JPH0613097A - Solid electrolyte fuel cell power generation system - Google Patents

Solid electrolyte fuel cell power generation system

Info

Publication number
JPH0613097A
JPH0613097A JP4167439A JP16743992A JPH0613097A JP H0613097 A JPH0613097 A JP H0613097A JP 4167439 A JP4167439 A JP 4167439A JP 16743992 A JP16743992 A JP 16743992A JP H0613097 A JPH0613097 A JP H0613097A
Authority
JP
Japan
Prior art keywords
fuel
reaction
heat
fuel cell
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4167439A
Other languages
Japanese (ja)
Other versions
JP3110158B2 (en
Inventor
Yasuhiro Yamauchi
康弘 山内
Satoshi Uchida
聡 内田
Osao Kudome
長生 久留
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP04167439A priority Critical patent/JP3110158B2/en
Publication of JPH0613097A publication Critical patent/JPH0613097A/en
Application granted granted Critical
Publication of JP3110158B2 publication Critical patent/JP3110158B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0625Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material in a modular combined reactor/fuel cell structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/247Arrangements for tightening a stack, for accommodation of a stack in a tank or for assembling different tanks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)

Abstract

PURPOSE:To reduce the amount of consumption of cooling air by the amount corresponding to reaction heat absorption so as to prevent the fall of bombing cycle effect and make a case smaller by disposing a fuel supply tube in each stack of a cell to directly cool the stack of the cells by steam reformation reaction heat absorption. CONSTITUTION:Natural gas and steam are supplied to each high temperature solid electrolyte fuel cell stack 22 through a fuel supply tube 25 after heating them at about 500 degrees centrigrade in a fuel supply chamber 24 by radiation and heat conduction and convective heat conduction from a power generating chamber 21 through a fuel discharging chamber 23. At this time, the steam reformation reaction takes place in the tube 25 so that methane as a main component of the natural gas reacts with the steam to change into hydrogen and carbon nonoxide. This reaction is an endothermic reaction and the reaction heat is supplied by the convective conduction heat by the discharged fuel and the heat generated by the solid electrolyte fuel cell in the power generating chamber 21. Air is heated up to 700 degrees centrigrade in a heat exchanger 28 which perform heat exchange with the discharged air and supplied to the power generating chamber 21. Oxygen in air consumed by the reaction in the cell, the temperature in the power generating chamber 21 rises from 900 to 1000 degrees centrigrade by the heat generated by the reaction and the discharged air is discharged out of the apparatus through a discharging tube 27.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、固体電解質燃料電池
発電装置の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to improvement of a solid oxide fuel cell power generator.

【0002】[0002]

【従来の技術】メタンを主成分とする天然ガスと水蒸気
を高温固体電解質燃料電池の燃料極であるニッケル電極
でメタンの水蒸気改質反応を生じさせ、燃料電池で発生
する熱量の一部を水蒸気改質反応の吸熱反応熱として利
用する技術を内部改質技術と言う。しかし、高温固体電
解質燃料電池では作動温度が800℃から1000℃と
高く、水蒸気と天然ガス中のC(炭素)のモル比である
S/C比が3以上でも燃料極でカーボンの発生が見られ
る。このため、従来固体電解質燃料電池へ燃料を供給す
る前に水蒸気改質反応触媒により部分的に改質反応をお
こした後、高温固体電解質燃料電池に供給している。図
2は、従来の内部改質型固体電解質燃料電池発電装置を
示す。
2. Description of the Related Art A natural gas containing methane as a main component and steam are caused to undergo a steam reforming reaction of methane at a nickel electrode which is a fuel electrode of a high temperature solid oxide fuel cell, and a part of heat generated in the fuel cell is converted to steam. The technology used as the endothermic reaction heat of the reforming reaction is called internal reforming technology. However, in a high temperature solid oxide fuel cell, the operating temperature is as high as 800 ° C to 1000 ° C, and even if the S / C ratio, which is the molar ratio of C (carbon) in water vapor and natural gas, is 3 or more, generation of carbon is observed at the fuel electrode. To be For this reason, conventionally, before the fuel is supplied to the solid electrolyte fuel cell, a partial reforming reaction is caused by the steam reforming reaction catalyst, and then the fuel is supplied to the high temperature solid electrolyte fuel cell. FIG. 2 shows a conventional internal reforming type solid oxide fuel cell power generator.

【0003】図中の1は、発電室を示す。この発電室1
には、内側に空気極,外側に燃料極を配置した固体電解
質燃料電池を複数直列に接続してなる円筒型の高温固体
電解質燃料電池スタック2が配置されている。天然ガス
と水蒸気は水蒸気改質触媒3に供給され、ここでメタン
の大部分が水蒸気と反応し水素と一酸化炭素に分解され
る。この燃料は、高温固体電解質燃料電池スタック2の
外側に供給される。一方、空気は前記発電室1の上方の
空気供給室4に供給された後、空気供給管5を通って各
高温固体電解質燃料電池スタック2に供給される。
Reference numeral 1 in the figure denotes a power generation chamber. This power generation room 1
A cylindrical high-temperature solid electrolyte fuel cell stack 2 is arranged in which a plurality of solid electrolyte fuel cells, each having an air electrode inside and a fuel electrode outside, are connected in series. Natural gas and steam are supplied to the steam reforming catalyst 3, where most of methane reacts with steam and is decomposed into hydrogen and carbon monoxide. This fuel is supplied to the outside of the high temperature solid oxide fuel cell stack 2. On the other hand, air is supplied to the air supply chamber 4 above the power generation chamber 1 and then supplied to each high temperature solid electrolyte fuel cell stack 2 through the air supply pipe 5.

【0004】前記高温固体電解質燃料電池スタック2で
は、燃料の85%が反応する。出に電気を発生した燃料
は燃焼室6で高温固体電解質燃料電池スタック2から排
出された空気と混合燃焼する。燃焼排ガスは、燃焼排ガ
ス排気管7を通って水蒸気改質触媒8の反応熱を供給し
発電装置外へ排出される。なお、発電装置全体は断熱材
9で断熱される。
In the high temperature solid oxide fuel cell stack 2, 85% of the fuel reacts. The fuel that generated electricity is mixed and burned in the combustion chamber 6 with the air discharged from the high temperature solid oxide fuel cell stack 2. The combustion exhaust gas passes through the combustion exhaust gas exhaust pipe 7, supplies the reaction heat of the steam reforming catalyst 8, and is discharged to the outside of the power generation device. The entire power generator is insulated by the heat insulating material 9.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、従来の
内部改質型固体電解質燃料電池によれば、下記に述べる
問題点を有する。
However, the conventional internal reforming type solid electrolyte fuel cell has the following problems.

【0006】(1) 高温固体電解質燃料電池へ燃料供給す
る前に部分的な水蒸気改質反応を起こし反応吸熱させる
と高温固体電解質燃料電池排気ガス温度が低下し、ボト
ミングサイクルの効率が低下する。
(1) If a partial steam reforming reaction occurs before the fuel is supplied to the high-temperature solid electrolyte fuel cell to absorb the reaction heat, the exhaust gas temperature of the high-temperature solid electrolyte fuel cell decreases, and the efficiency of the bottoming cycle decreases.

【0007】(2) 高温固体電解質燃料電池で発生した熱
が直接内部改質反応吸熱で消費されないので、高温固体
電解質燃料電池の冷却が行われず、冷却用空気の消費量
が減少しない。(3) 高温固体電解質燃料電池発電装置に
内部改質用触媒反応装置が付属するため、発電装置全体
が大きくなる。
(2) Since the heat generated in the high temperature solid electrolyte fuel cell is not directly consumed by the internal reforming reaction endotherm, the high temperature solid electrolyte fuel cell is not cooled and the consumption of cooling air is not reduced. (3) Since the internal reforming catalytic reactor is attached to the high-temperature solid oxide fuel cell power generator, the entire power generator becomes large.

【0008】この発明はこうした事情を考慮してなされ
たもので、冷却用空気の消費量を反応吸熱分減少させる
とともに、ボトミングサイクル効率の低下を回避し、更
に装置全体をコンパクト化しえる固体電解質燃料電池発
電装置を提供することを目的とする。
The present invention has been made in consideration of such circumstances, and the solid electrolyte fuel which can reduce the consumption of cooling air by the reaction endotherm, avoid the lowering of the bottoming cycle efficiency, and further make the entire apparatus compact. An object is to provide a battery power generator.

【0009】[0009]

【課題を解決するための手段】この発明は、発電室と、
この発電室に設けられ、内側に燃料極を、外側に空気極
を配置した固体電解質燃料電池を複数直列に接続してな
る円筒型のスタックと、前記スタックへ燃料を供給する
燃料供給室と、前記固体電解質燃料電池で反応した燃料
を外部に排出する燃料排出室と、一端が前記燃料供給室
に連通し、他端が前記スタックの先端まで延出する燃料
供給管と、この燃料供給管に充填された水蒸気改質触媒
と、前記発電室に供給する空気と排空気との熱交換を行
う熱交換器とを具備することを特徴とする固体電解質燃
料電池発電装置である。
SUMMARY OF THE INVENTION The present invention comprises a power generation room,
A cylindrical stack, which is provided in this power generation chamber, has a fuel electrode inside and a plurality of solid electrolyte fuel cells in which an air electrode is arranged outside is connected in series, and a fuel supply chamber that supplies fuel to the stack, A fuel discharge chamber for discharging the fuel reacted in the solid electrolyte fuel cell to the outside, a fuel supply pipe having one end communicating with the fuel supply chamber and the other end extending to the tip of the stack, and the fuel supply pipe. A solid electrolyte fuel cell power generator comprising: a steam reforming catalyst filled therein; and a heat exchanger for exchanging heat between air supplied to the power generation chamber and exhaust air.

【0010】[0010]

【作用】この発明の発電装置において、天然ガス,水蒸
気等の燃料は燃料供給室で燃料排出室を通して発電室か
ら輻射と熱伝導、対流熱伝導で約500℃に加熱された
後、燃料供給管を通って各高温固体電解質燃料電池スタ
ックへ供給される。この際、燃料供給管内で水蒸気改質
反応が起き、天然ガスの主成分であるメタンが水蒸気と
反応し、水素と一酸化炭素に変化する。このときの反応
は吸熱反応であり、反応熱は排燃料による対流伝熱と発
電室21の固体電解質燃料電池の発熱により賄われる。
In the power generator of the present invention, the fuel such as natural gas and water vapor is heated to about 500 ° C. by radiation, heat conduction and convection heat conduction from the power generation chamber through the fuel discharge chamber to the fuel supply pipe. And is supplied to each high temperature solid electrolyte fuel cell stack. At this time, a steam reforming reaction occurs in the fuel supply pipe, methane, which is the main component of natural gas, reacts with steam, and changes into hydrogen and carbon monoxide. The reaction at this time is an endothermic reaction, and the reaction heat is covered by convective heat transfer by the exhaust fuel and heat generation of the solid electrolyte fuel cell in the power generation chamber 21.

【0011】一方、前記高温固体電解質燃料電池スタッ
クには空気が排空気との熱交換を行う熱交換器で700
℃まで加熱され発電室に供給される。空気中の酸素が固
体電解質燃料電池の反応で消費され、反応に伴う発熱で
発電室の温度は900℃から1000℃へ上がる。排空
気は空気排出管を通って発電装置外へ排出される。
On the other hand, in the high temperature solid oxide fuel cell stack, 700 is a heat exchanger for exchanging heat between air and exhaust air.
It is heated to ℃ and supplied to the power generation room. Oxygen in the air is consumed by the reaction of the solid oxide fuel cell, and the temperature of the power generation chamber rises from 900 ° C to 1000 ° C due to the heat generated by the reaction. Exhaust air is discharged to the outside of the power generator through the air discharge pipe.

【0012】[0012]

【実施例】以下、この発明の一実施例を図1を参照して
説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIG.

【0013】図中の21は、発電室を示す。この発電室21
には、内側に空気極,外側に燃料極を配置した固体電解
質燃料電池を複数直列に接続してなる円筒型の高温固体
電解質燃料電池スタック22が配置されている。前記発電
室21の上方には、燃料排出室23,燃料供給室24が順次設
けられている。前記高温固体電解質燃料電池スタック22
には、一端が前記燃料供給室24に連通する燃料供給管25
が設けられている。前記燃料供給管25内には、ニッケル
をアルミナ担持体中に分散させた粒状の水蒸気改質触媒
26が充填されている。前記発電室21には、空気排出管27
を介して空気熱交換器28が接続されている。発電装置全
体は断熱材29で断熱される。
Reference numeral 21 in the figure denotes a power generation chamber. This power room 21
A cylindrical high-temperature solid electrolyte fuel cell stack 22 in which a plurality of solid electrolyte fuel cells having an air electrode on the inside and a fuel electrode on the outside are connected in series is arranged therein. A fuel discharge chamber 23 and a fuel supply chamber 24 are sequentially provided above the power generation chamber 21. The high temperature solid electrolyte fuel cell stack 22
Has a fuel supply pipe 25 whose one end communicates with the fuel supply chamber 24.
Is provided. In the fuel supply pipe 25, a granular steam reforming catalyst in which nickel is dispersed in an alumina carrier.
Filled with 26. An air exhaust pipe 27 is provided in the power generation chamber 21.
The air heat exchanger 28 is connected via. The entire power generation device is insulated by the heat insulating material 29.

【0014】こうした構成の固体電解質燃料電池発電装
置において、天然ガスと水蒸気は燃料供給室24で燃料排
出室23を通して発電室21から輻射と熱伝導、対流熱伝導
で約500℃に加熱された後、燃料供給管25を通って各
高温固体電解質燃料電池スタック22へ供給される。この
際、燃料供給管25内で水蒸気改質反応が起き、天然ガス
の主成分であるメタンが水蒸気と反応し、水素と一酸化
炭素に変化する。このときの反応は吸熱反応であり、反
応熱は排燃料による対流伝熱と発電室21の固体電解質燃
料電池の発熱により賄われる。
In the solid oxide fuel cell power generator having such a structure, natural gas and water vapor are heated in the fuel supply chamber 24 through the fuel discharge chamber 23 from the power generation chamber 21 to about 500 ° C. by radiation, heat conduction and convection heat conduction. Is supplied to each high temperature solid electrolyte fuel cell stack 22 through the fuel supply pipe 25. At this time, a steam reforming reaction occurs in the fuel supply pipe 25, methane, which is the main component of natural gas, reacts with steam, and changes into hydrogen and carbon monoxide. The reaction at this time is an endothermic reaction, and the reaction heat is covered by convective heat transfer by the exhaust fuel and heat generation of the solid electrolyte fuel cell in the power generation chamber 21.

【0015】一方、前記高温固体電解質燃料電池スタッ
ク22には空気が排空気との熱交換を行う熱交換器28で7
00℃まで加熱され発電室21に供給される。空気中の酸
素が固体電解質燃料電池の反応で消費され、反応に伴う
発熱で発電室21の温度は900℃から1000℃へ上が
る。排空気は空気排出管27を通って発電装置外へ排出さ
れる。しかして、上記実施例に係る内部改質型固体電解
質燃料電池発電装置によれば、以下に述べる利点を有す
る。
On the other hand, in the high temperature solid oxide fuel cell stack 22, air is exchanged with exhaust air by a heat exchanger 28.
It is heated to 00 ° C and supplied to the power generation chamber 21. Oxygen in the air is consumed by the reaction of the solid oxide fuel cell, and the heat generated by the reaction raises the temperature of the power generation chamber 21 from 900 ° C to 1000 ° C. Exhaust air is discharged to the outside of the power generation device through the air discharge pipe 27. Therefore, the internal reforming type solid oxide fuel cell power generator according to the above embodiment has the following advantages.

【0016】(1) 高温固体電解質燃料電池の各スタック
22の内部に燃料供給管25が配置されているため、水蒸気
改質反応吸熱により高温固体電解質燃料電池スタック22
が直接冷却され、冷却用空気の消費量が反応吸熱分減少
する。
(1) Each stack of high temperature solid oxide fuel cell
Since the fuel supply pipe 25 is arranged inside the high temperature solid electrolyte fuel cell stack 22,
Is directly cooled, and the amount of cooling air consumed is reduced by the reaction endotherm.

【0017】(2) 高温固体電解質燃料電池出口の排ガス
温度は、水蒸気改質反応吸熱分冷却空気量が減少するの
で、全体の熱収支に変化が無く水蒸気改質反応をさせな
いシステムと同じ温度にすることができ、ボトミングサ
イクル効率の低下が無い。 (3) 改質触媒を、燃料供給管内部に充填するために触媒
を充填する特別なスペースが不要で、装置全体の大きさ
が変わらない。
(2) The exhaust gas temperature at the outlet of the high temperature solid oxide fuel cell is the same as that of the system that does not cause the steam reforming reaction because there is no change in the total heat balance because the amount of cooling air absorbed by the steam reforming reaction decreases. The bottoming cycle efficiency does not decrease. (3) Since the reforming catalyst is filled inside the fuel supply pipe, a special space for filling the catalyst is not required, and the size of the entire apparatus does not change.

【0018】なお、上記実施例では、ニッケルをアルミ
ナ担持体中に分散させた粒状の水蒸気改質触媒を用いた
場合についてが、これに限定されないことは勿論のこと
である。
In the above embodiment, the case of using a granular steam reforming catalyst in which nickel is dispersed in an alumina carrier is, of course, not limited to this.

【0019】[0019]

【発明の効果】以上詳述したようにこの発明によれば、
冷却用空気の消費量を反応吸熱分減少させるとともに、
ボトミングサイクル効率の低下を回避し、更に装置全体
を従来に比べてコンパクト化しえる固体電解質燃料電池
発電装置を提供できる。
As described above in detail, according to the present invention,
In addition to reducing the reaction endothermic amount of cooling air consumption,
It is possible to provide a solid oxide fuel cell power generation device which can avoid a decrease in bottoming cycle efficiency and can make the entire device more compact than conventional devices.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施例に係る固体電解質燃料電池
発電装置の説明図。
FIG. 1 is an explanatory diagram of a solid oxide fuel cell power generator according to an embodiment of the present invention.

【図2】従来の固体電解質燃料電池発電装置の説明図。FIG. 2 is an explanatory diagram of a conventional solid oxide fuel cell power generator.

【符号の説明】[Explanation of symbols]

21…発電室、22…固体電解質燃料電池スタック、2
3…燃料排出室、24…燃料供給室、25…燃料供給
管、26…水蒸気改質触媒、27…空気排出管、28…
空気熱交換器、29…断熱材。
21 ... Power generation chamber, 22 ... Solid electrolyte fuel cell stack, 2
3 ... Fuel discharge chamber, 24 ... Fuel supply chamber, 25 ... Fuel supply pipe, 26 ... Steam reforming catalyst, 27 ... Air discharge pipe, 28 ...
Air heat exchanger, 29 ... Insulation material.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 発電室と、この発電室に設けられ、内側
に燃料極を、外側に空気極を配置した固体電解質燃料電
池を複数直列に接続してなる円筒型のスタックと、前記
スタックへ燃料を供給する燃料供給室と、前記固体電解
質燃料電池で反応した燃料を外部に排出する燃料排出室
と、一端が前記燃料供給室に連通し、他端が前記スタッ
クの先端まで延出する燃料供給管と、この燃料供給管に
充填された水蒸気改質触媒と、前記発電室に供給する空
気と排空気との熱交換を行う熱交換器とを具備すること
を特徴とする固体電解質燃料電池発電装置。
1. A power generation chamber, a cylindrical stack provided in the power generation chamber, in which a plurality of solid electrolyte fuel cells each having a fuel electrode inside and an air electrode outside are connected in series, and to the stack. A fuel supply chamber for supplying fuel, a fuel discharge chamber for discharging the fuel reacted in the solid oxide fuel cell to the outside, a fuel having one end communicating with the fuel supply chamber and the other end extending to the tip of the stack. A solid electrolyte fuel cell comprising a supply pipe, a steam reforming catalyst filled in the fuel supply pipe, and a heat exchanger for exchanging heat between air supplied to the power generation chamber and exhaust air. Power generator.
JP04167439A 1992-06-25 1992-06-25 Solid electrolyte fuel cell power generator Expired - Lifetime JP3110158B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04167439A JP3110158B2 (en) 1992-06-25 1992-06-25 Solid electrolyte fuel cell power generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04167439A JP3110158B2 (en) 1992-06-25 1992-06-25 Solid electrolyte fuel cell power generator

Publications (2)

Publication Number Publication Date
JPH0613097A true JPH0613097A (en) 1994-01-21
JP3110158B2 JP3110158B2 (en) 2000-11-20

Family

ID=15849734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04167439A Expired - Lifetime JP3110158B2 (en) 1992-06-25 1992-06-25 Solid electrolyte fuel cell power generator

Country Status (1)

Country Link
JP (1) JP3110158B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998021776A1 (en) * 1996-11-12 1998-05-22 Forschungszentrum Jülich GmbH Fuel cell with integrated reformer
JP2002280050A (en) * 2001-03-21 2002-09-27 Toto Ltd Fuel cell power generating device
US7579501B2 (en) 2001-11-08 2009-08-25 Mitsubishi Chemical Corporation Composite oxide catalyst and method of producing the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998021776A1 (en) * 1996-11-12 1998-05-22 Forschungszentrum Jülich GmbH Fuel cell with integrated reformer
JP2002280050A (en) * 2001-03-21 2002-09-27 Toto Ltd Fuel cell power generating device
US7579501B2 (en) 2001-11-08 2009-08-25 Mitsubishi Chemical Corporation Composite oxide catalyst and method of producing the same
US7632777B2 (en) 2001-11-08 2009-12-15 Mitsubishi Chemical Corporation Composite oxide catalyst and method for preparation thereof
EP2343123A2 (en) 2001-11-08 2011-07-13 Mitsubishi Chemical Corporation Method for preparation of a composite oxide catalyst
EP2343124A2 (en) 2001-11-08 2011-07-13 Mitsubishi Chemical Corporation Method for preparation of a composite oxide catalyst

Also Published As

Publication number Publication date
JP3110158B2 (en) 2000-11-20

Similar Documents

Publication Publication Date Title
JP2003327405A (en) Fuel reforming apparatus and method of starting same
EP2858158B1 (en) Fuel cell system
JPH07230816A (en) Internally modified solid electrolyte fuel cell system
JP3611065B2 (en) Integrated fuel cell power generator
JP3110158B2 (en) Solid electrolyte fuel cell power generator
JPH07230819A (en) Internally modified solid electrolyte fuel cell system having self-heat exchange type heat insulating prereformer
JP3700162B2 (en) Integrated fuel cell power generator
JPH09289030A (en) Solid electrolyte fuel cell module
JPH08301601A (en) Methanol reformer
JP4326078B2 (en) Solid oxide fuel cell module
JPH1012258A (en) Internal reforming type solid electrolyte fuel cell module
JP3139574B2 (en) Fuel cell generator
JP3147498B2 (en) Thermal insulation construction method for fuel cell power generation equipment
JPH02197057A (en) Fuel cell power generator
JPH05343083A (en) Fuel cell power generation device
JPH01265461A (en) Phosphoric acid type fuel cell power generation device and its operating method
JPH08339815A (en) Fuel cell power generation device
JP2670607B2 (en) Fuel cell power plant using methanol as fuel
JPH06104000A (en) Fuel cell power generator
CN112825363B (en) Battery generating device
JPH0945349A (en) Fuel cell power generation device
Irving et al. Catalytic micro-reactor systems for hydrogen generation
KR20120034943A (en) Refoaming apparatus integrated with a humidifier and a heat exchanger, and refoaming method thereof
JP3467759B2 (en) Control method of outlet temperature of reformer
JP3509948B2 (en) Fuel cell power generator

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000815

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080914

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080914

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090914

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090914

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100914

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110914

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110914

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120914

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120914

Year of fee payment: 12