JPH06151233A - Manufacture of semiconductor porcelain composition - Google Patents

Manufacture of semiconductor porcelain composition

Info

Publication number
JPH06151233A
JPH06151233A JP30250892A JP30250892A JPH06151233A JP H06151233 A JPH06151233 A JP H06151233A JP 30250892 A JP30250892 A JP 30250892A JP 30250892 A JP30250892 A JP 30250892A JP H06151233 A JPH06151233 A JP H06151233A
Authority
JP
Japan
Prior art keywords
firing
dew point
semiconductivity
giving
grain boundary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30250892A
Other languages
Japanese (ja)
Other versions
JP2734910B2 (en
Inventor
Osamu Kanda
修 神田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP30250892A priority Critical patent/JP2734910B2/en
Publication of JPH06151233A publication Critical patent/JPH06151233A/en
Application granted granted Critical
Publication of JP2734910B2 publication Critical patent/JP2734910B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Ceramic Capacitors (AREA)

Abstract

PURPOSE:To enhance productivity by suppressing the deposition between molded bodies when a reducing atmosphere firing operation is conducted, and to improve the electric characteristics such as insulating property, capacitive and the like as a capacitor by a method wherein the dew point of reducing atmosphere gas in a semiconductivity- giving firing process is set at 0 to 35 deg.C. CONSTITUTION:In the manufacturing method for a semiconductor porcelain composition containing a semiconductivity-giving firing process, in which the mixture of strotium titanate compound or titanium oxide and the carbonate of strontium and the raw material mixture containing silicon dioxide are brought into a state of semiconductivity, and a grain boundary insulating process in which a crystal grain boundary layer is brought into an insulated state after performance of the semiconductivity-giving firing process, the dew point of the reducing atmosphere of the semicoductivity-giving firing process is set at 0 to 35 deg.C. This setting of dew point is conducted by introducing the reducing gas such as H2, N2, Ar and the like into a vapor atmosphere chamber of 0 to 35 deg.C. The vapor contained in the reducing gas in decomposed into hydrogen and oxygen when the temperature of the atmosphere is raised in the firing process, the reductive firing becomes weaker by the boosting of the partial pressure of oxygen, and the welding between the molded bodies can be prevented.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体磁器の結晶粒界に
絶縁層が形成されている半導体磁器組成物の製造方法に
関し、より詳細には通信機器、音響機器、各種OA機器
に搭載される電子回路等においてコンデンサ、バリスタ
として利用される半導体磁器組成物の製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a semiconductor porcelain composition in which an insulating layer is formed on a crystal grain boundary of the semiconductor porcelain, and more specifically, it is mounted on communication equipment, audio equipment, and various OA equipment. The present invention relates to a method for producing a semiconductor porcelain composition used as a capacitor or a varistor in an electronic circuit or the like.

【0002】[0002]

【従来の技術】粒界絶縁型半導体磁器組成物は、半導体
化させたセラミックの結晶粒界に金属酸化物などを熱拡
散させて絶縁層を形成したものであり、主にコンデンサ
として用いられている。この種のコンデンサでは一般
に、数nmの薄い粒界(絶縁層)の厚みを利用するた
め、小型で大きな静電容量が得られる。
2. Description of the Related Art A grain boundary insulation type semiconductor porcelain composition is one in which an insulating layer is formed by thermally diffusing a metal oxide or the like at crystal grain boundaries of a semiconductor made into a ceramic, and is mainly used as a capacitor. There is. In general, this type of capacitor utilizes a thin grain boundary (insulating layer) thickness of several nm, so that a small size and a large capacitance can be obtained.

【0003】現在、使用されている半導体磁器組成物の
主原料としては、チタン酸バリウム系とチタン酸ストロ
ンチウム系の2種類の材料系が挙げられる。チタン酸バ
リウム系はチタン酸バリウムの物性に対応して見かけの
比誘電率εapp は大きいが、その値は温度や周波数によ
って影響されやすいという問題点がある。一方、チタン
酸ストロンチウム系は見かけの比誘電率εapp がチタン
酸バリウム系より小さいが、その値は温度や周波数によ
る影響を受けにくく、さらに誘電損失が小さく、粒界の
設計を行い易いという利点がある。前記見かけの比誘電
率εapp は下記の数1式で定義され、半導体磁器の1つ
の素子特性を示すものである。
As the main raw materials of the semiconductor porcelain composition currently used, there are two kinds of material systems, barium titanate type and strontium titanate type. The barium titanate system has a large apparent relative permittivity ε app corresponding to the physical properties of barium titanate, but there is a problem that its value is easily affected by temperature and frequency. On the other hand, the apparent relative permittivity ε app of the strontium titanate type is smaller than that of the barium titanate type, but its value is not easily affected by temperature and frequency, the dielectric loss is small, and it is easy to design the grain boundary. There is. The apparent relative permittivity ε app is defined by the following formula 1 and represents one element characteristic of the semiconductor ceramic.

【0004】[0004]

【数1】 εapp =C・S/d ただし、C:静電容量 S:電極面積 d:電極間距離 をそれぞれ表わす。Where ε app = C · S / d, where C is the capacitance, S is the electrode area, and d is the inter-electrode distance.

【0005】近年、特に電子機器や電子回路等は高い周
波数領域で用いられることが多く、また自動車用部品と
して等、厳しい環境下で用いられることも多く、高周波
特性及び温度特性等に優れた信頼性の高いコンデンサが
要求され、チタン酸ストロンチウム系が注目されてい
る。
In recent years, in particular, electronic devices and electronic circuits are often used in a high frequency region, and are often used in a severe environment such as automobile parts, and have excellent reliability in high frequency characteristics and temperature characteristics. Capacitors with high properties are required, and strontium titanate-based capacitors are drawing attention.

【0006】現在、チタン酸ストロンチウムを主成分と
した半導体磁器の結晶粒界にBi、Mn、Cu、Pb、
Alなどの金属酸化物を加えて熱拡散させ、高い比誘電
率を得たもの、チタン酸カルシウムをチタン酸ストロン
チウムと固溶させ、さらにアルカリ金属を粒界に熱拡散
させてバリスタ機能を付与したものなどがあり、従来の
主な用途であった低周波用アナログ回路以外に、電源用
ノイズフィルター、半導体デバイスのノイズ吸収素子等
にも用途が拡がっている。
At present, Bi, Mn, Cu, Pb, are present in the crystal grain boundaries of semiconductor porcelain mainly containing strontium titanate.
A metal oxide such as Al was added and thermally diffused to obtain a high relative permittivity, calcium titanate was solid-dissolved with strontium titanate, and an alkali metal was thermally diffused to grain boundaries to give a varistor function. In addition to conventional low frequency analog circuits, which have been mainly used in the past, their applications are expanding to noise filters for power supplies, noise absorbing elements for semiconductor devices, and the like.

【0007】粒界絶縁型半導体磁器において十分な容量
性を発現させるためには磁器結晶の成長を数十μm径ま
で促進させる必要があり、その手段として還元雰囲気焼
成が行われる。還元雰囲気焼成に際しては成形体を例え
ばアルミナ製ルツボやジルコニア製ルツボ内に設置して
焼成するが、生産性を上げるために成形体を数個重ねて
同時に多数個焼成する場合がほとんどである。
In order to develop sufficient capacitance in the grain boundary insulation type semiconductor porcelain, it is necessary to accelerate the growth of the porcelain crystal to a diameter of several tens of μm, and reducing atmosphere firing is performed as a means thereof. When firing in a reducing atmosphere, the molded body is placed in, for example, an alumina crucible or a zirconia crucible and fired. However, in order to improve the productivity, a plurality of molded bodies are stacked and fired at the same time in most cases.

【0008】しかし、還元雰囲気内で1400℃以上の
高温焼成を行うと液相焼結が進むため、焼成中に成形体
間に濡れが発生し、成形体間焼結を引き起こす結果、焼
成完了後に成形体の溶着を引き起こす場合が多い。成形
体間の溶着が発生すると焼結体素子の分離が困難となる
ため、生産性の低下は避けられず、製品コストを引き上
げる原因にもなっていた。かかる成形体間の溶着を緩和
し、生産性を向上させた開示例として、特開昭54−2
7948号公報(半導体化剤としてPrを添加したも
の)、特開昭54−44750号公報(助材成分にPを
添加したもの)などがある。
However, when high-temperature firing at 1400 ° C. or higher is performed in a reducing atmosphere, liquid phase sintering proceeds, so that wetting occurs between the compacts during firing, causing inter-sintering of the compacts. In many cases, it causes welding of the molded body. When welding between the molded bodies occurs, it becomes difficult to separate the sintered body elements, so that a decrease in productivity is unavoidable, and it has been a cause of raising the product cost. Japanese Patent Application Laid-Open No. 54-2 is disclosed as a disclosed example in which the welding between the molded bodies is relaxed and the productivity is improved.
7948 (Pr added as a semiconducting agent) and JP-A 54-44750 (P added as an auxiliary component).

【0009】[0009]

【発明が解決しようとする課題】しかしながら、上記し
た特開昭54−27948号公報(半導体化剤としてP
rを添加したもの)、及び特開昭54−44750号公
報(助材成分にPを添加したもの)記載のものでは溶着
の抑制が不十分であり、また絶縁抵抗も十分に高くない
という課題があった。
However, the above-mentioned Japanese Patent Laid-Open No. 54-27948 (P as a semiconducting agent is used).
(with r added) and those described in JP-A-54-44750 (where P is added to the auxiliary component), the suppression of welding is insufficient and the insulation resistance is not sufficiently high. was there.

【0010】本発明は上記課題に鑑み発明されたもので
あって、半導体化のための還元雰囲気焼成の際の成形体
間の溶着を抑制することにより生産性を高めることがで
き、しかもコンデンサとしての絶縁性と容量性などの電
気的特性も電気回路の実装に適する半導体磁器組成物の
製造方法を提供することを目的としている。
The present invention has been invented in view of the above-mentioned problems, and it is possible to improve productivity by suppressing welding between compacts during firing in a reducing atmosphere for semiconductor formation, and as a capacitor. It is an object of the present invention to provide a method for producing a semiconductor porcelain composition having electrical characteristics such as insulation and capacitance which are suitable for mounting an electric circuit.

【0011】[0011]

【課題を解決するための手段】上記目的を達成するため
に本発明に係る半導体磁器組成物の製造方法は、チタン
酸ストロンチウム化合物若しくはチタン酸化物とストロ
ンチウムの炭酸塩との混合物及び二酸化珪素を含む原料
混合物を半導体化する半導体化焼成工程と、前記半導体
化焼成工程の後に結晶粒界層を粒界絶縁化する粒界絶縁
化工程とを含む半導体磁器組成物の製造方法において、
前記半導体化焼成工程における還元雰囲気ガスの露点を
0〜35℃に設定することを特徴としている。
In order to achieve the above object, a method for producing a semiconductor porcelain composition according to the present invention comprises a strontium titanate compound or a mixture of titanium oxide and strontium carbonate and silicon dioxide. In a method for producing a semiconductor porcelain composition, which comprises a semiconducting firing step of semiconducting a raw material mixture, and a grain boundary insulating step of insulating the grain boundary layer after the semiconducting firing step.
It is characterized in that the dew point of the reducing atmosphere gas is set to 0 to 35 ° C. in the semiconductor conversion firing step.

【0012】[0012]

【作用】上記方法によれば、半導体化焼成工程における
還元雰囲気の露点を0〜35℃に設定している。露点設
定を全く行わないとき(還元ガスをそのまま通すとき)
には還元性は余りに強くなり過ぎて(Po2はおよそ10
-25 atm)、SrTiO3 系の組成制御に支障をきた
す。この露点の設定は0〜35℃の水蒸気雰囲気チャン
バにH2 、N2 、Ar等の還元ガスを通すことにより行
われ、還元ガスは所定の水蒸気量を含むこととなる。焼
成工程において雰囲気が高温になると、この還元ガス中
に含まれた水蒸気は水素と酸素とに分解され、酸素の分
圧が上がることにより還元雰囲気が弱められる。従っ
て、還元焼成が微妙に弱められて液相焼結が抑制され、
成形体間の溶着が防止されると考えられる。また還元焼
成作用が弱められることにより、セラミック結晶粒の成
長が数十μm径までの適度の大きさに抑えられ、電気的
特性も良好になることが実験により明らかになった。
According to the above method, the dew point of the reducing atmosphere in the semiconductor-forming firing step is set to 0 to 35 ° C. When the dew point is not set at all (when reducing gas is passed as it is)
Is too reducible (Po 2 is about 10
-25 atm), which causes problems in composition control of SrTiO 3 system. The dew point is set by passing a reducing gas such as H 2 , N 2 and Ar through a steam atmosphere chamber at 0 to 35 ° C., and the reducing gas contains a predetermined amount of steam. When the temperature of the atmosphere becomes high in the firing step, the water vapor contained in the reducing gas is decomposed into hydrogen and oxygen, and the partial pressure of oxygen increases, so that the reducing atmosphere is weakened. Therefore, reduction firing is subtly weakened and liquid phase sintering is suppressed,
It is considered that welding between the molded bodies is prevented. Experiments have also revealed that the reduction firing effect is weakened, whereby the growth of ceramic crystal grains is suppressed to an appropriate size up to a diameter of several tens of μm, and the electrical characteristics are improved.

【0013】すなわち、上記したように露点設定を行う
ことにより、焼結体における成形体間の溶着率が3%以
下に抑制され、また、平均結晶粒径DG は25〜35μ
mの範囲内に制御することが可能となる。電気的特性と
しての容量性の目安である見かけの比誘電率εapp
3.0×104 以上に保たれ、誘電損失DF(%)は
0.6%以下に抑えられる。絶縁抵抗IR(Ω)は直流
25V定格の場合、2.0×1010Ω以上となり、コン
デンサとしての絶縁性を十分満足していることが確認さ
れた。
That is, by setting the dew point as described above, the welding ratio between the compacts in the sintered compact is suppressed to 3% or less, and the average crystal grain size D G is 25 to 35 μm.
It becomes possible to control within the range of m. The apparent relative permittivity ε app , which is a measure of capacitance as an electrical characteristic, is maintained at 3.0 × 10 4 or more, and the dielectric loss DF (%) is suppressed at 0.6% or less. It was confirmed that the insulation resistance IR (Ω) was 2.0 × 10 10 Ω or more in the case of the DC 25 V rating, and the insulating property as the capacitor was sufficiently satisfied.

【0014】[0014]

【実施例】以下、本発明に係る半導体磁器組成物の製造
方法の実施例を説明する。まず、SrCO3、TiO2、 Nb2O5
SiO2からなる主原料に適量の玉石、分散剤、純水とを加
え、ポットミル内で24時間混合を行う。混合されたス
ラリー状の原料を脱水乾燥させて、解砕する。この解砕
粉を例えばジルコニア製の焼成ルツボ内に移し、115
0℃で仮焼合成して、セラミックにし、所定の固溶体セ
ラミックが合成されていることをX線解析、組成分析等
で確認する。
EXAMPLES Examples of the method for producing a semiconductor porcelain composition according to the present invention will be described below. First, SrCO 3 , TiO 2 , Nb 2 O 5 ,
An appropriate amount of boulders, a dispersant, and pure water are added to the main raw material made of SiO 2 and mixed in a pot mill for 24 hours. The mixed slurry-like raw materials are dehydrated and dried and crushed. This crushed powder is transferred into a firing crucible made of, for example, zirconia, and 115
It is calcined and synthesized at 0 ° C. to obtain a ceramic, and it is confirmed by X-ray analysis, composition analysis, etc. that a predetermined solid solution ceramic is synthesized.

【0015】次に仮焼合成セラミックを解砕し、1.0
μm前後の均一粉ふるいを用いて整粒する。この粉末に
有機バインダー等を添加して、直径10mm、厚さ50
0μmの円板形状に成形する。この成形体を1000℃
で保温し、有機バインダを取り除く。その後、アルミナ
製の焼成ルツボ内に成形体を重ねたものを配置して還元
雰囲気焼成を行い、セラミックの焼結と同時に半導体化
を行う。この還元雰囲気焼成は水素1〜15%、窒素8
5〜99%の混合ガスを設定露点0.0〜35.0℃に
なるような水蒸気雰囲気チャンバに通した還元ガスを用
い、この還元ガス雰囲気中で、1380〜1450℃の
温度範囲内で2.0〜8.0時間焼成することにより行
う。
Next, the calcined synthetic ceramic is crushed to 1.0
The particles are sized using a uniform powder sieve of about μm. An organic binder or the like is added to this powder to give a diameter of 10 mm and a thickness of 50.
It is molded into a disk shape of 0 μm. This molded body is 1000 ° C
Keep it warm with and remove the organic binder. After that, a compact is placed in an alumina firing crucible and firing is performed in a reducing atmosphere to simultaneously sinter the ceramic and convert it into a semiconductor. This reducing atmosphere firing is performed with 1 to 15% hydrogen and 8 nitrogen.
Using a reducing gas in which a mixed gas of 5 to 99% is passed through a water vapor atmosphere chamber having a set dew point of 0.0 to 35.0 ° C., in the reducing gas atmosphere, a temperature range of 1380 to 1450 ° C. It is performed by firing for 0.0 to 8.0 hours.

【0016】次に得られた焼結体を有機溶剤(例えばア
セトン)と熱水中で十分洗浄した後、セラミック結晶粒
界を絶縁化するためにBiとCu成分とを同時に含む組
成物を混練ペースト状にして焼結体表面に塗布する。そ
の塗布量は焼結体1gあたり20〜50mg程度とす
る。これを大気中で1000〜1350℃の温度範囲内
で0.5〜4.0時間粒界絶縁化焼成を行い、半導体磁
器組成物の製造を完了する。Bi、Cu成分が拡散して
いることはEPMA等により確認した。
Next, the obtained sintered body is thoroughly washed with an organic solvent (eg acetone) and hot water, and then a composition containing Bi and Cu components at the same time is kneaded to insulate the ceramic grain boundaries. The paste is applied to the surface of the sintered body. The coating amount is about 20 to 50 mg per 1 g of the sintered body. This is subjected to grain boundary insulation firing in the temperature range of 1000 to 1350 ° C. for 0.5 to 4.0 hours to complete the production of the semiconductor porcelain composition. It was confirmed by EPMA that the Bi and Cu components were diffused.

【0017】その半導体磁器組成物の両表面に市販の電
極用Agペーストを印刷し、800℃で電極を焼き付け
て評価用試料とした。なお、主原料にはSrCO3、TiO2、 Nb
2O5、SiO2を用いたが、主原料にはSrTiO3、 Nb2O5 、 SiO2
を用いても良く、また電極にはAgペーストを用いるこ
ととしたが、電極機能を有する材料であれば他のもので
構わない。
Commercially available Ag paste for electrodes was printed on both surfaces of the semiconductor porcelain composition, and the electrodes were baked at 800 ° C. to prepare samples for evaluation. The main raw materials were SrCO 3 , TiO 2 , and Nb.
2 O 5 and SiO 2 were used, but SrTiO 3 , Nb 2 O 5 and SiO 2 were used as main raw materials.
Although Ag paste may be used for the electrode, any other material may be used as long as it has a function of an electrode.

【0018】完成した半導体磁器組成物の評価は、次の
ように行った。各設定露点における還元雰囲気焼成後の
成形体全数について成形体間の溶着の発生状況を確認
し、各設定露点ごとの成形体間溶着率を算出した。試料
のセラミック結晶粒径の測定は試料断面のSEM観察に
より行った。表1の平均結晶粒径DG のデータは各組成
内で無作為に取りだした30個についてSEM観察を行
い、算出した値である。
Evaluation of the completed semiconductor porcelain composition was performed as follows. The state of welding between the formed bodies was confirmed for all the formed bodies after firing in the reducing atmosphere at each set dew point, and the welding rate between the formed bodies for each set dew point was calculated. The ceramic crystal grain size of the sample was measured by SEM observation of the sample cross section. The data of the average crystal grain size D G in Table 1 is a value calculated by performing SEM observation on 30 randomly selected grains in each composition.

【0019】電気的特性は、見かけの比誘電率εapp
誘電損失DF(%)、絶縁抵抗IR(Ω)について評価
した。見かけの比誘電率εapp はインピーダンスアナラ
イザを用い、AC1kHz、1V、室温で測定した静電
容量をもとに成形体寸法から換算した値である。誘電損
失DF(%)もAC1kHz、1V、室温で測定した値
である。また、絶縁抵抗IR(Ω)は電極間に定格電圧
として直流25Vを印加し、印加1分後の電流値より算
出した。表1の電気的特性のデータはSrTiNb0.004O3-Si
0.002 の組成について半導体磁器組成物を無作為に10
0個取りだし、それらの平均値を示している。
The electrical characteristics are apparent relative permittivity ε app ,
The dielectric loss DF (%) and the insulation resistance IR (Ω) were evaluated. The apparent relative permittivity ε app is a value converted from the size of the molded body based on the electrostatic capacitance measured at AC 1 kHz, 1 V and room temperature using an impedance analyzer. The dielectric loss DF (%) is also a value measured at AC 1 kHz, 1 V and room temperature. Further, the insulation resistance IR (Ω) was calculated by applying a direct current of 25 V between the electrodes as a rated voltage and calculating the current value one minute after the application. The electrical property data in Table 1 is SrTiNb 0.004 O 3 -Si
Randomly 10 semiconductor porcelain compositions for a composition of 0.002
0 is taken out and the average value of them is shown.

【0020】[0020]

【表1】 [Table 1]

【0021】表1から明らかなように請求項1の範囲内
の設定露点を用いた試験条件No.4〜11のものにお
いては、焼結体の成形体間溶着率を3%以下に抑えるこ
とができた。また、平均結晶粒径DG を25〜35μm
の範囲内に制御することができた。電気的特性として、
容量性の目安である見かけの比誘電率(εapp )を3.
0×104 以上に保つことができ、誘電損失(DF;%)を
0.6%以下に抑えることができ、絶縁抵抗IR(Ω)
は直流25V定格の場合、2.0×1010Ω以上であ
り、コンデンサとしての絶縁性を十分満足していること
がわかった。このように実施例に係る磁器組成物は電気
的特性に優れており、高い絶縁性能を有する大容量コン
デンサの製作が可能である。
As is apparent from Table 1, the test condition No. using the set dew point within the range of claim 1 is as follows. In Nos. 4 to 11, the welding rate between the compacts of the sintered body could be suppressed to 3% or less. The average crystal grain size D G is 25 to 35 μm.
Could be controlled within the range of. As electrical characteristics,
2. The apparent relative permittivity (ε app ) which is a measure of capacitance is determined.
It can be maintained at 0 × 10 4 or more, the dielectric loss (DF;%) can be suppressed to 0.6% or less, and the insulation resistance IR (Ω)
Is 25 × 10 10 Ω or more in the case of a DC 25V rating, which proves that the insulating property as a capacitor is sufficiently satisfied. As described above, the porcelain compositions according to the examples have excellent electrical characteristics, and it is possible to manufacture a large-capacity capacitor having high insulation performance.

【0022】しかし、試験条件No.1〜3、12〜1
4は請求項の範囲外(表1中(*)印)の設定露点にお
いて焼成が行われたものであり、焼結体の成形体間溶着
率が高くなり、また見かけの比誘電率εapp 、誘電損失
DF(%)が劣化するなど、電気的特性も満足する値が
得られていなことがわかる。
However, the test condition No. 1-3, 12-1
No. 4 is the one that was fired at the set dew point outside the scope of claims (marked with (*) in Table 1), the welding ratio between the molded bodies of the sintered body was high, and the apparent relative dielectric constant ε app It can be seen that the dielectric loss DF (%) is deteriorated and a value satisfying the electrical characteristics is not obtained.

【0023】このように実施例に係る方法によれば、半
導体化のための還元雰囲気焼成の際の成形体間の溶着を
抑制することができ、従って、生産性を高めることがで
き、しかもコンデンサとしての絶縁性と容量性などの電
気的特性も電気回路の実装に適する半導体磁器組成物を
得ることができる。
As described above, according to the method according to the embodiment, it is possible to suppress the welding between the compacts during firing in a reducing atmosphere for semiconductor formation, and therefore, it is possible to enhance the productivity and to further improve the capacitor. As a result, it is possible to obtain a semiconductor porcelain composition having electrical characteristics such as insulation and capacitance suitable for mounting an electric circuit.

【0024】[0024]

【発明の効果】以上詳述したように本発明に係る半導体
磁器組成物の製造方法では、チタン酸ストロンチウム化
合物若しくはチタン酸化物とストロンチウムの炭酸塩と
の混合物及び二酸化珪素を含む原料混合物を半導体化す
る半導体化焼成工程と、前記半導体化焼成工程の後に結
晶粒界層を粒界絶縁化する粒界絶縁化工程とを含む半導
体磁器組成物の製造方法において、前記半導体化焼成工
程における還元雰囲気ガスの露点を0〜35℃に設定す
るので、前記半導体化焼成工程における成形体間の溶着
を抑制することができ、従って生産性を高めることがで
き、しかもコンデンサとしての絶縁性と容量性などの電
気的特性も電気回路の実装に適する半導体磁器組成物を
得ることができる。
As described above in detail, in the method for producing a semiconductor porcelain composition according to the present invention, a strontium titanate compound or a mixture of titanium oxide and strontium carbonate and a raw material mixture containing silicon dioxide are converted into semiconductors. In the method for producing a semiconductor porcelain composition, the method comprises: a semiconductorizing firing step of: and a grain boundary insulating step of insulating a crystal grain boundary layer after the semiconductorizing firing step. Since the dew point of is set to 0 to 35 ° C., it is possible to suppress the welding between the molded bodies in the semiconductorizing and firing process, and thus to improve the productivity, and further, to improve the insulation and capacitance of the capacitor. A semiconductor porcelain composition having electrical characteristics suitable for mounting an electric circuit can be obtained.

【0025】[0025]

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 チタン酸ストロンチウム化合物若しくは
チタン酸化物とストロンチウムの炭酸塩との混合物及び
二酸化珪素を含む原料混合物を半導体化する半導体化焼
成工程と、前記半導体化焼成工程の後に結晶粒界層を粒
界絶縁化する粒界絶縁化工程とを含む半導体磁器組成物
の製造方法において、前記半導体化焼成工程における還
元雰囲気ガスの露点を0〜35℃に設定することを特徴
とする半導体磁器組成物の製造方法。
1. A semiconducting firing step of semiconducting a raw material mixture containing a strontium titanate compound or a mixture of titanium oxide and strontium carbonate and a silicon dioxide, and a crystal grain boundary layer is formed after the semiconducting firing step. In the method for producing a semiconductor ceramic composition including a grain boundary insulating step of performing grain boundary insulation, the dew point of the reducing atmosphere gas in the semiconductor conversion firing step is set to 0 to 35 ° C. Manufacturing method.
JP30250892A 1992-11-12 1992-11-12 Method for producing semiconductor porcelain composition Expired - Lifetime JP2734910B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30250892A JP2734910B2 (en) 1992-11-12 1992-11-12 Method for producing semiconductor porcelain composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30250892A JP2734910B2 (en) 1992-11-12 1992-11-12 Method for producing semiconductor porcelain composition

Publications (2)

Publication Number Publication Date
JPH06151233A true JPH06151233A (en) 1994-05-31
JP2734910B2 JP2734910B2 (en) 1998-04-02

Family

ID=17909811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30250892A Expired - Lifetime JP2734910B2 (en) 1992-11-12 1992-11-12 Method for producing semiconductor porcelain composition

Country Status (1)

Country Link
JP (1) JP2734910B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5152149A (en) * 1991-07-23 1992-10-06 The Boc Group, Inc. Air separation method for supplying gaseous oxygen in accordance with a variable demand pattern
EP1840912A2 (en) * 2006-03-28 2007-10-03 TDK Corporation Multilayer ceramic electronic device and method of production of same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5152149A (en) * 1991-07-23 1992-10-06 The Boc Group, Inc. Air separation method for supplying gaseous oxygen in accordance with a variable demand pattern
EP1840912A2 (en) * 2006-03-28 2007-10-03 TDK Corporation Multilayer ceramic electronic device and method of production of same
EP1840912A3 (en) * 2006-03-28 2008-05-07 TDK Corporation Multilayer ceramic electronic device and method of production of same

Also Published As

Publication number Publication date
JP2734910B2 (en) 1998-04-02

Similar Documents

Publication Publication Date Title
JPS6249977B2 (en)
JP2734910B2 (en) Method for producing semiconductor porcelain composition
JP2762831B2 (en) Method for producing semiconductor porcelain composition
EP0200484B1 (en) Ultralow fire ceramic composition
JPH0521266A (en) Method of manufacturing grain boundary insulated semiconductor porcelain matter
JP2734888B2 (en) Method for producing semiconductor porcelain composition
JP2936876B2 (en) Semiconductor porcelain composition and method for producing the same
JP3000847B2 (en) Semiconductor porcelain composition and method for producing the same
JPS6249976B2 (en)
JP2937024B2 (en) Semiconductor porcelain composition and method for producing the same
JP2773479B2 (en) Grain boundary insulated semiconductor porcelain material and method of manufacturing the same
JPS6032344B2 (en) Grain boundary insulated semiconductor porcelain capacitor material
JPH0734415B2 (en) Grain boundary insulation type semiconductor porcelain composition
JPS6249975B2 (en)
JP2998586B2 (en) Semiconductor porcelain composition and method for producing the same
KR910001344B1 (en) Multilayer ceramic capacitor and method for producing thereof
JP2937039B2 (en) Semiconductor porcelain composition and method for producing the same
JPH0761896B2 (en) Grain boundary insulating semiconductor ceramic composition and method for producing the same
JP2900687B2 (en) Semiconductor porcelain composition and method for producing the same
JP2936925B2 (en) Method for producing multilayer semiconductor ceramic composition
JPH05270908A (en) Semiconductor porcelain composition and its production
JPH0734416B2 (en) Grain boundary insulating porcelain composition
JPH06204008A (en) Manufacture of semiconductor ceramic element
JPH0555074A (en) Grain boundary insulation type semiconductor porcelain substance and manufacture thereof
JPS61101460A (en) High permittivity ceramic composition