟させ、その衝撃波により当該粉体を圧縮する方法や、特許第2951349号公報又は、特許第3220212号公報による方法が選択できる。いずれの方法においても、以下に示す水中衝撃波による衝撃圧縮の利点を得ることができる。
Next, a method for producing a solid material for magnets according to the present invention, particularly shock wave compression enabling realization of the solid material for magnets according to the present invention will be described. However, the production method of the present invention is not limited to this.
As an impact compression method using an underwater shock wave, the powder is compacted in the innermost part of a double tube, water is placed in the middle part, an explosive is placed on the outer peripheral part, and the explosive is detonated. A method of compressing the innermost powder and introducing the shock wave into the water of the part, or compacting the powder into a sealed container, throwing it into the water, detonating the explosive in water, and the shock wave The method of compressing the powder and the method according to Japanese Patent No. 2951349 or Japanese Patent No. 3220212 can be selected. In any method, the following advantages of shock compression by underwater shock waves can be obtained.

水中衝撃波を用いた本発明の衝撃圧縮法による圧縮固化工程では、衝撃波の持つ超高圧剪断性、活性化作用は、粉体の金属的結合による固化作用と組織の微細化作用を誘起し、バルク固化と共に高保磁力化することも可能である。このとき、衝撃圧力自体の持続時間は、従来の衝撃波を用いた場合よりも長いが、体積圧縮と衝撃波の非線形現象に基づくエントロピーの増加による温度上昇は極めて短時間(数μs以下)に消失し、分解や脱窒は殆ど起こらない。水中衝撃波を用いて圧縮した後も残留温度は存在する。この残留温度が分解温度(常圧で約600℃)以上になると、R−Fe−N−H−O系化合物等も分解が開始され、磁気特性を劣化するので好ましくない。しかし、水中衝撃波による場合は、従来の衝撃波による場合よりも、残留温度を低く保つことが非常に容易である。   In the compression and solidification process by the shock compression method of the present invention using an underwater shock wave, the ultra-high pressure shearing and activation action of the shock wave induces solidification action due to metallic bonding of the powder and refinement action of the structure. It is possible to increase the coercive force with solidification. At this time, although the duration of the impact pressure itself is longer than when using the conventional shock wave, the temperature rise due to the increase in entropy based on the nonlinear phenomenon of volume compression and shock wave disappears in a very short time (several μs or less). Decomposition and denitrification hardly occur. There is a residual temperature even after compression using underwater shock waves. If this residual temperature is equal to or higher than the decomposition temperature (normal pressure of about 600 ° C.), the R—Fe—N—H—O-based compound and the like are also started to decompose, and the magnetic properties are deteriorated. However, in the case of underwater shock waves, it is much easier to keep the residual temperature lower than in the case of conventional shock waves.

即ち、水中衝撃波は以下のような特徴を有する。
(1)水中衝撃波の圧力は、爆薬と水のユゴニオ関係によって決まり、圧力Pは概略次式で示される。
P=288(MPa){(ρ/ρ7.25−1}
上式より、水中衝撃波を用いた場合には、水の密度ρの基準値ρに対する変化に関する圧力Pの増加量が非常に大きいため、爆薬量の調節により容易に超高圧が得られ、その際の磁性材料の温度は従来の衝撃波を用いた場合に比べて容易に低温度に保持される。
(2)衝撃圧力自体の持続時間が長い。
(3)体積圧縮と衝撃波の非線形現象に基づくエントロピーの増加による磁性材料の温度上昇は極めて短時間に消失する。
(4)磁性材料の温度は、その後高く保持されることが少なく、又、長く保持されることが少ない。
(5)衝撃圧力が被圧縮体に均一に負荷される。
水中衝撃波のもつ、これらの優れた特徴によって初めて、R−Fe−N−H−O系材料が熱分解を起こさず、高密度に容易に圧縮固化される。
更に、圧粉成形を磁場中で行うことにより、磁性材料粉体の磁化容易軸を一方向に揃えることができ、得られた圧粉体を衝撃圧縮固化により固形化しても、配向性は損なわれず、磁気的に一軸性の異方性をもつ磁石用固形材料が得られる。
That is, the underwater shock wave has the following characteristics.
(1) The pressure of the underwater shock wave is determined by the Yugonio relationship between explosives and water, and the pressure P is approximately expressed by the following equation.
P = 288 (MPa) {(ρ / ρ 0 ) 7.25 −1}
From the above equation, when an underwater shock wave is used, the amount of increase in the pressure P related to the change of the density ρ of the water with respect to the reference value ρ 0 is very large. The temperature of the magnetic material at that time is easily maintained at a low temperature as compared with the case of using a conventional shock wave.
(2) The duration of the impact pressure itself is long.
(3) The temperature rise of the magnetic material due to the increase in entropy based on the nonlinear phenomenon of volume compression and shock wave disappears in a very short time.
(4) The temperature of the magnetic material is rarely kept high thereafter and is rarely kept long.
(5) Impact pressure is uniformly applied to the object to be compressed.
For the first time due to these excellent features of underwater shock waves, the R—Fe—N—H—O-based material does not undergo thermal decomposition and is easily compacted to a high density.
Furthermore, by performing compaction molding in a magnetic field, the easy magnetization axis of the magnetic material powder can be aligned in one direction. Even if the obtained compact is solidified by impact compression solidification, the orientation is lost. Accordingly, a magnetic solid material having magnetically uniaxial anisotropy is obtained.

本発明において、衝撃波圧力が3〜40GPaの水中衝撃波を用いて圧縮固化することにより、原料磁性粉体の真密度(例えば7.7g/cm)に対し充填率80%を超える密度の磁石用固形材料を得ることができる。衝撃波圧力が3GPaより低いと、必ずしも充填率が80%を超える磁石用固形材料を得ることができない。また、衝撃波圧力が40GPaより高いと、α−Fe分解相等の分解物が生じ易く、好ましくない。また、本発明のR−Fe−N−H−O系原料磁性粉体が、表面に酸素富化された非晶質相を有する場合、その非晶質相を分解させないため、衝撃波圧力を30GPa以下にすることが好ましい。 In the present invention, by compressing and solidifying using an underwater shock wave with a shock wave pressure of 3 to 40 GPa, for a magnet having a density exceeding 80% with respect to the true density (for example, 7.7 g / cm 3 ) of the raw magnetic powder. A solid material can be obtained. When the shock wave pressure is lower than 3 GPa, it is not always possible to obtain a solid material for a magnet having a filling rate exceeding 80%. On the other hand, if the shock wave pressure is higher than 40 GPa, a decomposition product such as an α-Fe decomposition phase tends to be generated, which is not preferable. In addition, when the R—Fe—N—H—O-based raw material magnetic powder of the present invention has an oxygen-enriched amorphous phase on the surface, the amorphous phase is not decomposed. The following is preferable.

衝撃波圧力が3〜40GPaの水中衝撃波を用いて圧縮固化する場合は、原料磁性粉体の真密度に対し充填率80%を超える密度の磁石用固形材料を再現性良く得ることができる。また、衝撃波圧力が6〜40GPaの水中衝撃波を用いた場合は、充填率が90%を超える高密度の磁石用固形材料を得ることができる。但し、R−Fe−N−H−O系磁性材料の外に、軟磁性材料、希土類−鉄−ほう素系磁性材料などの硬磁性材料、非磁性相などの固形成分を含む場合は、上記の条件は、磁石用固形材料に対するR−Fe−N−H−O系原料磁性粉体の体積分率のみで決定されるわけでない。しかし、R−Fe−N−H−O系磁性材料の体積分率が50体積%以上の磁石用固形材料を分解無く得るためには、上記と同様、衝撃波圧力3〜40GPaの範囲内で水中衝撃波を制御する必要がある。この場合もR−Fe−N−H−O系原料磁性粉体が、上記非晶質相を有する場合、衝撃波圧力を3〜30GPaの範囲に制御することが好ましい。   In the case of compressing and solidifying using an underwater shock wave having a shock wave pressure of 3 to 40 GPa, it is possible to obtain a solid material for a magnet having a density exceeding 80% with respect to the true density of the raw magnetic powder with good reproducibility. Moreover, when the underwater shock wave whose shock wave pressure is 6-40 GPa is used, the high-density solid material for magnets with a filling rate exceeding 90% can be obtained. However, in addition to the R—Fe—N—H—O based magnetic material, a hard magnetic material such as a soft magnetic material, a rare earth-iron-boron based magnetic material, or a solid component such as a nonmagnetic phase, This condition is not determined only by the volume fraction of the R—Fe—N—H—O-based raw magnetic powder with respect to the magnet solid material. However, in order to obtain a solid material for a magnet having a volume fraction of 50% by volume or more of the R—Fe—N—H—O-based magnetic material without being decomposed, as in the above case, underwater within a range of shock wave pressure of 3 to 40 GPa. It is necessary to control the shock wave. Also in this case, when the R—Fe—N—H—O-based raw material magnetic powder has the amorphous phase, it is preferable to control the shock wave pressure in the range of 3 to 30 GPa.

次に、本発明の磁石用固形材料における第1の態様である高密度な磁石用固形材料を製造する場合において、衝撃波圧力8〜40GPaの水中衝撃波を用いる必要がある。衝撃波圧力が8GPaより低いと、必ずしも密度7.45g/cm以上のバルク磁石が得られない。衝撃波圧力が40GPaより高いと、α−Fe分解相等の分解物が生じることがあって、好ましくない。また、本発明のR−Fe−N−H−O系原料磁性粉体が、表面に酸素富化された非晶質相を有する場合、その非晶質相を分解させないため、衝撃波圧力を30GPa以下にすることが好ましい。 Next, when producing a high-density magnet solid material which is the first aspect of the magnet solid material of the present invention, it is necessary to use an underwater shock wave having a shock wave pressure of 8 to 40 GPa. When the shock wave pressure is lower than 8 GPa, a bulk magnet having a density of 7.45 g / cm 3 or more cannot always be obtained. When the shock wave pressure is higher than 40 GPa, a decomposition product such as an α-Fe decomposition phase may be generated, which is not preferable. In addition, when the R—Fe—N—H—O-based raw material magnetic powder of the present invention has an oxygen-enriched amorphous phase on the surface, the amorphous phase is not decomposed. The following is preferable.

さらに、本発明における第2の態様である、軽量であり高温特性に優れた磁石用固形材料を製造する場合において、衝撃圧縮時の圧粉体の温度上昇を抑制するために、衝撃圧縮には、衝撃波圧力3〜22GPaの水中衝撃波を用いることが好ましい。衝撃波圧力が3GPaより低いと、必ずしも密度6.15g/cm以上の磁石用固形材料が得られない。衝撃波圧力が22GPaより高いと、密度7.45g/cm以上の磁石用固形材料となる場合が多く、さらに衝撃波圧力が40GPaより高いと、α−Fe分解相等の分解物が生じることがあって好ましくない。上記と同様に、本発明のR−Fe−N−H−O系原料が、表面に酸素富化された非晶質相を有する場合、衝撃波圧力を30GPa以下にすることが好ましい。 Furthermore, in the case of producing a solid material for a magnet that is light and excellent in high temperature characteristics, which is the second aspect of the present invention, in order to suppress the temperature rise of the green compact during impact compression, It is preferable to use an underwater shock wave with a shock wave pressure of 3 to 22 GPa. When the shock wave pressure is lower than 3 GPa, a magnet solid material having a density of 6.15 g / cm 3 or more cannot always be obtained. When the shock wave pressure is higher than 22 GPa, it often becomes a solid material for magnets having a density of 7.45 g / cm 3 or more. When the shock wave pressure is higher than 40 GPa, decomposition products such as α-Fe decomposition phase may be generated. It is not preferable. Similarly to the above, when the R—Fe—N—H—O type raw material of the present invention has an amorphous phase enriched with oxygen on the surface, the shock wave pressure is preferably 30 GPa or less.

また、密度が6.35〜7.45g/cmの範囲、さらに6.50〜7.40g/cmの範囲の磁石用固形材料を再現性良く得るには水中衝撃波の衝撃波圧力を3〜20GPa、さらに衝撃波圧力を4〜15GPaとすることで達成される。但し、磁性材−ガス複合磁石用固形材料においては、衝撃圧力が高すぎると容易に密度が7.45g/cmを越える磁石用固形材料となってしまうので衝撃波圧力3〜15GPaの水中衝撃波を用いる方が好ましい。
R−Fe−N−H−O系磁性材料の製造法において酸素源、又は水素源並びに酸素源を接触させて、酸素成分、水素成分を導入することが重要であると既に述べたが、衝撃波圧縮の雰囲気に酸素源や水素源を存在させ接触させて、目的とする組成の磁石用固形材料と成す方法も有効である。
Further, in order to obtain a solid material for a magnet having a density in the range of 6.35 to 7.45 g / cm 3 , and further in the range of 6.50 to 7.40 g / cm 3 with good reproducibility, the shock wave pressure of the underwater shock wave is 3 to 3. This is achieved by setting the pressure of 20 GPa and the shock wave pressure to 4 to 15 GPa. However, in a solid material for a magnetic material-gas composite magnet, if the impact pressure is too high, the magnetic solid material easily has a density exceeding 7.45 g / cm 3 , so an underwater shock wave with a shock wave pressure of 3 to 15 GPa is applied. It is preferable to use it.
As described above, it is important to introduce the oxygen component and the hydrogen component by bringing the oxygen source or the hydrogen source and the oxygen source into contact with each other in the production method of the R—Fe—N—H—O based magnetic material. A method of forming a solid material for a magnet having a target composition by bringing an oxygen source or a hydrogen source into contact with the compressed atmosphere is also effective.

本発明の磁石用固形材料の製造方法において、磁石用固形材料に異方性を付与するために、原料粉体の圧粉成形を磁場中で行うことができ、原料粉体を圧粉成形した後、水中衝撃波を用いて衝撃圧縮固化することができる。また、原料粉体を磁場中で圧粉成形した後、水中衝撃波を用いて衝撃圧縮固化することができる。
以上述べたように、磁性粉体として熱的に安定でα−Fe分解相を析出しにくい、水素を含むR−Fe−N−H−O系材料を選び、上記水中衝撃波圧縮固化法にて固形化することにより初めて本発明の磁石用固形材料を作製することができるのであり、この磁石用固形材料を用いて製造する磁石は、高磁気特性で、耐酸化性に優れ、ボンド磁石のように磁性粉体の結合材としての樹脂成分を含まないため、熱安定性に優れた特徴を有する。
In the method for producing a magnet solid material of the present invention, in order to impart anisotropy to the magnet solid material, the raw powder can be compacted in a magnetic field, and the raw powder is compacted. Thereafter, it can be solidified by impact compression using an underwater shock wave. In addition, after the raw material powder is compacted in a magnetic field, it can be impact-compressed and solidified using an underwater shock wave.
As described above, an R—Fe—N—H—O-based material containing hydrogen that is thermally stable and difficult to precipitate an α-Fe decomposition phase is selected as the magnetic powder, and the above-described underwater shock wave compression solidification method is used. The solid material for a magnet of the present invention can be produced for the first time by solidifying, and the magnet manufactured using this solid material for magnet has high magnetic properties, excellent oxidation resistance, and is like a bonded magnet. Since it does not contain a resin component as a binder of magnetic powder, it has a feature of excellent thermal stability.

次に、本発明の第3の態様であるR−Fe−N−H−O系磁石用固形材料を含む部品又は装置について述べる。
最高使用温度Tmaxが100℃以上である用途には、従来のR−Fe−N−H−O系ボンド磁石であると、樹脂成分を含みかつ磁性粉体同士が金属結合で固化していないために、熱安定性に劣り、使用することが難しかった。本発明の磁石用固形材料であれば、よしんば樹脂成分を含んでいてもR−Fe−N−H−O系磁性粉同士が金属結合で固化しているので熱安定性に優れる。さらに磁石用固形材料のB、HcJが、磁石としたときのPとTmax及び(3)式で規定される領域にあれば、大きく減磁せず、軽量でコストパフォーマンスが高い上に熱安定性がさらに優れた磁石とすることができる。
maxの上限はR−Fe−N−H−O系材料のキュリー点付近であり、400℃を越えるが、磁石用固形材料の組成や成分、磁石としての使われ方によりTmax上限は400℃以下の様々な値をとる。例えば、Znで被覆したHcJ=1.6MA/mであるR−Fe−N−H−O系材料を用いたとしても、Tmaxが220℃以上のとき、本発明の磁石用固形材料を磁石として使用することは好ましくない。
Next, the component or apparatus containing the solid material for the R—Fe—N—H—O magnet according to the third aspect of the present invention will be described.
For applications where the maximum operating temperature Tmax is 100 ° C. or higher, a conventional R—Fe—N—H—O-based bonded magnet contains a resin component and the magnetic powders are not solidified by metal bonds. Furthermore, it was inferior in thermal stability and was difficult to use. If it is the solid material for magnets of this invention, even if it contains the resin component, it is excellent in thermal stability since R-Fe-N-H-O type magnetic powder is solidified by the metal bond. Furthermore, if B r and H cJ of the solid material for the magnet are in the region defined by P c and T max and the equation (3) when used as a magnet, they are not greatly demagnetized, are lightweight and have high cost performance. In addition, it is possible to obtain a magnet having further excellent thermal stability.
The upper limit of T max is in the vicinity of the Curie point of the R—Fe—N—H—O-based material and exceeds 400 ° C., but the upper limit of T max is 400 depending on the composition and composition of the solid material for magnets and how it is used as a magnet. Take various values below ℃. For example, even when an R—Fe—N—H—O-based material with H cJ = 1.6 MA / m coated with Zn is used, when T max is 220 ° C. or higher, the solid material for magnets of the present invention is used. It is not preferable to use it as a magnet.

本発明の磁石用固形材料により得られた磁石のPc0は、0.01〜100、さらに好ましくは0.1〜10であり、Pc0、B、HcJの値の組み合わせが(1)式の範囲を逸脱するときは、ヨークなどを装着してのちPc0を高めてから、着磁を行うことが好ましい。 The magnet obtained from the magnet solid material of the present invention has a P c0 of 0.01 to 100, more preferably 0.1 to 10, and a combination of the values of P c0 , B r and H cJ is (1). When deviating from the range of the equation, it is preferable to perform magnetization after increasing the Pc0 after mounting a yoke or the like.

本発明の磁石用固形材料、中でも第2の態様の磁石用固形材料、若しくは(3)式を満足する磁石用固形材料により得られた磁石の静磁場を用いた、各種アクチュエータ、ボイスコイルモータ、リニアモータ、ロータ又はステータとして回転機用モータ、その中で特に産業機械や自動車用モータ、医療用装置や金属選別機の磁場発生源のほかVSM装置、ESR装置、加速器などの分析機用磁場発生源、マグネトロン進行波管、プリンタヘッドや光ピックアップなどOA機器、アンジュレータ、ウイグラ、リターダ、マグネットロール、マグネットチャック、各種マグネットシートなどの装置並びに部品は、Pの極めて小さなステッピングモータなどの特殊な用途を除いて、100℃以上の環境においても顕著な減磁が生ずることなく安定に使用することができる。 Various actuators, voice coil motors using the static magnetic field of the magnet obtained by the solid material for magnet of the present invention, especially the solid material for magnet of the second aspect, or the solid material for magnet satisfying the formula (3), Linear motors, motors for rotating machines as rotors or stators, among them magnetic fields for industrial machines and motors for motors, medical devices and metal sorters, as well as magnetic fields for analyzers such as VSM devices, ESR devices and accelerators Equipment, parts such as OA equipment, undulator, wiggler, retarder, magnet roll, magnet chuck, various magnetic sheets, etc., special applications such as stepping motors with extremely small Pc Except for, it is stable without significant demagnetization even in an environment of 100 ° C or higher. Can be used for

用途によっては125℃以上の温度でも使用でき、例えばHcJ>0.7(MA/m)かつP>1であるような場合が挙げられる。さらに、150℃以上での使用も可能で、例えばHcJ>0.8(MA/m)かつP>2であるような場合が挙げられる。
また、これらの装置又は部品に用いるとき、本発明の磁石用固形材料を各種加工を施してから、各形状のヨークやホールピース、各種整磁材料を接着、密着、接合した上で組み合わせて用いても良い。
また、本発明の磁石用固形材料を永久磁石同期モータ用ロータとして、もしくはその構成材料の硬磁性材料として使用する場合、本発明の表面磁石構造ロータとして、図5〜図6に示す回転軸断面構造とすることができる。また、埋込磁石構造ロータとして図7〜図12に示す回転軸断面構造とすることができる。
Depending on the application, it can be used even at a temperature of 125 ° C. or higher. For example, H cJ > 0.7 (MA / m) and P c > 1. Furthermore, it can be used at 150 ° C. or higher. For example, there is a case where H cJ > 0.8 (MA / m) and P c > 2.
In addition, when used in these devices or parts, the solid material for magnets of the present invention is subjected to various processing, and then used in combination after bonding, adhering, closely bonding, and bonding various shaped yokes and hole pieces, and various magnetic shunt materials. May be.
When the solid material for magnets of the present invention is used as a rotor for a permanent magnet synchronous motor or as a hard magnetic material of the constituent material, the surface magnet structure rotor of the present invention is shown in cross section of the rotating shaft shown in FIGS. It can be a structure. Moreover, it can be set as the rotary shaft cross-section structure shown in FIGS.

以下、本発明を実施例に基づいて説明する。なお、R−Fe−N−H−O系磁性材料の分解の度合いは、成形した磁石用固形材料のX線回折図(Cu−Kα線)をもとに、ThZn17型をはじめとする菱面体晶又は六方晶の結晶構造由来の回折線における最強線の高さaに対する、2θ=44°付近のα−Fe分解相由来の回折線の高さbの比b/aをもって判断した。この値が0.2以下なら分解の度合いは小さいと言える。好ましくは0.1以下である。さらに好ましくは0.05以下で、この場合、分解はほぼ無いと言える。
但し、上記の判定法は、磁石用固形材料の原料となるR−Fe−N−H−O系磁性材料にもともとFe軟磁性材料のような44°付近にピークを持つ材料が含有されている場合は適用できない。この場合、R−Fe−N−H−O系磁性材料を含む原料と磁石用固形材料におけるb/aの相対比により、分解の有無の目安とすることは可能である。
また、本件発明は以下の具体例によって何ら技術的範囲が限定されるものではない。
Hereinafter, the present invention will be described based on examples. The degree of decomposition of the R—Fe—N—H—O-based magnetic material is based on the Th 2 Zn 17 type based on the X-ray diffraction pattern (Cu—Kα ray) of the molded solid material for magnets. The ratio b / a of the height b of the diffraction line derived from the α-Fe decomposition phase near 2θ = 44 ° with respect to the height a of the strongest line in the diffraction line derived from the rhombohedral or hexagonal crystal structure. . If this value is 0.2 or less, it can be said that the degree of decomposition is small. Preferably it is 0.1 or less. More preferably, it is 0.05 or less, and in this case, it can be said that there is almost no decomposition.
However, in the above determination method, an R—Fe—N—H—O-based magnetic material that is a raw material for a magnet solid material originally contains a material having a peak near 44 °, such as an Fe soft magnetic material. The case is not applicable. In this case, the presence or absence of decomposition can be determined by the relative ratio of b / a in the raw material including the R—Fe—N—H—O-based magnetic material and the solid material for the magnet.
The technical scope of the present invention is not limited by the following specific examples.

[製造例1]
平均粒径60μmのSmFe17母合金をNH分圧0.35atm、H分圧0.65atmで酸素分圧10−3atm以下のアンモニア−水素混合ガス気流中、465℃で7.2ks窒化水素化を行った後、酸素分圧10−5atmアルゴン気流中で1.8ksアニールを行い、溶存酸素量40ppm、含水量20ppmの炭化水素系溶媒を粉砕溶媒として用い10−1atmの窒素気流中で仕込んだボールミルにより平均粒径が約2μmとなるように粉砕し、R−Fe−N−H−O系磁性材料粉体を得た。この粉体を、1.2MA/mの磁場中で磁場配向させながら圧粉成形を行うことで成形体を得た。図13は水中衝撃波を用いた衝撃圧縮法を行う装置の一例を示す説明図である。得られた成形体を図14に示す如く銅製パイプ1に入れて銅製プラグ2に固定した。さらに銅製パイプ3を銅製プラグ2に固定し、更に、この間隙に水を充填し、外周部に均一な間隙を設け、紙筒4を配置し、銅製パイプ3と紙筒4の間隙中に280gの硝酸アンモニウム系爆薬5を装填し、起爆部6より前記爆薬を起爆し、爆薬を爆轟させた。このとき衝撃波圧力は16GPaであった。
[Production Example 1]
6. Sm 2 Fe 17 master alloy having an average particle size of 60 μm is subjected to NH 3 partial pressure 0.35 atm, H 2 partial pressure 0.65 atm and oxygen partial pressure 10 −3 atm or less in an ammonia-hydrogen mixed gas stream at 465 ° C. after 2ks oxynitride hydride performs 1.8ks annealed at an oxygen partial pressure of 10 -5 atm stream of argon, dissolved oxygen 40 ppm, of 10 -1 atm using a hydrocarbon solvent water content 20ppm as a grinding solvent An R—Fe—N—H—O-based magnetic material powder was obtained by pulverization with a ball mill charged in a nitrogen stream so that the average particle size was about 2 μm. A compact was obtained by compacting the powder while aligning the magnetic field in a magnetic field of 1.2 MA / m. FIG. 13 is an explanatory diagram showing an example of an apparatus for performing an impact compression method using underwater shock waves. The obtained molded body was put into a copper pipe 1 and fixed to a copper plug 2 as shown in FIG. Further, the copper pipe 3 is fixed to the copper plug 2, and further, the gap is filled with water, a uniform gap is provided in the outer peripheral portion, the paper tube 4 is disposed, and 280 g is placed in the gap between the copper pipe 3 and the paper tube 4. The ammonium nitrate-based explosive 5 was loaded, and the explosive was detonated from the detonator 6 to detonate the explosive. At this time, the shock wave pressure was 16 GPa.

衝撃圧縮後、パイプ1から固化したR−Fe−N−H−O系磁性材料であるSm8.5Fe72.312.72.83.7組成を有する磁石用固形材料を取り出し、4.0MA/mのパルス磁場で着磁し磁気特性を測定した結果、残留磁束密度B=1.18T、保磁力HcJ=0.78MA/m、(BH)max=264kJ/mの結果を得た。又、アルキメデス法により密度を測定した結果、密度7.60g/cm、充填率は99%であった。 Solid material for magnet having composition of Sm 8.5 Fe 72.3 N 12.7 H 2.8 O 3.7 which is R—Fe—N—H—O-based magnetic material solidified from pipe 1 after impact compression As a result of magnetizing with a pulsed magnetic field of 4.0 MA / m and measuring magnetic properties, residual magnetic flux density B r = 1.18 T, coercive force H cJ = 0.78 MA / m, (BH) max = 264 kJ / and the results of m 3. Moreover, as a result of measuring a density by the Archimedes method, the density was 7.60 g / cm 3 and the filling rate was 99%.

更に、X線回折法で解析した結果、固化した磁石用固形材料はほとんどα−Fe分解相の析出が起きておらず、ThZn17型菱面体晶の結晶構造を有していることが確認された。
爆薬量を調節して同様の実験を多数回繰り返した。
衝撃波圧力が4GPaより低いと、得られた磁石用固形材料の充填率は必ずしも80%を超えず、衝撃波圧力が30GPaより高いとα−Fe分解相等の分解物が生じることが確認された。又、充填率80%を超える磁石用固形材料をより再現性良く得るためには、衝撃波圧力を3〜30GPaとすることが好ましいことも分かった。又、衝撃波圧力を6〜30GPaとすることで、充填率90%を超える磁石用固形材料が再現性良く得られることも確認された。
Furthermore, as a result of analysis by the X-ray diffraction method, the solidified solid material for magnets has almost no precipitation of α-Fe decomposition phase and has a crystal structure of Th 2 Zn 17 type rhombohedral crystal. confirmed.
The same experiment was repeated many times by adjusting the amount of explosives.
It was confirmed that when the shock wave pressure is lower than 4 GPa, the filling rate of the obtained magnet solid material does not necessarily exceed 80%, and when the shock wave pressure is higher than 30 GPa, a decomposition product such as an α-Fe decomposition phase is generated. It was also found that the shock wave pressure is preferably 3 to 30 GPa in order to obtain a solid material for magnets with a filling rate exceeding 80% with good reproducibility. It was also confirmed that by setting the shock wave pressure to 6 to 30 GPa, a solid material for magnets with a filling rate exceeding 90% can be obtained with good reproducibility.

又、この衝撃波圧力は、密度が6.15〜7.45g/cmである磁石用固形材料をより再現性良く得るためには、衝撃波圧力を3〜15GPaとすることが好ましいことも分かった。
さらに、密度が7.45g/cmを超えるバルク磁石をより再現性良く得るためには、この衝撃波圧力を10〜30GPaとすることが好ましいことも分かった。又、衝撃波圧力12〜30GPaでは密度7.55g/cmを超えるバルク磁石を再現性良く得ることができることも確認された。
It was also found that the shock wave pressure is preferably 3 to 15 GPa in order to obtain a solid magnet material having a density of 6.15 to 7.45 g / cm 3 with better reproducibility. .
Furthermore, in order to obtain a bulk magnet having a density exceeding 7.45 g / cm 3 with better reproducibility, it was also found that this shock wave pressure is preferably 10 to 30 GPa. It was also confirmed that a bulk magnet having a density exceeding 7.55 g / cm 3 can be obtained with good reproducibility at a shock wave pressure of 12 to 30 GPa.

[比較例1]
平均粒径20μmのSmFe17母合金をNガス気流中、495℃で72ks窒化を行うこと以外は製造例1と同様に、ただし衝撃波圧力を18GPaとすることにより、Sm9.1Fe77.713.2なる組成の磁石用固形材料を作製した。 この磁石用固形材料を4.0MA/mのパルス磁場で着磁し磁気特性を測定した結果、残留磁束密度B=0.96T、保磁力HcJ=0.36MA/m、(BH)max=120kJ/mの結果を得た。又、アルキメデス法により密度を測定した結果7.50g/cmであった。
この材料のX線回折図には、ThZn17型菱面体晶の結晶構造以外にα−Fe分解相由来の回折線も観察された。44°付近におけるα−Fe分解相の回折線とThZn17型菱面体晶の結晶構造を示す(303)最強線との強度比b/aは0.21であった。
[Comparative Example 1]
Similar to Production Example 1 except that Sm 2 Fe 17 master alloy having an average particle size of 20 μm is nitrided in N 2 gas stream at 495 ° C. for 72 ks, except that the shock wave pressure is 18 GPa, so that Sm 9.1 Fe A solid material for a magnet having a composition of 77.7 N 13.2 was produced. As a result of magnetizing the magnet solid material with a pulse magnetic field of 4.0 MA / m and measuring the magnetic characteristics, the residual magnetic flux density B r = 0.96 T, the coercive force H cJ = 0.36 MA / m, (BH) max = 120 kJ / m 3 was obtained. Further, the density was measured as 7.50 g / cm 3 by Archimedes method.
In the X-ray diffraction pattern of this material, a diffraction line derived from the α-Fe decomposition phase was also observed in addition to the crystal structure of the Th 2 Zn 17 type rhombohedral crystal. The intensity ratio b / a between the diffraction line of the α-Fe decomposition phase near 44 ° and the (303) strongest line showing the crystal structure of the Th 2 Zn 17 type rhombohedral crystal was 0.21.

[比較例2]
図14は、爆薬の爆轟波を直接用いて衝撃圧縮を行う装置の一例を示す説明図である。この装置を用いて、製造例1で得た平均粒径2μmのR−Fe−N−H−O系磁性粉体を銅製パイプ1に入れて銅製プラグ2に固定し、外周部に均一な間隙を設け、紙筒4を配置し、前記間隙中に実施例と同量の硝酸アンモニウム系爆薬5を装填し、起爆部6より前記爆薬を起爆し、爆薬を爆轟させた。衝撃圧縮後、パイプ1から固化した試料を取り出し、X線回折法により解析した結果、衝撃圧縮後はSmNと多量のα−Fe分解相が生成していることが認められ、出発原料のR−Fe−N−H−O系化合物が分解していることが分かった。このときの回折線の強度比b/aは約3であった。
[Comparative Example 2]
FIG. 14 is an explanatory diagram illustrating an example of an apparatus that performs shock compression using a detonation wave of explosives directly. Using this apparatus, the R—Fe—N—H—O-based magnetic powder having an average particle diameter of 2 μm obtained in Production Example 1 is placed in a copper pipe 1 and fixed to a copper plug 2, and a uniform gap is formed on the outer periphery. The paper tube 4 was placed, and the same amount of ammonium nitrate explosive 5 as that of the example was loaded in the gap, and the explosive was detonated from the detonator 6 to detonate the explosive. After impact compression, the solidified sample was taken out from the pipe 1 and analyzed by X-ray diffraction. As a result, it was found that after impact compression, SmN and a large amount of α-Fe decomposition phase were formed. It was found that the Fe—N—H—O compound was decomposed. At this time, the intensity ratio b / a of the diffraction line was about 3.

[実施例1]
所定量のSm及びFeの金属粉体(重量比16.85:83.15)をめのうボールによる振動ボールミルで180ks間メカニカルアロイング処理したのち、10−5atm以下の真空中600℃で7.2ks間熱処理した。この粉体には、Fe軟磁性材料が約30体積%含まれていた。この粉体を、NH分圧0.35atm、H分圧0.65atmの酸素分圧10−3atm以下のアンモニア−水素混合ガス気流中、380℃、1.2ksの条件で窒化水素化処理し、続いて同温度で水素中300sの時間熱処理した。この粉体を用いて、製造例1と同様に、ただし衝撃波圧力を18GPaとすることにより、Sm5.9Fe78.58.83.03.8なる組成の磁石用固形材料を作製した。
[Example 1]
After mechanical alloying treatment for 180 ks with a vibrating ball mill with a ball of a predetermined amount of Sm and Fe metal powder (weight ratio 16.85: 83.15), it is performed at 600 ° C. in a vacuum of 10 −5 atm or less. Heat treated for 2 ks. This powder contained about 30% by volume of Fe soft magnetic material. This powder was hydronitrided in an ammonia-hydrogen mixed gas stream of NH 3 partial pressure 0.35 atm and H 2 partial pressure 0.65 atm with an oxygen partial pressure of 10 −3 atm or less at 380 ° C. and 1.2 ks. Followed by heat treatment for 300 s in hydrogen at the same temperature. Using this powder, in the same manner as in Production Example 1, except that the shock wave pressure was set to 18 GPa, a solid for magnet having a composition of Sm 5.9 Fe 78.5 N 8.8 H 3.0 O 3.8 was used. The material was made.

この磁石用固形材料を4.0MA/mのパルス磁場で着磁し磁気特性を測定した結果、残留磁束密度B=1.22T、保磁力HcJ=0.43MA/m、(BH)max=215kJ/mの結果を得た。又、アルキメデス法により密度を測定した結果7.74g/cmであった。
この材料のX線回折図には、ThZn17型菱面体晶の結晶構造以外にα−Fe由来の回折線も観察されたが、この材料はもともとα−Fe分解相ではないFe軟磁性材料を含む材料であるため、固化によってα−Fe分解相が生じたか否かはX線回折法によって厳密に判定することができなかった。なお、透過型電子顕微鏡観察を行った結果、Fe軟磁性相の体積分率は約30%、その結晶粒径は10〜50nm程度であり、R−Fe−N−H−O系磁性材料の体積分率が約70%である磁石用固形材料となった。
As a result of magnetizing the magnet solid material with a pulse magnetic field of 4.0 MA / m and measuring the magnetic properties, the residual magnetic flux density B r = 1.22 T, the coercive force H cJ = 0.43 MA / m, (BH) max A result of = 215 kJ / m 3 was obtained. Further, the density was measured by Archimedes method, and it was 7.74 g / cm 3 .
In the X-ray diffraction pattern of this material, a diffraction line derived from α-Fe was observed in addition to the crystal structure of the Th 2 Zn 17 type rhombohedral crystal, but this material was originally an Fe soft magnetism which is not an α-Fe decomposition phase. Since it is a material containing a material, whether or not an α-Fe decomposition phase was generated by solidification could not be strictly determined by an X-ray diffraction method. As a result of observation with a transmission electron microscope, the volume fraction of the Fe soft magnetic phase was about 30%, the crystal grain size was about 10 to 50 nm, and the R—Fe—N—H—O based magnetic material A solid material for a magnet having a volume fraction of about 70% was obtained.

[実施例2]
製造例1で得た平均粒径約2μmのR−Fe−N−H−O系粉体と、平均粒径約25μmで組成がSm11.5Co57.6Fe24.8Cu4.4Zr1.7であるSm−Co系粉体を、体積比で50:50の割合になるようにめのう乳鉢に仕込み、溶存酸素量40ppm、含水量30ppmのシクロヘキサン中で湿式混合した。この作業は酸素分圧10−1atmのグローブボックス中で行った。
この混合粉体を用いて、製造例1と同様に、ただし衝撃波圧力を14GPaとすることにより、R−Fe−N−H−O系磁性材料の体積分率50%のR−Fe−N−H−O系磁石用固形材料(酸素量1.7原子%)を作製した。この磁石用固形材料を4.0MA/mのパルス磁場で着磁し磁気特性を測定した結果、残留磁束密度B=1.08T、保磁力HcJ=0.85MA/m、(BH)max=215kJ/mであった。
[Example 2]
An R—Fe—N—H—O-based powder having an average particle size of about 2 μm obtained in Production Example 1 and an average particle size of about 25 μm and a composition of Sm 11.5 Co 57.6 Fe 24.8 Cu 4.4 An Sm—Co-based powder of Zr 1.7 was charged into an agate mortar so as to have a volume ratio of 50:50, and wet-mixed in cyclohexane having a dissolved oxygen content of 40 ppm and a water content of 30 ppm. This operation was performed in a glove box having an oxygen partial pressure of 10 −1 atm.
Using this mixed powder, in the same manner as in Production Example 1, except that the shock wave pressure was 14 GPa, the R—Fe—N—H—O-based magnetic material had a volume fraction of 50% R—Fe—N—. A solid material for an HO-based magnet (oxygen amount 1.7 atomic%) was produced. As a result of magnetizing the solid material for a magnet with a pulse magnetic field of 4.0 MA / m and measuring the magnetic properties, the residual magnetic flux density B r = 1.08 T, the coercive force H cJ = 0.85 MA / m, (BH) max = 215 kJ / m 3 .

[実施例3]
公知のジエチル亜鉛を用いた光分解法によって、R−Fe−N−H−O系磁性材料の表面にZn金属を被覆した平均粒径約1μmのSm−Fe−Co−N−H−O磁性粉体を調製し、この粉体を用いて、製造例1と同様に、ただし衝撃波圧力を16GPaとすることにより、R−Fe−N−H−O系磁性材料の体積分率が100%であるSm8.2Fe62.6Co6.912.23.33.8Zn3.0なる組成の磁石用固形材料を作製した。
この磁石用固形材料を4.0MA/mのパルス磁場で着磁し磁気特性を測定した結果、残留磁束密度B=1.24T、保磁力HcJ=0.79MA/m、(BH)max=263kJ/mであった。密度は7.71g/cmであった。さらに、X線回折法で解析した結果、固化した磁石用固形材料は、ThZn17型菱面体晶の結晶構造を有していることが確認された。44°付近におけるα−Fe分解相の回折線とThZn17型菱面体晶の結晶構造を示す(303)最強線との強度比b/aは0.08であった。
[Example 3]
An Sm—Fe—Co—N—H—O magnetic material having an average particle diameter of about 1 μm, which is obtained by coating the surface of an R—Fe—N—H—O based magnetic material with Zn metal by a known photolysis method using diethyl zinc. A powder was prepared, and this powder was used in the same manner as in Production Example 1, except that the shock wave pressure was 16 GPa, so that the volume fraction of the R—Fe—N—O—O-based magnetic material was 100%. A solid material for a magnet having a composition of Sm 8.2 Fe 62.6 Co 6.9 N 12.2 H 3.3 O 3.8 Zn 3.0 was produced.
As a result of magnetizing this magnet solid material with a pulse magnetic field of 4.0 MA / m and measuring the magnetic characteristics, the residual magnetic flux density B r = 1.24 T, the coercive force H cJ = 0.79 MA / m, (BH) max = 263 kJ / m 3 . The density was 7.71 g / cm 3 . Furthermore, as a result of analysis by an X-ray diffraction method, it was confirmed that the solidified magnet solid material has a crystal structure of a Th 2 Zn 17 type rhombohedral crystal. The intensity ratio b / a between the diffraction line of the α-Fe decomposition phase near 44 ° and the (303) strongest line showing the crystal structure of the Th 2 Zn 17 type rhombohedral crystal was 0.08.

[実施例4]
R−Fe−N−H−O系磁性材料として、公知の方法(特開平8−55712号公報)により得た、磁化反転機構がピンニング型である平均粒径30μmのSm−Fe−Co−Mn−N−H−O磁性粉体を用いて、製造例1と同様に、ただし衝撃波圧力を14GPaとすることにより、R−Fe−N−H−O系磁性材料の体積分率が100%である、Sm8.5(Fe0.89Co0.1166.6Mn3.618.52.60.2なる組成の磁石用固形材料を作製した。この磁石用固形材料を4.0MA/mのパルス磁場で着磁し磁気特性を測定した結果、残留磁束密度B=1.08T、保磁力HcJ=0.39MA/m、(BH)max=128kJ/mであった。体積法で求めた密度は7.70g/cm3であった。さらに、この材料のX線回折図には、ThZn17型菱面体晶の結晶構造以外にα−Fe分解相由来の回折線も観察された。44°付近におけるα−Fe分解相の回折線とThZn17型菱面体晶の結晶構造を示す(303)最強線との強度比b/aは0.06であった。
[Example 4]
As an R—Fe—N—H—O-based magnetic material, Sm—Fe—Co—Mn having an average particle diameter of 30 μm, which is a pinning type magnetization reversal mechanism, obtained by a known method (Japanese Patent Laid-Open No. 8-55712). Using —N—H—O magnetic powder, the volume fraction of the R—Fe—N—H—O-based magnetic material is 100% as in Production Example 1, except that the shock wave pressure is 14 GPa. A solid material for a magnet having a composition of Sm 8.5 (Fe 0.89 Co 0.11 ) 66.6 Mn 3.6 N 18.5 H 2.6 O 0.2 was prepared. As a result of magnetizing this magnet solid material with a pulse magnetic field of 4.0 MA / m and measuring magnetic properties, residual magnetic flux density B r = 1.08 T, coercive force H cJ = 0.39 MA / m, (BH) max = 128 kJ / m 3 . The density determined by the volume method was 7.70 g / cm 3. Further, in the X-ray diffraction pattern of this material, in addition to the crystal structure of the Th 2 Zn 17 type rhombohedral crystal, diffraction lines derived from the α-Fe decomposition phase were also observed. The intensity ratio b / a between the diffraction line of the α-Fe decomposition phase near 44 ° and the (303) strongest line showing the crystal structure of the Th 2 Zn 17 type rhombohedral crystal was 0.06.

[実施例5]
R−Fe−N−H−O系磁性材料以外の成分をAlとし、製造例1で作製したR−Fe−N−H−O系磁性材料の体積分率が96%となるように配合し、前記混合粉体を減量とする磁石用固形材料を製造例1と同様にして作製した。但し、衝撃波圧力は15GPaとした。その後、4.0MA/mのパルス磁場で着磁し、B、HcJ、角形比B/J、(BH)maxを測定した。
その結果を表1に示した。保磁力HcJが0.83MA/mと大きい値であるにも関わらず、角形比96%を得ることができた。
[Example 5]
Components other than the R—Fe—N—H—O based magnetic material are Al 2 O 3 so that the volume fraction of the R—Fe—N—H—O based magnetic material produced in Production Example 1 is 96%. In the same manner as in Production Example 1, a solid material for a magnet with a reduced amount of the mixed powder was prepared. However, the shock wave pressure was 15 GPa. Then, magnetized with a pulse magnetic field of 4.0MA / m, B r, H cJ, remanence ratio B r / J s, a (BH) max was determined.
The results are shown in Table 1. Even though the coercive force HcJ was a large value of 0.83 MA / m, a squareness ratio of 96% could be obtained.

[実施例6〜8]
R−Fe−N−H−O系磁性材料以外の成分及び、衝撃波圧力を表1に示したとおりとする以外は、製造例1と同様にして磁石用固形材料を作製し、実施例5と同様にしてそれらの各種磁気特性を測定した。その結果を表1に示した。
[Examples 6 to 8]
A solid material for a magnet was produced in the same manner as in Production Example 1 except that the components other than the R—Fe—N—H—O-based magnetic material and the shock wave pressure were as shown in Table 1, and Example 5 and Similarly, various magnetic properties were measured. The results are shown in Table 1.

[実施例9]
公知の方法により製造された、平均粒径30μmのR−Fe−N−H−O系HDDR等方性磁性粉体を用いて、製造例1と同様に、R−Fe−N−H−O系磁性材料の体積分率が100%である、Sm8.3Fe76.10.9Ti2.412.00.10.2なる組成の磁石用固形材料を作製した。
この磁石用固形材料を4.0MA/mのパルス磁場で着磁し磁気特性を測定した結果、残留磁束密度B=0.70T、保磁力HcJ=1.05MA/m、(BH)max=75.4kJ/mの結果を得た。又、アルキメデス法により密度を測定した結果7.45g/cmであった。
この材料のX線回折図には、菱面体晶、六方晶の結晶構造以外にα−Fe分解相由来の回折線も観察され、比b/aは0.15であった。
[Example 9]
Using an R—Fe—N—H—O-type HDDR isotropic magnetic powder having an average particle diameter of 30 μm produced by a known method, R—Fe—N—H—O is produced in the same manner as in Production Example 1. A solid material for a magnet having a composition of Sm 8.3 Fe 76.1 B 0.9 Ti 2.4 N 12.0 H 0.1 O 0.2, in which the volume fraction of the magnetic material is 100% did.
As a result of magnetizing the magnet solid material with a pulse magnetic field of 4.0 MA / m and measuring the magnetic characteristics, the residual magnetic flux density B r = 0.70 T, the coercive force H cJ = 1.05 MA / m, (BH) max A result of 75.4 kJ / m 3 was obtained. Further, the density was measured by Archimedes method and found to be 7.45 g / cm 3 .
In the X-ray diffraction pattern of this material, in addition to the rhombohedral and hexagonal crystal structures, diffraction lines derived from the α-Fe decomposition phase were also observed, and the ratio b / a was 0.15.

[実施例10]
平均粒径60μmのSmFe17母合金をNH分圧0.35atm、H分圧0.65atmで酸素分圧10−3atm以下のアンモニア−水素混合ガス気流中、465℃で7.2ks窒化水素化を行った後、酸素分圧10−3atmとしたアルゴン気流中で7.2ksアニールを行い、溶存酸素量45ppm、含水量20ppmの炭化水素系溶媒を粉砕溶媒として用い10−1atmの窒素気流中で仕込んだボールミルにより平均粒径が約2μmとなるように粉砕した。この粉体を用い、製造例1と同様に、但し衝撃波圧力は25GPaとして、R−Fe−N−H−O系磁性材料の体積分率が100%である、Sm8.0Fe67.811.92.69.7組成を有する磁石用固形材料を得た。このとき、成形体を保持する銅製パイプ1の中は湿度を有した大気で満たした。この磁石用固形材料を4.0MA/mのパルス磁場で着磁し、磁気特性を測定した結果、残留磁束密度B=1.06T、保磁力HcJ=0.73MA/m、(BH)max=158kJ/mの結果を得た。又、アルキメデス法により密度を測定した結果、密度7.55g/cm、充填率は99%であった。
[Example 10]
6. Sm 2 Fe 17 master alloy having an average particle size of 60 μm is subjected to NH 3 partial pressure 0.35 atm, H 2 partial pressure 0.65 atm and oxygen partial pressure 10 −3 atm or less in an ammonia-hydrogen mixed gas stream at 465 ° C. after 2ks oxynitride hydride performs 7.2ks annealed in a stream of argon with an oxygen partial pressure of 10 -3 atm, dissolved oxygen 45 ppm, 10 -1 using a hydrocarbon solvent water content 20ppm as a grinding solvent It grind | pulverized so that an average particle diameter might be set to about 2 micrometers with the ball mill prepared in the nitrogen stream of atm. Using this powder, as in Production Example 1, the shock wave pressure is 25 GPa, and the volume fraction of the R—Fe—N—H—O-based magnetic material is 100%. Sm 8.0 Fe 67.8 A solid material for a magnet having a composition of N 11.9 H 2.6 O 9.7 was obtained. At this time, the copper pipe 1 holding the compact was filled with air having humidity. As a result of magnetizing this magnet solid material with a pulse magnetic field of 4.0 MA / m and measuring magnetic properties, residual magnetic flux density B r = 1.06 T, coercive force H cJ = 0.73 MA / m, (BH) A result of max = 158 kJ / m 3 was obtained. As a result of measuring the density by Archimedes method, the density was 7.55 g / cm 3 and the filling rate was 99%.

更に、X線回折法で解析した結果、固化した磁石用固形材料はほとんどα−Fe分解相の析出が起きておらず、ThZn17型菱面体晶の結晶構造を有していることが確認された。
本試料表面を鏡面研磨後5%ナイタール腐食液で30秒間腐食し、FE−SEMにて観察を行った結果、視野内に粒状に観察される部分と前記粒状部分の隙間を埋める様に存在する部分との2相構造であることが判った。EBSPにて各部分の結晶方位の観察を行った結果、前記粒状部分はThZn17型菱面体晶の結晶構造が観察され、その他の部分は非晶質であることが確認された。観察断面の面積比より、ThZn17型菱面体晶部分(結晶相)対非晶質部分(非晶質相)が6対4の体積比で存在することが判った。
Furthermore, as a result of analysis by the X-ray diffraction method, the solidified solid material for magnets has almost no precipitation of α-Fe decomposition phase and has a crystal structure of Th 2 Zn 17 type rhombohedral crystal. confirmed.
The surface of this sample is mirror-polished and then corroded with 5% nital corrosion solution for 30 seconds and observed with FE-SEM. It was found to have a two-phase structure with the part. As a result of observing the crystal orientation of each part by EBSP, it was confirmed that the granular part was observed to have a Th 2 Zn 17 type rhombohedral crystal structure, and the other part was amorphous. From the area ratio of the observed cross section, it was found that the Th 2 Zn 17 type rhombohedral crystal part (crystalline phase) to the amorphous part (amorphous phase) existed in a volume ratio of 6 to 4.

Figure 2012164983
Figure 2012164983

1 銅製パイプ(粉体を保持する為に使用)
2 銅製プラグ
3 銅製パイプ(水を保持するために使用)
4 紙筒(爆薬を保持するために使用)
5 爆薬
6 起爆部
7 水
8 試料部(希土類−鉄−窒素−水素−酸素系磁性材料を含む試料)
1 Copper pipe (used to hold powder)
2 Copper plug 3 Copper pipe (used to hold water)
4 paper tubes (used to hold explosives)
5 Explosive 6 Initiation part 7 Water 8 Sample part (sample including rare earth-iron-nitrogen-hydrogen-oxygen magnetic material)

(1)菱面体晶又は六方晶の結晶構造を有する希土類−鉄−窒素−水素−酸素系磁性材料を、80〜100体積%含有した磁石用固形材料の製造方法であって、前記希土類−鉄−窒素−水素−酸素系磁性材料の粉体を原料粉体全体に対して80〜100体積%含む原料粉体を3〜40GPaの水中衝撃波を用いて、衝撃圧縮固化することを特徴とする磁石用固形材料の製造方法。
(2)前記希土類−鉄−窒素−水素−酸素系磁性材料が、一般式R α Fe 100−α−β−γ−δ β γ δ で表され、Rは希土類元素から選ばれる少なくとも一種の元素であり、又、α、β、γ、δは原子百分率で、5≦α≦20、10≦β≦25、0.1≦γ≦3.3、0.01≦δ≦10であることを特徴とする(1)に記載の磁石用固形材料の製造方法。
(3)前記希土類−鉄−窒素−水素−酸素系磁性材料が、一般式R α Fe 100−α−β−γ−δ β γ δ ε で表され、RはYを含む希土類元素から選ばれる少なくとも一種の元素であり、MはZn,In,Sn、Ga、Al、B、C、Ca、Ge、Mg、Si、Ti、V、Zr、Co、Mnから選ばれる少なくとも1種の元素及び/又は、Mn−Al−C合金、Al−Cu−Mg合金、MgO、Al 、ZrO 、SiO 、フェライト、CaF 、AlF 、TiC、SiC、ZrC、Si 、ZnN、AlNから選ばれる少なくとも一種であり、又、α、β、γ、δ、εはモル百分率で、5≦α≦20、10≦β≦25、0.1≦γ≦3.3、0.01≦δ≦10、0.1≦ε≦10であることを特徴とする(1)に記載の磁石用固形材料の製造方法
(4)前記原料粉体が、前記希土類−鉄−窒素−水素−酸素系磁性材料の粉体以外の成分として硬磁性材料の粉体を含むことを特徴とする(1)〜(3)のいずれかに記載の磁石用固形材料の製造方法。
(5)前記原料粉体が、前記希土類−鉄−窒素−水素−酸素系磁性材料の粉体以外の成分として軟磁性材料の粉体を含むことを特徴とする(1)〜(3)のいずれかに記載の磁石用固形材料の製造方法。
(6)前記原料粉体が、前記希土類−鉄−窒素−水素−酸素系磁性材料の粉体以外の成分として非磁性材料の粉体を含むことを特徴とする(1)〜(3)のいずれかに記載の磁石用固形材料の製造方法。
(7)前記原料粉体を圧粉成形した後、水中衝撃波を用いて衝撃圧縮固化することを特徴とする(1)〜(6)のいずれかに記載の磁石用固形材料の製造方法。
(8)前記原料粉体の圧粉成形を磁場中で行うことを特徴とする(7)に記載の磁石用固形材料の製造方法。
(9)磁石用固形材料を切削加工及び/又は塑性加工により成形する工程を更に含むことを特徴とする(1)〜(8)のいずれかに記載の磁石用固形材料の製造方法。
(10)磁石用固形材料を角柱状、円筒状、リング状、円板状又は平板状の形状に成形することを特徴とする(9)に記載の磁石用固形材料の製造方法。
(11)磁石固形材料を少なくとも一度100℃以上且つ分解温度より低い温度で熱処理をする工程を更に含むことを特徴とする(1)〜(10)のいずれかに記載の磁石用固形材料の製造方法。
(12)前記水中衝撃波の圧力が3〜30GPaであることを特徴とする(1)〜(11)のいずれかに記載の磁石用固形材料の製造方法。
(13)前記水中衝撃波の圧力が3〜22GPaであることを特徴とする(12)に記載の磁石用固形材料の製造方法。
(1) A method for producing a solid material for a magnet containing 80 to 100% by volume of a rare earth-iron-nitrogen-hydrogen-oxygen based magnetic material having a rhombohedral or hexagonal crystal structure, the rare earth-iron -A magnet characterized in that a raw material powder containing powder of nitrogen-hydrogen-oxygen-based magnetic material in an amount of 80 to 100% by volume with respect to the whole raw material powder is subjected to impact compression solidification using an underwater shock wave of 3 to 40 GPa. Method for manufacturing solid material.
(2) the rare earth - iron - nitrogen - hydrogen - oxygen-based magnetic material is represented by the general formula R α Fe 100-α-β -γ-δ N β H γ O δ, at least R is selected from rare earth elements Α, β, γ, and δ are atomic percentages, and 5 ≦ α ≦ 20, 10 ≦ β ≦ 25, 0.1 ≦ γ ≦ 3.3, and 0.01 ≦ δ ≦ 10. The manufacturing method of the solid material for magnets as described in (1) characterized by the above-mentioned.
(3) the rare earth - iron - nitrogen - hydrogen - oxygen-based magnetic material is represented by the general formula R α Fe 100-α-β -γ-δ N β H γ O δ M ε, rare earth R is including Y M is at least one element selected from Zn, In, Sn, Ga, Al, B, C, Ca, Ge, Mg, Si, Ti, V, Zr, Co, and Mn. And / or Mn—Al—C alloy, Al—Cu—Mg alloy, MgO, Al 2 O 3 , ZrO 2 , SiO 2 , ferrite, CaF 2 , AlF 3 , TiC, SiC, ZrC, Si 3 N 4 , at least one selected from ZnN and AlN, and α, β, γ, δ, and ε are molar percentages, 5 ≦ α ≦ 20, 10 ≦ β ≦ 25, 0.1 ≦ γ ≦ 3.3. characterized in that it is a 0.01 ≦ δ ≦ 10,0.1 ≦ ε ≦ 10 (1 Method for producing a magnet solid material according to.
(4) The raw material powder includes a hard magnetic material powder as a component other than the rare earth-iron-nitrogen-hydrogen-oxygen based magnetic material powder (1) to (3) The manufacturing method of the solid material for magnets in any one.
(5) The raw material powder includes a powder of a soft magnetic material as a component other than the powder of the rare earth-iron-nitrogen-hydrogen-oxygen magnetic material. (1) to (3) The manufacturing method of the solid material for magnets in any one.
(6) The raw material powder includes a powder of a nonmagnetic material as a component other than the powder of the rare earth-iron-nitrogen-hydrogen-oxygen-based magnetic material. (1) to (3) The manufacturing method of the solid material for magnets in any one.
(7) The method for producing a solid material for a magnet according to any one of (1) to (6), wherein the raw material powder is compacted and then impact-compressed and solidified using an underwater shock wave.
(8) The method for producing a solid material for a magnet according to (7), wherein the raw material powder is compacted in a magnetic field.
(9) The method for producing a magnet solid material according to any one of (1) to (8), further including a step of forming the magnet solid material by cutting and / or plastic working.
(10) The method for producing a solid material for a magnet according to (9) , wherein the solid material for a magnet is formed into a prismatic shape, a cylindrical shape, a ring shape, a disc shape, or a flat plate shape .
(11) The method for producing a solid material for a magnet according to any one of (1) to (10), further comprising a step of heat-treating the magnetic solid material at least once at a temperature of 100 ° C. or higher and lower than a decomposition temperature. Method.
(12) The method for producing a solid material for a magnet according to any one of (1) to (11), wherein the pressure of the underwater shock wave is 3 to 30 GPa.
(13) The method for producing a solid material for a magnet according to (12), wherein the pressure of the underwater shock wave is 3 to 22 GPa.

Claims (16)

希土類−鉄−窒素−水素−酸素系磁性材料を50〜100体積%含有した磁石用固形材料。   A solid material for a magnet containing 50 to 100% by volume of a rare earth-iron-nitrogen-hydrogen-oxygen based magnetic material. 菱面体晶または六方晶の結晶構造を有する希土類−鉄−窒素−水素−酸素系磁性材料を含有することを特徴とする請求項1に記載の磁石用固形材料。   2. The solid material for a magnet according to claim 1, comprising a rare earth-iron-nitrogen-hydrogen-oxygen based magnetic material having a rhombohedral or hexagonal crystal structure. 希土類−鉄−窒素−水素−酸素系磁性材料が、一般式RαFe100−α−β−γ−δβγδで表され、Rは希土類元素から選ばれる少なくとも一種の元素であり、又、α、β、γ、δは原子百分率で、3≦α≦20、5≦β≦25、0.01≦γ≦5、0.01≦δ≦10である請求項1又は2の磁石用固形材料。 Rare earth - iron - nitrogen - hydrogen - oxygen-based magnetic material is represented by the general formula R α Fe 100-α-β -γ-δ N β H γ O δ, R is at least one element selected from rare earth elements And α, β, γ, and δ are atomic percentages, 3 ≦ α ≦ 20, 5 ≦ β ≦ 25, 0.01 ≦ γ ≦ 5, and 0.01 ≦ δ ≦ 10. Solid material for magnets. 希土類−鉄−窒素−水素−酸素系磁性材料が、一般式RαFe100−α−β−γ−δβγδεで表され、RはYを含む希土類元素から選ばれる少なくとも一種の元素であり、MはLi、Na、K、Mg、Ca、Sr、Ba、Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Mn、Pd、Cu、Ag、Zn、B、Al、Ga、In、C、Si、Ge、Sn、Pb、Biから選ばれる少なくとも一種の元素及び/又はRの酸化物、フッ化物、炭化物、窒化物、水素化物、炭酸塩、硫酸塩、ケイ酸塩、塩化物、硝酸塩から選ばれる少なくとも一種であり、又、α、β、γ、δ、εはモル百分率で、3≦α≦20、5≦β≦30、0.01≦γ≦10、0.01≦δ≦10、0.1≦ε≦40であることを特徴とする請求項1又は2に記載の磁石用固形材料。 Rare earth - iron - nitrogen - hydrogen - oxygen-based magnetic material is represented by the general formula R α Fe 100-α-β -γ-δ N β H γ O δ M ε, R is selected from rare earth elements including Y At least one element, M is Li, Na, K, Mg, Ca, Sr, Ba, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Pd, Cu, Ag, Zn , B, Al, Ga, In, C, Si, Ge, Sn, Pb, Bi, and / or R oxide, fluoride, carbide, nitride, hydride, carbonate, sulfuric acid It is at least one selected from a salt, a silicate, a chloride, and a nitrate, and α, β, γ, δ, and ε are mole percentages, 3 ≦ α ≦ 20, 5 ≦ β ≦ 30, 0.01 ≦ The γ ≦ 10, 0.01 ≦ δ ≦ 10, and 0.1 ≦ ε ≦ 40, respectively. Solid material for magnets. 希土類−鉄−窒素−水素−酸素系磁性材料を含有した6.15g/cmより高い密度を有する請求項1〜4のいずれかの磁石用固形材料。 Rare earth - iron - nitrogen - hydrogen - oxygen-based one solid material for a magnet of claims 1 to 4 having a density greater than 6.15 g / cm 3 containing a magnetic material. 希土類−鉄−窒素−水素−酸素系磁性材料以外の成分が密度6.5g/cm以下の元素、化合物またはそれらの混合物であることを特徴とする請求項5の磁石用固形材料。 6. The solid material for a magnet according to claim 5, wherein the component other than the rare earth-iron-nitrogen-hydrogen-oxygen based magnetic material is an element, a compound or a mixture thereof having a density of 6.5 g / cm 3 or less. 常温の残留磁束密度B、常温の保磁力HcJ、磁石として使用するときのパーミアンス係数P及び最高使用温度Tmaxの関係が、μを真空の透磁率とするとき、
≦μcJ(P+1)(11000−50Tmax)/(10000−6Tmax
であることを特徴とする請求項1〜6のいずれかの磁石用固形材料。
When the relationship between the room temperature residual magnetic flux density B r , the room temperature coercive force H cJ , the permeance coefficient P c when used as a magnet, and the maximum operating temperature T max is μ 0 , the permeability of vacuum is
B r ≦ μ 0 H cJ (P c +1) (11000−50T max ) / (10000−6T max )
The solid material for a magnet according to any one of claims 1 to 6, wherein
Fe、Co、Niから選ばれる少なくとも一種の元素を含む軟磁性材料が前記希土類−鉄−窒素−水素−酸素系磁性材料と均一に分散され、一体化していることを特徴とする請求項1〜7のいずれかの磁石用固形材料。   The soft magnetic material containing at least one element selected from Fe, Co, and Ni is uniformly dispersed and integrated with the rare earth-iron-nitrogen-hydrogen-oxygen based magnetic material. 7. A solid material for a magnet according to any one of 7 above. 希土類−鉄−ほう素系磁性材料、希土類−コバルト系磁性材料、フェライト系磁性材料から選ばれる少なくとも一種の磁性材料が前記希土類−鉄−窒素−水素−酸素系磁性材料と均一に添加混合され、一体化していることを特徴とする請求項1〜8のいずれかの磁石用固形材料。   At least one magnetic material selected from a rare earth-iron-boron magnetic material, a rare earth-cobalt magnetic material, and a ferrite magnetic material is uniformly added and mixed with the rare earth-iron-nitrogen-hydrogen-oxygen magnetic material, The solid material for magnets according to any one of claims 1 to 8, which is integrated. 磁性材料の粒界に非磁性相が存在することを特徴とする請求項1〜9のいずれかに記載の磁石用固形材料。   The solid material for a magnet according to claim 1, wherein a nonmagnetic phase is present at a grain boundary of the magnetic material. 請求項1〜10のいずれかの磁石用固形材料と軟磁性の固形金属材料とを接合して一体化したことを特徴とする磁石用の固形材料。   A solid material for a magnet, wherein the solid material for a magnet according to claim 1 and a soft magnetic solid metal material are joined and integrated. 軟磁性層を有し、軟磁性層と請求項1〜11のいずれかの磁石用固形材料とが交互に積層されて一体化していることを特徴とする磁石用の固形材料。   A solid material for a magnet having a soft magnetic layer, wherein the soft magnetic layer and the solid material for magnet according to claim 1 are alternately laminated and integrated. 請求項1〜12のいずれかの磁石用固形材料の少なくとも一部が非磁性の固形材料で覆われたことを特徴とする磁石用の固形材料。   A solid material for a magnet, wherein at least a part of the solid material for a magnet according to claim 1 is covered with a nonmagnetic solid material. 角柱状、円筒状、リング状、円板状又は平板状に成形したことを特徴とする請求項1〜13のいずれかの磁石用の固形材料。   The solid material for a magnet according to any one of claims 1 to 13, which is formed into a prismatic shape, a cylindrical shape, a ring shape, a disc shape or a flat plate shape. 希土類−鉄−窒素−水素−酸素系磁性材料の原料粉体を、水中衝撃波を用いて、衝撃圧縮固化することを特徴とする請求項1〜14のいずれかの磁石用固形材料の製造方法。   The method for producing a solid material for a magnet according to any one of claims 1 to 14, wherein the raw material powder of the rare earth-iron-nitrogen-hydrogen-oxygen-based magnetic material is shock-compressed and solidified using an underwater shock wave. 請求項1〜14のいずれかの磁石用固形材料を製造する方法であって、材料を少なくとも一度100℃以上且つ分解温度より低い温度で熱処理をする工程を含むことを特徴とする磁石用固形材料の製造方法。   A method for producing a solid material for a magnet according to any one of claims 1 to 14, comprising a step of heat-treating the material at least once at 100 ° C and lower than a decomposition temperature. Manufacturing method.
JP2012032884A 2012-02-17 2012-02-17 Manufacturing method of solid material for magnet Expired - Fee Related JP5339644B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012032884A JP5339644B2 (en) 2012-02-17 2012-02-17 Manufacturing method of solid material for magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012032884A JP5339644B2 (en) 2012-02-17 2012-02-17 Manufacturing method of solid material for magnet

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002309048A Division JP4970693B2 (en) 2002-10-23 2002-10-23 Solid material for magnet

Publications (2)

Publication Number Publication Date
JP2012164983A true JP2012164983A (en) 2012-08-30
JP5339644B2 JP5339644B2 (en) 2013-11-13

Family

ID=46844021

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012032884A Expired - Fee Related JP5339644B2 (en) 2012-02-17 2012-02-17 Manufacturing method of solid material for magnet

Country Status (1)

Country Link
JP (1) JP5339644B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017055072A (en) * 2015-09-11 2017-03-16 国立研究開発法人産業技術総合研究所 Samarium-iron-nitrogen based sintered magnet, and manufacturing method of samarium-iron-nitrogen based sintered magnet
CN115261698A (en) * 2022-08-25 2022-11-01 昆明理工大学 Preparation method of rare earth-attached tungsten carbide particle-reinforced iron-based surface layer composite material

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61502A (en) * 1984-06-13 1986-01-06 Asahi Chem Ind Co Ltd Molding method of powdery body
JPH01283301A (en) * 1988-03-03 1989-11-14 General Motors Corp <Gm> Explosive compression of rare earth/transition alloy in fluid
JPH03153852A (en) * 1989-11-13 1991-07-01 Asahi Chem Ind Co Ltd Magnetic material, magnet composed of the same, and their production
JPH05214463A (en) * 1991-10-24 1993-08-24 Vacuumschmelze Gmbh Process for producing molding of nitrogenous permanent magnet alloy
JPH05308015A (en) * 1992-05-01 1993-11-19 Asahi Chem Ind Co Ltd Magnetic resin composite material
JPH05315116A (en) * 1992-05-01 1993-11-26 Asahi Chem Ind Co Ltd Rare earth magnetic material resin composite material
JPH0677027A (en) * 1992-06-24 1994-03-18 Sumitomo Special Metals Co Ltd Rare earth element-fe-n base permanent magnet and manufacture thereof
JPH06168808A (en) * 1992-11-30 1994-06-14 Asahi Chem Ind Co Ltd Magnetic material and manufacture thereof
JPH06342708A (en) * 1993-06-02 1994-12-13 Matsushita Electric Ind Co Ltd Manufacture of rare earth-iron-nitrogen based magnetic material
JPH0714709A (en) * 1992-09-21 1995-01-17 Kanagawa Kagaku Gijutsu Akad Permanent magnet material
JPH09186038A (en) * 1995-12-28 1997-07-15 Mitsui Petrochem Ind Ltd Manufacture of composite magnetic material
JPH09298108A (en) * 1996-05-07 1997-11-18 Matsushita Electric Ind Co Ltd Rare earth-iron-nitrogen magnetic material manufacturing method
JP2001006959A (en) * 1999-06-17 2001-01-12 Sumitomo Special Metals Co Ltd Manufacture of pare-earth-iron-nitrogen permanent magnet
JP2002015907A (en) * 2000-06-29 2002-01-18 Nissan Motor Co Ltd Switching spring magnet powder and its manufacturing method

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61502A (en) * 1984-06-13 1986-01-06 Asahi Chem Ind Co Ltd Molding method of powdery body
JPH01283301A (en) * 1988-03-03 1989-11-14 General Motors Corp <Gm> Explosive compression of rare earth/transition alloy in fluid
JPH03153852A (en) * 1989-11-13 1991-07-01 Asahi Chem Ind Co Ltd Magnetic material, magnet composed of the same, and their production
JPH05214463A (en) * 1991-10-24 1993-08-24 Vacuumschmelze Gmbh Process for producing molding of nitrogenous permanent magnet alloy
JPH05308015A (en) * 1992-05-01 1993-11-19 Asahi Chem Ind Co Ltd Magnetic resin composite material
JPH05315116A (en) * 1992-05-01 1993-11-26 Asahi Chem Ind Co Ltd Rare earth magnetic material resin composite material
JPH0677027A (en) * 1992-06-24 1994-03-18 Sumitomo Special Metals Co Ltd Rare earth element-fe-n base permanent magnet and manufacture thereof
JPH0714709A (en) * 1992-09-21 1995-01-17 Kanagawa Kagaku Gijutsu Akad Permanent magnet material
JPH06168808A (en) * 1992-11-30 1994-06-14 Asahi Chem Ind Co Ltd Magnetic material and manufacture thereof
JPH06342708A (en) * 1993-06-02 1994-12-13 Matsushita Electric Ind Co Ltd Manufacture of rare earth-iron-nitrogen based magnetic material
JPH09186038A (en) * 1995-12-28 1997-07-15 Mitsui Petrochem Ind Ltd Manufacture of composite magnetic material
JPH09298108A (en) * 1996-05-07 1997-11-18 Matsushita Electric Ind Co Ltd Rare earth-iron-nitrogen magnetic material manufacturing method
JP2001006959A (en) * 1999-06-17 2001-01-12 Sumitomo Special Metals Co Ltd Manufacture of pare-earth-iron-nitrogen permanent magnet
JP2002015907A (en) * 2000-06-29 2002-01-18 Nissan Motor Co Ltd Switching spring magnet powder and its manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017055072A (en) * 2015-09-11 2017-03-16 国立研究開発法人産業技術総合研究所 Samarium-iron-nitrogen based sintered magnet, and manufacturing method of samarium-iron-nitrogen based sintered magnet
CN115261698A (en) * 2022-08-25 2022-11-01 昆明理工大学 Preparation method of rare earth-attached tungsten carbide particle-reinforced iron-based surface layer composite material

Also Published As

Publication number Publication date
JP5339644B2 (en) 2013-11-13

Similar Documents

Publication Publication Date Title
KR100524340B1 (en) Solid Material for Magnet
JP4830024B2 (en) Composite magnetic material for magnet and manufacturing method thereof
CA2916483C (en) Iron nitride materials and magnets including iron nitride materials
KR101855530B1 (en) Rare earth permanent magnet and their preparation
JP5501828B2 (en) R-T-B rare earth permanent magnet
WO2011040126A1 (en) Magnetic material and motor obtained using same
EP2608224A1 (en) Rare earth-iron-nitrogen system alloy material, method for producing rare earth-iron-nitrogen system alloy material, rare earth-iron system alloy material, and method for producing rare earth-iron system alloy material
JP5165785B2 (en) Solid material for magnet
JP4700578B2 (en) Method for producing high resistance rare earth permanent magnet
JP2705985B2 (en) MAGNETIC MATERIAL, MAGNET COMPRISING THE SAME, AND PROCESS FOR PRODUCING THEM
JP2006291257A (en) Rare earth-transition metal-nitrogen based magnetic powder, and method for producing the same
JP2002270416A (en) Bulk anisotropic rare earth permanent magnet and its manufacturing method
JP5339644B2 (en) Manufacturing method of solid material for magnet
JP4970693B2 (en) Solid material for magnet
JP2002015907A (en) Switching spring magnet powder and its manufacturing method
JP4873516B2 (en) Solid material for magnet and method for producing the same
JP2012132068A (en) Rare earth-transition metal-nitrogen magnet powder, method and apparatus for producing the same, composition for bond magnet using the powder, and bond magnet
JP2004146543A (en) Solid material for magnet and its manufacturing method
JP4790927B2 (en) Solid material for magnet and method for producing the same
JP4790933B2 (en) Solid material for magnet and method for producing the same
JP2002043110A (en) Magnetic anisotropic agglomerate of r2t17nx magnet material, its manufacturing method, and bonded magnet
JP3357421B2 (en) Method for forming magnetic field of magnet powder and method for manufacturing magnet
WO2017191790A1 (en) Rare-earth permanent magnet, and method for manufacturing same
JP5501833B2 (en) R-T-B permanent magnet
JP2004146432A (en) Solid material for magnet

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130523

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130704

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130802

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130805

R150 Certificate of patent or registration of utility model

Ref document number: 5339644

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees