JPH06132302A - Method of manufacture thin film transistor - Google Patents

Method of manufacture thin film transistor

Info

Publication number
JPH06132302A
JPH06132302A JP28209992A JP28209992A JPH06132302A JP H06132302 A JPH06132302 A JP H06132302A JP 28209992 A JP28209992 A JP 28209992A JP 28209992 A JP28209992 A JP 28209992A JP H06132302 A JPH06132302 A JP H06132302A
Authority
JP
Japan
Prior art keywords
thin film
inorganic protective
protective film
amorphous silicon
silicon thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28209992A
Other languages
Japanese (ja)
Inventor
Takuya Shimano
卓也 島野
Nobuki Ibaraki
伸樹 茨木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP28209992A priority Critical patent/JPH06132302A/en
Publication of JPH06132302A publication Critical patent/JPH06132302A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable the high operational characteristics to be displayed by a method wherein an amorphous silicon thin film ions are implanted using an inorganic protective film as an implantation stopper to form low resistance semiconductor layers and then at least either one out of the film thickness or the outside dimension of the inorganic protective film is to be reduced. CONSTITUTION:The thin film transistor composed of a gate electrode 12, a gate insulating film 13, an amorphous silicon thin film, low resistance semiconductor layers 18a, 18b, an inorganic protective film 15, a source electrode 19 and a drain electrode 20 formed on an insulating substrate 11 is manufactured. At this time, the inorganic protective film 15 is formed into a shape on the amorphous silicon thin film to implant ion species containing impurity element ions in the amorphous silicon thin film using the inorganic protective film 15 as an implantation stopper for the formation of the low resistance semiconductor layers 18a, 18b. Later, at least either one out of the film thickness or the outside dimension of the inorganic protective film 15 is reduced. For example, the inorganic protective film 15 is etched away using a hydrofluoric acid base processing solution to remove a part of an ion implanting part 17a.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は例えばアクティブマト
リックス型液晶表示素子のアクティブ素子として用いら
れる薄膜トランジスタの製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a thin film transistor used as an active element of an active matrix type liquid crystal display element.

【0002】[0002]

【従来の技術】液晶を用いた表示装置は、テレビ表示や
グラフィックディスプレイ等を指向した大容量、高密度
のアクティブマトリックス型液晶表示装置の開発及び実
用化が盛んである。このような表示装置では、クロスト
ークのない高コントラスト表示が行えるように、各画素
の駆動と制御を行う手段として半導体スイッチが用いら
れる。その半導体スイッチとしては、透過型表示が可能
であり大面積化も容易である等の理由から、透明絶縁基
板上に形成した薄膜トランジスタが通常用いられてい
る。なかでも大面積基板上に形成でき且つ低温プロセス
が可能である等の理由から、非晶質硅素を用いた薄膜ト
ランジスタが最も一般的である。
2. Description of the Related Art As a display device using a liquid crystal, a large-capacity and high-density active matrix type liquid crystal display device directed to a television display, a graphic display or the like has been developed and put into practical use. In such a display device, a semiconductor switch is used as a means for driving and controlling each pixel so that high-contrast display without crosstalk can be performed. As the semiconductor switch, a thin film transistor formed on a transparent insulating substrate is usually used because it can be used for transmissive display and can be easily enlarged. Among them, a thin film transistor using amorphous silicon is the most common because it can be formed on a large area substrate and can be processed at a low temperature.

【0003】さて、薄膜トランジスタの構造はゲート電
極、半導体薄膜層、ソース電極及びドレイン電極の相対
的な位置関係により、コプラナ型或いはスタガード型に
大きく分類される。絶縁基板上に形成する非晶質硅素薄
膜トランジスタの場合、製造プロセス的に有益な面が多
い後者を用いる場合が多く、なかでも図6に示すよう
な、絶縁基板1上にゲート電極2、ゲート絶縁膜3、非
晶質硅素薄膜4、低抵抗半導体層5、ソース電極6及び
ドレイン電極7が順に形成される構造の逆スタガード型
が一般的である。
The structure of a thin film transistor is roughly classified into a coplanar type or a staggered type depending on the relative positional relationship between the gate electrode, the semiconductor thin film layer, the source electrode and the drain electrode. In the case of an amorphous silicon thin film transistor formed on an insulating substrate, the latter, which has many useful surfaces in the manufacturing process, is often used. Above all, as shown in FIG. 6, the gate electrode 2 and the gate insulating film are formed on the insulating substrate 1. The reverse staggered type is generally used in which the film 3, the amorphous silicon thin film 4, the low resistance semiconductor layer 5, the source electrode 6 and the drain electrode 7 are formed in this order.

【0004】そして特に、図6に示すように、非晶質硅
素薄膜4と低抵抗半導体層5との間に、例えば窒化硅素
からなる無機保護膜8を形成し、これを所定の形状に加
工することによって低抵抗半導体層5の加工性を上げる
構造のものも用いられるようになっている。
In particular, as shown in FIG. 6, an inorganic protective film 8 made of, for example, silicon nitride is formed between the amorphous silicon thin film 4 and the low resistance semiconductor layer 5 and processed into a predetermined shape. By doing so, a structure having a structure that improves the workability of the low resistance semiconductor layer 5 is also used.

【0005】なお、一般にアクティブマトリックス型の
液晶表示装置としては、ラビングによる配向処理が各々
施された二枚の基板を、配向方向が互いに90度をなす
ように平行に対向させて配置し、これらの間にネマチッ
クタイプの液晶組成物を挟持させたツイステッドネマチ
ック(TN)型のものが広く用いられている。
Generally, in an active matrix type liquid crystal display device, two substrates each subjected to an alignment treatment by rubbing are arranged parallel to each other so that their alignment directions are 90 degrees. A twisted nematic (TN) type liquid crystal device in which a nematic type liquid crystal composition is sandwiched between the two is widely used.

【0006】ところで、この種の非晶質硅素薄膜トラン
ジスタは、図6に示すように、非晶質硅素薄膜4とソー
ス及びドレイン電極6,7との間に低抵抗半導体層5を
形成するのが一般的である。この低抵抗半導体層5は非
晶質硅素薄膜4とソース及びドレイン電極6,7とをオ
ーミック状態で、電気的に接続する役割を担っている。
低抵抗半導体層は、プラズマCVDを用い、例えば燐と
いった硅素に対してドナーとなり得る元素を含むガスを
原料に用い、非晶質硅素薄膜の上部に積層形成する方法
と、図4(c)に示すように、例えば燐といった硅素に
対してドナーとなり得る元素をイオン状態で外部から打
ち込むいわゆるイオン注入という手法で非晶質硅素薄膜
自体を低抵抗化し、上部のソース及びドレイン電極との
オーミックコンタクト層を形成する方法等が一般的であ
る。(例えばRUUD E.I. SCHROPPet.al. "On the Qualit
y of Contacts in a-Si:H Staggered Electrode Thin-F
ilm Transisters" IEEE TRANSACTIONS ON ELECTRON DEV
ICES, VOL.ED-32,NO.9,SEPTEMBER 1985)
By the way, in this type of amorphous silicon thin film transistor, as shown in FIG. 6, a low resistance semiconductor layer 5 is formed between the amorphous silicon thin film 4 and the source and drain electrodes 6 and 7. It is common. This low resistance semiconductor layer 5 plays a role of electrically connecting the amorphous silicon thin film 4 and the source and drain electrodes 6 and 7 in an ohmic state.
The low-resistance semiconductor layer is formed by plasma CVD using a gas containing an element that can serve as a donor for silicon, such as phosphorus, as a raw material, and is laminated on the amorphous silicon thin film, and FIG. As shown in the drawing, the resistance of the amorphous silicon thin film itself is lowered by a technique called so-called ion implantation in which an element that can serve as a donor to silicon, such as phosphorus, is ionically injected from the outside, and an ohmic contact layer with the upper source and drain electrodes is formed. The method of forming the is generally used. (For example, RUUD EI SCHROPPet.al. "On the Qualit
y of Contacts in a-Si: H Staggered Electrode Thin-F
ilm Transisters "IEEE TRANSACTIONS ON ELECTRON DEV
ICES, VOL.ED-32, NO.9, SEPTEMBER 1985)

【0007】前者のように、CVDにより非晶質半導体
薄膜上部に、低抵抗半導体層を積層形成する方法は以前
より行われている方法であるが、膜形成に使用するプラ
ズマCVD法は、(1)ダストを発生する、(2)稼働
率が悪いといった問題を多く含む手法である。一方、イ
オン注入法においては、前工程で形成された非晶質硅素
薄膜自体をイオン注入により低抵抗半導体層に改質する
ため、プラズマCVD法に見られるような問題を原理的
に含まない。また、イオン注入が非晶質硅素薄膜上に形
成され、所望の形状に加工された無機保護膜をマスクと
して自己整合的に行なえるため、薄膜トランジスタの高
性能化、微細化が可能になる。
As in the former case, the method of stacking the low resistance semiconductor layer on the upper portion of the amorphous semiconductor thin film by the CVD is a method that has been performed before. However, the plasma CVD method used for the film formation is This method involves many problems such as 1) generation of dust and (2) poor operating rate. On the other hand, in the ion implantation method, since the amorphous silicon thin film itself formed in the previous step is modified into a low resistance semiconductor layer by ion implantation, it does not theoretically include the problem found in the plasma CVD method. Further, ion implantation can be performed on the amorphous silicon thin film and can be performed in a self-aligned manner by using the inorganic protective film processed into a desired shape as a mask, which enables high performance and miniaturization of the thin film transistor.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、図4に
示すような従来のイオン注入法により製造した薄膜トラ
ンジスタでは、図6に示すような低抵抗半導体層形成に
CVDを用いる構造のものに比べ、薄膜トランジスタの
オフ電圧が上昇してしまうことがあり、実際に動作させ
る際には問題になっていた。
However, in the thin film transistor manufactured by the conventional ion implantation method as shown in FIG. 4, as compared with the structure shown in FIG. 6 in which CVD is used for forming the low resistance semiconductor layer, the thin film transistor is formed. The off voltage of the device may rise, which is a problem when the device is actually operated.

【0009】そこで、本発明者がこの原因について解析
した結果、従来のイオン注入法では図4(c)に示すよ
うに、非晶質硅素薄膜への不純物イオンを含むイオン種
の注入が、非晶質硅素薄膜上に形成され、所望の形状に
加工された無機保護膜をマスクとして自己整合的に行わ
れるため、注入の工程で、非晶質硅素薄膜のソース、ド
レイン領域に注入されるのと同量のイオンが無機保護膜
中にも注入されることが原因であることが判明した。即
ち、無機保護膜中の多量のイオンが、非晶質硅素薄膜と
無機保護膜が接触する界面に影響を与えるのである。
Therefore, as a result of the analysis by the present inventor of this cause, as shown in FIG. 4 (c), the conventional ion implantation method showed that the implantation of the ion species including the impurity ions into the amorphous silicon thin film was not conducted. Since it is performed in a self-aligned manner by using the inorganic protective film formed on the crystalline silicon thin film and processed into a desired shape as a mask, it is implanted into the source and drain regions of the amorphous silicon thin film in the implantation process. It was found that the same amount of ions was injected into the inorganic protective film as the cause. That is, a large amount of ions in the inorganic protective film affects the interface between the amorphous silicon thin film and the inorganic protective film.

【0010】この発明はこのような従来の事情に艦みな
されたものであり、無機保護膜中に存在するイオン種の
量を減少させることにより、高動作特性が得られる非晶
質硅素薄膜トランジスタを提供することを目的としてい
る。
The present invention was conceived as a ship in such conventional circumstances, and an amorphous silicon thin film transistor capable of obtaining high operating characteristics is obtained by reducing the amount of ionic species present in the inorganic protective film. It is intended to be provided.

【0011】[0011]

【課題を解決するための手段】この発明は、絶縁基板上
にゲート電極、ゲート絶縁膜、非晶質硅素薄膜、低抵抗
半導体層、無機保護膜、ソース電極及びドレイン電極を
形成してなる薄膜トランジスタの製造方法についてのも
のであり、非晶質硅素薄膜上に無機保護膜を形成・形状
加工する工程と、無機保護膜を注入ストッパーとして、
非晶質硅素薄膜に不純物元素イオンを含むイオン種を注
入して低抵抗半導体層を形成する工程と、低抵抗半導体
層を形成した後に無機保護膜の膜厚と外形寸法の少なく
とも一方を減少させる工程とを備えている。
The present invention is a thin film transistor having a gate electrode, a gate insulating film, an amorphous silicon thin film, a low resistance semiconductor layer, an inorganic protective film, a source electrode and a drain electrode formed on an insulating substrate. Regarding the manufacturing method of, the step of forming and shaping an inorganic protective film on the amorphous silicon thin film, and using the inorganic protective film as an injection stopper,
A step of implanting an ion species containing impurity element ions into an amorphous silicon thin film to form a low resistance semiconductor layer, and reducing at least one of the thickness and the external dimension of the inorganic protective film after the low resistance semiconductor layer is formed. And the process.

【0012】[0012]

【作用】この発明では、不純物イオン種を含むイオン種
の注入による低抵抗半導体層形成の後、少なくとも無機
保護膜の膜厚、外形寸法、或いはその両者を減少させる
ことにより、無機保護膜におけるイオン注入部は一部除
去される。この結果、無機保護膜中に存在するイオン種
の量を従来に比べ減少させることにより、トランジスタ
特性が無機保護膜中に存在するイオン種の影響を受けな
い高動作特性が得られる非晶質硅素薄膜トランジスタを
形成できる。
According to the present invention, after the low resistance semiconductor layer is formed by implanting the ionic species containing the impurity ionic species, at least the thickness, the outer dimension or both of the inorganic protective film is reduced so that the ions in the inorganic protective film are reduced. The injection part is partially removed. As a result, by reducing the amount of ionic species present in the inorganic protective film as compared with the conventional one, an amorphous silicon which can obtain high operating characteristics in which the transistor characteristics are not affected by the ionic species present in the inorganic protective film. A thin film transistor can be formed.

【0013】[0013]

【実施例】以下、この発明の詳細を図面を参照して説明
する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The details of the present invention will be described below with reference to the drawings.

【0014】図1及び図2はそれぞれ、この発明の一実
施例として、不純物元素イオンを含むイオン種の注入に
よる低抵抗半導体層形成の後、少なくとも無機保護膜の
膜厚、外形寸法或いはその両者を減少させる場合の構造
及び製造方法を説明するために示した概略断面図であ
る。まず、図2(a)に示すように、絶縁基板11上に
ゲート電極12を形成し、続いて図2(b)に示すよう
に、これを覆うようにゲート絶縁膜13としてプラズ
マ、常圧及び減圧といったCVD法により、モノシラン
を原料に用いて窒化硅素膜をゲート電極12上に膜厚4
000オングストローム形成する。その後、図2(c)
に示すように、例えば膜厚500オングストロームの非
晶質硅素薄膜14と膜厚2000オングストロームの無
機保護膜15を形成する。次に、無機保護膜15を所定
の形状に加工した後、ドナーとなり得る元素のイオン、
例えば燐イオンを加速電圧10kV、ドーズ量1E16
/cm2 で注入する。このとき、前述の無機保護膜15
は燐イオン注入の際に注入ストッパーとなり得るため、
薄膜トランジスタのチャネル領域16にはイオンは打ち
込まれず、前述のイオン注入は結果として自己整合とい
う形になる。また、非晶質硅素薄膜14中へのイオン種
の注入の際には、非晶質硅素薄膜14へ注入されたのと
同量のイオン種が無機保護膜15中へも注入されて、イ
オン注入部17aが形成される。これによりチャネル領
域16とともに、低抵抗半導体化した非晶質硅素薄膜で
ある低抵抗半導体層18としてソース領域18a及びド
レイン領域18bが形成される。その後、図2(d)に
示すように、例えばフッ酸系の処理液を用いて無機保護
膜15の膜厚が、例えば2000オングストロームにな
るまで無機保護膜15をエッチングし、イオン注入部1
7aの一部を除去する。このとき、無機保護膜15にサ
イドエッチングによる外形寸法の減少が生じる場合もあ
る。そして、ソース及びドレイン電極となり得る電極材
料、例えばAlを膜厚3000オングストローム形成
し、形状加工することにより、図2(e)に示すよう
に、ソース電極19及びドレイン電極20を形成する。
こうして、図1に示すような薄膜トランジスタを備えた
アレイ基板が得られ、このアレイ基板と、対向電極等が
形成された対向基板とを組み合わせ、この間隙に液晶を
挟持することにより、所望のアクティブマトリックス型
液晶表示素子が得られる。
FIG. 1 and FIG. 2 respectively show, as an embodiment of the present invention, at least the thickness of the inorganic protective film, the external dimensions, or both after the formation of the low-resistance semiconductor layer by the implantation of ion species containing impurity element ions. FIG. 6 is a schematic cross-sectional view shown for explaining the structure and the manufacturing method for reducing the amount. First, as shown in FIG. 2A, a gate electrode 12 is formed on an insulating substrate 11, and subsequently, as shown in FIG. 2B, a gate insulating film 13 is formed by plasma and atmospheric pressure so as to cover the gate electrode 12. Then, a silicon nitride film is formed on the gate electrode 12 with a film thickness of 4 by using monosilane as a raw material by a CVD method such as pressure reduction.
000 angstroms are formed. After that, FIG. 2 (c)
As shown in FIG. 5, for example, an amorphous silicon thin film 14 having a film thickness of 500 angstrom and an inorganic protective film 15 having a film thickness of 2000 angstrom are formed. Next, after processing the inorganic protective film 15 into a predetermined shape, an ion of an element that can serve as a donor,
For example, phosphorus ions are used as an acceleration voltage of 10 kV and a dose of 1E16.
/ Cm 2 Inject. At this time, the above-mentioned inorganic protective film 15
Can serve as an implantation stopper during phosphorus ion implantation,
Ions are not implanted in the channel region 16 of the thin film transistor, and the aforementioned ion implantation is self-aligned. Further, when the ionic species are implanted into the amorphous silicon thin film 14, the same amount of ionic species as that implanted into the amorphous silicon thin film 14 is also implanted into the inorganic protective film 15, and The injection part 17a is formed. As a result, the source region 18a and the drain region 18b are formed together with the channel region 16 as the low resistance semiconductor layer 18 which is a low resistance semiconductor-made amorphous silicon thin film. After that, as shown in FIG. 2D, the inorganic protective film 15 is etched using, for example, a hydrofluoric acid-based treatment solution until the film thickness of the inorganic protective film 15 reaches, for example, 2000 angstroms.
A part of 7a is removed. At this time, the outer dimensions of the inorganic protective film 15 may be reduced due to side etching. Then, as shown in FIG. 2E, a source electrode 19 and a drain electrode 20 are formed by forming an electrode material that can serve as the source and drain electrodes, for example, Al to a film thickness of 3000 angstroms and processing the shape.
In this way, an array substrate having thin film transistors as shown in FIG. 1 is obtained. By combining this array substrate and a counter substrate on which counter electrodes and the like are formed, and by sandwiching liquid crystal in this gap, a desired active matrix is obtained. Type liquid crystal display device is obtained.

【0015】図3は、図1及び図2に示した実施例を説
明するために、非晶質硅素薄膜トランジスタ製造過程に
おいて、不純物イオン種を含むイオン種の注入による低
抵抗半導体層形成の後、少なくとも無機保護膜の膜厚を
減少させた場合の注入イオン種の深さ方向分布を説明す
るために示した概念的な概略断面図である。
In order to explain the embodiment shown in FIGS. 1 and 2, FIG. 3 shows a low resistance semiconductor layer formed by implanting an ionic species including an impurity ionic species in a process of manufacturing an amorphous silicon thin film transistor. It is a conceptual schematic sectional view shown in order to explain the depth direction distribution of the implanted ion species when at least the thickness of the inorganic protective film is reduced.

【0016】図3(a)は、イオン注入に用いられる非
晶質硅素薄膜トランジスタの概略断面図であり、図3
(b)と図3(c)はそれぞれAA’、BB’部分につ
いて注入イオン種の深さ方向分布を表した概念図であ
る。図3(c)に示すように、イオン注入の際、不純物
イオンを含むイオン種は非晶質硅素薄膜14の表面から
注入される。一方、図3(b)は、非晶質硅素薄膜への
イオン注入同様に注入される無機保護膜15の領域につ
いて、注入されたイオン種の深さ方向分布を示している
が、図3(b)中に点線で示すようにイオン注入がなさ
れた後に無機保護膜の膜厚を減少せしめているため、非
晶質硅素薄膜14中に注入されたイオンの量と比較して
非常に少ないイオン種からなる図2(d)に示すような
イオン注入部17bが無機保護膜15中に残存している
ことが判る。
FIG. 3A is a schematic sectional view of an amorphous silicon thin film transistor used for ion implantation.
FIG. 3B and FIG. 3C are conceptual views showing the distribution of implanted ion species in the depth direction with respect to AA ′ and BB ′ portions, respectively. As shown in FIG. 3C, at the time of ion implantation, ionic species containing impurity ions are implanted from the surface of the amorphous silicon thin film 14. On the other hand, FIG. 3B shows the depthwise distribution of the implanted ion species in the region of the inorganic protective film 15 that is implanted in the same manner as the ion implantation into the amorphous silicon thin film. Since the thickness of the inorganic protective film is reduced after the ion implantation is performed as indicated by the dotted line in b), the number of ions implanted in the amorphous silicon thin film 14 is very small compared to the amount of ions implanted. It can be seen that the ion-implanted portion 17b made of seeds as shown in FIG. 2D remains in the inorganic protective film 15.

【0017】図4は従来の製造方法で形成されたイオン
注入法による非晶質硅素薄膜トランジスタの製造方法を
示した概略断面図であり、図5はイオン注入した場合の
注入イオン種の深さ方向分布を説明するために示した概
略断面図である。
FIG. 4 is a schematic cross-sectional view showing a method of manufacturing an amorphous silicon thin film transistor by an ion implantation method formed by a conventional manufacturing method, and FIG. 5 is a depth direction of implanted ion species in the case of ion implantation. It is a schematic sectional drawing shown in order to demonstrate distribution.

【0018】図4の従来例においては、図2に示した実
施例と比べ次の点が異なっている。即ち、図4(c)に
示すように、非晶質硅素薄膜層14上に無機保護膜15
として例えば窒化硅素を膜厚2000オングストローム
形成し、所望の形状に加工した後、不純物イオンとして
例えば燐イオンを含むイオン種の注入を行った後に非晶
質硅素薄膜14上の無機保護膜15の膜厚を減少せず
に、ソース、ドレイン電極となり得る電極材料の形成並
びに形状加工によるソース電極19、ドレイン電極20
の形成を行っていた。従って、図4(c)と図5(b)
に示すとおり、非晶質硅素薄膜上に形成されている無機
保護膜15中には非晶質硅素薄膜14中に注入されたの
と同量のイオン種からなるイオン注入部17aが存在す
る。
The conventional example shown in FIG. 4 is different from the embodiment shown in FIG. 2 in the following points. That is, as shown in FIG. 4C, the inorganic protective film 15 is formed on the amorphous silicon thin film layer 14.
As a film of the inorganic protective film 15 on the amorphous silicon thin film 14, for example, a silicon nitride film having a film thickness of 2000 angstrom is formed, processed into a desired shape, and ion species including, for example, phosphorus ions are injected as impurity ions. The source electrode 19 and the drain electrode 20 are formed by forming and shaping the electrode material that can be the source and drain electrodes without reducing the thickness.
Was being formed. Therefore, FIG. 4 (c) and FIG. 5 (b)
As shown in FIG. 5, the inorganic protective film 15 formed on the amorphous silicon thin film has an ion implantation portion 17a made of the same amount of ion species as that implanted into the amorphous silicon thin film 14.

【0019】次に、非晶質硅素薄膜トランジスタの製造
過程において、不純物イオン種を含むイオン種の注入に
よる低抵抗半導体層形成の後、少なくとも無機保護膜の
膜厚を減少させる場合の効果を説明するため、無機保護
膜中にイオンを注入したときに生じる膜中の欠陥密度を
測定、注入前の欠陥密度と比較した。この実験は、ガラ
ス基板上に図2に示した薄膜トランジスタ形成に用いた
無機保護膜として窒化硅素薄膜を形成し、不純物イオン
として燐イオンを例えば加速電圧10kV,ドーズ量5
E15/cm2 で無機保護膜中へ注入することにより行
い、欠陥密度の測定は、上記試料に対して電子スピン共
鳴(Electron Spin Resonance ,ESR)法によりスピ
ン密度を測定することにより行った。この実験の結果、
イオン注入前ではスピン密度が4E17spins/c
3 、上述の条件でイオン注入した後ではスピン密度が
2E18spins/cm3 であった。この結果から、
比較的加速電圧も小さく、ドーズ量も少ないイオン注入
条件でありながら、スピン密度で代表される膜中の欠陥
密度は、燐イオンの注入前と比較して非常に大きな値に
なっていることが判る。従って、欠陥が多量に存在する
無機保護膜が薄膜トランジスタのチャネル領域上に存在
することにより、トランジスタ特性に対して与える悪影
響は多大であることが予想される。
Next, in the process of manufacturing an amorphous silicon thin film transistor, the effect of reducing at least the thickness of the inorganic protective film after forming the low resistance semiconductor layer by implanting the ion species containing the impurity ion species will be described. Therefore, the defect density in the film generated when ions were injected into the inorganic protective film was measured and compared with the defect density before the injection. In this experiment, a silicon nitride thin film was formed as an inorganic protective film used for forming the thin film transistor shown in FIG. 2 on a glass substrate, and phosphorus ions were used as impurity ions, for example, an accelerating voltage of 10 kV and a dose of 5.
E15 / cm 2 The defect density was measured by measuring the spin density of the above sample by an electron spin resonance (ESR) method. The result of this experiment
Spin density is 4E17 spins / c before ion implantation
m 3 After the ion implantation under the above conditions, the spin density was 2E18 spins / cm 3. Met. from this result,
Despite the ion implantation conditions that the acceleration voltage is relatively small and the dose amount is relatively small, the defect density represented by the spin density in the film is very large compared to before the phosphorus ion implantation. I understand. Therefore, it is expected that the inorganic protective film having a large number of defects is present on the channel region of the thin film transistor, and thus has a great adverse effect on the transistor characteristics.

【0020】なお、いずれの発明においても、無機保護
膜の膜厚減少の方法を始めとした非晶質硅素薄膜トラン
ジスタの製造方法、構成は今まで述べたものに限られ
ず、この発明の構成要件を満足する範囲において種々の
変形がなされても、この発明に含まれることは言うまで
もない。また、イオンの注入方法並びに注入イオンの種
類等についても、例えば質量分析の有無、方法等、この
発明の構成要件を満足する範囲において種々の変形がな
されても、この発明に含まれることは言うまでもない。
更に、この技術はアクティブマトリックス型液晶表示装
置のみならず、各種センサーの製造に対しても応用が可
能である。
In any of the inventions, the manufacturing method and structure of the amorphous silicon thin film transistor including the method of reducing the film thickness of the inorganic protective film are not limited to those described above, and the constituent requirements of the invention are not limited to those described above. Needless to say, even if various modifications are made within the range of satisfaction, they are included in the present invention. Further, it is needless to say that the ion implantation method and the type of implanted ions are also included in the present invention even if various modifications are made within a range satisfying the constituent requirements of the present invention, such as the presence or absence of mass spectrometry, the method, and the like. Yes.
Further, this technology can be applied not only to the active matrix type liquid crystal display device but also to the manufacture of various sensors.

【0021】[0021]

【発明の効果】以上詳述したように、この発明によれ
ば、絶縁基板上にゲート電極、ゲート絶縁膜及び非晶質
硅素薄膜を形成し、ソース、ドレイン領域部に形成さる
低抵抗半導体層として、少なくとも非晶質硅素薄膜上に
形成、形状加工された無機保護膜を注入ストッパーにし
て、不純物元素イオンを含むイオン種の注入により非晶
質硅素薄膜自体を改質したものを有し、更にソース、ド
レイン電極とが形成され、ゲート電極に加えられた電圧
による電界効果により、ソース、ドレイン電極間でスイ
ッチング作用を示す非晶質硅素薄膜トランジスタにおい
て、不純物イオン種を含むイオン種の注入による低抵抗
半導体層形成の後、少なくとも無機保護膜の膜厚、外形
寸法、或いはその両者を減少させる工程を含んでいる。
この結果、不純物イオンを含むイオン種が非晶質硅素薄
膜のソース、ドレイン領域に注入される際に、同量のイ
オンが注入される無機保護膜中に注入されてしまうイオ
ン種の量を減少させることができるために、トランジス
タ特性が無機保護膜中に存在するイオン種の影響を受け
ることがない、高性能なトランジスタ特性を有する非晶
質硅素薄膜トランジスタを形成できる。
As described in detail above, according to the present invention, a low resistance semiconductor layer is formed in a source / drain region by forming a gate electrode, a gate insulating film and an amorphous silicon thin film on an insulating substrate. As, at least formed on the amorphous silicon thin film, using the shape-processed inorganic protective film as an injection stopper, having a modified amorphous silicon thin film itself by injection of ion species containing impurity element ions, Further, in an amorphous silicon thin film transistor in which a source electrode and a drain electrode are formed, and a switching effect is generated between the source electrode and the drain electrode due to a field effect due to the voltage applied to the gate electrode, a low ion implantation including impurity ion species is performed. After the formation of the resistance semiconductor layer, at least the step of reducing the film thickness, the outer dimension, or both of the inorganic protective film is included.
As a result, when the ion species including the impurity ions are implanted into the source and drain regions of the amorphous silicon thin film, the amount of the ion species that is implanted into the inorganic protective film into which the same amount of ions are implanted is reduced. Therefore, it is possible to form an amorphous silicon thin film transistor having high-performance transistor characteristics, in which the transistor characteristics are not affected by the ionic species present in the inorganic protective film.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施例の構造を示した概略断面図
である。
FIG. 1 is a schematic sectional view showing the structure of an embodiment of the present invention.

【図2】この発明の一実施例の製造方法を示した概略断
面図である。
FIG. 2 is a schematic sectional view showing a manufacturing method according to an embodiment of the present invention.

【図3】この発明の一実施例について注入イオン種の深
さ方向分布を説明するための概略断面図である。
FIG. 3 is a schematic cross-sectional view for explaining the distribution of implanted ion species in the depth direction in one embodiment of the present invention.

【図4】低抵抗半導体層形成にイオン注入技術を用いた
従来の非晶質硅素薄膜トランジスタの製造方法を説明す
るための概略断面図である。
FIG. 4 is a schematic cross-sectional view for explaining a conventional method for manufacturing an amorphous silicon thin film transistor using an ion implantation technique for forming a low resistance semiconductor layer.

【図5】図4に示した実施例について注入イオン種の深
さ方向分布を説明するための概略断面図である。
5 is a schematic cross-sectional view for explaining the distribution of implanted ion species in the depth direction in the embodiment shown in FIG.

【図6】従来の、低抵抗半導体層形成に低抵抗半導体薄
膜を積層形成した構造を持つ非晶質硅素薄膜トランジス
タの概略断面図である。
FIG. 6 is a schematic cross-sectional view of a conventional amorphous silicon thin film transistor having a structure in which a low resistance semiconductor thin film is laminated on a low resistance semiconductor layer.

【符号の説明】[Explanation of symbols]

11……絶縁基板 12……ゲート電極 13……ゲート絶縁膜 14……非晶質硅素薄膜 15……無機保護膜 18……低抵抗半導体層 19……ソース電極 20……ドレイン電極 11 ... Insulating substrate 12 ... Gate electrode 13 ... Gate insulating film 14 ... Amorphous silicon thin film 15 ... Inorganic protective film 18 ... Low resistance semiconductor layer 19 ... Source electrode 20 ... Drain electrode

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 絶縁基板上にゲート電極、ゲート絶縁
膜、非晶質硅素薄膜、低抵抗半導体層、無機保護膜、ソ
ース電極及びドレイン電極を形成してなる薄膜トランジ
スタの製造方法において、前記非晶質硅素薄膜上に前記
無機保護膜を形成・形状加工する工程と、前記無機保護
膜を注入ストッパーとして、前記非晶質硅素薄膜に不純
物元素イオンを含むイオン種を注入して前記低抵抗半導
体層を形成する工程と、前記低抵抗半導体層を形成した
後に前記無機保護膜の膜厚と外形寸法の少なくとも一方
を減少させる工程とを備えたことを特徴とする薄膜トラ
ンジスタの製造方法。
1. A method of manufacturing a thin film transistor, which comprises forming a gate electrode, a gate insulating film, an amorphous silicon thin film, a low resistance semiconductor layer, an inorganic protective film, a source electrode and a drain electrode on an insulating substrate, wherein the amorphous Forming and shaping the inorganic protective film on a silicon thin film; and using the inorganic protective film as an implantation stopper, implanting an ion species containing impurity element ions into the amorphous silicon thin film to form the low resistance semiconductor layer. And a step of reducing at least one of the film thickness and the outer dimension of the inorganic protective film after forming the low resistance semiconductor layer.
JP28209992A 1992-10-21 1992-10-21 Method of manufacture thin film transistor Pending JPH06132302A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28209992A JPH06132302A (en) 1992-10-21 1992-10-21 Method of manufacture thin film transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28209992A JPH06132302A (en) 1992-10-21 1992-10-21 Method of manufacture thin film transistor

Publications (1)

Publication Number Publication Date
JPH06132302A true JPH06132302A (en) 1994-05-13

Family

ID=17648117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28209992A Pending JPH06132302A (en) 1992-10-21 1992-10-21 Method of manufacture thin film transistor

Country Status (1)

Country Link
JP (1) JPH06132302A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018201047A (en) * 2012-05-10 2018-12-20 株式会社半導体エネルギー研究所 Semiconductor device
JP2020123754A (en) * 2013-08-23 2020-08-13 株式会社半導体エネルギー研究所 Semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018201047A (en) * 2012-05-10 2018-12-20 株式会社半導体エネルギー研究所 Semiconductor device
JP2020123754A (en) * 2013-08-23 2020-08-13 株式会社半導体エネルギー研究所 Semiconductor device

Similar Documents

Publication Publication Date Title
JP2564725B2 (en) Method of manufacturing MOS transistor
JP3762002B2 (en) Thin film transistor and liquid crystal display device
US5668391A (en) Vertical thin film transistor
JP2739642B2 (en) Thin film transistor and method of manufacturing the same
JP2503656B2 (en) Thin film field effect transistor and method of manufacturing the same
JPH08186266A (en) Structure of thin film transistor and its preparation
JPH06132302A (en) Method of manufacture thin film transistor
JP3345756B2 (en) Method for manufacturing semiconductor device
JP3216173B2 (en) Method of manufacturing thin film transistor circuit
JP2917925B2 (en) Method of manufacturing thin film transistor and active matrix array for liquid crystal display device
JP3489217B2 (en) Method for manufacturing thin film transistor
JP3417402B2 (en) Method for manufacturing thin film semiconductor device
JPH03142418A (en) Image display device and production thereof
JP3312541B2 (en) Method for manufacturing thin film semiconductor device
JPH06216155A (en) Manufacture for thin-film transistor
JP2754184B2 (en) Thin film transistor and method of manufacturing the same
JPH0794721A (en) Semiconductor device and manufacture thereof
JPH06124961A (en) Manufacture of thin film transistor
JPH0945924A (en) Manufacture of amorphous silicon thin-film transistor
JPH06177153A (en) Fabrication of thin film transistor
JP2556850B2 (en) Method for manufacturing thin film transistor
JPH0766412A (en) Thin-film transistor and its manufacture
JP3255752B2 (en) Method for manufacturing semiconductor device
JPH04367828A (en) Production of active matrix board
JPH07142739A (en) Manufacture of polycrystal line silicon thin-film transistor