JPH02197057A - Fuel cell power generator - Google Patents

Fuel cell power generator

Info

Publication number
JPH02197057A
JPH02197057A JP1016796A JP1679689A JPH02197057A JP H02197057 A JPH02197057 A JP H02197057A JP 1016796 A JP1016796 A JP 1016796A JP 1679689 A JP1679689 A JP 1679689A JP H02197057 A JPH02197057 A JP H02197057A
Authority
JP
Japan
Prior art keywords
raw material
fuel cell
methanol
heat exchanger
supplied
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1016796A
Other languages
Japanese (ja)
Other versions
JPH0828228B2 (en
Inventor
Hiroyuki Tajima
田島 博之
Tomoyoshi Kamoshita
友義 鴨下
Masazuru Umemoto
梅本 真鶴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP1016796A priority Critical patent/JPH0828228B2/en
Publication of JPH02197057A publication Critical patent/JPH02197057A/en
Publication of JPH0828228B2 publication Critical patent/JPH0828228B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PURPOSE:To make a starter compact without requiring a large electric energy by using heat of liquid cooling medium passing through a cooling plate in a fuel cell stack for heating and cooling the stack at the time of starting for vaporizing methanol. CONSTITUTION:Power is applied to a heater 30 for vaporizing for starting a power generator first, and vaporized methanol is sent to a starting burner 11 to be supplied for combustion. Liquid cooling medium circulated by a liquid cooling medium pump 14 is heated by a starting heat exchanger 12 and circulated to heat methanol at a third heat exchanger 25 and a second heat exchanger 24, and it passes a bypass passage 27 having a bypass valve 38 and returns to the liquid cooling medium pump 14 to be circulated. Methanol is vaporized if it is heated to be over about 64 deg.C in the third heat exchanger and the second heat exchanger in this condition, so operation of the vaporizing heater 30 is stopped, and methanol vaporized at the heat exchanger 25 is supplied to the burner 11, and methanol vaporized at the heat exchanger 24 is supplied to the burner 9 respectively to be used for combustion.

Description

【発明の詳細な説明】 〔産業上の利用分野] この発明はメタノール等のアルコール原料を改質して燃
料ガスとして使用するリン酸形燃料電池を備えた燃料電
池発電装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a fuel cell power generation device equipped with a phosphoric acid fuel cell that reformes an alcohol raw material such as methanol and uses it as a fuel gas.

(従来の技術〕 第2図にアルコール原料特にその代表例であるメタノー
ルを水蒸気改質して燃料ガスとするリン酸形燃料電池発
電装置の系統図を示す。
(Prior Art) FIG. 2 shows a system diagram of a phosphoric acid fuel cell power generation device that steam-reforms an alcohol raw material, particularly methanol, which is a typical example thereof, to produce a fuel gas.

第2図において、原料タンク1に蓄えられたメタノール
は第3の原料ポンプ6を介して起動用バーナ11に供給
され、起動バーナ用ファン13から送られた空気ととも
に燃焼され、起動用熱交換器12を加熱する。この熱交
換器12内は液冷媒ポンプ14を介して液冷媒が循環し
ており燃料電池スタック15内の冷却板21を加熱また
は冷却する。原料タンク1より第2の原料ポンプ5を介
してメタノールが改質器バーナ9に供給されファン10
から送られる空気とともに燃焼されて改質器7内の改質
管8を加熱する。また原料タンク1より第1の原料ポン
プ4を介してメタノールと水タンク2より水ポンプ3を
介して水とが前記改質管8に供給されて水蒸気改質され
て水素リッチな燃料ガスとなって燃料電池スタック15
の燃料室18に供給される。同時にファン22で空気室
20に供給された空気とともに、燃料電極16と空気電
極17とでりん酸マトリックス19を介して電気化学反
応をして発電し出力端子23に起電力を生ずる。
In FIG. 2, methanol stored in the raw material tank 1 is supplied to the startup burner 11 via the third raw material pump 6, and is combusted together with air sent from the startup burner fan 13. Heat 12. A liquid refrigerant is circulated in the heat exchanger 12 via a liquid refrigerant pump 14 to heat or cool the cooling plate 21 in the fuel cell stack 15 . Methanol is supplied from the raw material tank 1 to the reformer burner 9 via the second raw material pump 5 and the fan 10
It is combusted together with the air sent from the reformer 7 and heats the reforming tube 8 in the reformer 7. Also, methanol is supplied from the raw material tank 1 via the first raw material pump 4, and water is supplied from the water tank 2 via the water pump 3 to the reforming pipe 8, where they are steam reformed and become hydrogen-rich fuel gas. fuel cell stack 15
The fuel is supplied to the fuel chamber 18 of. At the same time, together with the air supplied to the air chamber 20 by the fan 22, an electrochemical reaction occurs between the fuel electrode 16 and the air electrode 17 via the phosphoric acid matrix 19 to generate electricity and generate an electromotive force at the output terminal 23.

この発電装置を運転起動させるときは、第2図でまず改
質器7と燃料電池スタック15を運転温度(前者は約2
50℃、後者は約200℃)まで昇温させる必要がある
。改質器7を昇温させるには改質器バーナ9に原料タン
ク1より第2の原料ポンプ5を介してメタノールと、フ
ァン10より空気とを供給してメタノールを燃焼させて
改質器7を加熱する。
When starting up this power generator, first set the reformer 7 and fuel cell stack 15 at operating temperature (the former is about 2
It is necessary to raise the temperature to 50°C (the latter being about 200°C). To raise the temperature of the reformer 7, methanol is supplied from the raw material tank 1 to the reformer burner 9 via the second raw material pump 5, and air is supplied from the fan 10 to combust the methanol. heat up.

また、燃料電池スタック15は起動用バーナ11に第3
の原料ポンプを介してメタノールと、起動バーナ用ファ
ン13から空気とを供給しメタノールを燃焼させて起動
用熱交換器12を加熱する。この熱交換器12には液冷
媒ポンプ14を介して液冷媒が供給されており、加熱さ
れた液冷媒は燃料電池スタック15の冷却板21に循環
され燃料電池スタック15を加熱する。改質器7と燃料
電池スタック15が所定の温度に加熱された後に原料タ
ンク1より第1の原料ポンプ4を介してメタノールと、
水タンク2より水ポンプ3を介して水とを混合液にして
改質器7内の改質管8に供給する。改質管8には銅と亜
鉛系の触媒が充填されておりここで次の反応式により水
素が生成される。
Additionally, the fuel cell stack 15 has a third
Methanol is supplied through the raw material pump and air is supplied from the starting burner fan 13 to combust the methanol and heat the starting heat exchanger 12. A liquid refrigerant is supplied to the heat exchanger 12 via a liquid refrigerant pump 14 , and the heated liquid refrigerant is circulated through the cooling plate 21 of the fuel cell stack 15 to heat the fuel cell stack 15 . After the reformer 7 and the fuel cell stack 15 are heated to a predetermined temperature, methanol is supplied from the raw material tank 1 via the first raw material pump 4,
A mixture of water and water is supplied from the water tank 2 to the reforming pipe 8 in the reformer 7 via the water pump 3. The reforming tube 8 is filled with a copper and zinc catalyst, and hydrogen is produced here according to the following reaction formula.

CHs OH+ Ht O■3 H! + COx −
・・・−・・・・・(1)この水素と炭酸ガスの混合ガ
スが燃料電池スタック15内の燃料室18に供給される
。燃料電池スタック15にはさらにファン22より空気
が空気室20に供給されて、その空気中の酸素と前記(
1)式による水素がリン酸マトリックス19を介して電
気化学反応をして発電し出力端子23より外部に電力を
供給する。燃料電池スタック15は電気化学反応に伴っ
て発熱するため運転時には液冷媒を液冷媒ポンプ14と
起動用熱交換器12を通って循環させ燃料電池スタック
15を冷却する。このとき起動用バーナ11は停止して
いて起動バーナ用ファン13のみ運転させれば起動用熱
交換器12は冷却器として機能する。
CHs OH+ Ht O■3 H! + COx −
(1) This mixed gas of hydrogen and carbon dioxide is supplied to the fuel chamber 18 in the fuel cell stack 15. In the fuel cell stack 15, air is further supplied to the air chamber 20 by a fan 22, and the oxygen in the air and the (
Hydrogen according to the formula 1) undergoes an electrochemical reaction through the phosphoric acid matrix 19 to generate electricity, which is supplied to the outside from the output terminal 23. Since the fuel cell stack 15 generates heat due to electrochemical reactions, the fuel cell stack 15 is cooled by circulating liquid refrigerant through the liquid refrigerant pump 14 and the startup heat exchanger 12 during operation. At this time, the starting burner 11 is stopped, and if only the starting burner fan 13 is operated, the starting heat exchanger 12 functions as a cooler.

燃料電池スタック15が運転中にはここの燃料電極16
で発電に供されたあとの改質燃料ガス (オフガスとも
いう)は改質器バーナ9に供給されて燃焼し改質反応に
必要な熱を改質器7に供給する。
When the fuel cell stack 15 is in operation, the fuel electrode 16 here
The reformed fuel gas (also referred to as off-gas) after being used for power generation is supplied to the reformer burner 9 and combusted, supplying the reformer 7 with the heat necessary for the reforming reaction.

この場合でもし改質器の温度が所定の値より下がる際に
は原料タンク1によるメタノールを第2の原料ポンプ5
を介して改質器バーナ9で同時に燃焼させる。
In this case, if the temperature of the reformer falls below a predetermined value, methanol from the raw material tank 1 is transferred to the second raw material pump 5.
are simultaneously combusted in the reformer burner 9.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

前述した燃料電池発電装置を起動させるときに改質器バ
ーナ9および起動用バーナ11へのメタノールの供給は
、従来メタノールをスプレーで噴霧していたが、この方
式はメタノールの噴霧粒が大きいと不完全燃焼して燃焼
効率が悪く、排ガスが刺激臭を持つ欠点を有し、またス
プレー噴霧の機構上燃焼炎が長く燃焼室を小形にして装
置をコンパクトにするのに支障があった。これを解決す
る方法としてメタノールを気化させて前記2ケ所のバー
ナ9.11に供給し燃焼を完全に行わせる方式が考えら
れる0例えば原料ポンプとバーナとのメタノール供給ラ
インに電気ヒータ式気化器を設置して、メタノールを気
化する。しかしこのためには大きな電気エネルギーを必
要とし、別途外部よりの電源も必要となる。また改質器
バーナの排気熱を利用してメタノールを気化させる方式
もあるが、起動時には排気熱がなく改質器バーナが通常
運転している時以外は利用出来ないという欠点があった
Conventionally, methanol was supplied to the reformer burner 9 and startup burner 11 by spraying methanol when starting up the aforementioned fuel cell power generation system, but this method is disadvantageous if the sprayed methanol particles are large. The disadvantages are that the combustion efficiency is poor due to complete combustion, and the exhaust gas has a pungent odor.Also, due to the mechanism of spray atomization, the combustion flame is long, making it difficult to make the combustion chamber smaller and make the device more compact. One possible solution to this problem is to vaporize methanol and supply it to the two burners 9.11 for complete combustion. For example, an electric heater vaporizer may be installed in the methanol supply line between the raw material pump and the burner. installed to vaporize methanol. However, this requires a large amount of electrical energy, and a separate external power source is also required. There is also a method of vaporizing methanol using the exhaust heat of the reformer burner, but this method has the disadvantage that there is no exhaust heat at startup and it cannot be used except when the reformer burner is in normal operation.

この発明はこの点に鑑みてなされたもので、大きな電気
エネルギーを必要としない、コンパクトにまとめられた
起動用装置を備えた燃料電池発電装置を提供することを
目的とする。
The present invention has been made in view of this point, and an object of the present invention is to provide a fuel cell power generation device that does not require a large amount of electrical energy and is equipped with a compact starting device.

〔課題を解決するための手段〕[Means to solve the problem]

上記課題を解決するために、この発明によれば、原料タ
ンクより第1の原料ポンプを介してメタノール等のアル
コール原料が供給される改質器と、この改質器により前
記原料が改質されて供給される燃料極およびファンによ
って空気が供給される空気極を備え、液冷媒で冷却され
る冷却板を内蔵した燃料電池スタックとよりなり、前記
改質器は前記原料タンクより第2の原料ポンプを介して
原料が供給される改質器バーナを、前記燃料電池は前記
原料タンクより第3の原料ポンプを介して原料が供給さ
れ前記液冷媒を加熱する起動用熱交換器の起動用バーナ
を存する燃料電池発電装置において、前記第2の原料ポ
ンプと前記改質器バーナとの間の原料供給ライン内と、
前記第3の原料ポンプと前記起動用バーナとの間の原料
供給ライン内とに前記原料と前記液冷媒との熱を交換す
る第2と第3の熱交換器と、前記第3の熱交換器と前記
起動用バーナとの間の原料供給ラインに気化用ヒータと
、前記燃料電池スタック内の冷却板の冷媒入口にスタッ
ク用冷媒供給弁と、このスタック用冷媒供給弁の冷媒入
口と前記燃料電池スタック内の冷却板の冷媒出口とを接
続するバイパス通路と、このバイパス通路内にバイパス
弁とを設けてなるものとする。
In order to solve the above problems, the present invention provides a reformer to which an alcohol raw material such as methanol is supplied from a raw material tank via a first raw material pump, and a reformer that reformes the raw material. The reformer consists of a fuel cell stack equipped with a fuel electrode supplied by a fuel electrode and an air electrode supplied with air by a fan, and a built-in cooling plate cooled by a liquid refrigerant. The fuel cell has a reformer burner to which raw materials are supplied via a pump, and a startup burner of a startup heat exchanger to which raw materials are supplied from the raw material tank via a third raw material pump and heats the liquid refrigerant. In a fuel cell power generation device comprising: a raw material supply line between the second raw material pump and the reformer burner;
second and third heat exchangers that exchange heat between the raw material and the liquid refrigerant in a raw material supply line between the third raw material pump and the starting burner; and the third heat exchanger. a vaporizing heater in the raw material supply line between the fuel cell stack and the starting burner, a stack refrigerant supply valve at the refrigerant inlet of the cooling plate in the fuel cell stack, and a refrigerant inlet of the stack refrigerant supply valve and the fuel A bypass passage connecting the refrigerant outlet of the cooling plate in the battery stack and a bypass valve are provided in the bypass passage.

〔作用〕[Effect]

この発明の構成によると、燃料電池発電装置の起動に際
し、まず原料タンクより第3の原料ポンプを介して供給
されるメタノールを小形蓄電池などの小電力でも稼動で
きる気化用ヒータによってメタノールの沸点64℃以上
に加熱して気化し起動用バーナに供給する。ここで起動
バーナ用ファンから供給される空気と混合して燃焼し起
動用熱交換器を加熱する。この起動用熱交換器で加熱さ
れた液冷媒は液冷媒ポンプによって、第3の熱交換器と
、第2の熱交換器とを通りスタック用冷媒供給弁が閉じ
られバイパス弁が開かれているバイパス通路を覆って液
冷媒ポンプを介して前記起動用熱交換器に、もどる循環
をして前記第2.第3の熱交換器を加熱する。この第2
.第3の熱交換器が加熱されて所定の温度になると、気
化用ヒータのia源を切って停止させ、原料タンク1よ
り第2゜第3の原料ポンプを介して第2.第3の熱交換
器で加熱されて気化したメタノールがそれぞれ改質器バ
ーナと起動用バーナに入り燃焼して改質器内触媒管と起
動用熱交換器内の液冷媒を加熱する。
According to the structure of the present invention, when starting up the fuel cell power generation device, first, methanol is supplied from the raw material tank via the third raw material pump, and the boiling point of methanol is 64 ° C. It is heated above and vaporized and supplied to the starting burner. Here, it is mixed with air supplied from the startup burner fan and burned to heat the startup heat exchanger. The liquid refrigerant heated by this start-up heat exchanger passes through a third heat exchanger and a second heat exchanger by a liquid refrigerant pump, and the stack refrigerant supply valve is closed and the bypass valve is opened. The second. Heat the third heat exchanger. This second
.. When the third heat exchanger is heated to a predetermined temperature, the ia source of the vaporizing heater is turned off and stopped, and the second heat exchanger is moved from the raw material tank 1 to the second through the third raw material pump. Methanol heated and vaporized in the third heat exchanger enters the reformer burner and the startup burner, respectively, and burns to heat the catalyst tube in the reformer and the liquid refrigerant in the startup heat exchanger.

この液冷媒が所定の温度になると前記バイパス弁を閉じ
てスタック用冷媒供給弁を開き、液冷媒は燃料電池スタ
ック内冷却板に供給されて燃料電池スタックを加熱する
。この燃料電池スタックが所定の温度になると、改質器
より加熱改質されて水素リッチになった燃料が燃料電池
スタックの燃料室へ、ファンによって供給される空気が
空気室に入って発電に供される。運転が定常状態になっ
て燃料電池スタックの燃料極より出たオフガスが改質器
バーナに供されて燃焼して改質器バーナにメタノールを
供する必要がない時は第2の原料ポンプを停止してメタ
ノールの供給を停止する。また燃料電池スタック内で発
電時発生する反応熱が冷却板内の液冷媒を加熱して循環
させていて、前記起動用バーナで起動用熱交換器を加熱
する必要がなくなるので、第3の原料ポンプを停止して
起動用バーナへのメタノールの供給を停止する。
When this liquid refrigerant reaches a predetermined temperature, the bypass valve is closed and the stack refrigerant supply valve is opened, and the liquid refrigerant is supplied to the cooling plate in the fuel cell stack to heat the fuel cell stack. When this fuel cell stack reaches a predetermined temperature, the hydrogen-rich fuel that has been heated and reformed by the reformer enters the fuel chamber of the fuel cell stack, and the air supplied by the fan enters the air chamber and is used for power generation. be done. When the operation is in a steady state and the off-gas discharged from the fuel electrode of the fuel cell stack is supplied to the reformer burner and burned, and there is no need to supply methanol to the reformer burner, the second raw material pump is stopped. and stop the methanol supply. In addition, the reaction heat generated during power generation in the fuel cell stack heats and circulates the liquid refrigerant in the cooling plate, eliminating the need to heat the startup heat exchanger with the startup burner. Stop the pump and stop supplying methanol to the startup burner.

〔実施例〕〔Example〕

以下この発明を実施例に基づいて説明する。第1図はこ
の発明の実施例を示す系統図で第2図の従来例で示した
ものと同じ部位には同じ符号を付しである。原料タンク
1より第3の原料ポンプ6を介して起動用熱交換器12
の起動用バーナ11にメタノールを供給するラインに第
3の熱交換器25と気化用ヒータ30とが配されてこの
燃料電池発電装置の起動にあたってまず気化用ヒータ3
0に電力が入りメタノールの沸点約64°C以上になっ
て気化したメタノールが起動用バーナ11に送られて燃
焼に供される。液冷媒ポンプ14によって循環させられ
る液冷媒は起動用熱交換器12によって加熱されて循環
し第3の熱交換器25と第2の熱交換器24とでメタノ
ールを加熱し、スタック用冷媒供給弁を閉っているため
、開いているバイパス弁28のあるバイバス通路27を
通って液冷媒ポンプ14にもどる循環をする。この状態
で第3の熱交換器と第2の熱交換器との内部でメタノー
ルが約64℃以上に昇温されるとメタノールは気化する
ので、気化用ヒータ30は運転を停止し、起動用バーナ
11には第3の熱交換器25で気化したメタノールが、
改質器バーナ9には第2の熱交換器24で気化したメタ
ノールがそれぞれ供給されて燃焼に供される。気化用ヒ
ータが運転を停止するとスタック用冷媒供給弁29が開
き、バイパス弁28が閉じるので、熱せられた冷媒体が
燃料電池スタック15の冷却板21内を通流して液冷媒
ポンプ14にもどる循環をする。
The present invention will be explained below based on examples. FIG. 1 is a system diagram showing an embodiment of the present invention, and the same parts as those shown in the conventional example of FIG. 2 are given the same reference numerals. The starting heat exchanger 12 is supplied from the raw material tank 1 via the third raw material pump 6.
A third heat exchanger 25 and a vaporizing heater 30 are arranged in the line that supplies methanol to the starting burner 11.
Electric power is applied to the combustion chamber 0, and the methanol vaporized at a temperature exceeding the boiling point of methanol of approximately 64° C. is sent to the starting burner 11 for combustion. The liquid refrigerant circulated by the liquid refrigerant pump 14 is heated by the startup heat exchanger 12 and circulated, and the methanol is heated by the third heat exchanger 25 and the second heat exchanger 24, and the stack refrigerant supply valve is heated. Since the liquid refrigerant is closed, the liquid refrigerant is circulated back to the liquid refrigerant pump 14 through the bypass passage 27 where the bypass valve 28 is open. In this state, if methanol is heated to about 64°C or higher inside the third heat exchanger and second heat exchanger, methanol will vaporize, so the vaporization heater 30 will stop operating, and the The burner 11 contains methanol vaporized in the third heat exchanger 25.
Methanol vaporized in the second heat exchanger 24 is supplied to each of the reformer burners 9 and is used for combustion. When the vaporization heater stops operating, the stack refrigerant supply valve 29 opens and the bypass valve 28 closes, so that the heated refrigerant flows through the cooling plate 21 of the fuel cell stack 15 and returns to the liquid refrigerant pump 14. do.

改質器バーナが燃焼すると改質器7の触媒管8が加熱さ
れて原料であるメタノールは、水素リッチに改賀されて
冷却板21によって前記のごとく温められている燃料電
池スタック15の燃料室18に供給され、発電に供され
る。
When the reformer burner burns, the catalyst tube 8 of the reformer 7 is heated, and methanol, which is a raw material, is converted into a hydrogen-rich fuel chamber of the fuel cell stack 15 where it is heated as described above by the cooling plate 21. 18 and used for power generation.

〔発明の効果〕〔Effect of the invention〕

この発明は前述のように燃料電池スタック内の冷却板を
通流し前記スタックの昇温と冷却をしている液冷媒の熱
を発電装置の起動時に利用して、起動用バーナや改質器
バーナに供給するメタノールと熱交換してメタノールを
気化するので、液対液の効率よい熱の交換伝達ができて
装置全体を小形軽量に設計することができる。また液冷
媒の昇温時には、前述のごとくバイパス弁を開いたバイ
パス通路を、液冷媒が通流して昇温しでいる短時間のみ
気化用ヒータを使用するので、使用電力量が少なくてす
み、電源に小形蓄電池も利用できて装置を簡便ならしめ
る。またメタノールを気化するとき与える熱源の温度が
高すぎると (約300〜400℃)、メタノールが熱
分解で炭化して配管を詰まらせる事があるが、燃料電池
スタックの昇温と冷却とに使用している液冷媒の温度は
燃料電池スタックの運転温度の約200℃を超えること
はなくメタノールを熱分解させることはない。
As described above, this invention utilizes the heat of the liquid refrigerant that flows through the cooling plate in the fuel cell stack to raise and cool the temperature of the fuel cell stack at the time of starting up the power generation device, and uses the heat in the starting burner and the reformer burner. Since the methanol is vaporized through heat exchange with the methanol supplied to the reactor, efficient heat exchange and transfer between liquid and liquid is possible, and the entire device can be designed to be small and lightweight. In addition, when raising the temperature of the liquid refrigerant, the vaporizing heater is used only for a short period of time when the liquid refrigerant flows through the bypass passage with the bypass valve open and the temperature rises, as described above, so less electricity is used. A small storage battery can also be used as a power source, making the device simple. Also, if the temperature of the heat source applied when vaporizing methanol is too high (approximately 300 to 400 degrees Celsius), methanol may carbonize due to thermal decomposition and clog the pipes, but it is used to raise and cool the temperature of the fuel cell stack. The temperature of the liquid refrigerant used does not exceed the operating temperature of the fuel cell stack, about 200° C., and does not thermally decompose methanol.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明になるメタノール気化用熱交換器を備
えた燃料電池発電装置の系統図、第2図は従来例になる
燃料電池発電装置の系統図である。 1:原料タンク、5:第2の原料ポンプ、6:第3の原
料ポンプ、7:改質器、9:改質器バーナ、11:起動
用バーナ、12:起動用熱交換器、14:液冷媒ポンプ
、15:燃料電池スタック、21:冷却板、24:第2
の熱交換器、25:第3の熱交換器、27:バイパス通
路、28:バイパス弁、29ニスタツク用冷媒供給弁、
30:気化用ヒータ。
FIG. 1 is a system diagram of a fuel cell power generation apparatus equipped with a methanol vaporization heat exchanger according to the present invention, and FIG. 2 is a system diagram of a conventional fuel cell power generation apparatus. 1: Raw material tank, 5: Second raw material pump, 6: Third raw material pump, 7: Reformer, 9: Reformer burner, 11: Start-up burner, 12: Start-up heat exchanger, 14: Liquid refrigerant pump, 15: Fuel cell stack, 21: Cooling plate, 24: Second
heat exchanger, 25: third heat exchanger, 27: bypass passage, 28: bypass valve, 29 refrigerant supply valve for stack,
30: Vaporization heater.

Claims (1)

【特許請求の範囲】[Claims] 1)原料タンクより第1の原料ポンプを介してメタノー
ル等のアルコール原料が供給される改質器と、この改質
器により前記原料が改質されて供給される燃料極および
ファンによって空気が供給される空気極を備え、液冷媒
で冷却される冷却板を内蔵した燃料電池スタックとより
なり、前記改質器は前記原料タンクより第2の原料ポン
プを介して原料が供給される改質器バーナを、前記燃料
電池は前記原料タンクより第3の原料ポンプを介して原
料が供給され前記液冷媒を加熱する起動用熱交換器の起
動用バーナを有する燃料電池発電装置において、前記第
2の原料ポンプと前記改質器バーナとの間の原料供給ラ
イン内と、前記第3の原料ポンプと前記起動用バーナと
の間の原料供給ライン内とに前記原料と前記液冷媒との
熱を交換する第2と第3の熱交換器と、前記第3の熱交
換器と前記起動用バーナとの間の原料供給ラインに気化
用ヒータと、前記燃料電池スタック内の冷却板の冷媒入
口にスタック用冷媒供給弁と、このスタック用冷媒供給
弁の冷媒入口と前記燃料電池スタック内の冷却板の冷媒
出口とを接続するバイパス通路と、このバイパス通路内
にバイパス弁とを設けてなることを特徴とする燃料電池
発電装置。
1) A reformer to which an alcohol raw material such as methanol is supplied from a raw material tank via a first raw material pump, and air is supplied by a fuel electrode and a fan to which the raw material is reformed and supplied by this reformer. The reformer is a fuel cell stack having a built-in cooling plate cooled by a liquid refrigerant, and the reformer is supplied with raw material from the raw material tank via a second raw material pump. In the fuel cell power generating apparatus, the fuel cell has a starting burner of a starting heat exchanger that is supplied with raw material from the raw material tank via a third raw material pump and heats the liquid refrigerant. Heat is exchanged between the raw material and the liquid refrigerant in a raw material supply line between the raw material pump and the reformer burner and in a raw material supply line between the third raw material pump and the startup burner. a vaporizing heater in the raw material supply line between the third heat exchanger and the startup burner, and a stack at the refrigerant inlet of the cooling plate in the fuel cell stack. A refrigerant supply valve for the fuel cell, a bypass passage connecting the refrigerant inlet of the refrigerant supply valve for the stack and a refrigerant outlet of the cooling plate in the fuel cell stack, and a bypass valve provided in the bypass passage. A fuel cell power generation device.
JP1016796A 1989-01-26 1989-01-26 Fuel cell generator Expired - Lifetime JPH0828228B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1016796A JPH0828228B2 (en) 1989-01-26 1989-01-26 Fuel cell generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1016796A JPH0828228B2 (en) 1989-01-26 1989-01-26 Fuel cell generator

Publications (2)

Publication Number Publication Date
JPH02197057A true JPH02197057A (en) 1990-08-03
JPH0828228B2 JPH0828228B2 (en) 1996-03-21

Family

ID=11926126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1016796A Expired - Lifetime JPH0828228B2 (en) 1989-01-26 1989-01-26 Fuel cell generator

Country Status (1)

Country Link
JP (1) JPH0828228B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19931062B4 (en) * 1999-07-01 2004-02-12 P21 - Power For The 21St Century Gmbh Arrangement for heating / cooling a fuel cell and fuel cell system and their use
US6756143B2 (en) 2000-11-08 2004-06-29 Ballard Power Systems Ag Fuel cell system and method for starting a fuel cell system
WO2005069420A1 (en) * 2004-01-19 2005-07-28 Toyota Jidosha Kabushiki Kaisha Fuel cell system
DE10018139B4 (en) * 1999-04-28 2006-07-13 Toyota Jidosha K.K., Toyota Fuel cell system with a temperature control
WO2008041528A1 (en) * 2006-09-26 2008-04-10 Panasonic Corporation Fuel cell system
CN104835977A (en) * 2015-05-07 2015-08-12 深圳伊腾得新能源有限公司 Fuel-cell power generation device using methanol water to achieve preheating and heat dissipation effect
CN117080485A (en) * 2023-10-18 2023-11-17 康明斯新能源动力(上海)有限公司 Cooling liquid heating device and heating loop for fuel cell engine

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10018139B4 (en) * 1999-04-28 2006-07-13 Toyota Jidosha K.K., Toyota Fuel cell system with a temperature control
DE19931062B4 (en) * 1999-07-01 2004-02-12 P21 - Power For The 21St Century Gmbh Arrangement for heating / cooling a fuel cell and fuel cell system and their use
US6756143B2 (en) 2000-11-08 2004-06-29 Ballard Power Systems Ag Fuel cell system and method for starting a fuel cell system
WO2005069420A1 (en) * 2004-01-19 2005-07-28 Toyota Jidosha Kabushiki Kaisha Fuel cell system
US7132184B2 (en) 2004-01-19 2006-11-07 Toyota Jidosha Kabushiki Kaisha Fuel cell system
WO2008041528A1 (en) * 2006-09-26 2008-04-10 Panasonic Corporation Fuel cell system
JPWO2008041528A1 (en) * 2006-09-26 2010-02-04 パナソニック株式会社 Fuel cell system
JP4584337B2 (en) * 2006-09-26 2010-11-17 パナソニック株式会社 Fuel cell system
US8241807B2 (en) 2006-09-26 2012-08-14 Panasonic Corporation Fuel cell system
CN104835977A (en) * 2015-05-07 2015-08-12 深圳伊腾得新能源有限公司 Fuel-cell power generation device using methanol water to achieve preheating and heat dissipation effect
CN117080485A (en) * 2023-10-18 2023-11-17 康明斯新能源动力(上海)有限公司 Cooling liquid heating device and heating loop for fuel cell engine
CN117080485B (en) * 2023-10-18 2024-02-06 康明斯新能源动力(上海)有限公司 Cooling liquid heating device and heating loop for fuel cell engine

Also Published As

Publication number Publication date
JPH0828228B2 (en) 1996-03-21

Similar Documents

Publication Publication Date Title
US4473622A (en) Rapid starting methanol reactor system
JP4546736B2 (en) Steam generator for PEM fuel cell power equipment
WO2002069430A9 (en) Internal reforming improvements for fuel cells
CN109962260A (en) A kind of methanol fuel-cell system
US10727510B2 (en) Method of starting-up a fuel cell arrangement and fuel cell arrangement
CN115172800A (en) Solid oxide fuel cell combined heat and power system
RU2443040C2 (en) Fuel elements system
JPS6188461A (en) Method of starting and stopping fuel cell power generation system
JPH02197057A (en) Fuel cell power generator
JP3704299B2 (en) Combined system of solid oxide fuel cell and industrial process using combustion and its operation method
JP4451945B2 (en) Combined power plant
JP2003017097A (en) Gas humidifying device and fuel cell system
JP3986430B2 (en) Hydrogen utilization system using solid oxide fuel cell
JP3062219B2 (en) Heat medium heating device of fuel reformer for fuel cell
JP2007103034A (en) Fuel cell system and its starting method
JP3897149B2 (en) Solid oxide fuel cell and Stirling engine combined system
JPH03101063A (en) Fuel cell power source system
JPH1069919A (en) Fuel cell generating system
JPS6266578A (en) Air cooling type fuel cell power generating system
JP2008097936A (en) Solid oxide fuel cell module, and its control method
JP2008204782A (en) Solid oxide fuel cell system
JPS61190865A (en) Method and equipment for starting fuel cell
JP2000173632A (en) Fuel cell power generation system
JP2003017108A (en) Reforming device and fuel cell system
JPS6386365A (en) Starting equipment for air cooled fuel cell power generator