JPH0734416B2 - Grain boundary insulating porcelain composition - Google Patents

Grain boundary insulating porcelain composition

Info

Publication number
JPH0734416B2
JPH0734416B2 JP62282431A JP28243187A JPH0734416B2 JP H0734416 B2 JPH0734416 B2 JP H0734416B2 JP 62282431 A JP62282431 A JP 62282431A JP 28243187 A JP28243187 A JP 28243187A JP H0734416 B2 JPH0734416 B2 JP H0734416B2
Authority
JP
Japan
Prior art keywords
grain boundary
porcelain
capacitance
mole
capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62282431A
Other languages
Japanese (ja)
Other versions
JPH01124209A (en
Inventor
雅晴 小林
正紀 藤村
勝利 中村
紀哉 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62282431A priority Critical patent/JPH0734416B2/en
Publication of JPH01124209A publication Critical patent/JPH01124209A/en
Publication of JPH0734416B2 publication Critical patent/JPH0734416B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Capacitors (AREA)
  • Inorganic Insulating Materials (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は磁器コンデンサの誘電体等に用いられる粒界絶
縁型磁器組成物に関する。
TECHNICAL FIELD The present invention relates to a grain boundary insulating porcelain composition used for a dielectric or the like of a porcelain capacitor.

従来の技術 電子機器の小型化,信頼性の向上につれて、装着される
電子部品についても形状の小型化,信頼性の向上の要望
は強い。従って粒界絶縁型半導体磁器コンデンサについ
ても小型化の要求が強く、誘電体の誘電率や破壊電圧の
向上が望まれている。
2. Description of the Related Art With the miniaturization and improvement of reliability of electronic devices, there is a strong demand for miniaturization and improvement of reliability of mounted electronic components. Therefore, there is a strong demand for miniaturization of the grain boundary insulation type semiconductor ceramic capacitor, and improvement of the dielectric constant and breakdown voltage of the dielectric is desired.

以下に従来の粒界絶縁型半導体コンデンサについて説明
する。
The conventional grain boundary insulation type semiconductor capacitor will be described below.

BaTiO3やSrTiO3を主成分とし、これにNb,Wなどの金属酸
化物を微量添加して中性または還元雰囲気中で焼成して
半導体磁器板を作製する。このようにして作られた半導
体磁器板にBi,Cuなどの金属の酸化物から成る金属酸化
物を塗布しこれを空気中で熱処理して、結晶粒界を絶縁
化し粒界絶縁型半導体磁器板を作製する。この粒界絶縁
型半導体磁器板の表面に電極を設けてコンデンサを完成
している。
BaTiO 3 or SrTiO 3 is the main component, and a small amount of a metal oxide such as Nb or W is added to it, followed by firing in a neutral or reducing atmosphere to produce a semiconductor porcelain plate. A metal oxide consisting of oxides of metals such as Bi and Cu is applied to the semiconductor porcelain plate produced in this way, and this is heat-treated in air to insulate the grain boundaries and to insulate the grain boundary type semiconductor porcelain plate. To make. Electrodes are provided on the surface of this grain boundary insulation type semiconductor porcelain plate to complete a capacitor.

以上の様に構成された粒界絶縁型半導体コンデンサにつ
いて以下にその特性を説明する。粒界絶縁型半導体コン
デンサでは、絶縁化された結晶粒界に薄い誘電体層が形
成される。静電容量,絶縁抵抗,破壊電圧などのコンデ
ンサ特性はこの結晶粒界に生成する誘電体層の性状とそ
の厚さに依存する。この時、結晶粒界に形成される誘電
体層の厚みは薄い。従って通常の磁器誘電体を利用した
コンデンサに較べて大きい静電容量を得られるが破壊電
圧,絶縁抵抗が低いという欠点がある。
The characteristics of the grain boundary insulation type semiconductor capacitor configured as described above will be described below. In the grain boundary insulation type semiconductor capacitor, a thin dielectric layer is formed at an insulated crystal grain boundary. Capacitor characteristics such as capacitance, insulation resistance, breakdown voltage, etc. depend on the properties and thickness of the dielectric layer generated at the grain boundaries. At this time, the thickness of the dielectric layer formed at the crystal grain boundary is thin. Therefore, a larger electrostatic capacity can be obtained than a capacitor using a normal porcelain dielectric, but it has the drawback of low breakdown voltage and low insulation resistance.

発明が解決しようとする問題点 BaTiO3若しくはその固溶体を主成分とするBaTiO3系の粒
界絶縁体型半導体磁器は高い見掛けの誘電率が得られる
ためこれを用いて作られるコンデンサの形状を小形化す
るには適しているが、BaTiO3は誘電率の温度依存性が大
きいためBaTiO3系の粒界絶縁型半導体磁器の静電容量の
温度依存性は大きい。またBaTiO3が室温付近で強誘電性
を示すために、室温付近で非線形効果による波形歪やヒ
ステリシスを生じる。また誘電損失も5%程度で大き
い。これらのBaTiO3系の材料を用いたコンデンサの欠点
を克服する材料としてSrTiO3系の材料がある。SrTiO3
たはその固溶体を主成分とする磁器を用いた粒界絶縁型
半導体コンデンサはBaTiO3系に較べて誘電率の温度依存
性が小さいため静電容量の温度依存性は小さく、またSr
TiO3は室温付近で常誘電性を示すために、非線形効果に
よる波形歪やヒステリシスを示さない。さらに誘電損失
率が1%以下で小さいという特徴がある。
Problems to be Solved by the Invention BaTiO 3 or BaTiO 3 based grain boundary insulator type semiconductor porcelain containing solid solution thereof as a main component can obtain a high apparent dielectric constant, so that the shape of a capacitor made of this can be miniaturized. However, since BaTiO 3 has a large temperature dependency of the dielectric constant, the temperature dependency of the capacitance of BaTiO 3 -based grain boundary insulating semiconductor ceramics is large. In addition, since BaTiO 3 exhibits ferroelectricity near room temperature, waveform distortion and hysteresis occur due to nonlinear effects near room temperature. Also, the dielectric loss is large at about 5%. SrTiO 3 -based materials are materials that overcome the shortcomings of capacitors using these BaTiO 3 -based materials. Grain boundary insulation type semiconductor capacitors using porcelain mainly composed of SrTiO 3 or its solid solution have a smaller temperature dependence of the dielectric constant than BaTiO 3 series, and therefore a smaller temperature dependence of the capacitance.
Since TiO 3 exhibits paraelectric properties near room temperature, it does not show waveform distortion or hysteresis due to nonlinear effects. Further, the dielectric loss rate is 1% or less, which is small.

以上のようにコンデンサの材料として優れた特徴をもっ
ているが、比誘電率が小さい。粒界絶縁型半導体磁器コ
ンデンサは見掛けの誘電率を大きく単位面積当りの静電
容量を大きくすると破壊電圧が低下する。これは、粒界
絶縁型半導体磁器コンデンサの静電容量と破壊電圧は結
晶粒界に形成される誘電体層の厚みに関係しており、誘
電体層の厚みを薄くすると単位面積当りの静電容量は大
きくなるが、破壊電圧は低下する。逆に誘電体層の厚み
を厚くすると破壊電圧は高くなるが単位面積当りの静電
容量は低下するからである。
As described above, it has excellent characteristics as a material for capacitors, but has a low relative dielectric constant. In the grain boundary insulation type semiconductor ceramic capacitor, the breakdown voltage decreases when the apparent permittivity is large and the capacitance per unit area is large. This is because the electrostatic capacity and breakdown voltage of the grain boundary insulation type semiconductor ceramic capacitor are related to the thickness of the dielectric layer formed at the crystal grain boundary. The capacity increases, but the breakdown voltage decreases. Conversely, if the thickness of the dielectric layer is increased, the breakdown voltage increases, but the capacitance per unit area decreases.

また破壊電圧を高くし、単位面積当りの静電容量を大き
くするために結晶粒界に生成される誘電体層の比誘電率
を大きくすると直流バイアスによる静電容量変化率や静
電容量の温度依存性が大きくなるという欠点があった。
これらの欠点が、粒界絶縁型半導体磁器コンデンサの使
用上の大きな制約の1つになっている。
In addition, if the relative dielectric constant of the dielectric layer generated at the grain boundaries is increased in order to increase the breakdown voltage and increase the electrostatic capacitance per unit area, the capacitance change rate due to DC bias and the temperature of the electrostatic capacitance will increase. There was a drawback that the dependence became large.
These drawbacks are one of the major restrictions in using the grain boundary insulation type semiconductor ceramic capacitor.

問題点を解決するための手段 本発明は、上記問題点を解決するために、Sr1-XCaXTiO3
(但し0≦x≦0.2)を100モル部と、これにNb2O5,Ta2
O5,WO3,La2O3,Y2O3,Nd2O3,Sm2O3および、CeO2のう
ち少なくとも一種類の金属酸化物を0.01〜1.0モル部とM
gOを0.05〜3.00モル部と、Al2O3を0.05〜1.00モル部か
らなる組成物あるいは上記組成物にSiO2を0.01〜1.0モ
ル部含む磁器組成物である。
Means for Solving the Problems In order to solve the above problems, the present invention provides Sr 1-X Ca X TiO 3
(However, 0 ≦ x ≦ 0.2) and 100 parts by mol of Nb 2 O 5 , Ta 2
0.01 to 1.0 part by mole of at least one metal oxide selected from O 5 , WO 3 , La 2 O 3 , Y 2 O 3 , Nd 2 O 3 , Sm 2 O 3, and CeO 2 and M
A porcelain composition containing 0.05 to 3.00 parts by mol of gO and 0.05 to 1.00 parts by mol of Al 2 O 3 , or 0.01 to 1.0 parts by mol of SiO 2 in the above composition.

作用 本発明は上記の手段により従来のSrTiO3系粒界絶縁型半
導体磁器コンデンサに較べて次の特徴がある。
Action The present invention has the following features by the above means as compared with the conventional SrTiO 3 -based grain boundary insulation type semiconductor ceramic capacitor.

(i)見掛け誘電率が78000以上でCR積が1000μF・μ
Ω以上あり、従来のそれに較べて約4倍高い。
(I) The apparent dielectric constant is 78000 or more and the CR product is 1000 μF ・ μ
There is more than Ω, which is about 4 times higher than the conventional one.

(ii)破壊電圧が650〜700Volt/mmであり約1.5倍〜2倍
以上高い。
(Ii) The breakdown voltage is 650 to 700 Volt / mm, which is about 1.5 to 2 times higher.

(iii)直流バイアスによる静電容量変化率が16Volt、
D.C印加の条件下で約5%以下である。
(Iii) Capacitance change rate by DC bias is 16 Volt,
It is about 5% or less under the condition of DC application.

(iv)誘電損失,静電容量の温度依存性も従来例と較べ
て劣らない。
(Iv) The temperature dependence of dielectric loss and capacitance is not inferior to the conventional example.

以上の特徴により、従来の粒界絶縁型半導体磁器コンデ
ンサの使用上の制約を大きく緩和することが出来る。以
下に具体的実施例を挙げて詳細に説明する。
Due to the above characteristics, it is possible to greatly relax the restrictions on the use of the conventional grain boundary insulation type semiconductor ceramic capacitor. A detailed description will be given below with reference to specific examples.

実施例 試料は第1表に記載のごとくSrTiO3,CaTiO3,Nb2O5,T
a2O5,WO3,La2O3,Y2O3,Nd2O3,Sm2O3,CeO2,MgO,Al2
O3塩を各々所要の組成となる様に秤量し、これを22時間
湿式混合する。混合後脱水乾燥し、ポリビニールアルコ
ールを約1.0wt%バインダーとして添加し、32メッシュ
パスに整粒し、1000kg/cm2の圧力で直径9.6mm、厚さ0.3
5mmの円板に成形する。次いでこれらの成形体を空気中1
000℃の温度で加熱してバインダーを除去した後に容積
比でN2を90%,H2を10%混合したガス気流中において、
1400℃の温度で4時間焼成して、直径8.3mm,厚さ0.3mm
の半導体磁器を得た。この半導体磁器の表面にビスマス
9.4wt%,銅0.5wt%,マンガン0.1wt%とジエチレング
リコール90wt%を含む金属酸化物塩のペーストを半導体
磁器の重量に対して金属酸化物に換算して、0.4wt%の
比率で塗布し、これを空気中で1100℃の温度で2時間熱
拡散し粒界絶縁型半導体磁器を得た。この磁器表面に銀
を含有するペーストを塗布し、850℃で30分間焼付けを
行ない対向する電極を形成し、粒界絶縁型半導体磁器を
作製した。
Examples The samples are SrTiO 3 , CaTiO 3 , Nb 2 O 5 , and T as shown in Table 1.
a 2 O 5 , WO 3 , La 2 O 3 , Y 2 O 3 , Nd 2 O 3 , Sm 2 O 3 , CeO 2 , MgO, Al 2
The O 3 salts are weighed so that each has the required composition, and this is wet mixed for 22 hours. After mixing, dehydration and drying, add about 1.0wt% of polyvinyl alcohol as a binder, adjust the particle size to 32 mesh pass, and apply a pressure of 1000kg / cm 2 to a diameter of 9.6mm and a thickness of 0.3.
Mold into a 5 mm disc. These molded bodies are then placed in air 1
000 ° C. The N 2 90% by volume after heating to remove the binder at a temperature of, in a gas flow that of H 2 were mixed 10%
Baking at 1400 ℃ for 4 hours, diameter 8.3mm, thickness 0.3mm
The semiconductor porcelain of Bismuth on the surface of this semiconductor porcelain
A metal oxide salt paste containing 9.4 wt%, copper 0.5 wt%, manganese 0.1 wt% and diethylene glycol 90 wt% is converted into metal oxide with respect to the weight of semiconductor porcelain, and applied at a ratio of 0.4 wt%, This was thermally diffused in air at a temperature of 1100 ° C. for 2 hours to obtain a grain boundary insulating type semiconductor ceramic. A paste containing silver was applied to the surface of this porcelain and baked at 850 ° C. for 30 minutes to form opposing electrodes, and a grain boundary insulated semiconductor porcelain was produced.

上記の方法により作製したコンデンサの静電容量,誘電
損失,絶縁抵抗,破壊電圧,温度特性および静電容量の
直流電圧依存性を測定結果を第2表に示す。なお各試料
の測定にあたり、静電容量および誘電損失は、周波数1K
Hz、電圧1V測定し、絶縁抵抗は25Vの直流電圧を30秒印
加後測定した。また破壊電圧は、直流電圧を印加し、印
加電圧をしだいに上昇させる方法により求めた。温度特
性値は、+85℃と−25℃における静電容量値から変化率
を(CT−C20)/C20×100の計算式から求めた。ここでC
Tは+85℃あるいは−25℃での静電容量を示す。C20は+
20℃での静電容量を示す。
Table 2 shows the measurement results of the capacitance, dielectric loss, insulation resistance, breakdown voltage, temperature characteristics, and DC voltage dependence of the capacitance of the capacitor manufactured by the above method. When measuring each sample, the capacitance and dielectric loss were measured at a frequency of 1K.
The voltage was measured at 1 Hz at a frequency of 1 Hz, and the insulation resistance was measured after applying a DC voltage of 25 V for 30 seconds. The breakdown voltage was determined by applying a DC voltage and gradually increasing the applied voltage. The temperature characteristic value was calculated from the change rate (C T −C 20 ) / C 20 × 100 from the capacitance value at + 85 ° C and −25 ° C. Where C
T indicates the capacitance at + 85 ° C or -25 ° C. C 20 is +
Capacitance at 20 ° C is shown.

また静電容量のバイアス依存性は、16Vの直流電圧を60
秒間印加した時の静電容量値をC16とし、(C16−C0)/
C0×100の計算式より求めた。
In addition, the bias dependence of the capacitance is 60V DC voltage of 60V.
The capacitance value when applied for 2 seconds is C 16, and (C 16 −C 0 ) /
It was calculated from the calculation formula of C 0 × 100.

なお比較のための従来例としてSrTiO3,Nb2O5を、SrTiO
3を100モル部、Nb2O5を0.2モル部の割合で秤量し、実施
例に記載した方法で粒界絶縁型半導体磁器コンデンサを
作製し、その特性を調べた。また第1表の1から第1表
の5および第2表の1から第2表の5までの*印を付し
たものはこの発明範囲外のものであり、それ以外は全て
この発明範囲内のものである。
As a conventional example for comparison, SrTiO 3 and Nb 2 O 5 were used as SrTiO 3
3 100 molar parts, a Nb 2 O 5 were weighed at a ratio of 0.2 parts by mole to prepare a grain boundary insulation type semiconductor ceramic capacitors in the manner described in Example were examined its characteristics. Further, those marked with * from 1 in Table 1 to 5 in Table 1 and 1 in Table 2 to 5 in Table 2 are outside the scope of the present invention, and otherwise are all within the scope of the present invention. belongs to.

第1表において本発明の範囲に入る試料のNo.はNo.2〜N
o.3,No.6〜No.8,No.11〜No.13,No.16〜No.18,No.21〜N
o.23,No.26〜No.28,No.31〜No.33,No.36〜No.38,No.41
〜No.44,No.46〜No.48,No.51〜No.53,No.56〜No.58であ
り、他は本発明の範囲外の資料であり、比較のための資
料である。
In Table 1, the sample Nos. Falling within the scope of the present invention are Nos. 2 to N.
o.3, No.6 to No.8, No.11 to No.13, No.16 to No.18, No.21 to N
o.23, No.26 to No.28, No.31 to No.33, No.36 to No.38, No.41
~ No.44, No.46 ~ No.48, No.51 ~ No.53, No.56 ~ No.58, other is outside the scope of the present invention, is a material for comparison .

上記実施例から明らかな様に本発明の粒界絶縁型磁器組
成物はε,tan δ,絶縁抵抗,破壊電圧,容量の温度
変化率,直流バイアスの容量依存性の何れも優れてい
る。これらの好結果は、焼成時に異常粒成長が抑制され
ており、かつ均一な微細構造をもち、MgとAlが粒界に一
部偏析した半導体磁器が得られることに起因している。
Nb,Ta,W,La,Y,Nd,Sm,Ceの酸化物塩の各酸化物の単独で
の組成あるいは酸化物塩の合計組成比が0.01〜1.0モル
部以外の時、即ち上記酸化物塩の単独あるいは合計の組
成比が0.01部モル以下の時は、これらの酸化物塩が原子
化制御剤として不足することより、半導体化の効果がな
く、また一方これらの金属酸化物塩の組成比が1.0モル
部以上の時は半導体磁器の粒成長が著しく抑制され何れ
も好ましくない。またMgOとAl2O3はMgOが、0.05≦X≦
3.00モル部、Al2O3が0.05≦Y≦1.00モル部で良好な特
性を示し、X<0.05,Y<0.05の時は、絶縁抵抗の低下を
もたらし、またX≧3.00,Y≧1.00の時は、粒成長か抑制
され、また焼成過程で磁器相互のくっつきを生じ易くな
るため何れも好ましくない。また資料No.2,5,10より明
らかな様にMgOとAl2O3は相互作用に基づき特性の良化に
作用している。
As is clear from the above examples, the grain boundary insulating porcelain composition of the present invention is excellent in all of ε a , tan δ, insulation resistance, breakdown voltage, temperature change rate of capacity, and capacity dependency of DC bias. These favorable results are due to the fact that a semiconductor porcelain in which abnormal grain growth is suppressed during firing, which has a uniform fine structure, and in which Mg and Al are partially segregated at grain boundaries is obtained.
Nb, Ta, W, La, Y, Nd, Sm, when the composition of each oxide of the oxide salts alone or the total composition ratio of the oxide salts is other than 0.01 to 1.0 parts by mole, that is, the above oxides When the composition ratio of the salts alone or in total is 0.01 part by mol or less, these oxide salts are insufficient as atomization control agents, so that there is no effect of semiconducting, and the composition of these metal oxide salts When the ratio is 1.0 part by mole or more, grain growth of the semiconductor ceramics is remarkably suppressed and neither is preferable. Also, MgO and Al 2 O 3 have MgO of 0.05 ≦ X ≦
3.00 parts by mole, Al 2 O 3 shows good characteristics when 0.05 ≦ Y ≦ 1.00 parts by mole, and when X <0.05, Y <0.05, insulation resistance decreases, and X ≧ 3.00, Y ≧ 1.00. In this case, grain growth is suppressed, and the porcelain is likely to stick to each other during the firing process, which is not preferable. Further, as is clear from Material Nos. 2, 5, and 10, MgO and Al 2 O 3 act to improve the characteristics based on the interaction.

なお上記実施例では、半導体磁器の結晶粒界の絶縁化に
Bi,Cu,Mnの酸化物塩からなるペーストを半導体磁器表面
に塗布する方法を用いて金属を粒界に偏析させたが、浸
漬,蒸着等の方法を用いて、金属またはその化合物を半
導体磁器表面に付与することが出来る。また半導体磁器
に付与する金属量および熱処理温度は、各金属またはそ
の化合物によって異なり、本実施例のみに限定されるも
のではない。
In addition, in the above-mentioned embodiment, for insulating the crystal grain boundary of the semiconductor porcelain
The metal was segregated at the grain boundaries using the method of applying a paste consisting of Bi, Cu, Mn oxide salts on the surface of the semiconductor porcelain. It can be applied to the surface. Further, the amount of metal applied to the semiconductor porcelain and the heat treatment temperature differ depending on each metal or its compound, and are not limited to this embodiment.

発明の効果 本発明は、Sr1-XCaXTiO3(0≦X≦0T2)にNb2O5,Ta2O
5,WO3,La2O3,Nd2O3,Sm2O3,Dy2O3およびCeO2のうち
少なくとも一種類以上の金属酸化物塩を0.01≦X≦0.3
モル部、MgOを0.05≦Y≦3.00モル部、Al2O3を0.05≦Z
≦1.00モル部の組成物を還元雰囲気中で焼成し半導体磁
器を作製し、Bi,Cu,Mnを塗布し熱処理して得られる粒界
絶縁型磁器組成物は表面に銀電極を設けて粒界絶縁型半
導体磁器コンデンサにすると、従来例と較べての次のよ
うな効果を有する。つまり見掛けの誘電率が78000以上
であり、CR積が約4倍程度高く、破壊電圧が約1.5〜2
倍程度高く、容量の直流バイアス依存性が約1/4と低
い、といった優れた特徴をもち、更に誘電損失,静電容
量の温度依存性も従来例に較べ何ら遜色のない特性を示
している。更に前記の組成にSiO2を1.00モル部以下を添
加することにより前記組成の磁器より作られるコンデン
サに較べ更に絶縁抵抗を向上させることが出来る。よっ
て本発明の粒界絶縁型磁器組成物を用いると、コンデン
サの小形化と信頼性の向上を図ることが出来、したがっ
て従来制限されていた粒界絶縁型半導体コンデンサの使
用範囲を拡大できるものであり、工業的価値大なるもの
である。
EFFECTS OF THE INVENTION The present invention relates to Sr 1-X Ca X TiO 3 (0 ≦ X ≦ 0T2) with Nb 2 O 5 and Ta 2 O.
0.01 ≦ X ≦ 0.3 of at least one metal oxide salt selected from 5 , WO 3 , La 2 O 3 , Nd 2 O 3 , Sm 2 O 3 , Dy 2 O 3 and CeO 2.
Mol part, MgO 0.05 ≦ Y ≦ 3.00 mol part, Al 2 O 3 0.05 ≦ Z
Grain boundary insulation type porcelain composition obtained by firing ≦ 1.00 mol part of the composition in a reducing atmosphere to prepare a semiconductor porcelain, coating Bi, Cu, Mn and heat-treating the grain boundary by providing a silver electrode on the surface. The insulating semiconductor ceramic capacitor has the following effects as compared with the conventional example. In other words, the apparent dielectric constant is 78000 or more, the CR product is about 4 times higher, and the breakdown voltage is about 1.5 to 2
It has excellent characteristics that it is about twice as high and the DC bias dependency of the capacitance is about 1/4, and that the dielectric loss and the temperature dependency of the capacitance are comparable to the conventional example. . Furthermore, by adding 1.00 part by mole or less of SiO 2 to the above composition, the insulation resistance can be further improved as compared with the capacitor made of the porcelain having the above composition. Therefore, by using the grain boundary insulation type ceramic composition of the present invention, it is possible to miniaturize the capacitor and improve the reliability, and thus to expand the range of use of the grain boundary insulation type semiconductor capacitor which has been conventionally limited. Yes, it has great industrial value.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】Sr1-XCaXTiO3(但し0≦x≦0.2)を100モ
ル部と、Nb2O5,Ta2O5,WO3,La2O3,Y2O3,Nd2O3,Sm2
O3及びCeO2のうち少くとも1種類の金属酸化物を0.01〜
1.0モル部と、MgOを0.05〜3.00モル部と、Al2O3を0.05
〜1.00モル部含む粒界絶縁型磁器組成物。
1. A 100 mol part of Sr 1-X Ca X TiO 3 (where 0 ≦ x ≦ 0.2), Nb 2 O 5 , Ta 2 O 5 , WO 3 , La 2 O 3 , Y 2 O 3 , Nd 2 O 3 , Sm 2
0.01 to at least one metal oxide of O 3 and CeO 2
1.0 mol part, MgO 0.05 to 3.00 mol part, Al 2 O 3 0.05
A grain boundary insulating porcelain composition containing ˜1.00 parts by mole.
【請求項2】Sr1-XCaXTiO3(但し0≦x≦0.2)を100モ
ル部と、Nb2O5,Ta2O5,WO3,La2O3,Y2O3,Nd2O3,Sm2
O3及びCeO2のうち、少なくとも1種類の金属酸化物を0.
01〜1.0モル部と、MgOを0.05〜3.00モル部と、Al2O3
0.05〜1.00モル部と、SiO2を0〜1.0モル部含む粒界絶
縁型磁器組成物。
2. 100 parts by mole of Sr 1-X Ca X TiO 3 (where 0 ≦ x ≦ 0.2), Nb 2 O 5 , Ta 2 O 5 , WO 3 , La 2 O 3 , Y 2 O 3 , Nd 2 O 3 , Sm 2
At least one metal oxide selected from O 3 and CeO 2 should be used.
01-1.0 parts by mole, MgO 0.05-3.00 parts by mole, Al 2 O 3
A grain boundary insulating porcelain composition containing 0.05 to 1.00 part by mole and 0 to 1.0 part by mole of SiO 2 .
JP62282431A 1987-11-09 1987-11-09 Grain boundary insulating porcelain composition Expired - Fee Related JPH0734416B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62282431A JPH0734416B2 (en) 1987-11-09 1987-11-09 Grain boundary insulating porcelain composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62282431A JPH0734416B2 (en) 1987-11-09 1987-11-09 Grain boundary insulating porcelain composition

Publications (2)

Publication Number Publication Date
JPH01124209A JPH01124209A (en) 1989-05-17
JPH0734416B2 true JPH0734416B2 (en) 1995-04-12

Family

ID=17652324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62282431A Expired - Fee Related JPH0734416B2 (en) 1987-11-09 1987-11-09 Grain boundary insulating porcelain composition

Country Status (1)

Country Link
JP (1) JPH0734416B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4614656B2 (en) * 2003-12-24 2011-01-19 京セラ株式会社 Dielectric porcelain, multilayer electronic component, and method of manufacturing multilayer electronic component

Also Published As

Publication number Publication date
JPH01124209A (en) 1989-05-17

Similar Documents

Publication Publication Date Title
JPS6249977B2 (en)
JPH0734416B2 (en) Grain boundary insulating porcelain composition
JP3125481B2 (en) Grain boundary insulating layer type semiconductor ceramic composition
JP2734910B2 (en) Method for producing semiconductor porcelain composition
JPS6046811B2 (en) Composition for semiconductor ceramic capacitors
JPS6217368B2 (en)
JPS6048897B2 (en) Composition for semiconductor ceramic capacitors
JP2762831B2 (en) Method for producing semiconductor porcelain composition
JPS6249976B2 (en)
JPH0521266A (en) Method of manufacturing grain boundary insulated semiconductor porcelain matter
JP2937024B2 (en) Semiconductor porcelain composition and method for producing the same
JP2734888B2 (en) Method for producing semiconductor porcelain composition
JP3389947B2 (en) Dielectric ceramic composition and thick film capacitor using the same
JP2900687B2 (en) Semiconductor porcelain composition and method for producing the same
JPH0734415B2 (en) Grain boundary insulation type semiconductor porcelain composition
JP2936876B2 (en) Semiconductor porcelain composition and method for producing the same
JPH1095667A (en) Dielectric ceramic composition and ceramic capacitor
JPH0521265A (en) Manufacture of capacitor
JPH0360787B2 (en)
JPS6230483B2 (en)
JPH0544762B2 (en)
JPS6020345B2 (en) Grain boundary insulated semiconductor ceramic composition
JPS6230482B2 (en)
JPH0478577B2 (en)
JPH07267728A (en) Semiconductor porcelain composition and its production

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees