JP2017055072A - Samarium-iron-nitrogen based sintered magnet, and manufacturing method of samarium-iron-nitrogen based sintered magnet - Google Patents

Samarium-iron-nitrogen based sintered magnet, and manufacturing method of samarium-iron-nitrogen based sintered magnet Download PDF

Info

Publication number
JP2017055072A
JP2017055072A JP2015180017A JP2015180017A JP2017055072A JP 2017055072 A JP2017055072 A JP 2017055072A JP 2015180017 A JP2015180017 A JP 2015180017A JP 2015180017 A JP2015180017 A JP 2015180017A JP 2017055072 A JP2017055072 A JP 2017055072A
Authority
JP
Japan
Prior art keywords
magnet
samarium
iron
sintered magnet
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015180017A
Other languages
Japanese (ja)
Other versions
JP6614647B2 (en
Inventor
健太 高木
Kenta Takagi
健太 高木
力央 曽田
Rikio Soda
力央 曽田
尾崎 公洋
Koyo Ozaki
公洋 尾崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=58317421&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2017055072(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2015180017A priority Critical patent/JP6614647B2/en
Publication of JP2017055072A publication Critical patent/JP2017055072A/en
Application granted granted Critical
Publication of JP6614647B2 publication Critical patent/JP6614647B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a samarium-iron-nitrogen based sintered magnet which includes crystal grains pulverized to a size close to a grain size of a single magnetic domain, and is superior in coercive force.SOLUTION: A samarium-iron-nitrogen based sintered magnet is provided, which comprises a samarium-iron-nitrogen based alloy, where crystal grains included therein are larger than 0.04 μm and 5 μm or less in average grain diameter, and which has an oxygen content of 0.7 wt% or less. Also, a samarium-iron-nitrogen based sintered magnet is provided, which comprises a samarium-iron-nitrogen based alloy, where crystal grains included therein are larger than 0.04 μm and 5 μm or less in average grain diameter, and an oxygen content (wt%) and the average grain diameter (μm) of the crystal grains satisfy the relation given by the following formula (1): (Oxygen content)×(Average grain diameter of crystal grains)<2.2 (1).SELECTED DRAWING: Figure 1

Description

本発明は、サマリウム−鉄−窒素系焼結磁石、及びサマリウム−鉄−窒素系焼結磁石の製造方法に関する。   The present invention relates to a samarium-iron-nitrogen based sintered magnet and a method for producing a samarium-iron-nitrogen based sintered magnet.

サマリウム−鉄−窒素系磁石(Sm−Fe−N系磁石)は希土類−遷移金属−窒素系磁石の代表であり、高い異方性磁界と飽和磁化を有することから、Nd−Fe−B系磁石やSm−Co系磁石と並ぶ優れた磁石材料の一つとされている。   A samarium-iron-nitrogen-based magnet (Sm-Fe-N-based magnet) is a representative of a rare earth-transition metal-nitrogen-based magnet and has a high anisotropic magnetic field and saturation magnetization. And one of the excellent magnet materials along with Sm—Co magnets.

現在、工業的によく用いられるNd−Fe−B系磁石は、高温下では保磁力が著しく低下するため、高価なDyを添加することで要求される磁気特性を発現させている。また、Sm−Co系磁石はキュリー温度が高く、耐熱性には優れるものの、高価なCoを多量に用いるため、広く普及するに至っていない。   At present, Nd—Fe—B type magnets often used industrially have a remarkably reduced coercive force at high temperatures, and thus exhibit the required magnetic properties by adding expensive Dy. Sm—Co magnets have a high Curie temperature and are excellent in heat resistance, but have not been widely used because they use a large amount of expensive Co.

これに対し、Sm−Fe−N系磁石はキュリー温度が高く、高価な原料を使用しなくとも優れた磁気特性を示す。従って、Sm−Fe−N系磁石は磁気特性に優れ、かつ高い耐熱性を有する磁石材料といえる。   On the other hand, Sm—Fe—N magnets have a high Curie temperature and exhibit excellent magnetic properties without using expensive raw materials. Therefore, it can be said that the Sm—Fe—N magnet is a magnet material having excellent magnetic properties and high heat resistance.

現在、実用化されているSm−Fe−N系磁石としては、結晶構造がThZn17型のSmFe17や、TbCu型のSmFe1.5が挙げられる。いずれも磁石粉末と結合剤である樹脂(エポキシやナイロン等)とを混合した原料を、圧縮成形あるいは射出成型などにより成形したボンド磁石として使用されている。 Sm—Fe—N magnets currently in practical use include Sm 2 Fe 17 N 3 having a crystal structure of Th 2 Zn 17 type and Sm 1 Fe 9 N 1.5 having a Tb 1 Cu 7 type. It is done. Both are used as bonded magnets formed by compression molding or injection molding of raw materials obtained by mixing magnet powder and a resin (epoxy, nylon, etc.) as a binder.

しかしながら、ボンド磁石では磁石粉末の結合剤として樹脂を用いることから、その耐熱性や強度は樹脂の特性に依存することとなり、高耐熱性や高強度が要求される部位への使用には適さない。とりわけ、前述したようにSm−Fe−N系磁石は耐熱性に優れるが、ボンド磁石として用いるとその優位性を有効に利用できない。さらに、通常のボンド磁石では、結合剤を含むため、磁石粉末の体積比率を83%以上にすることは難しい。結合剤は磁石特性の発現に寄与しないため、焼結磁石に比べてボンド磁石の磁気特性は低い。   However, since a bond magnet uses a resin as a binder for magnet powder, its heat resistance and strength depend on the properties of the resin, and is not suitable for use in parts that require high heat resistance or high strength. . In particular, as described above, the Sm—Fe—N magnet is excellent in heat resistance, but when used as a bonded magnet, its superiority cannot be used effectively. Furthermore, since a normal bonded magnet contains a binder, it is difficult to make the volume ratio of the magnet powder 83% or more. Since the binder does not contribute to the development of the magnet characteristics, the magnetic characteristics of the bonded magnet are lower than that of the sintered magnet.

このような問題を解決するための方法としてはSm−Fe−N系磁石粉末に対して焼結を行い、結合剤を含まない焼結磁石とする方法が考えられる。しかしながら、Sm−Fe−N系化合物は約600℃以上で熱分解を起こし磁石性能が減衰する。このため、Sm−Fe−N系磁石粉末に対して、Sm−Fe−N系化合物の分解温度以下で焼結を行う必要がある。ところが、鉄系の磁石合金を常圧焼結などの焼結手法によって緻密化しようとすれば、一般的は1000℃近くまで加熱しなくてはならず、この温度をSm−Fe−N磁石粉末に適用すれば、熱分解は避けられない。   As a method for solving such a problem, a method of sintering a Sm—Fe—N magnet powder to obtain a sintered magnet containing no binder can be considered. However, the Sm—Fe—N compound undergoes thermal decomposition at about 600 ° C. or more, and the magnet performance is attenuated. For this reason, it is necessary to sinter with respect to Sm-Fe-N type magnet powder below the decomposition temperature of a Sm-Fe-N type compound. However, if an iron-based magnet alloy is to be densified by a sintering technique such as atmospheric pressure sintering, generally, it must be heated to near 1000 ° C., and this temperature is set to Sm—Fe—N magnet powder. If applied to, thermal decomposition is inevitable.

このような熱安定性の低いSm−Fe−Nの焼結磁石を作る技術として、以下の(1)〜(4)に示すような高加圧焼結やホットプレス法、プラズマ焼結などの低温焼結が従来から検討されてきた。
(1)溶解合金化法や振動ミル粉砕法を経て作製したSm−Fe−N微粉末を、3GPaの圧力を加えながら550℃で焼結して緻密な焼結磁石を得る方法(非特許文献1参照)。
(2)溶解合金化法やボールミル粉砕法を経て作製したSm−Fe−N微粉末を、爆発衝撃圧密成形により緻密な焼結磁石を得る方法(非特許文献2参照)。
(3)溶解合金化法やボールミル粉砕法を経て作製したSm−Fe−N系合金の粉体を、加圧下でプラズマ焼結して希土類磁石を得る方法(特許文献1や非特許文献3など参照)。
(4)超急冷法を経て作製された等方性のSm−Fe−N系磁石粉末を、高加圧下で熱間プレスすることにより、等方性磁石を製造する方法(特許文献2および3)。
As a technique for producing such a sintered magnet of Sm—Fe—N with low thermal stability, high pressure sintering, hot press method, plasma sintering, etc. as shown in the following (1) to (4) Low temperature sintering has been studied conventionally.
(1) A method of obtaining a dense sintered magnet by sintering Sm—Fe—N fine powder produced through a melting alloying method or a vibration mill pulverization method at 550 ° C. while applying a pressure of 3 GPa (non-patent document) 1).
(2) A method of obtaining a dense sintered magnet by explosive impact compaction of Sm—Fe—N fine powder produced through a melting alloying method or a ball mill pulverization method (see Non-Patent Document 2).
(3) A method of obtaining a rare earth magnet by plasma-sintering a powder of an Sm—Fe—N alloy produced through a melting alloying method or a ball milling method under pressure (Patent Document 1, Non-Patent Document 3, etc.) reference).
(4) A method for producing an isotropic magnet by hot pressing an isotropic Sm—Fe—N-based magnet powder produced through a rapid quenching method under high pressure (Patent Documents 2 and 3) ).

上述の(1)〜(4)の方法によれば、低温で焼結できるため、熱分解させることなく高密度な焼結磁石を得ることが可能である。   According to the methods (1) to (4) described above, since sintering can be performed at a low temperature, it is possible to obtain a high-density sintered magnet without causing thermal decomposition.

上述の様に、(1)〜(3)の方法により焼結磁石を製造した場合、低温で焼結できるため、熱分解させることなく高密度な焼結磁石を得ることが可能である。しかし、(1)の方法では熱分解の兆候が見られないにも関わらず、焼結体の保磁力は原料粉末よりも大幅に低下(8.8kOe→2.2kOe)している。(2)や(3)の方法でも、熱分解の兆候が見られないにも関わらず、焼結後に保磁力は少なくとも30〜40%低下している。   As described above, when a sintered magnet is manufactured by the methods (1) to (3), since it can be sintered at a low temperature, it is possible to obtain a high-density sintered magnet without thermal decomposition. However, in the method (1), although no sign of thermal decomposition is observed, the coercive force of the sintered body is significantly lower than that of the raw material powder (8.8 kOe → 2.2 kOe). Even in the methods (2) and (3), the coercive force is reduced by at least 30 to 40% after sintering despite no signs of thermal decomposition.

また、(4)の方法によれば、焼結による保磁力の低下はないが、作製できる磁石が等方性磁石に限られるために高い磁気特性は望めない。   Further, according to the method (4), the coercive force is not lowered by sintering, but high magnetic characteristics cannot be expected because the magnets that can be produced are limited to isotropic magnets.

(1)〜(3)の方法はいずれも、高保磁力を発生させるために原料粉末は単磁区粒径近くまで、具体的には数μm程度まで粉砕している。ところが、既述のように(1)〜(3)の方法では焼結体の保磁力は低下しており、焼結磁石へ高い磁気特性を付与するために原料粉末を微粉末とすると、焼結後にかえって磁気特性、特に保磁力の低下が避けられなかった。   In any of the methods (1) to (3), the raw material powder is pulverized to near the single domain particle diameter, specifically, to about several μm in order to generate a high coercive force. However, as described above, in the methods (1) to (3), the coercive force of the sintered body is lowered, and if the raw material powder is made into a fine powder in order to impart high magnetic properties to the sintered magnet, On the contrary, a decrease in magnetic properties, particularly coercive force, was unavoidable.

特許文献4には、保磁力を増大させる磁石形成方法として、磁性材料を亜鉛、アルミニウム若しくは銅などの金属等と共に粉砕し、磁界を加えて材料を磁気的に配向させ、次いで材料を分解させない温度にまで加熱する方法が開示されている。しかしながら、特許文献4に開示された磁石形成方法によれば、磁性材料と、亜鉛等とが反応し、磁性材料の体積を減少させてしまうため、残留磁化が大幅に低下するという問題があった。   In Patent Document 4, as a magnet forming method for increasing the coercive force, a temperature at which a magnetic material is pulverized with a metal such as zinc, aluminum or copper, etc., magnetically oriented by applying a magnetic field, and then not decomposed. A method of heating up to is disclosed. However, according to the magnet forming method disclosed in Patent Document 4, the magnetic material reacts with zinc or the like to reduce the volume of the magnetic material, so that there is a problem that the residual magnetization is greatly reduced. .

特開平4−323803号公報JP-A-4-323803 特開2004−319602号公報JP 2004-319602 A 特開2013−89813号公報JP2013-89813A 特開平6−349612号公報JP-A-6-349612

K. Machidaら、Appl. Phys. Lett.62 (1993)2874K. Machida et al., Appl. Phys. Lett. 62 (1993) 2874 H. Odaら、Jpn. J. Appl.Phys.34(1995)L35H. Oda et al., Jpn. J. Appl. Phys. 34 (1995) L35 D.T.Zhangら、Powder Metall. 50(2007)215D.T.Zhang et al., Powder Metall. 50 (2007) 215

上記従来技術の問題に鑑み、本発明の一側面では、単磁区粒径近傍まで粉砕された結晶粒子を含有し、かつ保磁力に優れた、サマリウム−鉄−窒素系焼結磁石を提供することを目的とする。   In view of the above-described problems of the prior art, in one aspect of the present invention, a samarium-iron-nitrogen based sintered magnet containing crystal particles pulverized to the vicinity of a single magnetic domain particle diameter and excellent in coercive force is provided. With the goal.

上記課題を解決するため本発明の一側面では、
サマリウム−鉄−窒素系合金を含有し、
含有する結晶粒子の平均粒径が0.04μmより大きく5μm以下であり、
酸素含有率が0.7重量%以下であるサマリウム−鉄−窒素系焼結磁石を提供する。
In order to solve the above problems, in one aspect of the present invention,
Contains samarium-iron-nitrogen alloy,
The average particle size of the contained crystal particles is larger than 0.04 μm and 5 μm or less,
A samarium-iron-nitrogen based sintered magnet having an oxygen content of 0.7% by weight or less is provided.

本発明の一側面によれば、単磁区粒径近傍まで粉砕された結晶粒子を含有し、かつ保磁力に優れた、サマリウム−鉄−窒素系焼結磁石を提供することができる。   According to one aspect of the present invention, it is possible to provide a samarium-iron-nitrogen based sintered magnet containing crystal particles pulverized to the vicinity of a single magnetic domain particle diameter and excellent in coercive force.

本発明の実施形態における焼結磁石に含まれる結晶粒子と、粒界との模式図。The schematic diagram of the crystal grain contained in the sintered magnet in embodiment of this invention, and a grain boundary.

以下、本発明を実施するための形態について説明するが、本発明は、下記の実施形態に制限されることはなく、本発明の範囲を逸脱することなく、下記の実施形態に種々の変形および置換を加えることができる。
[サマリウム−鉄−窒素系焼結磁石]
(第1の構成例)
本実施形態のサマリウム−鉄−窒素系焼結磁石の第1の構成例について、以下に説明する。
DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments for carrying out the present invention will be described. However, the present invention is not limited to the following embodiments, and various modifications and changes can be made to the following embodiments without departing from the scope of the present invention. Substitutions can be added.
[Samarium-iron-nitrogen based sintered magnet]
(First configuration example)
A first configuration example of the samarium-iron-nitrogen based sintered magnet of the present embodiment will be described below.

本実施形態の第1の構成例のサマリウム−鉄−窒素系焼結磁石は、サマリウム−鉄−窒素系合金を含有し、含有する結晶粒子の平均粒径が0.04μmより大きく5μm以下であり、酸素含有率を0.7重量%以下とすることができる。   The samarium-iron-nitrogen based sintered magnet of the first configuration example of the present embodiment contains a samarium-iron-nitrogen based alloy, and the average grain size of the contained crystal particles is larger than 0.04 μm and not larger than 5 μm. The oxygen content can be 0.7% by weight or less.

本発明の発明者らは、サマリウム−鉄−窒素系焼結磁石(以下、単に「焼結磁石」とも記載する)において、原料粉末と同等以上の保磁力を有する焼結磁石を開発するために鋭意研究を行った。その結果、焼結磁石に含まれる少量の酸素が保磁力低下の原因であることを突き止めた。このため、焼結磁石に含まれる酸素の含有率を抑制することで、原料粉末と同等以上の保磁力を有する、保磁力の優れた焼結磁石とすることができることを見出し、本発明を完成させた。以下、具体的に本実施形態の第1の構成例の焼結磁石について説明する。   In order to develop a sintered magnet having a coercive force equal to or higher than that of the raw material powder in the samarium-iron-nitrogen based sintered magnet (hereinafter also simply referred to as “sintered magnet”), the inventors of the present invention We conducted intensive research. As a result, it was found that a small amount of oxygen contained in the sintered magnet was the cause of the decrease in coercive force. For this reason, by suppressing the oxygen content contained in the sintered magnet, it has been found that a sintered magnet having a coercive force equal to or higher than that of the raw material powder and excellent in coercive force can be obtained, and the present invention is completed. I let you. Hereinafter, the sintered magnet of the first configuration example of the present embodiment will be specifically described.

なお、原料粉末と同等以上の保磁力を有する焼結磁石とは、原料粉末の保磁力と焼結磁石の保磁力とを比較した場合に、焼結磁石の保磁力が、原料粉末の保磁力以上であることを意味する。   Note that a sintered magnet having a coercive force equal to or greater than that of the raw material powder means that the coercive force of the sintered magnet is equal to the coercive force of the raw material powder when the coercive force of the raw material powder is compared with that of the sintered magnet. That means that.

本実施形態の焼結磁石が含有するサマリウム−鉄−窒素系合金の具体的な組成は特に限定されないが、本実施形態の焼結磁石は実用的に優れた磁石特性をもつThZn17型結晶構造やTbCu型結晶構造を有するサマリウム−鉄−窒素系合金を含むことが好ましい。 Although the specific composition of the samarium-iron-nitrogen-based alloy contained in the sintered magnet of the present embodiment is not particularly limited, the sintered magnet of the present embodiment is a Th 2 Zn 17 type having practically excellent magnetic properties. It preferably contains a samarium-iron-nitrogen alloy having a crystal structure or a TbCu 7- type crystal structure.

また、本実施形態の焼結磁石が含有するサマリウム−鉄−窒素系合金の元素組成としては、Sm、Fe、Nから構成されるSm−Fe−N合金に限定されるものではなく、磁石性能や耐熱性の向上のために数%の添加物を含有することもできる。   Further, the elemental composition of the samarium-iron-nitrogen based alloy contained in the sintered magnet of the present embodiment is not limited to the Sm—Fe—N alloy composed of Sm, Fe, and N, and magnet performance In order to improve heat resistance, it may contain several percent of additives.

例えば、サマリウム−鉄−窒素系合金の組成式はR100−x−y−zで表すことができる。上記組成式のうち、RはSm、NdやLaなどの希土類元素から選択された1種類以上の元素であり、少なくともSmを含む。また、TはFe、Co、Niから選択された1種類以上の遷移金属元素であり、少なくともFeを含む。AはTi、Al、Si、V、Cr、Mn、Cu、Zn、Ga、Zr、Nb、Mo、Hf、Taから選択された1種類以上の金属元素を示す。Gは窒素、水素、炭素、フッ素から選択された1種類以上の元素であり、少なくとも窒素を含む。なお、上記組成式中、x、y、zについては特に限定されるものではないが、0<x、0≦y、0<zとすることができる。また、x+y+z<100とすることができる。特に、x、y、zは8.5<x<14、0≦y<5、9.5<z<17.5を満たすことが好ましく、8.5<x<9.5、0≦y<2、11.5<z<15.5を満たすことがより好ましい。 For example, samarium - iron - formula nitrogen based alloy may be represented by R x T 100-x-y -z A y G z. In the above composition formula, R is one or more elements selected from rare earth elements such as Sm, Nd, and La, and includes at least Sm. T is one or more transition metal elements selected from Fe, Co, and Ni, and includes at least Fe. A represents one or more metal elements selected from Ti, Al, Si, V, Cr, Mn, Cu, Zn, Ga, Zr, Nb, Mo, Hf, and Ta. G is one or more elements selected from nitrogen, hydrogen, carbon, and fluorine, and includes at least nitrogen. In the above composition formula, x, y, and z are not particularly limited, but can be 0 <x, 0 ≦ y, and 0 <z. Further, x + y + z <100 can be satisfied. In particular, x, y, and z preferably satisfy 8.5 <x <14, 0 ≦ y <5, 9.5 <z <17.5, and 8.5 <x <9.5, 0 ≦ y. It is more preferable to satisfy <2, 11.5 <z <15.5.

そして、本実施形態の焼結磁石に含まれる結晶粒子の平均粒径は、0.04μmより大きく、5μm以下であることが好ましい。   And it is preferable that the average particle diameter of the crystal grain contained in the sintered magnet of this embodiment is larger than 0.04 micrometer and 5 micrometers or less.

なお、ここでいう結晶粒子とはサマリウム−鉄−窒素系合金の結晶粒子を意味している。   In addition, the crystal particle here means the crystal particle of a samarium-iron-nitrogen alloy.

これは、本実施形態の焼結磁石に含まれる結晶粒子の平均粒径が5μmを超えると、結晶粒子の大半は多磁区構造となるため、本質的に保磁力が低く、本実施形態の焼結磁石における原料粉末からの保磁力低下を抑制する効果がほとんど発揮されないためである。また、本実施形態の焼結磁石に含まれる結晶粒子の平均粒径が0.04μm以下であると、結晶粒子は超常磁性となり、磁石特性を有さなくなるためである。   This is because when the average particle size of the crystal particles included in the sintered magnet of this embodiment exceeds 5 μm, most of the crystal particles have a multi-domain structure, and thus the coercive force is essentially low. It is because the effect which suppresses the coercive force fall from the raw material powder in a magnet is hardly exhibited. Further, if the average particle size of the crystal particles contained in the sintered magnet of the present embodiment is 0.04 μm or less, the crystal particles become superparamagnetic and have no magnet properties.

結晶粒子の平均粒径は、焼結磁石の断面組織像から切片法や面積計量法を用いて計測することができる。   The average particle diameter of the crystal particles can be measured from the cross-sectional structure image of the sintered magnet by using a section method or an area measuring method.

なお、焼結磁石の結晶粒子の平均粒径は、原料粉末である磁石粉末の平均粒径と同等とすることができる。これは、後述のように、焼結磁石を製造する際、磁石粉末を熱分解温度以下の温度で加熱、焼結することとなるため、加熱による粒成長は起こさないからである。すなわち、本実施形態の焼結磁石は、平均粒径が0.04μmより大きく、5μm以下の磁石粉末を含有することができ、本実施形態の焼結磁石は係る磁石粉末が結合した構造を有することができる。   In addition, the average particle diameter of the crystal particle of a sintered magnet can be made equivalent to the average particle diameter of the magnet powder which is a raw material powder. This is because, as will be described later, when a sintered magnet is manufactured, the magnet powder is heated and sintered at a temperature equal to or lower than the thermal decomposition temperature, so that grain growth due to heating does not occur. That is, the sintered magnet of the present embodiment can contain a magnet powder having an average particle size larger than 0.04 μm and 5 μm or less, and the sintered magnet of the present embodiment has a structure in which the magnet powder is combined. be able to.

また、上述の磁石粉末とは、結晶軸の方向が変わらない粒子、すなわち粒子内の結晶軸の方向が同一方向に揃った単結晶粒子を主体として構成される単結晶粉末であることが好ましい。これとは別に、超急冷法などで作製され、結晶軸の方向が様々な方向の結晶が多数集まってできる粒子を主体とした多結晶粉末も知られている。しかしながら、本実施形態の焼結磁石で用いる磁石粉末は、係る結晶軸の方向が様々な方向である粒子を主体として構成される多結晶粉末ではないことが好ましい。   The above-mentioned magnet powder is preferably a single crystal powder mainly composed of particles whose crystal axis directions do not change, that is, single crystal particles whose crystal axes are aligned in the same direction. Apart from this, there is also known a polycrystalline powder mainly composed of particles which are produced by an ultra-quenching method or the like and are formed by a collection of a large number of crystals having various crystal axis directions. However, it is preferable that the magnet powder used in the sintered magnet of the present embodiment is not a polycrystalline powder mainly composed of particles having various crystal axis directions.

そして、既述のように本発明の発明者らの検討によると、焼結磁石に含まれる酸素の含有率を抑制することで、原料粉末と同等以上の保磁力を有する、保磁力に優れた焼結磁石とすることができる。このため、本実施形態の第1の構成例で説明した焼結磁石においては、酸素含有率が0.7重量%以下であることが好ましい。   And as described above, according to the study of the inventors of the present invention, by suppressing the oxygen content contained in the sintered magnet, the coercive force is equal to or higher than that of the raw material powder, and the coercive force is excellent. It can be a sintered magnet. For this reason, in the sintered magnet demonstrated in the 1st structural example of this embodiment, it is preferable that oxygen content rate is 0.7 weight% or less.

焼結磁石の酸素含有率は例えば、不活性ガス融解−非分散型赤外線吸収法(NDIR法)で計測することができ、単位重量当たりの酸素重量(重量%)として直接得ることができる。
(第2の構成例)
また、本実施形態の焼結磁石は上述の構成に限定されるものではなく、他の構成を有することもできる。以下に本実施形態の焼結磁石の第2の構成例について説明する。
The oxygen content of the sintered magnet can be measured, for example, by an inert gas melting-non-dispersive infrared absorption method (NDIR method), and can be directly obtained as an oxygen weight (% by weight) per unit weight.
(Second configuration example)
Moreover, the sintered magnet of the present embodiment is not limited to the above-described configuration, and may have other configurations. Below, the 2nd structural example of the sintered magnet of this embodiment is demonstrated.

ここでまず、図1に本実施形態の焼結磁石の結晶粒子と、その粒界の状態について模式図を示す。   Here, first, FIG. 1 shows a schematic diagram of the crystal grains of the sintered magnet of this embodiment and the state of the grain boundaries.

図1は本実施形態の焼結磁石10の断面を結晶粒子が認識できる程度まで拡大した場合の拡大図を模式的に示しており、点線で囲まれた領域が結晶粒子11を示し、点線が結晶粒子11間の粒界(以下、「結晶粒界」とも記載する。)12を示している。なお、第1の構成例でも説明したように、本実施形態の焼結磁石は磁石粉末が結合した構造を有することができ、結晶粒子と、磁石粉末とは同等のものとすることができる。このため、図1中の結晶粒子11は、磁石粉末に含まれる単結晶粒子であるともいえ、図1に示したように互いに結合した構造を有することができる。   FIG. 1 schematically shows an enlarged view when the cross section of the sintered magnet 10 of the present embodiment is enlarged to such an extent that the crystal particles can be recognized. A region surrounded by a dotted line shows the crystal particles 11, and a dotted line is shown. A grain boundary 12 between crystal grains 11 (hereinafter also referred to as “crystal grain boundary”) 12 is shown. As described in the first configuration example, the sintered magnet of the present embodiment can have a structure in which magnet powder is bonded, and the crystal particles and the magnet powder can be equivalent. For this reason, it can be said that the crystal particles 11 in FIG. 1 are single crystal particles included in the magnet powder, and can have a structure in which the crystal particles 11 are bonded to each other as shown in FIG.

本発明の発明者らは、焼結磁石中の酸素濃度を低減して保磁力低下が抑制される効果について詳細に調査したところ、焼結磁石10に含まれる酸素のほとんどは図1に網掛けで示した酸素高濃度領域13に存在していることが明らかとなった。そして、本発明の発明者らの検討によると、図1に示したように、酸素高濃度領域13は、結晶粒子11の粒界12を囲むように存在しており、さらに粒界に酸素が濃化している度合が保磁力に強く影響することが分かった。   The inventors of the present invention investigated in detail the effect of reducing the coercive force reduction by reducing the oxygen concentration in the sintered magnet, and most of the oxygen contained in the sintered magnet 10 is shaded in FIG. It became clear that it exists in the oxygen high concentration area | region 13 shown by (5). According to the study of the inventors of the present invention, as shown in FIG. 1, the oxygen high concentration region 13 exists so as to surround the grain boundary 12 of the crystal grain 11, and oxygen is further present in the grain boundary. It was found that the degree of concentration strongly affects the coercive force.

例えば、従来技術により作製したサマリウム−鉄−窒素系焼結磁石の微細組織を観察すると、全ての焼結磁石において、結晶粒子の粒界を囲むように、酸素濃度が主相よりも高い領域が存在していた。そして、係る酸素濃度が主相よりも高い領域が厚いほど、焼結磁石の保磁力が大きく低下していた。   For example, when observing the microstructure of a samarium-iron-nitrogen based sintered magnet produced by a conventional technique, in all the sintered magnets, there is a region where the oxygen concentration is higher than that of the main phase so as to surround the grain boundaries of crystal grains. Existed. And the coercive force of the sintered magnet was greatly reduced as the region where the oxygen concentration was higher than the main phase was thicker.

さらに本発明の発明者らが検討を行ったところ、粒界への酸素の濃化度合、すなわち、粒界の単位面積当たりの酸素含有率を一定値以下にすると、原料粉末の保磁力と同等以上の焼結磁石とすることができることを見出した。   Further, when the inventors of the present invention have studied, the degree of concentration of oxygen at the grain boundary, that is, the oxygen content per unit area of the grain boundary is equal to or less than a certain value, it is equivalent to the coercive force of the raw material powder. It discovered that it could be set as the above sintered magnet.

そこで、本実施形態の第2の構成例のサマリウム−鉄−窒素系焼結磁石は、サマリウム−鉄−窒素系合金を含有し、含有する結晶粒子の平均粒径を0.04μmより大きく5μm以下とすることができる。そして、焼結磁石の酸素含有率(重量%)と、結晶粒子の平均粒径(μm)とが、以下の式(1)の関係を満たすように構成することができる。   Therefore, the samarium-iron-nitrogen based sintered magnet of the second configuration example of the present embodiment contains a samarium-iron-nitrogen based alloy, and the average grain size of the contained crystal particles is larger than 0.04 μm and not larger than 5 μm. It can be. And it can comprise so that the oxygen content rate (weight%) of a sintered magnet and the average particle diameter (micrometer) of a crystal grain may satisfy | fill the relationship of the following formula | equation (1).

(酸素含有率)×(結晶粒子の平均粒径)<2.2 ・・・(1)
ここで、上述の式(1)について説明する。
(Oxygen content) × (average particle diameter of crystal grains) <2.2 (1)
Here, the above equation (1) will be described.

まず、単位面積当りの粒界に含まれる酸素含有率Cは、焼結磁石の酸素含有率Mと単位体積当りの粒界面積Aとを使って以下の式(a)のように表される。
C=M/A・・・(a)
また、単位体積当りの粒界面積Aは、1粒子当たりの平均粒界面積Aと単位体積当りの平均結晶粒子数Nを使って以下の式(b)のように表される。
=(A/2)×N・・・(b)
上記式(b)で、Aを2で除しているのは、粒界は2つの結晶が結合して形成されるからである。
First, the oxygen content C contained in the grain boundary per unit area is expressed by the following formula (a) using the oxygen content M of the sintered magnet and the grain interface area AT per unit volume. The
C = M / A T (a)
Further, the grain interface area AT per unit volume is expressed by the following formula (b) using the average grain interface area AG per particle and the average number of crystal grains N per unit volume.
A T = (A G / 2) × N (b)
The reason why AG is divided by 2 in the above formula (b) is that the grain boundary is formed by combining two crystals.

さらに、結晶粒子を球と仮定すると、1粒子当たりの平均粒界面積Aは結晶粒子の平均粒径dを用いて以下の式(c)のように表される。
= 4π(d/2)・・・(c)
また、単位体積当りの平均結晶粒子数Nは、1粒子あたりの平均体積の逆数で表され、
以下の式(d)のように表される。
N =1/[4π/3 (d/2)]・・・(d)
以上の式(b)〜式(d)から、単位体積当りの粒界面積Aは、以下の式(e)で表される。
=4π(d/2)×1/[4π/3 (d/2)] 3/(d/2)・・・(e)
従って、以上の式(a)、式(e)から、単位面積当りの粒界に含まれる酸素含有率Cは、以下の式(f)で表される。
C = M/[3/(d/2)] = 1/6×M×d・・・(f)
上記式(f)から、粒界面積により規格化した酸素含有率は、焼結磁石の酸素含有率Mと結晶粒子の平均粒径dの積に比例することが確認できた。
Further, assuming that the crystal grains are spheres, the average grain interface area AG per grain is expressed by the following formula (c) using the average grain diameter d of the crystal grains.
A G = 4π (d / 2) 2 (c)
Further, the average number of crystal grains N per unit volume is represented by the reciprocal of the average volume per particle,
It is expressed as the following formula (d).
N = 1 / [4π / 3 (d / 2) 3 ] (d)
From the above formulas (b) to (d), the grain interface area AT per unit volume is expressed by the following formula (e).
A T = 4π (d / 2) 2 × 1 / [4π / 3 (d / 2) 3 ] = 3 / (d / 2) ... (e)
Therefore, from the above formulas (a) and (e), the oxygen content C contained in the grain boundary per unit area is expressed by the following formula (f).
C = M / [3 / (d / 2)] = 1/6 × M × d (f)
From the above formula (f), it was confirmed that the oxygen content normalized by the grain boundary area was proportional to the product of the oxygen content M of the sintered magnet and the average particle diameter d of the crystal particles.

そして、本発明の発明者らはさらに、この焼結磁石の酸素含有率(重量%)と結晶粒子の平均粒径(μm)との積を、2.2より小さくした焼結磁石は、原料粉末と同等以上の保磁力を有することを見出し、上記式(1)を完成させた。   The inventors of the present invention further provide a sintered magnet in which the product of the oxygen content (% by weight) of this sintered magnet and the average particle size (μm) of the crystal particles is smaller than 2.2. It was found that the coercive force was equal to or greater than that of the powder, and the above formula (1) was completed.

このように、酸素含有率と結晶粒子の平均粒径の積、すなわち、粒界の単位面積当たりの酸素含有率が一定値より小さくなると、焼結磁石において、原料粉末の保磁力が維持されるメカニズムとして以下が有力である。   Thus, when the product of the oxygen content and the average particle size of crystal grains, that is, the oxygen content per unit area of the grain boundary is smaller than a certain value, the coercive force of the raw material powder is maintained in the sintered magnet. The following mechanisms are promising.

従来の焼結磁石の製造に用いられていた原料粉末は、粒子表面に酸素を多く含む層(酸化膜)が存在する。そのような表面に酸素を多く含む層を有する粒子を焼結のために加熱すると、サマリウム−鉄−窒素系合金を構成する金属Smが、その極めて強い還元作用のために酸化膜内部の酸化鉄を還元する。その酸化還元反応の結果、酸化膜の近傍には微小な金属Fe相が形成される。   The raw material powder used in the manufacture of conventional sintered magnets has a layer (oxide film) containing a large amount of oxygen on the particle surface. When particles having such a layer containing a large amount of oxygen on the surface are heated for sintering, the metal Sm constituting the samarium-iron-nitrogen-based alloy is converted into iron oxide inside the oxide film due to its extremely strong reducing action. To reduce. As a result of the oxidation-reduction reaction, a minute metal Fe phase is formed in the vicinity of the oxide film.

焼結磁石の場合、焼結界面は結晶粒界とみなすことができることから、上述の焼結界面おける金属Fe相の形成は保磁力の著しい低下を引き起こす。特に、サマリウム−鉄−窒素系焼結磁石のような保磁力発生機構が核発生型の多結晶の磁石材料において、結晶粒子の粒界に金属Feのような軟磁性相が形成されると、それが逆磁区の芽になって保磁力の低い磁石となる。   In the case of a sintered magnet, since the sintered interface can be regarded as a grain boundary, the formation of the metal Fe phase at the above-described sintered interface causes a significant decrease in coercive force. In particular, when a coercive force generation mechanism such as a samarium-iron-nitrogen based sintered magnet is a nucleation type polycrystalline magnet material, when a soft magnetic phase such as metallic Fe is formed at the grain boundary of crystal grains, It becomes the bud of the reverse magnetic domain and becomes a magnet with a low coercive force.

これに対して、本実施形態の焼結磁石のように、粒界面積により規格化した酸素含有率が低減されると、つまり粒界の酸化物層の厚みが低減されると、それに比例して金属Fe相は減少することとなる。そして、一定値以下の少量の金属Fe相はもはや逆磁区の芽として働きにくくなるため、結果として保磁力の低下を抑制できると考えられる。   In contrast, when the oxygen content normalized by the grain interface area is reduced as in the sintered magnet of this embodiment, that is, when the thickness of the oxide layer at the grain boundary is reduced, it is proportional to it. Therefore, the metal Fe phase is reduced. And since a small amount of metal Fe phase below a certain value no longer works as a bud of the reverse magnetic domain, it is considered that the decrease in coercive force can be suppressed as a result.

このため、第2の構成例として説明した焼結磁石は、上述の式(1)を充足することで、原料粉末と同等以上の保磁力を有する焼結磁石、すなわち保磁力に優れた焼結磁石とすることができる。   For this reason, the sintered magnet described as the second configuration example satisfies the above-described formula (1), so that the sintered magnet has a coercive force equal to or higher than that of the raw material powder, that is, a sintered having excellent coercive force. It can be a magnet.

なお、本実施形態の第2の構成例の焼結磁石が含有するサマリウム−鉄−窒素系合金の好適な組成や、含有する結晶粒子の好適な平均粒径については、既述の本実施形態の第1の構成例の焼結磁石の場合と同様にすることができるため、ここでは説明を省略する。   For the preferred composition of the samarium-iron-nitrogen based alloy contained in the sintered magnet of the second configuration example of the present embodiment and the preferred average particle size of the contained crystal particles, the present embodiment described above is used. Since it can be made to be the same as that of the case of the sintered magnet of the 1st structural example of this, description is abbreviate | omitted here.

また、第2の構成例として説明した焼結磁石において焼結磁石の酸素含有率は特に限定されず、焼結磁石の酸素含有率を項に含む上記式(1)を充足していれば足りるが、特に焼結磁石の酸素含有率は0.7重量%以下であることが好ましい。   Further, in the sintered magnet described as the second configuration example, the oxygen content of the sintered magnet is not particularly limited, and it is sufficient if the above expression (1) including the oxygen content of the sintered magnet is satisfied. However, the oxygen content of the sintered magnet is particularly preferably 0.7% by weight or less.

以上に説明した本実施形態の焼結磁石によれば、単磁区粒径近傍まで粉砕された結晶粒子を含有し、かつ原料粉末と同等以上の保磁力を備えた、すなわち保磁力に優れた、サマリウム−鉄−窒素系焼結磁石とすることができる。
[サマリウム−鉄−窒素系焼結磁石の製造方法]
次に、本実施形態のサマリウム−鉄−窒素系焼結磁石の製造方法の一構成例について説明する。
According to the sintered magnet of the present embodiment described above, it contains crystal particles pulverized to the vicinity of the single domain particle diameter, and has a coercive force equal to or higher than that of the raw material powder, that is, excellent in coercive force, A samarium-iron-nitrogen based sintered magnet can be used.
[Method for producing samarium-iron-nitrogen based sintered magnet]
Next, one structural example of the manufacturing method of the samarium-iron-nitrogen based sintered magnet of the present embodiment will be described.

本実施形態のサマリウム−鉄−窒素系焼結磁石の製造方法は以下の工程を有することができる。   The manufacturing method of the samarium-iron-nitrogen based sintered magnet of this embodiment can have the following steps.

サマリウム−鉄−窒素系合金を含有する磁石材料を、酸素濃度が0.5体積ppm以下の雰囲気中で、平均粒径が0.04μmより大きく5μm以下となるように粉砕し、磁石粉末を調製する粉砕工程。   A magnet material containing a samarium-iron-nitrogen alloy is pulverized in an atmosphere having an oxygen concentration of 0.5 volume ppm or less so that the average particle size is greater than 0.04 μm and 5 μm or less to prepare a magnet powder. Crushing process.

磁石粉末を、酸素濃度が0.5体積ppm以下の雰囲気中、300℃より高く600℃未満の温度、および1000MPa以上1500MPa以下の圧力下で焼結する焼結工程。   A sintering step of sintering the magnet powder in an atmosphere having an oxygen concentration of 0.5 volume ppm or less at a temperature higher than 300 ° C. and lower than 600 ° C. and a pressure of 1000 MPa to 1500 MPa.

そして、粉砕工程と焼結工程との間、磁石粉末は酸素濃度が0.5体積ppmより高く50体積ppm以下の雰囲気に保管され、かつ保管する期間が6日間以下であるか、酸素濃度が0.5体積ppm以下の雰囲気に保管することができる。   During the pulverization process and the sintering process, the magnet powder is stored in an atmosphere having an oxygen concentration of higher than 0.5 volume ppm and lower than 50 volume ppm, and the storage period is 6 days or less. It can be stored in an atmosphere of 0.5 volume ppm or less.

なお、本実施形態のサマリウム−鉄−窒素系焼結磁石の製造方法により、既述のサマリウム−鉄−窒素系焼結磁石を製造することができる。このため、サマリウム−鉄−窒素系焼結磁石において既述の事項については一部説明を省略する。   In addition, the samarium-iron-nitrogen based sintered magnet described above can be manufactured by the method for manufacturing a samarium-iron-nitrogen based sintered magnet of the present embodiment. For this reason, in the samarium-iron-nitrogen based sintered magnet, a part of the above-described matters is partially omitted.

本実施形態のサマリウム−鉄−窒素系焼結磁石の製造方法は、上述の様に粉砕工程と、
焼結工程とを有することができる。以下に、各工程について説明する。
The manufacturing method of the samarium-iron-nitrogen based sintered magnet of the present embodiment includes a pulverization step as described above,
A sintering step. Below, each process is demonstrated.

粉砕工程では、上述の様にサマリウム−鉄−窒素系合金を含有する磁石材料を平均粒径が0.04μmより大きく5μm以下となるように粉砕し、原料粉末である磁石粉末を調製することができる。なお、サマリウム−鉄−窒素系合金を含有する磁石材料を粉砕することで磁石粉末を調製することができ、係る磁石粉末は既述のように単結晶粒子を主体とする単結晶粉末であることが好ましい。このため、磁石材料についても単結晶を含有する粗粉末であることが好ましく、具体的には、サマリウム−鉄−窒素系合金の単結晶粒子を含有する粗粉末であることが好ましい。   In the pulverization step, as described above, the magnet material containing the samarium-iron-nitrogen alloy is pulverized so that the average particle size is larger than 0.04 μm and not larger than 5 μm to prepare the magnetic powder as the raw material powder. it can. A magnet powder can be prepared by pulverizing a magnet material containing a samarium-iron-nitrogen alloy, and the magnet powder is a single crystal powder mainly composed of single crystal particles as described above. Is preferred. For this reason, the magnet material is also preferably a coarse powder containing a single crystal, and specifically, a coarse powder containing single crystal particles of a samarium-iron-nitrogen alloy is preferred.

既述のように、結晶粒界の酸化物層の厚みを減少させた焼結磁石が得られれば、原料粉末である磁石粉末よりも保磁力が低下することを抑制でき、磁石粉末と同等以上の保磁力を有する、すなわち保磁力に優れた焼結磁石とすることができる。   As described above, if a sintered magnet having a reduced grain boundary oxide layer thickness is obtained, the coercive force can be suppressed from lowering than that of the raw material powder, and equivalent to or higher than the magnet powder. It is possible to obtain a sintered magnet having a coercive force of, that is, an excellent coercive force.

ここで、焼結磁石に含まれる酸素の起源の1つは、原料粉末である磁石粉末の粒子表面の表面酸化膜である。このため、結晶粒界の酸化物層の厚みを減少させた焼結磁石を得るためには、表面酸化膜の少ない磁石粉末が求められる。   Here, one of the sources of oxygen contained in the sintered magnet is a surface oxide film on the particle surface of the magnet powder that is the raw material powder. For this reason, in order to obtain a sintered magnet in which the thickness of the oxide layer at the grain boundary is reduced, a magnet powder with a small surface oxide film is required.

通常、サマリウム−鉄−窒素系磁石の原料粉末は、溶解合金化法や還元拡散法などを経て準備された数10μm〜数mmの磁石材料である粗粉末を、数μmに微粉砕することにより得られる。生産レベルでも粗粉末の酸素濃度は低く、いずれも0.5重量%以下である。しかし、通常の粉砕工程を経て微粉末になると、著しく増加された表面に酸素が吸着するために、酸素濃度も著しく増加する。   Usually, the raw material powder of the samarium-iron-nitrogen-based magnet is obtained by finely pulverizing a coarse powder, which is a magnetic material of several tens of μm to several mm prepared through a melting alloying method or a reduction diffusion method, to several μm. can get. Even at the production level, the oxygen concentration of the coarse powder is low and both are 0.5 wt% or less. However, when fine powder is obtained through a normal pulverization process, oxygen is adsorbed on the significantly increased surface, so that the oxygen concentration also increases remarkably.

従って、表面酸化膜の少ない磁石粉末を得るには、極めて酸素の低い雰囲気下、とりわけ0.5体積ppm以下の酸素濃度雰囲気下で粉砕工程を実施して磁石粉末を得ることが好ましい。なお、粉砕工程で磁石材料である粗粉末を粉砕し、磁石粉末を調製する際の雰囲気は特に限定されるものではないが、例えばアルゴンや窒素、ヘリウムなどの不活性ガス雰囲気や、真空雰囲気であることが好ましい。   Therefore, in order to obtain a magnet powder with a small surface oxide film, it is preferable to obtain a magnet powder by carrying out a pulverization step in an atmosphere with a very low oxygen, particularly an oxygen concentration atmosphere of 0.5 volume ppm or less. In addition, although the atmosphere at the time of grind | pulverizing the coarse powder which is a magnet material in a grinding | pulverization process and preparing magnet powder is not specifically limited, For example, in inert gas atmosphere, such as argon, nitrogen, helium, or a vacuum atmosphere Preferably there is.

粉砕工程において、サマリウム−鉄−窒素系合金を含有する磁石材料を、粉砕する手段については特に限定されないが、サマリウム−鉄−窒素系合金を含有する磁石材料を乾式ジェットミル法により粉砕することが好ましい。   In the pulverization step, the means for pulverizing the magnet material containing the samarium-iron-nitrogen alloy is not particularly limited, but the magnet material containing the samarium-iron-nitrogen alloy may be pulverized by a dry jet mill method. preferable.

サマリウム−鉄−窒素系合金を含有する磁石材料を粉砕する手段としては、例えば湿式や乾式のボールミル法やビーズミル法、ジェットミル法などが挙げられる。   Examples of means for pulverizing a magnet material containing a samarium-iron-nitrogen alloy include wet and dry ball mill methods, bead mill methods, and jet mill methods.

しかし、ボールミル法やビーズミル法のように、粉砕媒体であるボールの衝突エネルギーを利用した場合には、ボールの表面に存在する酸化膜中の酸素をサマリウム−鉄−窒素系合金を含有する磁石材料が取り込むため、得られる磁石粉末中の酸素濃度を低減することは難しい。一方で、ジェットミル法では粉砕媒体を使用せず、粉末粒子同士を高速気流によって衝突させて粉砕する。このため、新たな酸素を取り込む頻度が低く、低酸素濃度の磁石粉末が得られやすいことから、既述のようにサマリウム−鉄−窒素系合金を含有する磁石材料は乾式ジェットミル法により粉砕することが好ましい。   However, as in the ball mill method and the bead mill method, when the collision energy of the ball, which is a grinding medium, is used, the oxygen in the oxide film present on the surface of the ball is converted into a magnet material containing a samarium-iron-nitrogen alloy. Therefore, it is difficult to reduce the oxygen concentration in the obtained magnet powder. On the other hand, the pulverizing medium is not used in the jet mill method, and the powder particles are pulverized by colliding with each other by a high-speed air stream. For this reason, since the frequency of taking in new oxygen is low and it is easy to obtain a magnet powder having a low oxygen concentration, the magnet material containing the samarium-iron-nitrogen alloy is pulverized by the dry jet mill method as described above. It is preferable.

なお、粉砕工程において、乾式ジェットミル法を用いる場合、ジェットミルの粉砕室に加圧したガスを供給し、係る加圧したガスにより高速気流を形成し、高速気流により粉末粒子同士を衝突させて粉砕することになる。この際用いるガスについては特に限定されるものではないが、粉砕した磁石粉末等と接触することになるため、酸素濃度が低いことが好ましい。ジェットミルの粉砕室に供給するガスとしては、酸素濃度が0.5体積ppm以下のガスであることが好ましく、酸素濃度が0.1体積ppm以下のガスであることがより好ましい。ガス種は特に限定されるものではないが、不活性ガスであることが好ましく、例えば窒素、アルゴン、またはヘリウムであることが好ましい。   In the pulverization step, when using a dry jet mill method, a pressurized gas is supplied to the pulverization chamber of the jet mill, a high-speed air stream is formed by the pressurized gas, and powder particles collide with each other by the high-speed air stream. It will be crushed. The gas used at this time is not particularly limited, but it is preferable that the oxygen concentration is low because it comes into contact with the pulverized magnet powder or the like. The gas supplied to the pulverizing chamber of the jet mill is preferably a gas having an oxygen concentration of 0.5 volume ppm or less, and more preferably a gas having an oxygen concentration of 0.1 volume ppm or less. The gas species is not particularly limited, but is preferably an inert gas, for example, nitrogen, argon, or helium.

また、既述のように、粉砕工程後に得られる磁石粉末は、平均粒径が0.04μmより大きく5μm以下であることが好ましい。ここでいう平均粒径は、レーザー回折・散乱法によって求めた粒度分布における積算値50%での粒径を意味する。   In addition, as described above, the magnet powder obtained after the pulverization step preferably has an average particle size of more than 0.04 μm and not more than 5 μm. The average particle size here means the particle size at an integrated value of 50% in the particle size distribution determined by the laser diffraction / scattering method.

粉砕工程後に得られる磁石粉末が所望の平均粒径となるように、予備試験等を行い、粉砕条件を選択することが好ましい。例えば乾式ジェットミル法を用いる場合であれば、ジェットミルの粉砕室に供給するガスの圧力を選択することにより、所望の平均粒径を有する磁石粉末とすることができる。   It is preferable to perform a preliminary test or the like and select the grinding conditions so that the magnet powder obtained after the grinding process has a desired average particle diameter. For example, when the dry jet mill method is used, a magnet powder having a desired average particle diameter can be obtained by selecting the pressure of the gas supplied to the pulverization chamber of the jet mill.

粉砕工程終了後の磁石粉末は、粉砕時と異なり温度も低くなっているため、周囲の雰囲気中に含まれる酸素による磁石粉末の酸化反応は、粉砕工程の間程には進行しない。   Since the temperature of the magnet powder after the pulverization process is lower than that during pulverization, the oxidation reaction of the magnet powder by oxygen contained in the surrounding atmosphere does not proceed as much as during the pulverization process.

しかし、磁石粉末を保管する雰囲気中の酸素濃度によっては、磁石粉末の表面に表面酸化膜が形成される恐れがある。このため、粉砕工程終了後の磁石粉末は、酸素濃度が50体積ppm以下の雰囲気に保管することが好ましい。   However, depending on the oxygen concentration in the atmosphere in which the magnet powder is stored, a surface oxide film may be formed on the surface of the magnet powder. For this reason, it is preferable to store the magnet powder after the pulverization step in an atmosphere having an oxygen concentration of 50 ppm by volume or less.

ただし、本発明の発明者らの検討によると、酸素濃度が50体積ppm以下の雰囲気下であっても、酸素濃度が0.5体積ppmより高い雰囲気下では徐々にではあるが磁石粉末の酸化反応が進行する恐れがある。このため、磁石粉末を保管する雰囲気の酸素濃度が0.5体積ppmよりも高く50体積ppm以下の雰囲気に保管する場合には、その保管する期間は粉砕工程終了後6日間以下であることが好ましい。これは、酸素濃度が5体積ppmより高く50体積ppm以下の雰囲気に保管した場合でも、6日間を超えると、磁石粉末の表面に形成される表面酸化膜が厚くなり、該磁石粉末を用いて焼結磁石を形成した場合に、磁石粉末よりも保磁力が低下する場合があるためである。   However, according to the study by the inventors of the present invention, even in an atmosphere having an oxygen concentration of 50 ppm by volume or less, oxidation of the magnet powder is gradually performed in an atmosphere having an oxygen concentration higher than 0.5 ppm by volume. The reaction may proceed. For this reason, when the oxygen concentration of the atmosphere in which the magnet powder is stored is stored in an atmosphere higher than 0.5 ppm by volume and 50 ppm by volume or less, the storage period may be 6 days or less after the end of the pulverization step. preferable. This is because even when the oxygen concentration is stored in an atmosphere higher than 5 volume ppm and lower than 50 volume ppm, the surface oxide film formed on the surface of the magnet powder becomes thicker after 6 days. This is because when the sintered magnet is formed, the coercive force may be lower than that of the magnet powder.

磁石粉末を保管する雰囲気の酸素濃度が0.5体積ppm以下の雰囲気であれば、磁石粉末の酸化反応はほとんど進行しないため、保管期間については特に限定されるものではない。ただし、磁石粉末を保管する雰囲気の酸素濃度が0.5体積ppm以下の雰囲気であっても、保管期間は短いことが好ましく、例えば保管期間は1か月間以下であることが好ましい。   If the oxygen concentration of the atmosphere in which the magnet powder is stored is 0.5 ppm by volume or less, the oxidation reaction of the magnet powder hardly proceeds, so the storage period is not particularly limited. However, even when the oxygen concentration of the atmosphere in which the magnet powder is stored is an atmosphere having a volume of 0.5 ppm or less, the storage period is preferably short, for example, the storage period is preferably one month or less.

粉砕工程終了後は、得られた磁石粉末の酸化を抑制する観点から保管期間は短いことが好ましく、粉砕工程後連続して焼結工程を実施することが特に好ましい。   After the pulverization step is completed, the storage period is preferably short from the viewpoint of suppressing the oxidation of the obtained magnet powder, and it is particularly preferable to perform the sintering step continuously after the pulverization step.

なお、磁石粉末を保管する雰囲気のガス種は特に限定されるものではないが、不活性ガスであることが好ましく、例えば窒素、アルゴン、またはヘリウムをであることがより好ましい。   The gas species in the atmosphere in which the magnet powder is stored is not particularly limited, but is preferably an inert gas, and more preferably, for example, nitrogen, argon, or helium.

次に、焼結工程について説明する。   Next, the sintering process will be described.

焼結工程では、粉砕工程で調製した磁石粉末を焼結、固化することで焼結磁石を調製することができる。   In the sintering process, a sintered magnet can be prepared by sintering and solidifying the magnet powder prepared in the pulverization process.

焼結工程においても、磁石粉末表面に表面酸化膜が形成されることを抑制し、焼結磁石中の酸素濃度を低減する観点から、0.5体積ppm以下の低酸素雰囲気で焼結を行うことが好ましい。   Also in the sintering step, sintering is performed in a low oxygen atmosphere of 0.5 volume ppm or less from the viewpoint of suppressing the formation of a surface oxide film on the surface of the magnet powder and reducing the oxygen concentration in the sintered magnet. It is preferable.

焼結工程における雰囲気は特に限定されるものではないが、例えばアルゴンや窒素、ヘリウムなどの不活性ガス雰囲気や、真空雰囲気であることが好ましい。ただし、焼結工程において真空雰囲気とした場合、低酸素雰囲気が作りやすいが、真空中で長時間の加熱をするとサマリウム−鉄−窒素系合金に脱窒が生じる場合があり、加熱時間等に注意が必要である。   The atmosphere in the sintering step is not particularly limited, but is preferably an inert gas atmosphere such as argon, nitrogen, helium, or a vacuum atmosphere. However, if a vacuum atmosphere is used in the sintering process, it is easy to create a low-oxygen atmosphere, but if heated for a long time in a vacuum, denitrification may occur in the samarium-iron-nitrogen alloy. is necessary.

そして、焼結工程においては、上述の様に300℃より高く600℃未満の温度で焼結を行うことが好ましい。これは、300℃以下の低い焼結温度であると磁石粉末は粒子間で焼結結合が起こらず、焼結体が得られない。このため、焼結工程後に得られた焼成体の強度が著しく低くなるためである。一方で、焼結温度が600℃以上であると、サマリウム−鉄−窒素系合金の分解が進行し、磁石粉末間に多くのFe相が析出し、焼結工程後に得られる焼結磁石は保磁力が大幅に低下することになるからである。   And in a sintering process, it is preferable to sinter at the temperature higher than 300 degreeC and less than 600 degreeC as mentioned above. When the sintering temperature is low at 300 ° C. or less, the magnetic powder does not cause a sintering bond between the particles, and a sintered body cannot be obtained. For this reason, it is because the intensity | strength of the sintered body obtained after the sintering process becomes remarkably low. On the other hand, if the sintering temperature is 600 ° C. or higher, the decomposition of the samarium-iron-nitrogen alloy proceeds, a large amount of Fe phase precipitates between the magnet powders, and the sintered magnet obtained after the sintering process is retained. This is because the magnetic force is greatly reduced.

焼結磁石の強度、及び保磁力をより高める観点から、焼結温度は350℃以上550℃以下であることがより好ましく、特に原料粉末である磁石粉末を超える高い保磁力を有する焼結磁石とする観点から焼結温度は400℃以上500℃以下であることがさらに好ましい。   From the viewpoint of further increasing the strength and coercive force of the sintered magnet, the sintering temperature is more preferably 350 ° C. or higher and 550 ° C. or lower, and in particular, a sintered magnet having a high coercive force exceeding the magnet powder as the raw material powder, From this viewpoint, the sintering temperature is more preferably 400 ° C. or more and 500 ° C. or less.

ただし、従来と同様の常圧焼結により緻密化させる場合、上述の焼結温度、すなわち300℃より高く600℃未満の焼結温度は低温すぎる。このため、加圧をしながら係る温度領域内の温度で焼結を行うことが好ましい。具体的には1000MPa以上1500MPa以下の圧力下で焼結することが好ましい。   However, when densification is performed by normal pressure sintering as in the conventional case, the sintering temperature described above, that is, a sintering temperature higher than 300 ° C. and lower than 600 ° C. is too low. For this reason, it is preferable to perform the sintering at a temperature within the temperature range while applying pressure. Specifically, it is preferable to sinter under a pressure of 1000 MPa to 1500 MPa.

これは1000MPa以上の圧力を加えながら焼結することで、高い相対密度の焼結磁石が得られるためである。また、サマリウム−鉄−窒素系合金は、脆性材料であるため、1500MPaより高い圧力を加えながら焼結を行うと、層状割れ等を起こす恐れがあるためである。   This is because a sintered magnet having a high relative density can be obtained by sintering while applying a pressure of 1000 MPa or more. Moreover, since samarium-iron-nitrogen based alloys are brittle materials, if sintering is performed while applying a pressure higher than 1500 MPa, there is a risk of causing layered cracks and the like.

なお、焼結工程において、磁石粉末を焼結する手段は特に限定されるものではないが、例えば通電焼結法を用いることが好ましい。   In the sintering step, the means for sintering the magnet powder is not particularly limited. For example, it is preferable to use an electric current sintering method.

焼結工程において、既述の所定の雰囲気下、加圧をしながら加熱する焼結条件を充足するための最も一般的な焼結法としては、ホットプレス焼結法が挙げられる。しかし、ホットプレス焼結法では加熱に外部ヒーターを使用するために磁石粉末が高温に晒される時間が長くなる。焼結工程では、焼結中の雰囲気は低い酸素濃度であるものの、酸素は皆無ではないので、高温に長時間晒されるほど磁石中の酸素濃度の増加は避けられない。   In the sintering step, the most common sintering method for satisfying the sintering conditions of heating while applying pressure in the predetermined atmosphere described above is a hot press sintering method. However, in the hot press sintering method, since an external heater is used for heating, the time during which the magnet powder is exposed to a high temperature becomes long. In the sintering process, although the atmosphere during sintering has a low oxygen concentration, oxygen is not completely absent. Therefore, the oxygen concentration in the magnet is inevitably increased as it is exposed to a high temperature for a long time.

一方で、焼結成形型に電流を流すことによって加熱して焼結する通電焼結は、ホットプレス法に比べて加熱や冷却の速度を非常に早くできるため、酸素濃度の低い焼結磁石が達成しやすい。このため、焼結工程において、磁石粉末は通電焼結法を用いて焼結することが好ましい。   On the other hand, the electric current sintering that heats and sinters by passing an electric current through the sintering mold can make the heating and cooling speed much faster than the hot press method. Easy to achieve. For this reason, in the sintering step, the magnet powder is preferably sintered using an electric current sintering method.

以上に説明した本実施形態のサマリウム−鉄−窒素系焼結磁石の製造方法によれば、磁石材料を粉砕して磁石粉末とする粉砕工程、及び磁石粉末から焼結磁石を作製する焼結工程において、入り込む酸素量を抑制することができる。また、粉砕工程後、焼結工程を実施するまでの間についても、磁石粉末が酸化されることを抑制することができる。   According to the manufacturing method of the samarium-iron-nitrogen based sintered magnet of the present embodiment described above, the pulverization step of pulverizing the magnet material to make the magnet powder, and the sintering step of producing the sintered magnet from the magnet powder , The amount of oxygen entering can be suppressed. Moreover, it can suppress that a magnet powder is oxidized after a grinding | pulverization process until it implements a sintering process.

このため、酸素含有率の小さい焼結磁石を得ることができる。また、原料粉末である磁石粉末の粒子表面の表面酸化膜を低減し、得られた焼結磁石の粒界の酸化物層の厚さを薄くすることができる。   For this reason, a sintered magnet having a small oxygen content can be obtained. Further, it is possible to reduce the surface oxide film on the particle surface of the magnet powder that is the raw material powder, and to reduce the thickness of the oxide layer at the grain boundary of the obtained sintered magnet.

その結果、原料粉末である磁石粉末と同等以上の保磁力を有する焼結磁石、すなわち高い保磁力を有する焼結磁石とすることができる。   As a result, a sintered magnet having a coercive force equal to or higher than that of the magnet powder as the raw material powder, that is, a sintered magnet having a high coercive force can be obtained.

また、焼結工程において、磁石粉末を熱分解温度以下の温度で加熱、焼結することとなるため、加熱による粒成長は起こさない。このため、磁石粉末として平均粒径が5μm以下の磁石粉末を用いることで、単磁区粒径近傍まで粉砕された結晶粒子を含有するサマリウム−鉄−窒素系焼結磁石とすることができる。   In the sintering process, the magnet powder is heated and sintered at a temperature equal to or lower than the thermal decomposition temperature, so that grain growth due to heating does not occur. For this reason, a samarium-iron-nitrogen-based sintered magnet containing crystal particles pulverized to the vicinity of a single domain particle size can be obtained by using a magnet powder having an average particle size of 5 μm or less as the magnet powder.

以下に具体的な実施例を挙げて説明するが、本発明はこれらの実施例に限定されるものではない。   Specific examples will be described below, but the present invention is not limited to these examples.

実施例1〜実施例5、比較例1〜比較例8として、粉砕工程の条件、または粉砕工程後焼結工程を実施するまでの条件の異なる焼結磁石を作製し、評価を行った。
[実施例1]
以下の手順により、サマリウム−鉄−窒素系焼結磁石を作製し、評価を行った。
(粉砕工程)
原料である磁石材料として、組成がSmFe17であり、平均粒径が約25μmの市販の粗粉末を準備した。なお、係る粗粉末は上記組成のサマリウム−鉄−窒素系合金の単結晶粒子を含有する粗粉末となっている。この粗粉末の酸素含有率は0.20重量%で、保磁力は0.07kOeであった。
As Example 1 to Example 5 and Comparative Example 1 to Comparative Example 8, sintered magnets having different conditions until the pulverization process conditions or the sintering process after the pulverization process were carried out were evaluated.
[Example 1]
A samarium-iron-nitrogen sintered magnet was prepared and evaluated by the following procedure.
(Crushing process)
A commercially available coarse powder having a composition of Sm 2 Fe 17 N 3 and an average particle diameter of about 25 μm was prepared as a magnet material as a raw material. The coarse powder is a coarse powder containing single crystal particles of a samarium-iron-nitrogen alloy having the above composition. The crude powder had an oxygen content of 0.20% by weight and a coercive force of 0.07 kOe.

係る磁石材料について以下の手順により、表1に示した磁石粉末の平均粒径となるように粉砕を行う粉砕工程を実施した。   The magnet material was pulverized by the following procedure so as to have the average particle diameter of the magnet powder shown in Table 1.

粉砕工程で磁石材料を微粉砕する手段として、グローブボックス内に気流旋回型ジェットミル(以下、単にジェットミルと記載する)が設置された粉砕システムを用い、乾式ジェットミル法により粉砕を行った。グローブボックスにはガス循環型酸素水分精製器、および0.01体積ppmまで測定できる酸素濃度計が接続されている。また、ジェットミルは粉砕ガスを供給する高圧ガス発生器が接続されている。   As a means for finely pulverizing the magnet material in the pulverization step, pulverization was performed by a dry jet mill method using a pulverization system in which an airflow swirling jet mill (hereinafter simply referred to as a jet mill) was installed in a glove box. A gas circulation type oxygen moisture purifier and an oxygen concentration meter capable of measuring up to 0.01 ppm by volume are connected to the glove box. The jet mill is connected to a high-pressure gas generator that supplies pulverized gas.

そして、上述の磁石材料を粉砕システムの中に入れてグローブボックスを密閉した後、グローブボックス内を高純度Nガス(純度>99.99995%、O濃度<0.1体積ppm)によってガスフロー置換した。ガスフロー置換では、目安としてグローブボックス内容積の5倍の容量のガスを流した。さらに、ガス循環型酸素水分精製器を用いて、グローブボックス内部の酸素濃度が0.5体積ppmになるまで酸素を除去した。また、水分濃度は1体積ppm以下とした。 After sealing the glove box to put the magnetic material described above in a milling system, the gas inside the glove box by a high-purity N 2 gas (purity> 99.99995%, O 2 concentration <0.1 vol ppm) The flow was replaced. In the gas flow replacement, a gas having a capacity 5 times the glove box internal volume was flowed as a guide. Further, oxygen was removed using a gas circulation oxygen moisture purifier until the oxygen concentration inside the glove box reached 0.5 ppm by volume. The water concentration was 1 volume ppm or less.

グローブボックス内の雰囲気を置換し、酸素濃度、及び水分濃度を十分に下げた後、高圧Nガスが供給されたジェットミルの粉砕室に磁石材料を少量ずつ投入して粉砕を行った。 After substituting the atmosphere in the glove box and sufficiently reducing the oxygen concentration and the water concentration, the magnet material was put into a pulverization chamber of a jet mill supplied with high-pressure N 2 gas little by little and pulverized.

なお、ジェットミルに供給した高圧Nガスの酸素濃度は0.1体積ppm以下とした。また、ジェットミルに供給するガスの圧力を0.95MPaに制御することにより、平均粒径が2.8μmの微粉末である磁石粉末を作製した。 Note that the oxygen concentration of the high-pressure N 2 gas supplied to the jet mill was 0.1 ppm by volume or less. Further, by controlling the pressure of the gas supplied to the jet mill to 0.95 MPa, a magnet powder that was a fine powder having an average particle size of 2.8 μm was produced.

粉砕工程で作製した磁石粉末は、一部を後述する本実施例の焼結工程に供して焼結磁石を作製した。また、磁石粉末の残部については、後述の実施例2、比較例1、比較例3、でも用いた。   A part of the magnet powder produced in the pulverization step was subjected to the sintering step of the present example described later to produce a sintered magnet. The remainder of the magnet powder was also used in Example 2, Comparative Example 1, and Comparative Example 3 described later.

なお、得られた磁石粉末の一部をグローブボックス中でAr−0.5%Oの混合ガス雰囲気中で数時間の徐酸化をしたのちに大気中に取り出した。大気中に取り出した磁石粉末の磁気特性を振動試料型磁力計(VSM)(米国カンタムデザイン社製 型式:
Dynacool/VSM)で測定したところ表1に示すように7.8kOeであることが確認できた。
A part of the obtained magnet powder was slowly oxidized for several hours in a mixed gas atmosphere of Ar-0.5% O 2 in a glove box and then taken out into the atmosphere. The magnetic properties of the magnet powder taken out into the atmosphere are measured using a vibrating sample magnetometer (VSM) (manufactured by Quantum Design, USA).
As shown in Table 1, it was confirmed that the measured value was 7.8 kOe.

また、上述の様にしてグローブボックスから大気中に取り出した磁石粉末の一部について、レーザー回折式粒度分布測定法により平均粒径を測定したところ2.8μmであることが確認できた。
(焼結工程)
次に得られた磁石粉末について以下の手順により焼結を行い、焼結磁石を作製する焼結工程を実施した。
Further, when a mean particle size of a part of the magnet powder taken out from the glove box into the atmosphere as described above was measured by a laser diffraction type particle size distribution measuring method, it was confirmed to be 2.8 μm.
(Sintering process)
Next, the obtained magnet powder was sintered by the following procedure, and a sintering process for producing a sintered magnet was performed.

粉砕工程で粉砕して磁石粉末とした直後に、粉砕工程時と同じ雰囲気に保持されたグローブボックス内で磁石粉末を0.5g秤量し、内径6mmの超硬合金製円筒形ダイセットに充填した。そして、大気暴露することなくサーボ制御型プレス装置による加圧機構を備えたパルス通電焼結機まで移送した。   Immediately after pulverization in the pulverization step, 0.5 g of the magnet powder was weighed in a glove box maintained in the same atmosphere as in the pulverization step, and filled into a cemented carbide cylindrical die set having an inner diameter of 6 mm. . And it transferred to the pulse electric sintering machine provided with the pressurization mechanism by a servo control type press apparatus, without exposing to air | atmosphere.

次いで、焼結室内を2Pa以下の真空雰囲気としたのち、磁石粉末に1200MPaの圧縮圧力を負荷し、直ちに除荷した。再び磁石粉末に1200MPaの圧縮圧力を印加し、この圧力を保持したまま400℃の焼結温度にて1分間の通電焼結を行った。なお、焼結室内は2Pa以下の真空雰囲気となっており、酸素濃度は0.5体積ppm以下となっている。   Next, after the sintering chamber was set to a vacuum atmosphere of 2 Pa or less, the magnet powder was loaded with a compression pressure of 1200 MPa and immediately unloaded. A compression pressure of 1200 MPa was again applied to the magnet powder, and current sintering was performed for 1 minute at a sintering temperature of 400 ° C. while maintaining this pressure. The inside of the sintering chamber is a vacuum atmosphere of 2 Pa or less, and the oxygen concentration is 0.5 volume ppm or less.

得られた焼結磁石についてVSMを用いて磁気測定を行ったところ、表1に示すように焼結磁石の保磁力は磁石粉末を超える値を呈した。   When the obtained sintered magnet was magnetically measured using VSM, as shown in Table 1, the coercive force of the sintered magnet exhibited a value exceeding that of the magnet powder.

得られた焼結磁石に含まれる結晶粒子の平均粒径を断面組織像の面積計量法により測定したところ、焼結工程に供した磁石粉末と同じ平均粒径であることが確認できた。   When the average particle diameter of the crystal particles contained in the obtained sintered magnet was measured by the area measurement method of the cross-sectional structure image, it was confirmed that it was the same average particle diameter as the magnet powder subjected to the sintering process.

なお、結晶粒子の平均粒径の測定は以下の手順により測定、算出した。まず、得られた焼結磁石の断面画像をFE−SEM(電界放出形走査電子顕微鏡)により撮影した。そして、得られた焼結磁石の断面画像上に少なくとも50個以上の結晶粒子が含まれるように長方形を描き、その長方形内に存在する結晶粒子の総面積A及び結晶粒子の数Nを求めた。 The average particle size of the crystal particles was measured and calculated according to the following procedure. First, a cross-sectional image of the obtained sintered magnet was taken with an FE-SEM (field emission scanning electron microscope). Then, draw a rectangle to include at least 50 or more crystal grains on the cross-sectional image of the sintered magnet obtained, determined the number N A of the total area A and the crystal grains of the crystal grains existing in the rectangle It was.

得られた結晶粒子の総面積Aを結晶粒子の数Nで除すことで(A/N)、結晶粒子の平均断面積aを算出した。そして、結晶粒子の平均断面積aの平方根(a1/2)を結晶粒子の平均粒径として算出した。以下の実施例、比較例においても面積計量法を用いて結晶粒子の平均粒径を測定する際には同様にして行っている。 The total area A of the obtained crystal particles by dividing the number N A of the crystal grains (A / N A), and calculate the average cross-sectional area a of the crystal grains. Then, the square root (a 1/2 ) of the average cross-sectional area a of the crystal particles was calculated as the average particle size of the crystal particles. In the following examples and comparative examples, the average particle diameter of crystal grains is measured in the same manner using the area measurement method.

また、得られた焼結磁石について、酸素・窒素分析装置(株式会社堀場製作所製 型式:EMGA−620W)を用いて、不活性ガス融解−非分散型赤外線吸収法(NDIR法)により焼結磁石中の酸素含有率を測定した。そして、焼結磁石の酸素含有率と、焼結磁石に含まれる結晶粒子の平均粒径との積を算出した。   The obtained sintered magnet was sintered by an inert gas melting-non-dispersive infrared absorption method (NDIR method) using an oxygen / nitrogen analyzer (Model: EMGA-620W manufactured by Horiba, Ltd.). The oxygen content in was measured. And the product of the oxygen content rate of a sintered magnet and the average particle diameter of the crystal grain contained in a sintered magnet was computed.

評価結果を表1に示す。
[実施例2]
実施例1の粉砕工程で得られた磁石粉末の一部を、窒素雰囲気であって、酸素濃度が0.5体積ppmよりも高く、50体積ppm以下の雰囲気に保ったグローブボックス内に粉砕工程後2日間放置してから、超硬合金製円筒形ダイセットに磁石粉末を充填し、焼結工程を実施した点以外は実施例1と同様にして焼結磁石を作製、評価した。
The evaluation results are shown in Table 1.
[Example 2]
Part of the magnet powder obtained in the pulverization step of Example 1 was pulverized in a glove box maintained in an atmosphere of nitrogen atmosphere with an oxygen concentration higher than 0.5 ppm by volume and 50 ppm by volume or less. After standing for 2 days, a sintered magnet was prepared and evaluated in the same manner as in Example 1 except that the cemented carbide cylindrical die set was filled with magnet powder and the sintering process was performed.

なお、得られた焼結磁石に含まれる結晶粒子の平均粒径を断面組織像の面積計量法により測定したところ、焼結工程に供した磁石粉末と同じ平均粒径であることが確認できた。   In addition, when the average particle diameter of the crystal particles contained in the obtained sintered magnet was measured by the area measurement method of the cross-sectional structure image, it was confirmed that it was the same average particle diameter as the magnet powder subjected to the sintering process .

得られた焼結磁石についての評価結果を表1に示す。
[実施例3]
粉砕工程において、ジェットミルに供給する高圧Nガスの圧力を0.85MPaとした点以外は実施例1と同様にして焼結磁石を作製、評価した。
The evaluation results for the obtained sintered magnet are shown in Table 1.
[Example 3]
In the pulverization step, a sintered magnet was produced and evaluated in the same manner as in Example 1 except that the pressure of the high-pressure N 2 gas supplied to the jet mill was 0.85 MPa.

なお、本実施例の粉砕工程で作製した磁石粉末の一部については上述の様に、実施例1と同様の手順、条件の焼結工程に供したが、磁石粉末の残部については後述する実施例4、実施例5、比較例2、比較例4でも用いた。   In addition, as described above, a part of the magnet powder produced in the pulverization process of this example was subjected to the same procedure and conditions as in Example 1, but the rest of the magnet powder was performed later. Also used in Example 4, Example 5, Comparative Example 2, and Comparative Example 4.

また、粉砕工程で得られた磁石粉末の一部をグローブボックス中でAr−0.5%Oの混合ガス雰囲気中で数時間の徐酸化をしたのちに大気中に取り出した。大気中に取り出した磁石粉末の磁気特性を振動試料型磁力計(VSM)で測定したところ表1に示すように5.6kOeであることが確認できた。さらに、上述の様にしてグローブボックスから大気中に取り出した磁石粉末の一部について、レーザー回折式粒度分布測定法により平均粒径を測定したところ4.0μmであることが確認できた。 A part of the magnet powder obtained in the pulverization step was gradually oxidized in a mixed gas atmosphere of Ar-0.5% O 2 in a glove box for several hours and then taken out into the atmosphere. When the magnetic properties of the magnet powder taken out into the atmosphere were measured with a vibrating sample magnetometer (VSM), it was confirmed to be 5.6 kOe as shown in Table 1. Furthermore, when a part of the magnet powder taken out from the glove box into the atmosphere as described above was measured for the average particle size by the laser diffraction particle size distribution measurement method, it was confirmed that it was 4.0 μm.

そして、粉砕工程で粉砕して磁石粉末について、粉砕工程時と同じ雰囲気に保持されたグローブボックス内で焼結超硬合金製円筒形ダイセットに充填し、実施例1の場合と同様にして焼結工程を実施した。   Then, the magnet powder pulverized in the pulverization step is filled into a sintered die cemented cylindrical die set in a glove box maintained in the same atmosphere as in the pulverization step, and baked in the same manner as in Example 1. The ligation process was carried out.

焼結工程後、得られた焼結磁石に含まれる結晶粒子を断面組織像の面積計量法により測定したところ、焼結工程に供した磁石粉末と同じ平均粒径であることが確認できた。   After the sintering process, when the crystal particles contained in the obtained sintered magnet were measured by the area measurement method of the cross-sectional structure image, it was confirmed that the average particle diameter was the same as the magnet powder subjected to the sintering process.

得られた焼結磁石についての評価結果を表1に示す。
[実施例4、5]
実施例3の粉砕工程で得られた磁石粉末の一部を、窒素雰囲気であって、酸素濃度が0.5体積ppmよりも高く、50体積ppm以下の雰囲気に保ったグローブボックス内に粉砕工程後2日間(実施例4)、または6日間(実施例5)放置してから、超硬合金製円筒形ダイセットに該磁石粉末を充填し、焼結工程を実施した点以外は実施例3と同様にして焼結磁石を作製、評価した。
The evaluation results for the obtained sintered magnet are shown in Table 1.
[Examples 4 and 5]
Part of the magnet powder obtained in the pulverization step of Example 3 was pulverized in a glove box maintained in an atmosphere of nitrogen atmosphere with an oxygen concentration higher than 0.5 ppm by volume and 50 ppm by volume or less. Example 3 except that after 2 days (Example 4) or 6 days (Example 5), the magnet powder was filled in a cemented carbide cylindrical die set and the sintering step was performed. In the same manner, sintered magnets were produced and evaluated.

なお、実施例4、5のいずれにおいても、得られた焼結磁石に含まれる結晶粒子の平均粒径を断面組織像の面積計量法により測定したところ、焼結工程に供した磁石粉末と同じ平均粒径であることが確認できた。   In all of Examples 4 and 5, when the average particle diameter of the crystal particles contained in the obtained sintered magnet was measured by the area measurement method of the cross-sectional structure image, it was the same as the magnet powder subjected to the sintering step The average particle size was confirmed.

得られた焼結磁石についての評価結果を表1に示す。
[比較例1]
実施例1の粉砕工程で得られた磁石粉末の一部を、グローブボックス中でAr−0.5%Oの混合ガス雰囲気中で数時間徐酸化をした後に大気中に取り出した点と、係る徐酸化した磁石粉末を焼結工程に供した点以外は、実施例1と同様にして焼結磁石を作製、評価した。
The evaluation results for the obtained sintered magnet are shown in Table 1.
[Comparative Example 1]
A part of the magnet powder obtained in the pulverization step of Example 1 was gradually oxidized in a mixed gas atmosphere of Ar-0.5% O 2 for several hours in a glove box and then taken out into the atmosphere. A sintered magnet was produced and evaluated in the same manner as in Example 1 except that the gradually oxidized magnet powder was subjected to a sintering process.

なお、超硬合金製円筒形ダイセットへの磁石粉末の充填はグローブボックス外の大気雰囲気下で行った。   The magnet powder was filled into the cemented carbide cylindrical die set in an air atmosphere outside the glove box.

得られた焼結磁石についての評価結果を表1に示す。
[比較例2]
実施例3の粉砕工程で得られた磁石粉末の一部を、グローブボックス中でAr−0.5%Oの混合ガス雰囲気中で数時間徐酸化をした後に大気中に取り出した点と、係る徐酸化した磁石粉末を焼結工程に供した点以外は、実施例3と同様にして焼結磁石を作製、評価した。
The evaluation results for the obtained sintered magnet are shown in Table 1.
[Comparative Example 2]
A part of the magnet powder obtained in the pulverization step of Example 3 was gradually oxidized in a mixed gas atmosphere of Ar-0.5% O 2 in a glove box for several hours and then taken out into the atmosphere. A sintered magnet was produced and evaluated in the same manner as in Example 3 except that the gradually oxidized magnet powder was subjected to a sintering process.

なお、超硬合金製円筒形ダイセットへの磁石粉末の充填はグローブボックス外の大気雰囲気下で行った。   The magnet powder was filled into the cemented carbide cylindrical die set in an air atmosphere outside the glove box.

得られた焼結磁石についての評価結果を表1に示す。
[比較例3]
実施例1の粉砕工程で得られた磁石粉末の一部を、窒素雰囲気であって、酸素濃度が0.5体積ppmよりも高く、50体積ppm以下の雰囲気に保ったグローブボックス内に粉砕工程後10日間放置してから、超硬合金製円筒形ダイセットに磁石粉末を充填し、焼結工程を実施した点以外は実施例1と同様にして焼結磁石を作製、評価した。
The evaluation results for the obtained sintered magnet are shown in Table 1.
[Comparative Example 3]
Part of the magnet powder obtained in the pulverization step of Example 1 was pulverized in a glove box maintained in an atmosphere of nitrogen atmosphere with an oxygen concentration higher than 0.5 ppm by volume and 50 ppm by volume or less. After standing for 10 days, a sintered magnet was prepared and evaluated in the same manner as in Example 1 except that a cemented carbide cylindrical die set was filled with magnet powder and the sintering step was performed.

得られた焼結磁石についての評価結果を表1に示す。
[比較例4]
実施例3の粉砕工程で得られた磁石粉末の一部を、窒素雰囲気であって、酸素濃度が0.5体積ppmよりも高く、50体積ppm以下の雰囲気に保ったグローブボックス内に粉砕工程後10日間放置してから、超硬合金製円筒形ダイセットに磁石粉末を充填し、焼結工程を実施した点以外は実施例3と同様にして焼結磁石を作製、評価した。
The evaluation results for the obtained sintered magnet are shown in Table 1.
[Comparative Example 4]
Part of the magnet powder obtained in the pulverization step of Example 3 was pulverized in a glove box maintained in an atmosphere of nitrogen atmosphere with an oxygen concentration higher than 0.5 ppm by volume and 50 ppm by volume or less. After standing for 10 days, a sintered magnet was prepared and evaluated in the same manner as in Example 3 except that a cemented carbide cylindrical die set was filled with magnet powder and the sintering step was performed.

得られた焼結磁石についての評価結果を表1に示す。
[比較例5、比較例6]
粉砕工程において、ジェットミルに供給する高圧Nガスの圧力を0.70MPa(比較例5)、0.45MPa(比較例6)とした点以外は実施例1と同様にして粉砕工程を実施し、磁石粉末を調製した。
The evaluation results for the obtained sintered magnet are shown in Table 1.
[Comparative Example 5 and Comparative Example 6]
In the pulverization step, the pulverization step was performed in the same manner as in Example 1 except that the pressure of the high-pressure N 2 gas supplied to the jet mill was 0.70 MPa (Comparative Example 5) and 0.45 MPa (Comparative Example 6). A magnet powder was prepared.

粉砕工程で得られた磁石粉末について、一部をグローブボックス中でAr−0.5%Oの混合ガス雰囲気中で数時間の徐酸化をしたのちに大気中に取り出した。大気中に取り出した磁石粉末の磁気特性を振動試料型磁力計(VSM)で測定したところ、表1に示すように比較例5の磁石粉末は3.2kOe、比較例6の磁石粉末は1.1kOeであることが確認できた。また、上述の様にしてグローブボックスから取り出した磁石粉末の一部について、レーザー回折式粒度分布測定法により平均粒径を測定したところ比較例5では6.4μm、比較例6では10.3μmであることが確認できた。 Part of the magnet powder obtained in the pulverization step was slowly oxidized for several hours in a mixed gas atmosphere of Ar-0.5% O 2 in a glove box, and then taken out into the atmosphere. When the magnetic properties of the magnet powder taken out into the atmosphere were measured with a vibrating sample magnetometer (VSM), as shown in Table 1, the magnetic powder of Comparative Example 5 was 3.2 kOe, and the magnetic powder of Comparative Example 6 was 1. It was confirmed that it was 1 kOe. Further, when a mean particle size of a part of the magnet powder taken out from the glove box as described above was measured by a laser diffraction particle size distribution measuring method, it was 6.4 μm in Comparative Example 5 and 10.3 μm in Comparative Example 6. It was confirmed that there was.

このように得られた磁石粉末の保磁力は5kOe以下と非常に低く、磁石粉末の段階で実用的な保磁力を有していないことが確認できた。これは、磁石粉末の平均粒径が大きい場合、磁石粉末を構成する粒子の内部は多磁区構造となっているためといえる。   The coercive force of the magnet powder thus obtained was as low as 5 kOe or less, and it was confirmed that the magnet powder had no practical coercive force at the stage of the magnet powder. This is because when the average particle size of the magnet powder is large, the inside of the particles constituting the magnet powder has a multi-domain structure.

以上のように磁石粉末の保磁力が低いことから、得られた磁石粉末について焼結工程に供さず、焼結磁石の作製を中止した。
[比較例7]
粉砕工程において、ジェットミルを設置したグローブボックス内の酸素濃度を0.5体積ppmまで下げずに、1体積ppmの段階でジェットミルによる粉砕を開始した点以外は実施例3と同様にして、粉砕工程、焼結工程を実施し、焼結磁石を作製、評価した。
As described above, since the coercive force of the magnet powder was low, the obtained magnet powder was not subjected to the sintering step, and production of the sintered magnet was stopped.
[Comparative Example 7]
In the pulverization step, the oxygen concentration in the glove box provided with the jet mill was not lowered to 0.5 ppm by volume, except that the pulverization by the jet mill was started at the stage of 1 ppm by volume, as in Example 3, A pulverization process and a sintering process were carried out to produce and evaluate a sintered magnet.

粉砕工程で得られた磁石粉末について、一部をグローブボックス中でAr−0.5%Oの混合ガス雰囲気中で数時間の徐酸化をしたのちに大気中に取り出した。大気中に取り出した磁石粉末の磁気特性を振動試料型磁力計(VSM)で測定したところ、表1に示すように5.4kOeであることが確認できた。また、上述の様にしてグローブボックスから取り出した磁石粉末の一部について、レーザー回折式粒度分布測定法により平均粒径を測定したところ4.1μmであることが確認できた。ジェットミルに供給した高圧Nガスのガス圧は実施例3と同じであったことから、粉砕工程後に得られた磁石粉末の平均粒径は、実施例3とほぼ同じになっていることが確認できた。 Part of the magnet powder obtained in the pulverization step was slowly oxidized for several hours in a mixed gas atmosphere of Ar-0.5% O 2 in a glove box, and then taken out into the atmosphere. When the magnetic properties of the magnet powder taken out into the atmosphere were measured with a vibrating sample magnetometer (VSM), it was confirmed that it was 5.4 kOe as shown in Table 1. Further, when a part of the magnet powder taken out from the glove box as described above was measured for an average particle size by a laser diffraction particle size distribution measuring method, it was confirmed to be 4.1 μm. Since the gas pressure of the high-pressure N 2 gas supplied to the jet mill was the same as in Example 3, the average particle size of the magnet powder obtained after the pulverization step was almost the same as in Example 3. It could be confirmed.

得られた焼結磁石についての評価結果を表1に示す。
[比較例8]
粉砕工程は実施せず、市販のSmFe17粉末(平均粒径3.2μm)を磁石粉末として用い、係る磁石粉末を用いて、実施例1と同じ手順、条件で焼結工程を実施した点以外は実施例1と同様にして焼結磁石を作製、評価した。この市販粉末の酸素含有率を、酸素・窒素分析装置を用いてNDIR法によって測定したところ1.191重量%であった。
The evaluation results for the obtained sintered magnet are shown in Table 1.
[Comparative Example 8]
A pulverization process was not performed, and a commercially available Sm 2 Fe 17 N 3 powder (average particle diameter of 3.2 μm) was used as a magnet powder. A sintered magnet was produced and evaluated in the same manner as in Example 1 except for the points implemented. The oxygen content of this commercially available powder was measured by NDIR method using an oxygen / nitrogen analyzer and found to be 1.191% by weight.

なお、超硬合金製円筒形ダイセットへの磁石粉末の充填はグローブボックス外の大気雰囲気下で行った。   The magnet powder was filled into the cemented carbide cylindrical die set in an air atmosphere outside the glove box.

得られた焼結磁石についての評価結果を表1に示す。   The evaluation results for the obtained sintered magnet are shown in Table 1.

Figure 2017055072
Figure 2017055072

表1によると、粉砕工程直後にグローブボックス内で超硬合金製円筒形ダイセットに磁石粉末を充填し、大気暴露することなく焼結機まで移送し、焼結した実施例1、3の焼結磁石は、粉末粒径によらず焼結磁石の保磁力が磁石粉末の保磁力を超えることが確認できた。すなわち、得られた焼結磁石が高い保磁力を有することを確認できた。   According to Table 1, immediately after the pulverization step, magnet powder was filled into a cemented carbide cylindrical die set in a glove box, transferred to a sintering machine without exposure to the atmosphere, and sintered in Examples 1 and 3. It was confirmed that the coercive force of the sintered magnet exceeded the coercive force of the magnet powder regardless of the powder particle size. That is, it was confirmed that the obtained sintered magnet had a high coercive force.

ただし、グローブボックス内においても僅かずつ酸化が進行する。このため、粉砕工程後、得られた磁石粉末を酸素濃度が5体積ppmより高く50体積ppm以下の雰囲気のグローブボックス内に放置する期間が6日間以内である実施例2、4、5については保磁力が実施例1または実施例3よりもやや低下する場合がある。しかし、実施例2、4、5においても磁石粉末の保磁力と同等以上の保磁力を有する焼結磁石が得られることが確認できた。すなわち、得られた焼結磁石が高い保磁力を有することを確認できた。   However, oxidation proceeds little by little in the glove box. For this reason, about Examples 2, 4, and 5 in which the period of leaving the obtained magnetic powder in a glove box in an atmosphere having an oxygen concentration of higher than 5 volume ppm and lower than or equal to 50 volume ppm is within 6 days after the pulverization step. The coercive force may be slightly lower than that of Example 1 or Example 3. However, in Examples 2, 4, and 5, it was confirmed that a sintered magnet having a coercive force equal to or greater than the coercive force of the magnet powder was obtained. That is, it was confirmed that the obtained sintered magnet had a high coercive force.

これに対して、酸素濃度が5体積ppmより高く50体積ppm以下の雰囲気のグローブボックス内に放置する期間が6日間より長い比較例3、4においては、保磁力が大幅に低下し、磁石粉末の保磁力を下回ることが確認できた。   On the other hand, in Comparative Examples 3 and 4 in which the oxygen concentration is higher than 5 volume ppm and left in a glove box having an atmosphere of 50 volume ppm or less, the coercive force is greatly reduced, It was confirmed that the coercive force was lower than.

焼結工程の前に磁石粉末の徐酸化を行った比較例1、2では、焼結磁石における磁石粉末からの保磁力の増減率が−46%、−32%と、保磁力が大幅に低下していることが確認できた。このように一旦大気暴露した磁石粉末を焼結すると、保磁力が激減する現象は報告されており、比較例1、2の結果も従来報告されている現象を再現している。また、市販のSmFe17粉末を焼結した比較例8においても保磁力は約70%激減することも確認できた。 In Comparative Examples 1 and 2 in which the gradual oxidation of the magnet powder was performed before the sintering process, the increase / decrease rate of the coercivity from the magnet powder in the sintered magnet was -46% and -32%, and the coercivity was greatly reduced. I was able to confirm. As described above, once the magnetic powder exposed to the atmosphere is sintered, the phenomenon that the coercive force decreases drastically has been reported, and the results of Comparative Examples 1 and 2 also reproduce the phenomenon that has been conventionally reported. It was also confirmed that the coercive force was drastically reduced by about 70% in Comparative Example 8 in which commercially available Sm 2 Fe 17 N 3 powder was sintered.

粉砕工程を実施する際のグローブボックス内の雰囲気中の酸素濃度を1.0体積ppmとした比較例7では、焼結磁石の保磁力は磁石粉末の保磁力を下回ることが確認できた。従って、焼結磁石において、磁石粉末の保磁力を維持し、酸素含有率の低い焼結体を達成するには、酸素濃度が0.5体積ppm以下の雰囲気中で粉砕工程を実施することが好ましいことを確認できた。   In Comparative Example 7 in which the oxygen concentration in the atmosphere in the glove box when performing the pulverization step was 1.0 volume ppm, it was confirmed that the coercivity of the sintered magnet was lower than the coercivity of the magnet powder. Therefore, in the sintered magnet, in order to maintain the coercive force of the magnet powder and achieve a sintered body having a low oxygen content, the pulverization step may be performed in an atmosphere having an oxygen concentration of 0.5 volume ppm or less. It was confirmed that it was preferable.

そして、表1に示した評価結果によると、酸素含有率と、焼結磁石における磁石粉末からの保磁力の増減率との関係に着目して比較すると、酸素含有率が0.7重量%以下である焼結磁石は、焼結磁石の保磁力は磁石粉末の保磁力よりも高くなっていることを確認できる。すなわち、焼結磁石が高い保磁力を有することを確認できた。   And according to the evaluation results shown in Table 1, when comparing by focusing on the relationship between the oxygen content and the increase / decrease rate of the coercive force from the magnet powder in the sintered magnet, the oxygen content is 0.7% by weight or less. It can be confirmed that the coercive force of the sintered magnet is higher than the coercive force of the magnet powder. That is, it was confirmed that the sintered magnet has a high coercive force.

また、粒界に濃化する酸素が保磁力を低下させるという見地に立って、焼結磁石の保磁力と、単位面積当りの粒界に含まれる酸素含有率とに着目し、実験結果について検討を行う。既述のように、単位面積当りの粒界に含まれる酸素含有率は、焼結磁石の酸素含有率と、結晶粒子の平均粒径との積で表すことができる。そして、(焼結磁石の酸素含有率)×(結晶粒子の平均粒径)<2.2の場合、原料粉末である磁石粉末の保磁力よりも高い保磁力の焼結磁石を得られることを確認できた。すなわち、焼結磁石が高い保磁力を有することを確認できた。   Also, from the standpoint that oxygen concentrated at the grain boundary reduces the coercive force, the experimental results are examined focusing on the coercive force of the sintered magnet and the oxygen content contained in the grain boundary per unit area. I do. As described above, the oxygen content contained in the grain boundary per unit area can be expressed by the product of the oxygen content of the sintered magnet and the average particle size of the crystal grains. And when (oxygen content of sintered magnet) × (average particle diameter of crystal particles) <2.2, it is possible to obtain a sintered magnet having a coercive force higher than the coercive force of the magnet powder as the raw material powder. It could be confirmed. That is, it was confirmed that the sintered magnet has a high coercive force.

Claims (5)

サマリウム−鉄−窒素系合金を含有し、
含有する結晶粒子の平均粒径が0.04μmより大きく5μm以下であり、
酸素含有率が0.7重量%以下であるサマリウム−鉄−窒素系焼結磁石。
Contains samarium-iron-nitrogen alloy,
The average particle size of the contained crystal particles is larger than 0.04 μm and 5 μm or less,
A samarium-iron-nitrogen based sintered magnet having an oxygen content of 0.7% by weight or less.
サマリウム−鉄−窒素系合金を含有し、
含有する結晶粒子の平均粒径が0.04μmより大きく5μm以下であり、
酸素含有率(重量%)と、前記結晶粒子の平均粒径(μm)とが、以下の式(1)の関係を満たすサマリウム−鉄−窒素系焼結磁石。
(酸素含有率)×(結晶粒子の平均粒径)<2.2 ・・・(1)
Contains samarium-iron-nitrogen alloy,
The average particle size of the contained crystal particles is larger than 0.04 μm and 5 μm or less,
A samarium-iron-nitrogen based sintered magnet in which the oxygen content (% by weight) and the average particle size (μm) of the crystal particles satisfy the relationship of the following formula (1).
(Oxygen content) × (average particle diameter of crystal grains) <2.2 (1)
サマリウム−鉄−窒素系合金を含有する磁石材料を、酸素濃度が0.5体積ppm以下の雰囲気中で、平均粒径が0.04μmより大きく5μm以下となるように粉砕し、磁石粉末を調製する粉砕工程と、
前記磁石粉末を、酸素濃度が0.5体積ppm以下の雰囲気中、300℃より高く600℃未満の温度、および1000MPa以上1500MPa以下の圧力下で焼結する焼結工程と、を有し、
前記粉砕工程と前記焼結工程との間、前記磁石粉末は酸素濃度が0.5体積ppmより高く50体積ppm以下の雰囲気に保管され、かつ保管する期間が6日間以下であるか、酸素濃度が0.5体積ppm以下の雰囲気に保管されるサマリウム−鉄−窒素系焼結磁石の製造方法。
A magnet material containing a samarium-iron-nitrogen alloy is pulverized in an atmosphere having an oxygen concentration of 0.5 volume ppm or less so that the average particle size is greater than 0.04 μm and 5 μm or less to prepare a magnet powder. Crushing process to
A sintering step of sintering the magnet powder in an atmosphere having an oxygen concentration of 0.5 volume ppm or less and a temperature higher than 300 ° C. and lower than 600 ° C. and a pressure of 1000 MPa to 1500 MPa.
Between the pulverization step and the sintering step, the magnet powder is stored in an atmosphere having an oxygen concentration of higher than 0.5 volume ppm and lower than or equal to 50 volume ppm, and the storage period is 6 days or less. Is a method for producing a samarium-iron-nitrogen based sintered magnet stored in an atmosphere of 0.5 ppm by volume or less.
前記粉砕工程において、前記サマリウム−鉄−窒素系合金を含有する磁石材料を、乾式ジェットミル法により粉砕する請求項3に記載のサマリウム−鉄−窒素系焼結磁石の製造方法。   The method for producing a samarium-iron-nitrogen based sintered magnet according to claim 3, wherein in the pulverizing step, the magnet material containing the samarium-iron-nitrogen based alloy is pulverized by a dry jet mill method. 前記焼結工程において、前記磁石粉末を通電焼結法を用いて焼結する請求項3または4に記載のサマリウム−鉄−窒素系焼結磁石の製造方法。
The method for producing a samarium-iron-nitrogen based sintered magnet according to claim 3 or 4, wherein, in the sintering step, the magnet powder is sintered using an electric current sintering method.
JP2015180017A 2015-09-11 2015-09-11 Samarium-iron-nitrogen based sintered magnet and method for producing samarium-iron-nitrogen based sintered magnet Active JP6614647B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015180017A JP6614647B2 (en) 2015-09-11 2015-09-11 Samarium-iron-nitrogen based sintered magnet and method for producing samarium-iron-nitrogen based sintered magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015180017A JP6614647B2 (en) 2015-09-11 2015-09-11 Samarium-iron-nitrogen based sintered magnet and method for producing samarium-iron-nitrogen based sintered magnet

Publications (2)

Publication Number Publication Date
JP2017055072A true JP2017055072A (en) 2017-03-16
JP6614647B2 JP6614647B2 (en) 2019-12-04

Family

ID=58317421

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015180017A Active JP6614647B2 (en) 2015-09-11 2015-09-11 Samarium-iron-nitrogen based sintered magnet and method for producing samarium-iron-nitrogen based sintered magnet

Country Status (1)

Country Link
JP (1) JP6614647B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020053437A (en) * 2018-09-21 2020-04-02 トヨタ自動車株式会社 Rare earth magnet and manufacturing method therefor
WO2020184724A1 (en) * 2019-03-14 2020-09-17 国立研究開発法人産業技術総合研究所 Metastable single-crystal rare earth magnet fine powder and method for producing same
WO2020183886A1 (en) * 2019-03-12 2020-09-17 Tdk株式会社 Anisotropic magnet powder, anisotropic magnet, and method for manufacturing anisotropic magnet powder
WO2020203739A1 (en) * 2019-04-05 2020-10-08 国立研究開発法人産業技術総合研究所 Sm-fe-n-based magnet powder, sm-fe-n-based sintered magnet, and production method therefor
WO2021085521A1 (en) * 2019-10-29 2021-05-06 Tdk株式会社 Sm-Fe-N RARE EARTH MAGNET, PRODUCTION METHOD THEREFOR, AND RARE EARTH MAGNET POWDER
CN113593799A (en) * 2020-04-30 2021-11-02 烟台正海磁性材料股份有限公司 Fine-grain and high-coercivity sintered neodymium-iron-boron magnet and preparation method thereof
WO2021256509A1 (en) 2020-06-19 2021-12-23 日亜化学工業株式会社 Method for producing anisotropic magnetic powder, and anisotropic magnetic powder

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03153852A (en) * 1989-11-13 1991-07-01 Asahi Chem Ind Co Ltd Magnetic material, magnet composed of the same, and their production
JPH0645121A (en) * 1992-04-28 1994-02-18 Asahi Chem Ind Co Ltd Manufacture of nitride magnetic powder
JPH09171915A (en) * 1995-12-18 1997-06-30 Matsushita Electric Ind Co Ltd Fine powder for magnet, production and preservation thereof
JPH1012424A (en) * 1996-06-24 1998-01-16 Matsushita Electric Ind Co Ltd Manufacture of r2t17nx-based magnet powder
JPH10163056A (en) * 1996-12-04 1998-06-19 Tdk Corp Manufacture of magnet
JP2005223263A (en) * 2004-02-09 2005-08-18 Sumitomo Metal Mining Co Ltd Method for manufacturing rare earth permanent magnet and resulting rare earth permanent magnet
JP2005272986A (en) * 2004-03-26 2005-10-06 Sumitomo Metal Mining Co Ltd Rare earth-transition metal-nitrogen-based magnet alloy powder, manufacturing method therefor and rare-earth bond magnet using it
JP2012164983A (en) * 2012-02-17 2012-08-30 Asahi Kasei Chemicals Corp Method for manufacturing solid material for magnet

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03153852A (en) * 1989-11-13 1991-07-01 Asahi Chem Ind Co Ltd Magnetic material, magnet composed of the same, and their production
JPH0645121A (en) * 1992-04-28 1994-02-18 Asahi Chem Ind Co Ltd Manufacture of nitride magnetic powder
JPH09171915A (en) * 1995-12-18 1997-06-30 Matsushita Electric Ind Co Ltd Fine powder for magnet, production and preservation thereof
JPH1012424A (en) * 1996-06-24 1998-01-16 Matsushita Electric Ind Co Ltd Manufacture of r2t17nx-based magnet powder
JPH10163056A (en) * 1996-12-04 1998-06-19 Tdk Corp Manufacture of magnet
JP2005223263A (en) * 2004-02-09 2005-08-18 Sumitomo Metal Mining Co Ltd Method for manufacturing rare earth permanent magnet and resulting rare earth permanent magnet
JP2005272986A (en) * 2004-03-26 2005-10-06 Sumitomo Metal Mining Co Ltd Rare earth-transition metal-nitrogen-based magnet alloy powder, manufacturing method therefor and rare-earth bond magnet using it
JP2012164983A (en) * 2012-02-17 2012-08-30 Asahi Kasei Chemicals Corp Method for manufacturing solid material for magnet

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7168394B2 (en) 2018-09-21 2022-11-09 トヨタ自動車株式会社 Rare earth magnet and manufacturing method thereof
JP2020053437A (en) * 2018-09-21 2020-04-02 トヨタ自動車株式会社 Rare earth magnet and manufacturing method therefor
CN113597650A (en) * 2019-03-12 2021-11-02 Tdk 株式会社 Anisotropic magnet powder, anisotropic magnet, and method for producing anisotropic magnet powder
WO2020183886A1 (en) * 2019-03-12 2020-09-17 Tdk株式会社 Anisotropic magnet powder, anisotropic magnet, and method for manufacturing anisotropic magnet powder
JPWO2020183886A1 (en) * 2019-03-12 2020-09-17
CN113677457B (en) * 2019-03-14 2024-03-29 国立研究开发法人产业技术综合研究所 Metastable single crystal rare earth magnet micropowder and method for producing same
CN113677457A (en) * 2019-03-14 2021-11-19 国立研究开发法人产业技术综合研究所 Metastable state single crystal rare earth magnet micro powder and method for producing the same
EP3939718A4 (en) * 2019-03-14 2023-07-19 National Institute Of Advanced Industrial Science And Technology Metastable single-crystal rare earth magnet fine powder and method for producing same
WO2020184724A1 (en) * 2019-03-14 2020-09-17 国立研究開発法人産業技術総合研究所 Metastable single-crystal rare earth magnet fine powder and method for producing same
JP7349173B2 (en) 2019-03-14 2023-09-22 国立研究開発法人産業技術総合研究所 Metastable single crystal rare earth magnet fine powder and its manufacturing method
JPWO2020203739A1 (en) * 2019-04-05 2020-10-08
WO2020203739A1 (en) * 2019-04-05 2020-10-08 国立研究開発法人産業技術総合研究所 Sm-fe-n-based magnet powder, sm-fe-n-based sintered magnet, and production method therefor
CN113646111A (en) * 2019-04-05 2021-11-12 国立研究开发法人产业技术综合研究所 Sm-Fe-N based magnet powder, Sm-Fe-N based sintered magnet and method for producing same
DE112020001145T5 (en) 2019-04-05 2021-11-25 Murata Manufacturing Co., Ltd. MAGNETIC POWDER ON THE BASIS OF SM-FE-N, SINTER MAGNET ON THE BASIS OF SM-FE-N AND THE PRODUCTION PROCESS FOR IT
US20220037065A1 (en) * 2019-04-05 2022-02-03 National Institute Of Advanced Industrial Science And Technology Sm-fe-n-based magnet powder, sm-fe-n-based sintered magnet, and production method therefor
WO2021085521A1 (en) * 2019-10-29 2021-05-06 Tdk株式会社 Sm-Fe-N RARE EARTH MAGNET, PRODUCTION METHOD THEREFOR, AND RARE EARTH MAGNET POWDER
CN113593799A (en) * 2020-04-30 2021-11-02 烟台正海磁性材料股份有限公司 Fine-grain and high-coercivity sintered neodymium-iron-boron magnet and preparation method thereof
CN113593799B (en) * 2020-04-30 2023-06-13 烟台正海磁性材料股份有限公司 Fine-grain high-coercivity sintered NdFeB magnet and preparation method thereof
WO2021256509A1 (en) 2020-06-19 2021-12-23 日亜化学工業株式会社 Method for producing anisotropic magnetic powder, and anisotropic magnetic powder

Also Published As

Publication number Publication date
JP6614647B2 (en) 2019-12-04

Similar Documents

Publication Publication Date Title
JP6614647B2 (en) Samarium-iron-nitrogen based sintered magnet and method for producing samarium-iron-nitrogen based sintered magnet
JP6288076B2 (en) R-T-B sintered magnet
WO2015129861A1 (en) R-t-b sintered magnet and manufacturing method therefor
JP7251917B2 (en) RTB system permanent magnet
KR101687981B1 (en) Rare-earth permanent magnetic powders, bonded magnet comprising same, and device using bonded magnet
JP6094612B2 (en) Method for producing RTB-based sintered magnet
JP2017112300A (en) Rare earth magnet
WO2017033266A1 (en) Magnet particles and magnet molding using same
JP6481682B2 (en) Manufacturing method of RTB-based alloy powder and manufacturing method of RTB-based sintered magnet
JP6471669B2 (en) Manufacturing method of RTB-based magnet
WO2017159576A1 (en) Method for manufacturing r-t-b based sintered magnet
JP5504832B2 (en) Manufacturing method of nanocomposite magnet
JP2013102122A (en) Magnetic member and manufacturing method for magnetic member
CN107408437B (en) Rare earth magnet
JP2018028123A (en) Method for producing r-t-b sintered magnet
JP6142793B2 (en) Rare earth magnets
JP7287220B2 (en) Rare earth magnet and manufacturing method thereof
JP6691666B2 (en) Method for manufacturing RTB magnet
JP2018174314A (en) R-T-B based sintered magnet
JP4076178B2 (en) R-T-B rare earth permanent magnet
JP2015135935A (en) Rare earth based magnet
JP6508447B1 (en) Method of manufacturing RTB based sintered magnet
JP2018029108A (en) Method of manufacturing r-t-b based sintered magnet
JP6919788B2 (en) Rare earth sintered magnet
JP2020155740A (en) Method for producing rare earth magnet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180531

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191029

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191031

R150 Certificate of patent or registration of utility model

Ref document number: 6614647

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R157 Certificate of patent or utility model (correction)

Free format text: JAPANESE INTERMEDIATE CODE: R157

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250