JPH06145669A - Self-fusible carbonaceous powder and high-density carbon material - Google Patents
Self-fusible carbonaceous powder and high-density carbon materialInfo
- Publication number
- JPH06145669A JPH06145669A JP4161183A JP16118392A JPH06145669A JP H06145669 A JPH06145669 A JP H06145669A JP 4161183 A JP4161183 A JP 4161183A JP 16118392 A JP16118392 A JP 16118392A JP H06145669 A JPH06145669 A JP H06145669A
- Authority
- JP
- Japan
- Prior art keywords
- carbon
- heat
- density
- carbon material
- pitch
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Carbon And Carbon Compounds (AREA)
- Working-Up Tar And Pitch (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は高密度炭素材料用原料や
炭素複合材料用バインダーに好適な自己融着性炭素質粉
体およびその製造法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a self-fusing carbonaceous powder suitable as a raw material for high-density carbon materials and a binder for carbon composite materials, and a method for producing the same.
【0002】[0002]
【従来の技術】従来、高密度炭素材料に関する多くの製
造方法が知られているが、これは出発原料面から次の大
きく2つの方法に分けられる。一つの方法は、コークス
粉末、天然黒鉛、カーボンブラックなどの骨材とコール
タールピッチ等の粘結材を混練した後、成型、焼成する
方法である。この方法では粘結材の残炭率が非常に低い
ために一回の炭化では成型体密度は非常に小さく、密度
を上げるために含浸・炭化工程を何度も繰り返しながら
緻密化しなければならない。また炭化過程においては粘
結材中の揮発分の脱ガスが生じ、急激なガスの逸出は成
型体内部に不均質気孔を残存させるのみならず、成型体
の膨張を引き起こして組織破壊を招くので、このような
悪影響を阻止するために、炭化工程では 2〜10℃/hr と
いう極めて緩慢な昇温が行なわれ、 3〜4 週間の製造期
間が必要となる。この炭化工程を経た成型体は用途に応
じて2500〜3000℃で焼成され黒鉛質の炭素材料が製造さ
れるが、この黒鉛化工程でも一般に 2〜3 週間を要す
る。このようにコークス等の骨材とコールタールピッチ
等のバインダーから複雑な工程を経て黒鉛質炭素材料を
製造するには、最終的に 2〜3 カ月という長い時間を要
する。2. Description of the Related Art Conventionally, many manufacturing methods for high-density carbon materials are known, but they are roughly divided into the following two methods from the viewpoint of starting materials. One method is a method in which an aggregate such as coke powder, natural graphite, or carbon black and a binder such as coal tar pitch are kneaded, and then molded and fired. In this method, since the residual carbon content of the binder is very low, the density of the molded body is very small in one carbonization, and in order to increase the density, the impregnation / carbonization process must be repeated many times to densify. In addition, in the carbonization process, volatile components in the binder are degassed, and sudden escape of gas not only leaves heterogeneous pores inside the molded body, but also causes expansion of the molded body and causes tissue destruction. Therefore, in order to prevent such an adverse effect, a very slow temperature rise of 2 to 10 ° C / hr is carried out in the carbonization step, and a production period of 3 to 4 weeks is required. The molded body that has undergone this carbonization step is fired at 2500 to 3000 ° C. to produce a graphitic carbon material depending on the application, but this graphitization step generally requires 2 to 3 weeks. As described above, it takes a long time of 2-3 months to manufacture a graphitic carbon material from an aggregate such as coke and a binder such as coal tar pitch through a complicated process.
【0003】別の方法はバインダーを用いることなく、
高密度炭素材料用原料として光学的異方性小球体を利用
する方法である。即ちコールタールピッチや石油系重質
油等を 350〜500 ℃で熱処理する過程で生成する光学的
異方性小球体(メソフェーズ球晶)を溶剤分別によって
ピッチマトリックスから分離・乾燥し、得られたメソフ
ェーズ球晶を原料として、これを加圧 成型後、焼成す
る方法であり、高密度・等方性の炭素材料が製造可能で
ある。しかしながらこの方法では、球晶・分離工程で多
量の抽出溶剤を必要とし、何度も繰り返して溶剤分別を
行なわなければならず、更に得られた球晶から完全に残
存溶剤を除くことが困難であるため、後の炭化工程にお
いて成型体の割れや膨張の原因になりやすい。しかもこ
のような球晶溶剤抽出法では、分離収率が低いことに加
え、生成球晶の性状コントロールは容易でなく、一定品
質の原料を安定して製造するには工業的に問題が多い。Another method uses no binder,
This is a method of using optically anisotropic small spheres as a raw material for a high-density carbon material. That is, the optically anisotropic small spheres (mesophase spherulites) produced during the heat treatment of coal tar pitch or heavy petroleum oil at 350 to 500 ° C were separated and dried from the pitch matrix by solvent fractionation. This is a method in which mesophase spherulites are used as a raw material, and this is pressure-molded and then fired, and a high-density and isotropic carbon material can be manufactured. However, in this method, a large amount of extraction solvent is required in the spherulite / separation step, and solvent separation must be repeated many times, and it is difficult to completely remove the residual solvent from the obtained spherulite. Therefore, it tends to cause cracking and expansion of the molded body in the subsequent carbonization step. Moreover, in such a spherulite solvent extraction method, in addition to the low separation yield, it is not easy to control the properties of the formed spherulites, and there are many industrial problems in stably producing a constant quality raw material.
【0004】[0004]
【発明が解決しようとする問題点】上記の如く高密度炭
素材料を製造するプロセスは極めて煩雑であり、かつ非
常に長い製造期間を要することから、従来の方法によっ
て製造される高密度炭素材は高価となり、このため現状
ではその利用分野に大きな制約を受けている。従って高
密度炭素材料の製造工程を大幅に簡略化し、かつ製造期
間を短縮することは、炭素工業における大きな課題の一
つである。本発明の目的は、高密度かつ高強度の炭素材
料を短時間で安価に製造できる自己融着性炭素質粉体お
よびその製造法を提供することにある。DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention Since the process for producing a high-density carbon material is extremely complicated and requires a very long production period as described above, a high-density carbon material produced by a conventional method is It is expensive, and as a result, it is currently severely restricted in its field of use. Therefore, it is one of the major problems in the carbon industry to greatly simplify the manufacturing process of the high-density carbon material and shorten the manufacturing period. An object of the present invention is to provide a self-fusing carbonaceous powder that can produce a high-density and high-strength carbon material in a short time and at low cost, and a method for producing the same.
【0005】[0005]
【問題を解決するための手段】発明者らは上記の目的を
達成すべく鋭意検討した結果、特定のメソフェーズを熱
処理することによって一定範囲の炭素に対する水素の原
子比(H/C) および炭素に対する酸素の原子比(O/C) 比を
有する熱処理ピッチを調製し、高められた炭化収率と優
れた自己融着性が付与されたこの熱処理粉体を原料とし
て用いることによって、バインダーを添加することなく
短時間かつ安価に高密度炭素材料が得られることを見い
出し、本発明に至った。[Means for Solving the Problems] As a result of intensive studies to achieve the above-mentioned object, the inventors have found that by heat-treating a specific mesophase, the atomic ratio (H / C) of hydrogen to carbon within a certain range and the ratio of hydrogen to carbon Add a binder by preparing a heat-treated pitch with an atomic ratio of oxygen (O / C) and using this heat-treated powder with enhanced carbonization yield and excellent self-fusion properties as a raw material. The inventors have found that a high-density carbon material can be obtained in a short time and at low cost without causing the present invention.
【0006】すなわち本発明は、炭化収率が70重量% 以
上、軟化点が 170℃以上で、光学的異方性相が 70vol%
以上であるメソフェーズピッチを熱処理することによっ
て得られる、炭素に対する水素の原子比が0.35〜0.48の
範囲であり、且つ炭素に対する酸素の原子比が0.01未満
である自己融着性炭素質粉体、およびその製造法であ
る。That is, according to the present invention, the carbonization yield is 70% by weight or more, the softening point is 170 ° C. or more, and the optically anisotropic phase is 70 vol%.
Obtained by heat treatment of the above mesophase pitch, the atomic ratio of hydrogen to carbon is in the range of 0.35 to 0.48, and the atomic ratio of oxygen to carbon is less than 0.01 self-fusing carbonaceous powder, and That is the manufacturing method.
【0007】本発明の自己融着性炭素質粉体の炭素、水
素および酸素含有量は、燃焼ガスの熱伝導度による検出
などの技術を応用した自動分析装置を用いて分析され
る。本発明の自己融着性炭素質粉体を製造するための原
料ピッチは、その炭化収率が70重量% 以上、好ましくは
80wt%以上のメソフェーズピッチが用いられる。この炭
化収率はピッチを不活性雰囲気下で徐々に昇温し、600
℃に到達後 2時間程度保持したときの数値である。炭化
収率の低いピッチを原料とした場合には、炭化成型体中
に揮発ガスによる空隙が生成しやすく、得られる炭素材
料の密度低下を招き、その機械的強度、電気伝導性、熱
伝導性、耐蝕性などに悪い影響を与えるので、高い炭化
収率を持つ原料ピッチを用いることが肝要である。The carbon, hydrogen and oxygen contents of the self-fusing carbonaceous powder of the present invention are analyzed by using an automatic analyzer which applies a technique such as detection by the thermal conductivity of combustion gas. The raw material pitch for producing the self-bonding carbonaceous powder of the present invention has a carbonization yield of 70% by weight or more, preferably
A mesophase pitch of 80 wt% or more is used. This carbonization yield is obtained by gradually raising the pitch in an inert atmosphere to 600
It is a value when the temperature is maintained for 2 hours after reaching ℃. When pitch with a low carbonization yield is used as a raw material, voids are easily generated by volatile gas in the carbonized molded product, which leads to a decrease in the density of the resulting carbon material, its mechanical strength, electrical conductivity, and thermal conductivity. Since it has a bad influence on corrosion resistance and the like, it is important to use a raw material pitch having a high carbonization yield.
【0008】又この原料ピッチは、フローテスターによ
る軟化点が 170℃以上であり、偏光顕微鏡で観察した光
学的異方性相が少なくとも70vol%以上、好ましくは80vo
l%以上、更に好ましくは実質的に 100vol%であるメソフ
ェースピッチが用いられる。これらの条件を満足するメ
ソフェーズピッチであれば、石炭系、石油系の何れでも
良いが、特に特開平 1-13621号、特開平1-254796号およ
び特開平2-223391号に記載の芳香族炭化水素を超強酸 H
F-BF3 触媒で重合して製造されたメソフェーズピッチ
は、高い炭化収率が得られる点で好適に用いられる。This raw material pitch has a softening point of 170 ° C. or higher by a flow tester and an optically anisotropic phase observed by a polarization microscope of at least 70 vol% or more, preferably 80 vo
A mesophase pitch of 1% or more, more preferably substantially 100 vol% is used. The mesophase pitch satisfying these conditions may be either coal-based or petroleum-based, but especially aromatic carbonization described in JP-A 1-13621, 1-254796 and 2-223391. Hydrogen is a super strong acid H
The mesophase pitch produced by polymerizing with an F-BF 3 catalyst is preferably used because a high carbonization yield can be obtained.
【0009】本発明の自己融着性炭素質粉体は上記のメ
ソフェースピッチを熱処理することによって製造され
る。この熱処理条件は炭素に対する水素の原子比(H/C)
が0.35〜0.48の範囲であり且つ炭素に対する酸素の原子
比(O/C) が0.01未満である自己融着性炭素質粉体が得ら
れる熱処理条件を選択すれば良く、特に限定されない。
一般的には、上記のメソフェーズピッチを撹拌下 470〜
550 ℃の温度で熱処理が行われる。The self-fusing carbonaceous powder of the present invention is produced by heat-treating the above mesophase pitch. This heat treatment condition is the atomic ratio of hydrogen to carbon (H / C)
Is in the range of 0.35 to 0.48 and the atomic ratio of oxygen to carbon (O / C) is less than 0.01, and heat treatment conditions may be selected so that a self-bonding carbonaceous powder can be obtained, and there is no particular limitation.
Generally, the above mesophase pitch is stirred at 470-
The heat treatment is carried out at a temperature of 550 ° C.
【0010】本発明では上記のメソフェーズピッチをこ
のように調製することによってはじめて良好な成型性が
得られ、かつ後の炭化工程において割れや膨張を誘発す
ることなく高密度が達成される。すなわちこのような適
度の熱処理を施すことによって、成型体の炭化初期過程
(400〜600 ℃)において良好な溶融流動性が保証され、
高密度炭素材料用原料として優れた性能を発揮する自己
融着性をもつ粉体に改質できる(実施例1、2)。In the present invention, the above mesophase pitch is prepared in such a way that good moldability can be obtained, and a high density can be achieved without inducing cracking or expansion in the subsequent carbonization step. That is, by performing such an appropriate heat treatment, the initial stage of carbonization of the molded body
Good melt fluidity is guaranteed at (400 ~ 600 ℃),
As a raw material for a high-density carbon material, it can be reformed into a powder having a self-bonding property that exhibits excellent performance (Examples 1 and 2).
【0011】過度の熱処理はメソフェースピッチ粉体の
融着性を低下させ、所望の性能を持つ炭素材料が得られ
ない(比較例1)。一方、熱処理が不充分であると、後
の炭化工程において揮発ガスによる成型体の膨張や発泡
が起こり易くなり、所望の炭素材料は得られない(比較
例2)。また熱処理ピッチの酸素含有量が増えるにつ
れ、炭化収率の減少と融着性の低下を招くので好ましく
ない(比較例3)。Excessive heat treatment lowers the fusion property of the mesophase pitch powder, and a carbon material having desired performance cannot be obtained (Comparative Example 1). On the other hand, if the heat treatment is insufficient, the molded body is likely to expand or foam due to the volatile gas in the subsequent carbonization step, and the desired carbon material cannot be obtained (Comparative Example 2). In addition, as the oxygen content of the heat-treated pitch increases, the carbonization yield decreases and the fusion property decreases, which is not preferable (Comparative Example 3).
【0012】すなわち H/Cおよび O/Cが上記範囲を満足
するように、メソフェーズピッチの熱処理を適度に行な
うことによって、炭化収率を一層高め、メソフェーズピ
ッチの粘着性を保持しつつ、炭化工程で発生するガスを
極力除去することができるので、一回の焼成のみで高密
度かつ高強度の炭素材料の製造が可能となる。That is, by appropriately performing the heat treatment of the mesophase pitch so that H / C and O / C satisfy the above range, the carbonization yield is further enhanced, and the carbonization process is performed while maintaining the adhesiveness of the mesophase pitch. Since the gas generated in step 2 can be removed as much as possible, it is possible to manufacture a high-density and high-strength carbon material with only one firing.
【0013】高密度かつ高強度の炭素材料を得るために
は、このようにして熱処理されたメソフェーズピッチを
まず粉末状にする。粉末化方法ならびに粉体形状は特に
限定されない。粒度分布についても特に限定されない
が、成型の際の充填密度をできるだけ大きくするような
粒度分布が好ましい。一般には 200〜5 μm の粉末で成
型に用いられる。In order to obtain a high-density and high-strength carbon material, the mesophase pitch thus heat-treated is first made into powder. The powdering method and the powder shape are not particularly limited. The particle size distribution is also not particularly limited, but a particle size distribution that maximizes the packing density during molding is preferable. Generally, a powder of 200 to 5 μm is used for molding.
【0014】次に粉末化された熱処理ピッチを成型す
る。この際バインダーは特に不要である。成型体形状に
ついては、目的、用途等に応じて自由に選択できる。成
型は常温で行なう場合と、熱処理粉体が軟化、あるいは
溶融する温度域で行なう場合があり、これは要求される
形状、性能およびコストに応じて決定される。成型体は
引き続き焼成することによって、所望の炭素材料が製造
される。焼成条件は一般に、非酸化性雰囲気下、昇温速
度 1〜300 ℃/hで行なわれる。Next, the powdered heat-treated pitch is molded. At this time, a binder is not particularly necessary. The shape of the molded body can be freely selected according to the purpose, application and the like. Molding may be carried out at room temperature or in a temperature range in which the heat-treated powder softens or melts, which is determined according to the required shape, performance and cost. The molded body is subsequently fired to produce the desired carbon material. Firing conditions are generally in a non-oxidizing atmosphere and at a temperature rising rate of 1 to 300 ° C / h.
【0015】[0015]
【実施例】以下、実施例により本発明をさらに具体的に
説明する。但し本発明はこれらの実施例により制限され
るものではない。EXAMPLES The present invention will be described in more detail below with reference to examples. However, the present invention is not limited to these examples.
【0016】実施例1 超強酸 H0-BF3 の存在下、ナフタレンを重合させて得ら
れたメソフエーズピッチ AR-1(軟化点 >300 ℃、炭化収
率 91wt%、光学的異方性含有率 100vol%)を、窒素雰囲
気下 300℃/hで 480℃まで昇温し30分間の熱処理を行な
った。この熱処理ピッチの H/Cは0.47、 O/Cは 0.006で
あった。この熱処理ピッチを74μm 以下に粉砕したの
ち、常温にて成型圧 1200kg/cm2 でプレート状 (50mm×
50mm×10mm) に成型した。その後、窒素流通下 600℃ま
で60℃/hで昇温し 2時間保持した。炭化収率は 97wt%で
あった。その後アルゴン流通下1300℃で 2時間焼成する
ことにより、50mm×50mm×10mmの炭化物を得た。更にこ
の炭化物を1900℃で 2時間焼成した。得られた炭化物の
物性(嵩密度、圧縮強度、曲げ強度)を表1に示す。Example 1 Mesophase pitch AR-1 (softening point> 300 ° C., carbonization yield 91 wt%, optical anisotropy content) obtained by polymerizing naphthalene in the presence of superacid H0-BF 3 (100 vol%) was heated to 480 ° C at 300 ° C / h in a nitrogen atmosphere and heat-treated for 30 minutes. The H / C of this heat treatment pitch was 0.47, and the O / C was 0.006. After grinding the heat treated pitch below 74 .mu.m, the plate-shaped (50 mm × at a molding pressure 1200 kg / cm 2 at room temperature
Molded into 50mm x 10mm). Then, the temperature was raised up to 600 ° C at 60 ° C / h under nitrogen flow and kept for 2 hours. The carbonization yield was 97 wt%. Then, by firing for 2 hours at 1300 ° C. under a flow of argon, a carbide of 50 mm × 50 mm × 10 mm was obtained. Further, this carbide was calcined at 1900 ° C for 2 hours. Table 1 shows the physical properties of the obtained carbide (bulk density, compressive strength, bending strength).
【0017】実施例2 超強酸 HF-BF3 の存在下、ナフタレンを重合させて得ら
れたメソフェーズピッチ AR-2(軟化点 220℃、炭化収率
83wt%、光学的異方性含有率 100vol%) を窒素雰囲気下
300℃/hで 505℃まで昇温し 2時間の熱処理をした。こ
の熱処理ピッチの H/Cは0.44、 O/Cは0.005 であった。
この熱処理ピッチを74μm 以下に粉砕したのち、常温に
て成型圧 1200kg/cm2 でプレート状 (50mm×50mm×10m
m) に成型した。その後、窒素流通下 600℃まで80℃/h
で昇温し 2時間保持した。炭化収率は 97wt%であった。
更にこれを1300℃および1900℃で焼成し、得られた炭化
物の物性を表1に示す。Example 2 Mesophase pitch AR-2 (softening point 220 ° C., carbonization yield, obtained by polymerizing naphthalene in the presence of super strong acid HF-BF 3
83 wt%, optical anisotropic content 100 vol%) under nitrogen atmosphere
The temperature was raised to 505 ° C at 300 ° C / h and heat treatment was performed for 2 hours. The H / C of this heat treatment pitch was 0.44 and the O / C was 0.005.
After crushing this heat-treated pitch to 74 μm or less, at room temperature with a molding pressure of 1200 kg / cm 2 in plate form (50 mm × 50 mm × 10 m
m). After that, under nitrogen flow up to 600 ℃ 80 ℃ / h
The temperature was raised by and the temperature was maintained for 2 hours. The carbonization yield was 97 wt%.
Further, this was fired at 1300 ° C. and 1900 ° C., and the physical properties of the obtained carbide are shown in Table 1.
【0018】比較例1 実施例2と同じメソフェーズピッチAR-2を用い、これを
窒素雰囲気下 300℃/hで 510℃まで昇温し 5時間熱処理
した。この熱処理ピッチの H/Cは0.34、 O/Cは0.005 で
あった。この熱処理粉体を実施例2と同様条件で成型し
600℃焼成し、更にこれを1300℃及び1900℃で焼成し
た。得られた炭化物の物性を表1に示す。この熱処理粉
体では請求範囲より H/Cが低いので、自己融着性が失わ
れており、黒色炭素粉が多量に手に付着した。Comparative Example 1 Using the same mesophase pitch AR-2 as in Example 2, this was heated to 510 ° C. at 300 ° C./h for 5 hours in a nitrogen atmosphere. The H / C of this heat treatment pitch was 0.34 and the O / C was 0.005. This heat-treated powder was molded under the same conditions as in Example 2.
It was calcined at 600 ° C, and further calcined at 1300 ° C and 1900 ° C. Table 1 shows the physical properties of the obtained carbide. Since the H / C of this heat-treated powder was lower than the claimed range, the self-bonding property was lost, and a large amount of black carbon powder adhered to the hands.
【0019】比較例2 超強酸 HF-BF3 の存在下、ナフタレンを重合させて得ら
れたメソフェーズピッチ AR-3(軟化点 230℃、炭化収率
85wt%、光学的異方性含有率 100vol%) を窒素雰囲気下
300℃/hで 400℃まで昇温し14時間の熱処理をした。こ
の熱処理ピッチの H/Cは0.51、 O/Cは 0.005であった。
この熱処理粉体を実施例1と同様条件で600℃焼成を試
みたが、請求範囲より H/Cが高いので成型体の膨張が起
こり、炭化物の各物性は測定できなかった。Comparative Example 2 Mesophase pitch AR-3 (softening point 230 ° C., carbonization yield, obtained by polymerizing naphthalene in the presence of super strong acid HF-BF 3
85wt%, optically anisotropic content 100vol%) under nitrogen atmosphere
The temperature was raised to 400 ° C at 300 ° C / h and heat treatment was performed for 14 hours. The H / C of this heat treatment pitch was 0.51 and the O / C was 0.005.
This heat-treated powder was tried to be calcined at 600 ° C. under the same conditions as in Example 1, but the H / C was higher than the claimed range, so that the expansion of the molded body occurred and the physical properties of the carbide could not be measured.
【0020】比較例3 実施例1と同じメソフェーズピッチ AR-3 を用い、これ
を窒素雰囲気下 300℃/hで 450℃まで昇温し30分間熱処
理した。この熱処理中に一時的に若干の空気を吹き込ん
だ。この熱処理ピッチの H/Cは0.36、 O/Cは0.02であっ
た。以下、実施例1と同様の手順で焼成した。本比較例
では熱処理ピッチの O/Cが請求範囲より高いので、表1
に示すように高性能の炭素材料は得られなかった。Comparative Example 3 Using the same mesophase pitch AR-3 as in Example 1, this was heated to 450 ° C. at 300 ° C./h in a nitrogen atmosphere and heat-treated for 30 minutes. During this heat treatment, some air was blown in temporarily. The H / C of this heat treatment pitch was 0.36 and the O / C was 0.02. Hereinafter, firing was performed in the same procedure as in Example 1. In this comparative example, the O / C of the heat treatment pitch is higher than the claimed range.
As shown in, no high performance carbon material was obtained.
【0021】[0021]
【表1】 [Table 1]
【0022】[0022]
【発明の効果】本発明の炭素質粉体は、高密度炭素材料
用原料として炭化・黒鉛化が容易で、かつ炭化収率が極
めて高い熱処理メソフェーズピッチであるので、短時間
で焼成が達成されるとともに一回の焼成のみで充分な高
密度と高強度の炭素材料が得られる。更にメソフェーズ
ピッチに由来する焼成体組織は光学的異方性を示し高緻
密でかつ高純度であるため、形成されるカーボンボンド
は非常に強固である。このカーボンボンドは高温での焼
成により黒鉛化度が向上し、かつ収縮により緻密化がよ
り一層促進されるので、カーボンボンドはさらに強くな
る。加えて本発明において用いられるメソフェーズピッ
チは、適度の熱処理により優れた粘着性が付与されるの
で、バインダーは特に不要である。従って本発明の炭素
質粉体を用いれば高密度高強度の炭素材料が簡単に短時
間で安価に製造でき、本発明の工業的意義は極めて大き
い。The carbonaceous powder of the present invention is a heat-treated mesophase pitch which is easy to carbonize and graphitize as a raw material for high-density carbon materials and has a very high carbonization yield, so that firing can be achieved in a short time. In addition, a carbon material with sufficient high density and high strength can be obtained by firing only once. Further, the structure of the fired body derived from the mesophase pitch exhibits optical anisotropy and is highly dense and highly pure, so that the carbon bond formed is very strong. This carbon bond has a higher degree of graphitization by firing at a high temperature, and further densification due to shrinkage, so that the carbon bond becomes stronger. In addition, since the mesophase pitch used in the present invention is imparted with excellent tackiness by an appropriate heat treatment, a binder is not particularly necessary. Therefore, if the carbonaceous powder of the present invention is used, a high-density and high-strength carbon material can be easily produced in a short time at low cost, and the industrial significance of the present invention is extremely great.
─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───
【手続補正書】[Procedure amendment]
【提出日】平成5年5月21日[Submission date] May 21, 1993
【手続補正3】[Procedure 3]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】請求項2[Name of item to be corrected] Claim 2
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【手続補正4】[Procedure amendment 4]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0004[Correction target item name] 0004
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【0004】[0004]
【発明が解決しようとする課題】上記の如く高密度炭素
材料を製造するプロセスは極めて煩雑であり、かつ非常
に長い製造期間を要することから、従来の方法によって
製造される高密度炭素材は高価となり、このため現状で
はその利用分野に大きな制約を受けている。従って高密
度炭素材料場合には、炭化成型体中に揮発ガスによる空
隙が生成しやすく、得られる炭素材料の製造工程を大幅
に簡略化し、かつ製造期間を短縮することは、炭素工業
における大きな課題の一つである。本発明の目的は、高
密度かつ高強度の炭素材料を短時間で安価に製造できる
自己融着性炭素質粉体および高密度炭素材料を提供する
ことにある。As described above, the process for producing a high-density carbon material is extremely complicated and requires a very long production period. Therefore, the high-density carbon material produced by the conventional method is expensive. Therefore, at present, the field of use is severely restricted. Therefore, in the case of a high-density carbon material, voids due to volatile gas are easily generated in the carbonized molded body, and it is a major problem in the carbon industry to greatly simplify the manufacturing process of the obtained carbon material and shorten the manufacturing period. one of. An object of the present invention is to provide a self-fusing carbonaceous powder and a high-density carbon material that can produce a high-density and high-strength carbon material in a short time and at low cost.
【手続補正5】[Procedure Amendment 5]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0005[Name of item to be corrected] 0005
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【0005】[0005]
【課題を解決するための手段】発明者らは上記の目的を
達成すべく鋭意検討した結果、特定のメソフェーズピッ
チを熱処理することによって一定範囲の炭素に対する水
素の原子比(H/C) および酸素に対する酸素の原子比(O/
C) を有する熱処理ピッチを調製し、高められた炭化収
率と優れた自己融着性が付与されたこの熱処理粉体を原
料として用いることによって、バインダーを添加するこ
となく短時間かつ安価に高密度炭素材料が得られること
を見出し、本発明に至った。[Means for Solving the Problems] As a result of intensive studies aimed at achieving the above-mentioned objects, the inventors of the present invention have found that by heat-treating a specific mesophase pitch, the atomic ratio of hydrogen to carbon (H / C) and oxygen in a certain range are increased. Atomic ratio of oxygen to (O /
By preparing a heat-treated pitch with (C) and using this heat-treated powder with enhanced carbonization yield and excellent self-fusion properties as a raw material, it is possible to increase the cost quickly and inexpensively without adding a binder. The inventors have found that a high density carbon material can be obtained, and completed the present invention.
【手続補正6】[Procedure correction 6]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0006[Correction target item name] 0006
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【0006】すなわち本発明は、炭化収率が70重量% 以
上、軟化点が 170℃以上で、光学的異方性相が 70vol%
以上であるメソフェーズピッチを熱処理することによっ
て得られる、炭素に対する水素の原子比が0.35〜0.48の
範囲であり、且つ炭素に対する酸素の原子比が0.01未満
である自己融着性炭素質粉体、およびこれを成形した
後、非酸化性雰囲気下 600〜1600℃の温度に加熱、また
は更に高温で黒鉛化して得られ高密度炭素材料である。That is, according to the present invention, the carbonization yield is 70% by weight or more, the softening point is 170 ° C. or more, and the optically anisotropic phase is 70 vol%.
Obtained by heat treatment of the above mesophase pitch, the atomic ratio of hydrogen to carbon is in the range of 0.35 to 0.48, and the atomic ratio of oxygen to carbon is less than 0.01 self-fusing carbonaceous powder, and It is a high-density carbon material obtained by molding this, then heating it to a temperature of 600 to 1600 ° C in a non-oxidizing atmosphere, or graphitizing it at a higher temperature.
【手続補正7】[Procedure Amendment 7]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0013[Correction target item name] 0013
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【0013】高密度かつ高強度の炭素材料を得るために
は、このようにして熱処理されたメソフェーズピッチを
まず粉末状にする。粉末化方法ならびに粉体形状は特に
限定されない。粒度分布についても特に限定されない
が、成型の際の充填密度をできるだけ大きくするような
粒度分布が好ましい。一般には 200〜1 μm の粉末で成
型に用いられる。In order to obtain a high-density and high-strength carbon material, the mesophase pitch thus heat-treated is first made into powder. The powdering method and the powder shape are not particularly limited. The particle size distribution is also not particularly limited, but a particle size distribution that maximizes the packing density during molding is preferable. Generally, powder of 200 to 1 μm is used for molding.
【手続補正8】[Procedure Amendment 8]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0014[Correction target item name] 0014
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【0014】次に粉末化された熱処理ピッチを成型す
る。この際バインダーは特に不要である。成型体形状に
ついては、目的、用途等に応じて自由に選択できる。成
型は常温で行う場合と、熱処理粉体が軟化、あるいは溶
融する温度域で行なう場合があり、これは要求される掲
示言う、性能およびコストに応じて決定される。成型体
は引き続き焼成することによって、所望の炭素材料が製
造される。焼成条件は一般に非酸化性雰囲気下、昇温速
度 1〜300 ℃/hで、成型体を 600〜1600℃の温度に加熱
し炭素化することによって行われる。また必要に応じて
更に高温で黒鉛化する工程を含めることもできる。Next, the powdered heat-treated pitch is molded. At this time, a binder is not particularly necessary. The shape of the molded body can be freely selected according to the purpose, application and the like. Molding may be carried out at room temperature or in a temperature range in which the heat-treated powder softens or melts, which is determined according to the required billing, performance and cost. The molded body is subsequently fired to produce the desired carbon material. The firing conditions are generally performed by heating the molded body to a temperature of 600 to 1600 ° C and carbonizing it in a non-oxidizing atmosphere at a heating rate of 1 to 300 ° C / h. If necessary, a step of graphitizing at a higher temperature can be included.
【手続補正7】[Procedure Amendment 7]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0018[Correction target item name] 0018
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【0018】比較例1 実施例2と同じメソフェースピッチAR-2を用い、これを
窒素雰囲気下 300℃/hで 540℃まで昇温し 5時間熱処理
した。この熱処理ピッチの H/Cは0.34、 O/Cは0.005 で
あった。この熱処理粉体を実施例2と同様条件で成型し
600℃焼成し、更にこれを1300℃及び1900℃で焼成し
た。得られた炭化物の物性を表1に示す。この熱処理粉
体では H/Cが低いので、自己融着性が失われており、黒
色炭素粉が多量に手に付着した。 ─────────────────────────────────────────────────────
Comparative Example 1 Using the same mesophase pitch AR-2 as in Example 2, this was heated to 540 ° C. at 300 ° C./h in a nitrogen atmosphere and heat-treated for 5 hours. The H / C of this heat treatment pitch was 0.34 and the O / C was 0.005. This heat-treated powder was molded under the same conditions as in Example 2.
It was calcined at 600 ° C, and further calcined at 1300 ° C and 1900 ° C. Table 1 shows the physical properties of the obtained carbide. Since this heat-treated powder had a low H / C, the self-bonding property was lost, and a large amount of black carbon powder adhered to the hands. ─────────────────────────────────────────────────── ───
【手続補正書】[Procedure amendment]
【提出日】平成5年5月26日[Submission date] May 26, 1993
【手続補正1】[Procedure Amendment 1]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0014[Correction target item name] 0014
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【0014】次に粉末化された熱処理ピッチを成型す
る。この際バインダーは特に不要である。成型体形状に
ついては、目的、用途等に応じて自由に選択できる。成
型は常温で行う場合と、熱処理粉体が軟化、あるいは溶
融する温度域で行なう場合があり、これは要求される形
状、性能およびコストに応じて決定される。成型体は引
き続き焼成することによって、所望の炭素材料が製造さ
れる。焼成条件は一般に非酸化性雰囲気下、昇温速度 1
〜300 ℃/hで、成型体を 600〜1600℃の温度に加熱し炭
素化することによって行われる。また必要に応じて更に
高温で黒鉛化する工程を含めることもできる。Next, the powdered heat-treated pitch is molded. At this time, a binder is not particularly necessary. The shape of the molded body can be freely selected according to the purpose, application and the like. Molding may be carried out at room temperature or in a temperature range where the heat-treated powder softens or melts, which is determined according to the required shape, performance and cost. The molded body is subsequently fired to produce the desired carbon material. The firing conditions are generally a non-oxidizing atmosphere and a heating rate of 1
It is carried out by heating the molded body to a temperature of 600 to 1600 ° C at ~ 300 ° C / h to carbonize it. If necessary, a step of graphitizing at a higher temperature can be included.
Claims (2)
以上で、光学的異方性相が 70vol% 以上であるメソフェ
ーズピッチを熱処理することによって得られる、炭素に
対する水素の原子比が0.35〜0.48の範囲であり、且つ炭
素に対する酸素の原子比が0.01未満である自己融着性炭
素質粉体。1. A carbonization yield of 70% by weight or more and a softening point of 170 ° C.
As described above, the optically anisotropic phase is obtained by heat-treating the mesophase pitch having 70 vol% or more, the atomic ratio of hydrogen to carbon is in the range of 0.35 to 0.48, and the atomic ratio of oxygen to carbon is less than 0.01. Is a self-bonding carbonaceous powder.
以上で、光学的異方性相が 70%以上であるメソフェーズ
ピッチを熱処理することによって調製することを特徴と
する、炭素に対する水素の原子比が0.35〜0.48の範囲で
あり、且つ炭素に対する酸素の原子比が0.01未満である
自己融着性炭素質粉体の製造法。2. A carbonization yield of 70% by weight or more and a softening point of 170 ° C.
As described above, the optically anisotropic phase is characterized by being prepared by heat-treating the mesophase pitch having 70% or more, the atomic ratio of hydrogen to carbon is in the range of 0.35 to 0.48, and of oxygen to carbon. A method for producing a self-bonding carbonaceous powder having an atomic ratio of less than 0.01.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4161183A JP2806408B2 (en) | 1992-06-19 | 1992-06-19 | Self-fusing carbonaceous powder and high density carbon material |
DE69301866T DE69301866T2 (en) | 1992-06-19 | 1993-05-18 | Self-adhesive granular carbon materials and high-density carbon articles made therefrom |
EP93108112A EP0575748B1 (en) | 1992-06-19 | 1993-05-18 | Self-adhesive carbonaceous grains and high density carbon artifacts derived therefrom |
US08/301,038 US5547654A (en) | 1992-06-19 | 1994-09-06 | Self-adhesive carbonaceous grains and high density carbon artifacts derived therefrom |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4161183A JP2806408B2 (en) | 1992-06-19 | 1992-06-19 | Self-fusing carbonaceous powder and high density carbon material |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06145669A true JPH06145669A (en) | 1994-05-27 |
JP2806408B2 JP2806408B2 (en) | 1998-09-30 |
Family
ID=15730169
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4161183A Expired - Fee Related JP2806408B2 (en) | 1992-06-19 | 1992-06-19 | Self-fusing carbonaceous powder and high density carbon material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2806408B2 (en) |
-
1992
- 1992-06-19 JP JP4161183A patent/JP2806408B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2806408B2 (en) | 1998-09-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5547654A (en) | Self-adhesive carbonaceous grains and high density carbon artifacts derived therefrom | |
US3993738A (en) | High strength graphite and method for preparing same | |
JPH10172738A (en) | Glass like carbon heating element | |
JP2806408B2 (en) | Self-fusing carbonaceous powder and high density carbon material | |
JP2918008B2 (en) | Self-fusing carbonaceous powder and high density carbon material | |
JPH0768064B2 (en) | Carbon fiber reinforced composite material | |
US5609800A (en) | Process for producing high-density and high-strength carbon artifacts showing a fine mosaic texture of optical anisotropy | |
JPS62138361A (en) | Manufacture of high density formed body from carbon material | |
JP2697482B2 (en) | Method for producing pitch-based material and method for producing carbon material using the same as raw material | |
JPH05330915A (en) | Production of carbon/carbon composite material | |
JP3060450B2 (en) | Raw material powder for high density carbon material and method for producing carbon material | |
KR101927615B1 (en) | Manufacturing method of petroleum-based binder pitch with high quinoline-insoluble content | |
JP3060449B2 (en) | Raw material powder for high-density and high-strength carbon material and method for producing carbon material | |
JPH0825815B2 (en) | Method for producing carbon-carbon composite material | |
JPS59207822A (en) | Production of carbon material | |
JP2003055057A (en) | Method of manufacturing carbon fiber reinforced carbon material | |
JP3599062B2 (en) | Method for producing carbon material having fine optically anisotropic structure | |
JPH0550468B2 (en) | ||
JPH07215775A (en) | Production of carbon-carbon composite material | |
JPH0512398B2 (en) | ||
JPH0559863B2 (en) | ||
JPH0569061B2 (en) | ||
JPH05279005A (en) | Production of high-density carbon material | |
JPH0647497B2 (en) | Carbon material manufacturing method | |
JPS6153104A (en) | Production of high-strength carbon material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |