JPH1095667A - Dielectric ceramic composition and ceramic capacitor - Google Patents

Dielectric ceramic composition and ceramic capacitor

Info

Publication number
JPH1095667A
JPH1095667A JP8267909A JP26790996A JPH1095667A JP H1095667 A JPH1095667 A JP H1095667A JP 8267909 A JP8267909 A JP 8267909A JP 26790996 A JP26790996 A JP 26790996A JP H1095667 A JPH1095667 A JP H1095667A
Authority
JP
Japan
Prior art keywords
compound
weight
parts
dielectric ceramic
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8267909A
Other languages
Japanese (ja)
Inventor
Yasuyuki Inomata
康之 猪又
Koichi Chazono
広一 茶園
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP8267909A priority Critical patent/JPH1095667A/en
Publication of JPH1095667A publication Critical patent/JPH1095667A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Capacitors (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a dielectric ceramic composition freed from a problem of the rise in electric field intensity between the electrodes, resulting in serious deterioration of the direct current characteristics and reliability when a dielectric ceramic base is thinned in order to increase the capacitance of a ceramic capacitor. SOLUTION: This dielectric ceramic composition is obtained by baking a mixture of the basic component expressed by the composition formula (BaαCaβErγOk ) (Ti1-x Zrx O2 ) (0.01<=β<=0.12, 0.003<=γ<=0.026, 0.996<=α+β+γ<=1.020, 0.10<=(x)<=0.21, and the value of (k) settles necessarily by the settlement of the values of α, β and γ) and an ingredient consisting of Mg compound, Mn compound and Si compound. Based on 100 pts.wt. of the basic component, 0.04 to 0.12 pt.wt. of the Mg compound in terms of MgO, 0.05 to 0.50 pt.wt. of the Mn compound in terms of MnO and 0.05 to 0.50 pt.wt. of the Si compound in terms of SiO2 are used.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はチタン酸バリウムを
基本成分とする高誘電率系の誘電体磁器組成物及びこれ
を使用した単層又は積層構造の磁器コンデンサに関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-permittivity dielectric ceramic composition containing barium titanate as a basic component and a single-layer or multilayer-structured ceramic capacitor using the same.

【0002】[0002]

【従来の技術】磁器コンデンサの誘電体磁器基体の材料
として、BaTiO3 を主成分とした誘電体磁器組成
物、又はBaTiO3 のBaの一部をCaに置換し、且
つTiの一部をZrに置換した誘電体磁器組成物を使用
することは公知である。
2. Description of the Related Art As a material for a dielectric ceramic substrate of a ceramic capacitor, a dielectric ceramic composition containing BaTiO 3 as a main component, or a part of Ba of BaTiO 3 is replaced by Ca, and a part of Ti is replaced by Zr. It is known to use a dielectric porcelain composition substituted with:

【0003】例えば、特開平6−52718号公報、特
開平6−103812号公報、特開平6−203632
号公報、特開平6−203633号公報、特開平6−2
03634号公報、特開平6−203635号公報、特
開平6−203632号公報には、この種の誘電体磁器
組成物及びこれを使用した磁器コンデンサが開示されて
いる。
For example, JP-A-6-52718, JP-A-6-103812, and JP-A-6-203632
Gazette, JP-A-6-203633, JP-A-6-2
JP-A-036343, JP-A-6-203635 and JP-A-6-203632 disclose a dielectric ceramic composition of this type and a ceramic capacitor using the same.

【0004】これらの公報によれば、積層磁器コンデン
サの小型大容量化に伴なって、一層の誘電体磁器基体
(誘電体磁器素体)の厚みは5μm前後の薄さにまで至
っており、その比誘電率εs も20000を越すように
なっている。
According to these publications, the thickness of a single-layer dielectric ceramic substrate (dielectric ceramic body) has been reduced to about 5 μm with the miniaturization and large capacity of the laminated ceramic capacitor. The relative permittivity ε s is also set to exceed 20,000.

【0005】[0005]

【発明が解決しようとする課題】ところで、近年におけ
る電子機器の小型化への進展は止まるところをしらず、
電子回路も著しく高密度化が進み、その構成部品である
磁器コンデンサに対してもその静電容量の増大及びその
信頼性の向上が更に要請されている。
By the way, progress in miniaturization of electronic equipment in recent years has not stopped.
The density of electronic circuits has also been remarkably increased, and there has been a further demand for porcelain capacitors, which are components thereof, to increase their capacitance and improve their reliability.

【0006】磁器コンデンサの静電容量の増大を図るた
めには一対の電極間に介在する誘電体磁器基体の厚みを
薄くすることが考えられる。しかし、誘電体磁器基体の
厚みを薄くすると、一対の電極間の電界強度が上昇す
る。比誘電率εs が高すぎると、この電界強度の上昇に
よって直流バイアス特性が著しく悪化してしまう。ま
た、誘電体磁器基体中に粒径の大きい粒子が存在する
と、直流バイアス特性が一段と悪化し、信頼性の低下に
もつながり得る。
In order to increase the capacitance of the ceramic capacitor, it is conceivable to reduce the thickness of the dielectric ceramic substrate interposed between the pair of electrodes. However, when the thickness of the dielectric ceramic substrate is reduced, the electric field strength between the pair of electrodes increases. When the specific dielectric constant epsilon s is too high, resulting in remarkably deteriorated DC bias characteristic by an increase in the electric field strength. In addition, when particles having a large particle size exist in the dielectric ceramic substrate, the DC bias characteristics are further deteriorated, which may lead to a reduction in reliability.

【0007】本発明は、1250℃程度の温度の焼成で
緻密化し、最大比誘電率εs が12000〜1400
0、結晶粒子の平均粒径が3μm以下で、5μm以上の
粒径の粒子が存在しない誘電体磁器組成物及びこれを使
用した単層又は積層構造の磁器コンデンサを提供するこ
とを目的とする。
The present invention densifies by firing at a temperature of about 1250 ° C. and has a maximum relative dielectric constant ε s of 12000 to 1400.
0. An object of the present invention is to provide a dielectric ceramic composition having an average crystal grain size of 3 μm or less and no particles having a size of 5 μm or more, and a ceramic capacitor having a single-layer or multilayer structure using the same.

【0008】[0008]

【課題を解決するための手段】本発明に係る誘電体磁器
組成物は、組成式(BaαCaβErγOk )(Ti
1-x Zrx2 )(但し、0.01≦β≦0.12,
0.003≦γ≦0.026, 0.996≦α+β+
γ≦1.020, 0.10≦x≦0.21)で表わさ
れる基本成分と、Mg化合物、Mn化合物及びSi化合
物からなる添加成分との混合物を焼成したものからな
り、前記基本成分100重量部に対し、前記Mg化合物
がMgOに換算して0.04〜0.12重量部、前記M
n化合物がMnOに換算して0.05〜0.50重量
部、前記Si化合物がSiO2 に換算して0.05〜
0.50重量部含有されている。
The dielectric porcelain composition according to the present invention has a composition formula (BaαCaβErγO k ) (Ti
1-x Zr x O 2 ) (provided that 0.01 ≦ β ≦ 0.12
0.003 ≦ γ ≦ 0.026, 0.996 ≦ α + β +
γ ≦ 1.020, 0.10 ≦ x ≦ 0.21) and a mixture obtained by calcining a mixture of an additive component composed of a Mg compound, a Mn compound and a Si compound. Parts by weight, the Mg compound was 0.04 to 0.12 parts by weight in terms of MgO,
The n compound is 0.05 to 0.50 parts by weight in terms of MnO, and the Si compound is 0.05 to 0.5 parts by weight in terms of SiO 2.
0.50 parts by weight.

【0009】また、本発明に係る磁器コンデンサは、誘
電体磁器組成物からなる1又は2以上の誘電体磁器基体
と、この誘電体磁器基体を挟持している2以上の電極と
を積層してなる磁器コンデンサにおいて、前記誘電体磁
器組成物が組成式(BaαCaβErγOk )(Ti
1-x Zrx2 )(但し、0.01≦β≦0.12,
0.003≦γ≦0.026, 0.996≦α+β+
γ≦1.020, 0.10≦x≦0.21)で表わさ
れる基本成分と、Mg化合物、Mn化合物及びSi化合
物からなる添加成分との混合物を焼成したものからな
り、前記基本成分100重量部に対し、前記Mg化合物
がMgOに換算して0.04〜0.12重量部、前記M
n化合物がMnOに換算して0.05〜0.50重量
部、前記Si化合物がSiO2 に換算して0.05〜
0.50重量部含有されている。
Further, the ceramic capacitor according to the present invention is obtained by laminating one or more dielectric ceramic substrates made of a dielectric ceramic composition and two or more electrodes sandwiching the dielectric ceramic substrate. Wherein the dielectric ceramic composition has a composition formula (BaαCaβErγO k ) (Ti
1-x Zr x O 2 ) (provided that 0.01 ≦ β ≦ 0.12
0.003 ≦ γ ≦ 0.026, 0.996 ≦ α + β +
γ ≦ 1.020, 0.10 ≦ x ≦ 0.21) and a mixture obtained by calcining a mixture of an additive component composed of a Mg compound, a Mn compound and a Si compound. Parts by weight, the Mg compound was 0.04 to 0.12 parts by weight in terms of MgO,
The n compound is 0.05 to 0.50 parts by weight in terms of MnO, and the Si compound is 0.05 to 0.5 parts by weight in terms of SiO 2.
0.50 parts by weight.

【0010】上記誘電体磁器組成物の基本成分の組成式
において、Caのモル比を示すβの値を、0.01≦β
≦0.12としたのは、βが0.01未満になると誘電
体磁器組成物中に5μm以上の粒子が形成され、誘電体
磁器組成物の直流バイアス特性が−70%を越え、βが
0.12を越えると誘電体磁器組成物の最大比誘電率ε
max が12000未満になるからである。
In the above composition formula of the basic components of the dielectric ceramic composition, the value of β indicating the molar ratio of Ca is 0.01 ≦ β
The reason for ≦ 0.12 is that when β is less than 0.01, particles of 5 μm or more are formed in the dielectric ceramic composition, the DC bias characteristic of the dielectric ceramic composition exceeds −70%, and β is If it exceeds 0.12, the maximum relative dielectric constant ε of the dielectric ceramic composition
This is because max becomes less than 12,000.

【0011】また、Erのモル比を示すγの値を、0.
003≦γ≦0.026としたのは、γが0.003未
満になると誘電体磁器組成物中の粒子の平均粒径が3μ
mを越え、誘電体磁器組成物中に5μm以上の粒子が形
成され、直流バイアス特性が−70%を越え、γが0.
026を越えると、誘電体磁器組成物の最大比誘電率ε
max が12000未満になるからである。
Further, the value of γ indicating the molar ratio of Er is set to 0.
The reason why 003 ≦ γ ≦ 0.026 is that when γ is less than 0.003, the average particle diameter of the particles in the dielectric ceramic composition is 3 μm.
m, particles of 5 μm or more are formed in the dielectric ceramic composition, the DC bias characteristic exceeds -70%, and γ is 0.1%.
026, the maximum relative permittivity ε of the dielectric ceramic composition
This is because max becomes less than 12,000.

【0012】また、Ba+Ca+Erのモル比(A/B
比)を示すα+β+γの値を、0.996≦α+β+γ
≦1.020としたのは、α+β+γが0.996未満
になると誘電体磁器組成物中に5μm以上の粒子が形成
され、α+β+γが1.020を越えると緻密な焼結体
が得られなくなるからである。
Further, the molar ratio of Ba + Ca + Er (A / B
Ratio), the value of α + β + γ is 0.996 ≦ α + β + γ
The reason for setting ≦ 1.020 is that if α + β + γ is less than 0.996, particles of 5 μm or more are formed in the dielectric ceramic composition, and if α + β + γ exceeds 1.020, a dense sintered body cannot be obtained. It is.

【0013】また、Zrのモル比を示すxの値を、0.
10≦x≦0.21としたのは、xが0.10未満にな
ると誘電体磁器組成物の最大比誘電率εmax が1200
0未満となり、tanδが1.2%を越え、かつ直流バ
イアス特性が−70%を越え、xが0.21を越えると
誘電体磁器組成物の最大比誘電率εmax が12000未
満になるからである。
Further, the value of x indicating the molar ratio of Zr is set to 0.
The reason why 10 ≦ x ≦ 0.21 is that when x is less than 0.10, the maximum relative permittivity ε max of the dielectric ceramic composition is 1200
If it is less than 0, tan δ exceeds 1.2%, DC bias characteristics exceed -70%, and x exceeds 0.21, the maximum relative permittivity ε max of the dielectric ceramic composition becomes less than 12,000. It is.

【0014】なお、Baのモル比を示すαの値は、0.
996≦α+β+γ≦1.020の式を満足する範囲の
値になり、これは前記基本成分の組成式から計算で求め
られたものである。kの値はα,β,γの値が決まるこ
とによって必然的に決まる数値である。
The value of α indicating the molar ratio of Ba is 0.1.
The value satisfies the expression of 996 ≦ α + β + γ ≦ 1.020, which is obtained by calculation from the composition formula of the basic component. The value of k is a numerical value that is inevitably determined by determining the values of α, β, and γ.

【0015】また、前記基本成分100重量部に対し、
前記Mg化合物をMgOに換算して0.04〜0.12
重量部としたのは、Mg化合物がMgOに換算して0.
04重量部未満になると誘電体磁器組成物の直流バイア
ス特性が−70%を越え、誘電体磁器組成物を形成して
いる粒子の平均粒径が3μmを越え、0.12重量部を
越えると誘電体磁器組成物の最大比誘電率εmax が12
000未満となるからである。
Further, with respect to 100 parts by weight of the basic component,
The Mg compound is converted to MgO by 0.04 to 0.12.
The parts by weight are as follows.
When the amount is less than 04 parts by weight, the DC bias characteristics of the dielectric ceramic composition exceed -70%, and when the average particle diameter of the particles forming the dielectric ceramic composition exceeds 3 μm and exceeds 0.12 parts by weight. The maximum relative dielectric constant ε max of the dielectric ceramic composition is 12
This is because it is less than 000.

【0016】また、前記基本成分100重量部に対し、
前記Mn化合物をMnOに換算して0.05〜0.50
重量部としたのは、Mn化合物がMnOに換算して0.
05重量部未満になると誘電体磁器組成物の150℃の
抵抗率ρが5×105 未満となり、0.50重量部を越
えると緻密な焼結体が得られなくなるからである。
Further, with respect to 100 parts by weight of the basic component,
The Mn compound is converted to MnO at 0.05 to 0.50.
The parts by weight are such that the amount of the Mn compound is 0.1 in terms of MnO.
When the amount is less than 05 parts by weight, the resistivity ρ at 150 ° C. of the dielectric ceramic composition is less than 5 × 10 5, and when it exceeds 0.50 parts by weight, a dense sintered body cannot be obtained.

【0017】また、前記基本成分100重量部に対し、
前記Si化合物をSiO2 に換算して0.05〜0.5
0重量部としたのは、Si化合物がSiO2 に換算して
0.05重量部未満になると緻密な焼結体が得られなく
なり、0.50重量部を越えると、緻密な焼結体が得ら
れなくなるからである。
Further, based on 100 parts by weight of the basic component,
The Si compound is converted to SiO 2 by 0.05 to 0.5.
When the Si compound is less than 0.05 parts by weight in terms of SiO 2 , a dense sintered body cannot be obtained. When the Si compound exceeds 0.50 parts by weight, the dense sintered body cannot be obtained. This is because it cannot be obtained.

【0018】また、前記Mg化合物としては、MgO,
MgCO3 ,Mg(OH)2 、その他焼成によってMg
Oを生成するものを使用することができる。また、前記
Mn化合物としては、MnO,Mn34 ,Mn2
3 ,MnO2 ,Mn(OH)2,MnO(OH),Mn
CO3 、その他焼成によってMnOを生成するものを使
用することができる。また、前記Si化合物としては、
SiO2 ,SiO2 ・nH2 O,シリコーン、その他焼
成によってSiO2 を生成するものを使用することがで
きる。
The Mg compound includes MgO,
MgCO 3 , Mg (OH) 2 , etc.
Anything that produces O can be used. The Mn compounds include MnO, Mn 3 O 4 , Mn 2 O
3 , MnO 2 , Mn (OH) 2 , MnO (OH), Mn
CO 3 or any other material that produces MnO by firing can be used. Further, as the Si compound,
SiO 2 , SiO 2 .nH 2 O, silicone, and other materials that generate SiO 2 by firing can be used.

【0019】また、前記電極の材料としては、Pd,A
g−Pd,Pt,Au等の貴金属微粒子を主成分とする
導電性ペーストを焼成して形成されるものを使用するこ
とができる。
Further, Pd, A
What is formed by firing a conductive paste mainly containing noble metal fine particles such as g-Pd, Pt, and Au can be used.

【0020】なお、後述する実施例では主に単層構造の
磁器コンデンサについて説明しているが、単層構造の磁
器コンデンサと積層構造の磁器コンデンサとは本質的な
違いはなく、本発明は単層構造の磁器コンデンサのみな
らず積層構造の磁器コンデンサにも適用可能である。
In the embodiments described later, a ceramic capacitor having a single-layer structure is mainly described. However, there is no essential difference between a ceramic capacitor having a single-layer structure and a ceramic capacitor having a multilayer structure. The present invention can be applied to not only a laminated ceramic capacitor but also a laminated ceramic capacitor.

【0021】[0021]

【実施例】まず、表1の試料No.1の場合について説
明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS First, sample Nos. The case of 1 will be described.

【0022】まず、基本成分の原料として、所定量のB
aCO3 ,CaCO3 ,Er23,TiO2 及びZr
2 を各々秤量した。
First, as a raw material of the basic component, a predetermined amount of B
aCO 3 , CaCO 3 , Er 2 O 3 , TiO 2 and Zr
O 2 was each weighed.

【0023】ここで、これらの化合物の各秤量値は前記
基本成分の組成式(BaαCaβErγOk )(Ti
1-x Zrx2 )の各元素のモル比α,β,γ,xを表
1の試料No.1の場合に置き換えた組成式(Ba
0.939 Ca0.050 Er0.015k )(Ti0.084 Zr
0.0162 )…(1)が成立するように計算して求めた
値である。
Here, each weighed value of these compounds is determined by the composition formula (BaαCaβErγO k ) (Ti
1-x Zr x O 2 ), the molar ratios α, β, γ, and x of the respective elements are shown in Table 1. In the case of the composition formula (Ba)
0.939 Ca 0.050 Er 0.015 O k) (Ti 0.084 Zr
0.016 O 2 )... It is a value calculated and calculated so as to satisfy (1).

【0024】次に、これらの化合物をボールミルに入
れ、水を加え、湿式で充分に粉砕混合し、得られたスラ
リーを乾燥器に入れて乾燥させ、大気雰囲気(酸化性雰
囲気)中において1150℃で2時間仮焼し、前記組成
式(1)で表わされる組成の基本成分の粉末を得た。
Next, these compounds are put into a ball mill, water is added, and the mixture is sufficiently pulverized and mixed by a wet method. The obtained slurry is put into a drier and dried, and is dried at 1150 ° C. in an air atmosphere (oxidizing atmosphere). For 2 hours to obtain a powder of a basic component having a composition represented by the composition formula (1).

【0025】次に、100重量部の基本成分に対して
0.10重量部のMgOと0.21重量部のMnOと
0.10重量部のSiO2 を秤量し、これらを100重
量部の基本成分とともにボールミルに入れ、水を加え、
湿式で充分に粉砕混合し、得られたスラリーを乾燥器に
入れて乾燥させ、磁器材料の粉末を得た。
Next, 0.10 parts by weight of MgO, 0.21 parts by weight of MnO, and 0.10 parts by weight of SiO 2 were weighed with respect to 100 parts by weight of the basic components. Put the ingredients in a ball mill, add water,
The slurry was sufficiently pulverized and mixed by a wet method, and the obtained slurry was placed in a drier and dried to obtain a powder of a porcelain material.

【0026】次に、この磁器材料の粉末に有機バインダ
ーを加えて充分に混練し、これを乾式プレスで成型し
て、直径10mm、厚さ0.5mmの円板状の成形体を
得た。そして、この成形体を大気雰囲気(酸化性雰囲
気)中において1250℃で2時間焼成して焼結させ、
誘電体磁器基体を得た。
Next, an organic binder was added to the powder of the porcelain material, kneaded sufficiently, and the mixture was molded by a dry press to obtain a disk-shaped compact having a diameter of 10 mm and a thickness of 0.5 mm. Then, the molded body is fired and sintered at 1250 ° C. for 2 hours in an air atmosphere (oxidizing atmosphere).
A dielectric ceramic substrate was obtained.

【0027】次に、この誘電体磁器基体の表裏面にAg
ペーストを塗布し、これを800℃で焼き付けて電極を
形成させ、図1に示すような磁器コンデンサを得た。同
図において、10は磁器コンデンサであり、磁器コンデ
ンサ10は円板状の誘電体磁器基体12と、誘電体磁器
基体12を挟む一対の電極14,14とから構成されて
いる。
Next, Ag is applied to the front and back surfaces of the dielectric ceramic substrate.
The paste was applied and baked at 800 ° C. to form electrodes, thereby obtaining a porcelain capacitor as shown in FIG. In FIG. 1, reference numeral 10 denotes a ceramic capacitor. The ceramic capacitor 10 includes a disk-shaped dielectric ceramic substrate 12 and a pair of electrodes 14, 14 sandwiching the dielectric ceramic substrate 12.

【0028】[0028]

【表1】 [Table 1]

【0029】次に、以上のようにして得られた磁器コン
デンサについて、誘電体磁器基体の最大比誘電率ε
max 、tanδ、比抵抗ρ、直流バイアス特性ΔC及び
平均粒径Dを次の要領で測定した。
Next, regarding the ceramic capacitor obtained as described above, the maximum relative permittivity ε of the dielectric ceramic substrate
max , tan δ, specific resistance ρ, DC bias characteristics ΔC, and average particle diameter D were measured in the following manner.

【0030】(a)最大比誘電率εmax 磁器コンデンサを恒温槽に入れ、−25〜+85℃まで
温度を変化させた時の最大静電容量をインピーダンスア
ナライザーを用い、1kHz,1Vrms の条件で測定
し、この測定によって得られた値と誘電体磁器基体の厚
みと電極面積とから最大比誘電率εmax を算出した。
(A) Maximum relative permittivity ε max A ceramic capacitor is placed in a thermostat, and the maximum capacitance when the temperature is changed from −25 to + 85 ° C. is measured using an impedance analyzer under the conditions of 1 kHz and 1 V rms . The maximum relative dielectric constant ε max was calculated from the measured values, the thickness of the dielectric ceramic base, and the electrode area.

【0031】(b)tanδ インピーダンスアナライザーを用い、20℃の条件下で
tanδを測定した。
(B) Tan δ Tan δ was measured at 20 ° C. using an impedance analyzer.

【0032】(c)抵抗率ρ 150℃の条件下で磁器コンデンサに直流100Vの電
圧を20秒印加して絶縁抵抗を測定し、この絶縁抵抗と
誘電体磁器基体の厚みと電極面積とから抵抗率ρを算出
した。
(C) Resistivity ρ Under a condition of 150 ° C., a voltage of 100 V DC is applied to the porcelain capacitor for 20 seconds to measure the insulation resistance, and the resistance is determined from the insulation resistance, the thickness of the dielectric porcelain base, and the electrode area. The rate ρ was calculated.

【0033】(d)直流バイアス特性ΔC 20℃における静電容量C0 と厚みから逆算した0.5
V/μmに相当する直流電圧を印加した場合の20℃に
おける静電容量CBiasを測定し、次の式を用いて直流バ
イアス特性ΔCを算出した。 ΔC=(CBias−C0 )/C0 ×100 (%)
(D) DC bias characteristic ΔC 0.5 calculated from the capacitance C 0 at 20 ° C. and the thickness.
The capacitance C Bias at 20 ° C. when a DC voltage corresponding to V / μm was applied was measured, and the DC bias characteristic ΔC was calculated using the following equation. ΔC = (C Bias −C 0 ) / C 0 × 100 (%)

【0034】(e)平均粒径D 電極を形成する前の誘電体磁器基体の表面を無作為に5
箇所選び、これらを走査型顕微鏡で2000倍または5
000倍に拡大して写真撮影し、これらの写真から20
0個の結晶粒子をランダムに選んで切片法により大きさ
を測定して平均値を求めた。
(E) Average particle diameter D The surface of the dielectric porcelain base before the electrodes are formed is randomly
Select the spots and use a scanning microscope at 2000x or 5
Photographed at a magnification of 000 times,
Zero crystal grains were randomly selected, the size was measured by the intercept method, and the average value was determined.

【0035】試料No.1の場合、表2に示すように、
最大比誘電率εmax が13300、tanδが0.71
%、抵抗率ρが4.47×106 MΩ・cm(表2では
4.47E+06MΩ・cmと表現されている。)、直
流バイアス特性ΔCが−53%、平均粒径Dが2.8μ
mであり、5μm以上の粒子は存在しなかった。
Sample No. In the case of 1, as shown in Table 2,
The maximum relative permittivity ε max is 13300 and tan δ is 0.71
%, Resistivity ρ is 4.47 × 10 6 MΩ · cm (expressed as 4.47E + 06 MΩ · cm in Table 2), DC bias characteristic ΔC is −53%, and average particle diameter D is 2.8 μm.
m, and no particles larger than 5 μm were present.

【0036】[0036]

【表2】 [Table 2]

【0037】次に、表1の試料No.2〜35に示す成
分組成のものについても、試料No.1の場合と同様に
して磁器コンデンサを作成し、それらの諸特性を調べた
ところ、表2に示す通りとなった。
Next, the sample Nos. Samples having the component compositions shown in Sample Nos. A porcelain capacitor was prepared in the same manner as in the case of No. 1 and various characteristics thereof were examined.

【0038】表1及び表2から明らかなように、本発明
で特定した組成を満足する試料No.1,3,4,7,
8,11,12,15,16,19,20,23,2
4,27,28,30〜35の磁器コンデンサは最大比
誘電率εmax が12000以上、20℃のtanδが
1.2%以下、150℃における抵抗率ρが5×105
MΩ・cm以上、0.5V/μmのバイアス電圧を印加
した時の静電容量(誘電率)の変化が−70%より小さ
く、平均粒径3μm以下を満足し、5μm以上の粒子は
なかった。これに対し、試料No.2,5,6,9,1
0,13,14,17,18,21,22,25,2
6,29は目標とする特性を満足しなかったので、本発
明の比較例である。
As is clear from Tables 1 and 2, Sample No. 3 satisfying the composition specified in the present invention. 1,3,4,7,
8, 11, 12, 15, 16, 19, 20, 23, 2
The ceramic capacitors of 4, 27, 28 and 30 to 35 have a maximum relative dielectric constant ε max of 12000 or more, a tan δ at 20 ° C. of 1.2% or less, and a resistivity ρ at 150 ° C. of 5 × 10 5.
The change in electrostatic capacity (dielectric constant) when a bias voltage of 0.5 V / μm or more was applied was smaller than −70%, the average particle size was 3 μm or less, and no particles were 5 μm or more. . On the other hand, the sample No. 2,5,6,9,1
0,13,14,17,18,21,22,25,2
Samples Nos. 6 and 29 did not satisfy the target characteristics, and are comparative examples of the present invention.

【0039】次に、表2に示す結果から誘電体磁器組成
物の成分組成の最適範囲について検証する。まず、βの
値が、試料No.3に示すように0.01の場合は所望
の特性になるが、試料No.2に示すように0の場合は
5μm以上の粒子が形成され、直流バイアス特性ΔCが
−70%を越える。従って、βの下限値は0.01であ
る。
Next, from the results shown in Table 2, the optimum range of the component composition of the dielectric ceramic composition will be verified. First, when the value of β is the sample In the case of 0.01 as shown in FIG. As shown in FIG. 2, in the case of 0, particles of 5 μm or more are formed, and the DC bias characteristic ΔC exceeds -70%. Therefore, the lower limit of β is 0.01.

【0040】また、βの値が、試料No.4に示すよう
に0.12の場合は所望の特性になるが、試料No.5
に示すように0.14の場合は最大比誘電率εmax が1
2000未満になる。従って、βの上限値は0.12で
ある。
Further, when the value of β is the sample No. In the case of 0.12 as shown in FIG. 5
Maximum relative permittivity epsilon max in the case of 0.14 as shown in the 1
Less than 2000. Therefore, the upper limit of β is 0.12.

【0041】次に、γの値が、試料No.7に示すよう
に0.003の場合は所望の特性になるが、試料No.
6に示すように0.01の場合は平均粒径Dが3μmを
越え、5μm以上の粒子が形成され、直流バイアス特性
ΔCが−70%を越える。従って、γの下限値は0.0
03である。
Next, when the value of γ is the sample No. In the case of 0.003 as shown in FIG.
As shown in FIG. 6, in the case of 0.01, the average particle diameter D exceeds 3 μm, particles of 5 μm or more are formed, and the DC bias characteristic ΔC exceeds −70%. Therefore, the lower limit of γ is 0.0
03.

【0042】また、γの値が、試料No.8に示すよう
に0.026の場合は所望の特性になるが、試料No.
9に示すように0.028の場合は最大比誘電率εmax
が12000未満になる。従って、γの上限値は0.0
26である。
Further, when the value of γ is the sample No. In the case of 0.026 as shown in FIG.
As shown in FIG. 9, in the case of 0.028, the maximum relative permittivity ε max
Is less than 12,000. Therefore, the upper limit of γ is 0.0
26.

【0043】次に、α+β+γの値が、試料No.11
に示すように0.996の場合は所望の特性になるが、
試料No.10に示すように0.994の場合は5μm
以上の粒子が形成される。従って、α+β+γの下限値
は0.996である。
Next, the value of α + β + γ is the same as that of sample No. 11
In the case of 0.996 as shown in FIG.
Sample No. 5 μm for 0.994 as shown in FIG.
The above particles are formed. Therefore, the lower limit of α + β + γ is 0.996.

【0044】また、α+β+γの値が、試料No.12
に示すように1.020の場合は所望の特性になるが、
試料No.13に示すように1.029の場合は緻密な
焼結体が得られない。従って、α+β+γの上限値は
1.020である。
Further, when the value of α + β + γ is the value of Sample No. 12
In the case of 1.020 as shown in FIG.
Sample No. As shown in FIG. 13, in the case of 1.029, a dense sintered body cannot be obtained. Therefore, the upper limit of α + β + γ is 1.020.

【0045】次に、xの値が、試料No.15に示すよ
うに0.10の場合は所望の特性になるが、試料No.
14に示すように0.08の場合は最大比誘電率εmax
が12000未満となり、tanδが1.2%を越え、
かつ直流バイアス特性ΔCが−70%を越える。従っ
て、xの下限値は0.10である。
Next, when the value of x is the sample No. In the case of 0.10 as shown in FIG.
As shown in FIG. 14, in the case of 0.08, the maximum relative permittivity ε max
Is less than 12000, tan δ exceeds 1.2%,
In addition, the DC bias characteristic ΔC exceeds -70%. Therefore, the lower limit of x is 0.10.

【0046】また、xの値が、試料No.16に示すよ
うに0.21の場合は所望の特性になるが、試料No.
17に示すように0.22の場合はεmax が12000
未満になる。従って、xの上限値は0.21である。
When the value of x is the sample No. In the case of 0.21, as shown in FIG.
As shown in FIG. 17, in the case of 0.22, ε max is 12000.
Less than. Therefore, the upper limit of x is 0.21.

【0047】次に、基本成分100重量部に対するMg
Oの添加量が、試料No.19に示すように0.04重
量部の場合は所望の特性になるが、試料No.18に示
すように0.02重量部の場合は直流バイアス特性ΔC
が−70%を越え、平均粒径も3μmを越える。従っ
て、MgOの添加量の下限値は0.04である。
Next, Mg was added to 100 parts by weight of the basic component.
When the amount of O added to Sample No. In the case of 0.04 parts by weight as shown in FIG. In the case of 0.02 parts by weight as shown in FIG.
Exceeds -70%, and the average particle size also exceeds 3 µm. Therefore, the lower limit of the amount of MgO added is 0.04.

【0048】また、基本成分100重量部に対するMg
Oの添加量が、試料No.20に示すように0.12重
量部の場合は所望の特性になるが、試料No.21に示
すように0.13重量部の場合は最大比誘電率εmax
12000未満となる。従って、MgOの添加量の上限
値は0.12重量部である。
Further, Mg relative to 100 parts by weight of the basic component
When the amount of O added to Sample No. In the case of 0.12 parts by weight as shown in FIG. As shown in FIG. 21, in the case of 0.13 parts by weight, the maximum relative dielectric constant ε max is less than 12,000. Therefore, the upper limit of the added amount of MgO is 0.12 parts by weight.

【0049】次に、基本成分100重量部に対するMn
Oの添加量が、試料No.23に示すように0.05重
量部の場合は所望の特性になるが、試料No.22に示
すように0.02重量部の場合は150℃の抵抗率ρが
5×105 MΩ・cm未満となる。従って、MnOの下
限値は0.05重量部である。
Next, Mn based on 100 parts by weight of the basic component
When the amount of O added to Sample No. In the case of 0.05 part by weight as shown in FIG. As shown in FIG. 22, in the case of 0.02 parts by weight, the resistivity ρ at 150 ° C. is less than 5 × 10 5 MΩ · cm. Therefore, the lower limit of MnO is 0.05 parts by weight.

【0050】また、基本成分100重量部に対するMn
Oの添加量が、試料No.24に示すように0.50重
量部の場合は所望の特性になるが、試料No.25に示
すように0.60重量部の場合は緻密な焼結体が得られ
ない。従って、MnOの添加量の上限値は0.50重量
部である。
Further, Mn based on 100 parts by weight of the basic component
When the amount of O added to Sample No. In the case of 0.50 parts by weight as shown in FIG. As shown in Fig. 25, when the content is 0.60 parts by weight, a dense sintered body cannot be obtained. Therefore, the upper limit of the amount of MnO added is 0.50 parts by weight.

【0051】次に、基本成分100重量部に対するSi
2 の添加量が、試料No.27に示すように0.05
重量部の場合は所望の特性になるが、試料No.26に
示すように0.02重量部の場合は緻密な焼結体が得ら
れない。従って、SiO2 の添加量の下限値は0.05
重量部である。
Next, Si was added to 100 parts by weight of the basic component.
When the addition amount of O 2 is 0.05 as shown in 27
In the case of parts by weight, desired characteristics are obtained. In the case of 0.02 parts by weight as shown in 26, a dense sintered body cannot be obtained. Therefore, the lower limit of the added amount of SiO 2 is 0.05
Parts by weight.

【0052】また、基本成分100重量部に対するSi
2 の添加量が、試料No.28に示すように0.50
重量部の場合は所望の特性になるが、試料No.29に
示すように0.60重量部の場合は、緻密な焼結体が得
られない。従って、SiO2の添加量の上限値は0.5
0重量部である。
In addition, Si based on 100 parts by weight of the basic component
When the addition amount of O 2 is 0.50 as shown in 28
In the case of parts by weight, desired characteristics are obtained. In the case of 0.60 parts by weight as shown in 29, a dense sintered body cannot be obtained. Therefore, the upper limit of the added amount of SiO 2 is 0.5
0 parts by weight.

【0053】なお、上記実施例では基本成分の原料とし
て、BaCO3 ,CaCO3 ,Er23 ,TiO2
びZrO2 を使用したが、これら以外の酸化物、炭酸
塩、水酸化物、その他焼成によってBaO,CaO,E
23 ,TiO2 ,ZrO2を生成する化合物を使用
してもよい。
In the above embodiment, BaCO 3 , CaCO 3 , Er 2 O 3 , TiO 2 and ZrO 2 were used as the raw materials of the basic components. However, other oxides, carbonates, hydroxides, etc. BaO, CaO, E by firing
Compounds that produce r 2 O 3 , TiO 2 , and ZrO 2 may be used.

【0054】また、上記実施例では基本成分の原料混合
物を1150℃で仮焼しているが、この仮焼温度は10
00〜1300℃の範囲で変えることができる。また、
Si,Mn,Mgは初めから添加して仮焼を行っても良
い。
In the above embodiment, the raw material mixture of the basic components is calcined at 1150 ° C.
It can be changed in the range of 00 to 1300 ° C. Also,
Si, Mn, and Mg may be added from the beginning to perform calcination.

【0055】また上記実施例では単層の磁器コンデンサ
について説明しているが、積層構造の磁器コンデンサに
ついても同様の結果が得られた。
In the above embodiment, a single-layer ceramic capacitor has been described. However, similar results were obtained with a multilayer ceramic capacitor.

【0056】[0056]

【発明の効果】本発明によれば、磁器コンデンサの誘電
体磁器基体を構成している誘電体磁器組成物を前述した
ような組成にしたので、誘電体磁器基体の薄層化が実現
でき、直流バイアス特性が良好になり、磁器コンデンサ
の小型大容量化を図ることができるという効果がある。
According to the present invention, since the dielectric ceramic composition constituting the dielectric ceramic substrate of the ceramic capacitor has the above-described composition, the dielectric ceramic substrate can be made thinner. There is an effect that the DC bias characteristics are improved and the size and capacity of the ceramic capacitor can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は磁器コンデンサの断面図である。FIG. 1 is a sectional view of a ceramic capacitor.

【符号の説明】[Explanation of symbols]

10 磁器コンデンサ 12 誘電体磁器基体 14 電極 Reference Signs List 10 porcelain capacitor 12 dielectric porcelain base 14 electrode

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 組成式(BaαCaβErγOk )(T
1-x Zrx2 )(但し、0.01≦β≦0.12,
0.003≦γ≦0.026, 0.996≦α+β
+γ≦1.020, 0.10≦x≦0.21)で表わ
される基本成分と、Mg化合物、Mn化合物及びSi化
合物からなる添加成分との混合物を焼成したものからな
り、 前記基本成分100重量部に対し、前記Mg化合物がM
gOに換算して0.04〜0.12重量部、前記Mn化
合物がMnOに換算して0.05〜0.50重量部、前
記Si化合物がSiO2 に換算して0.05〜0.50
重量部含有されていることを特徴とする誘電体磁器組成
物。
1. The composition formula (BaαCaβErγO k ) (T
i 1-x Zr x O 2 ) (provided that 0.01 ≦ β ≦ 0.12
0.003 ≦ γ ≦ 0.026, 0.996 ≦ α + β
+ Γ ≦ 1.020, 0.10 ≦ x ≦ 0.21) and a mixture obtained by calcining a mixture of an additive component composed of a Mg compound, a Mn compound and a Si compound. Parts, the Mg compound is M
0.04-0.12 parts by weight in terms of gO, the Mn 0.05 to 0.50 part by weight compound in terms of MnO, the Si compound in terms of SiO 2 .05 to 0. 50
A dielectric porcelain composition characterized by being contained in parts by weight.
【請求項2】 誘電体磁器組成物からなる1又は2以上
の誘電体磁器基体と、この誘電体磁器基体を挟持してい
る2以上の電極とを積層してなる磁器コンデンサにおい
て、 前記誘電体磁器組成物が組成式(BaαCaβErγO
k )(Ti1-x Zrx2 )(但し、0.01≦β≦
0.12, 0.003≦γ≦0.026, 0.99
6≦α+β+γ≦1.020, 0.10≦x≦0.2
1)で表わされる基本成分と、Mg化合物、Mn化合物
及びSi化合物からなる添加成分との混合物を焼成した
ものからなり、 前記基本成分100重量部に対し、前記Mg化合物がM
gOに換算して0.04〜0.12重量部、前記Mn化
合物がMnOに換算して0.05〜0.50重量部、前
記Si化合物がSiO2 に換算して0.05〜0.50
重量部含有されていることを特徴とする磁器コンデン
サ。
2. A ceramic capacitor comprising one or two or more dielectric ceramic bases made of a dielectric ceramic composition and two or more electrodes sandwiching the dielectric ceramic base, wherein the dielectric capacitor comprises: The porcelain composition has a composition formula (BaαCaβErγO)
k ) (Ti 1-x Zr x O 2 ) (provided that 0.01 ≦ β ≦
0.12, 0.003 ≦ γ ≦ 0.026, 0.99
6 ≦ α + β + γ ≦ 1.020, 0.10 ≦ x ≦ 0.2
A mixture of the basic component represented by 1) and an additive component comprising a Mg compound, a Mn compound, and a Si compound is fired, and the Mg compound is M based on 100 parts by weight of the basic component.
0.04-0.12 parts by weight in terms of gO, the Mn 0.05 to 0.50 part by weight compound in terms of MnO, the Si compound in terms of SiO 2 .05 to 0. 50
A porcelain capacitor characterized by being contained in parts by weight.
JP8267909A 1996-09-18 1996-09-18 Dielectric ceramic composition and ceramic capacitor Pending JPH1095667A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8267909A JPH1095667A (en) 1996-09-18 1996-09-18 Dielectric ceramic composition and ceramic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8267909A JPH1095667A (en) 1996-09-18 1996-09-18 Dielectric ceramic composition and ceramic capacitor

Publications (1)

Publication Number Publication Date
JPH1095667A true JPH1095667A (en) 1998-04-14

Family

ID=17451312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8267909A Pending JPH1095667A (en) 1996-09-18 1996-09-18 Dielectric ceramic composition and ceramic capacitor

Country Status (1)

Country Link
JP (1) JPH1095667A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1104395C (en) * 1999-04-08 2003-04-02 株式会社村田制作所 Piazoelectric ceramic composition, buzzer thereof and controller
JP2006160531A (en) * 2004-12-02 2006-06-22 Samsung Yokohama Research Institute Co Ltd Dielectric ceramic composition, ceramic capacitor, and their production methods
RU2703629C1 (en) * 2019-01-10 2019-10-21 Федеральное государственное бюджетное учреждение науки Институт химии Дальневосточного отделения Российской академии наук (ИХ ДВО РАН) Anode material for lithium-ion accumulator and method of its production

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1104395C (en) * 1999-04-08 2003-04-02 株式会社村田制作所 Piazoelectric ceramic composition, buzzer thereof and controller
JP2006160531A (en) * 2004-12-02 2006-06-22 Samsung Yokohama Research Institute Co Ltd Dielectric ceramic composition, ceramic capacitor, and their production methods
RU2703629C1 (en) * 2019-01-10 2019-10-21 Федеральное государственное бюджетное учреждение науки Институт химии Дальневосточного отделения Российской академии наук (ИХ ДВО РАН) Anode material for lithium-ion accumulator and method of its production

Similar Documents

Publication Publication Date Title
JP3250923B2 (en) Dielectric porcelain composition
JPS597665B2 (en) High dielectric constant porcelain composition
JP2824083B2 (en) Dielectric porcelain composition
JPH1095667A (en) Dielectric ceramic composition and ceramic capacitor
JP2915217B2 (en) Dielectric porcelain and porcelain capacitor
JPS6256361A (en) Dielectric ceramic composition
JP2902925B2 (en) Dielectric porcelain composition
JP3250917B2 (en) Dielectric porcelain composition
JP2869900B2 (en) Non-reducing dielectric porcelain composition
JPH0828127B2 (en) Dielectric ceramic composition for temperature compensation
JP2958826B2 (en) Dielectric porcelain composition
JPH0544763B2 (en)
JP2872513B2 (en) Dielectric porcelain and porcelain capacitor
JPH0684691A (en) Dielectric ceramic and ceramic capacitor
JP2958822B2 (en) Non-reducing dielectric porcelain composition
JP2967440B2 (en) Dielectric ceramic composition for temperature compensation
JP3185333B2 (en) Non-reducing dielectric ceramic composition
JP3389947B2 (en) Dielectric ceramic composition and thick film capacitor using the same
JPH056710A (en) Dielectric porcelain composition
JPS6048897B2 (en) Composition for semiconductor ceramic capacitors
JP2872512B2 (en) Dielectric porcelain and porcelain capacitor
JPH0815005B2 (en) Dielectric porcelain composition
JP2920688B2 (en) Non-reducing dielectric porcelain composition
JP3106371B2 (en) Dielectric porcelain composition
JPH054354B2 (en)

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20020326