JP2002280050A - Fuel cell power generating device - Google Patents

Fuel cell power generating device

Info

Publication number
JP2002280050A
JP2002280050A JP2001079764A JP2001079764A JP2002280050A JP 2002280050 A JP2002280050 A JP 2002280050A JP 2001079764 A JP2001079764 A JP 2001079764A JP 2001079764 A JP2001079764 A JP 2001079764A JP 2002280050 A JP2002280050 A JP 2002280050A
Authority
JP
Japan
Prior art keywords
fuel cell
fuel
power generation
gas
exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001079764A
Other languages
Japanese (ja)
Inventor
Susumu Aikawa
進 相川
Masahiro Kuroishi
正宏 黒石
Hiroaki Takeuchi
弘明 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toto Ltd
Original Assignee
Toto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto Ltd filed Critical Toto Ltd
Priority to JP2001079764A priority Critical patent/JP2002280050A/en
Publication of JP2002280050A publication Critical patent/JP2002280050A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a fuel cell power generating device capable of improving output and efficiency of a fuel cell by easily maintaining a generating reaction part of the fuel cell in high temperature by reducing loss due to take-out of sensible heat, as the sensible heat is taken out of the fuel cell with exhaust gas though exhaust air and the exhaust fuel gas exhausted from the generating reaction part have the sensible heat equivalent to their temperature. SOLUTION: This fuel cell power generating device is constituted of at least a fuel cell furnished with a fuel electrode and an air electrode and a power generating reaction chamber in which the fuel cell is stored, and a porous body layer is provided in the power generating reaction chamber so that either one of fuel gas and power generating reaction product gas passes at least.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、燃料電池発電装置
に関し、さらに詳細には固体酸化物形燃料電池装置など
の高温型燃料電池発電装置に関する。
The present invention relates to a fuel cell power generator, and more particularly to a high temperature fuel cell power generator such as a solid oxide fuel cell apparatus.

【0002】[0002]

【従来の技術】燃料電池発電装置を構成する燃料電池の
一つの種類として固体酸化物形燃料電池がある。固体酸
化物形燃料電池はさらに円筒型、平板型等に分類される
が、ここでは円筒型固体酸化物形燃料電池を例示して説
明する。円筒型固体酸化物形燃料電池は、一般的に多孔
質支持管−空気極−固体電解質−燃料極−インターコネ
クタから構成されている。なお、空気極が多孔質支持管
を兼用する場合もある。
2. Description of the Related Art A solid oxide fuel cell is one type of fuel cell constituting a fuel cell power generator. Solid oxide fuel cells are further classified into a cylindrical type, a flat plate type, and the like. Here, a cylindrical solid oxide type fuel cell will be described as an example. A cylindrical solid oxide fuel cell generally includes a porous support tube, an air electrode, a solid electrolyte, a fuel electrode, and an interconnector. Note that the air electrode may also serve as the porous support tube.

【0003】従来の筒状固体酸化物形燃料電池セル(以
下燃料電池セルという)から構成される燃料電池発電装
置の一般的な構成図を図4に示す。燃料電池セル1は、
有底筒状のセラミックチューブである。燃料電池セル1
の断面は多層円筒状をしており、空気極、固体電解質、
燃料極等の各層が積層されている。燃料電池セル1の各
層の肉厚は数μm〜2.5mmであり、それぞれ必要な
機能(導電性、通気性、固体電解質、電気化学触媒性
等)を有する酸化物を主成分とするセラミックス材で形
成されている。この燃料電池セル1の内側に酸化剤ガス
(空気や酸素リッチガス等、以下空気という)を流し、
外側にH2、CO、CH4などの燃料ガスを流すと、この
燃料電池セル1内でO2-イオンが移動して電気化学的発
電反応(以下発電反応という)が起こり、空気極と燃料
極との間に電位差が生じて発電が行われる。1本の燃料
電池セルの出力は限られているため、実際の燃料電池発
電装置では、燃料電池セル1を複数本集合させて使用す
る。燃料電池セル1は発電反応室5に収納され、発電反
応室5の上部には隔壁7によって仕切られた排空気室6
が形成され、発電反応室5の下部には燃料ガス室4が形
成されている。発電反応室5、排空気室6および燃料ガ
ス室4の周囲には断熱材層10が配設されており、さら
にその周囲はモジュール容器9が設置されている。モジ
ュール容器9の周囲に更に断熱材層が配設される場合も
ある。
FIG. 4 shows a general configuration diagram of a conventional fuel cell power generator composed of a cylindrical solid oxide fuel cell (hereinafter referred to as a fuel cell). The fuel cell 1 is
It is a bottomed cylindrical ceramic tube. Fuel cell 1
Has a multi-layer cylindrical cross section, and has an air electrode, solid electrolyte,
Each layer such as a fuel electrode is stacked. The thickness of each layer of the fuel cell 1 is several μm to 2.5 mm, and a ceramic material mainly composed of an oxide having necessary functions (conductivity, air permeability, solid electrolyte, electrochemical catalytic property, etc.) It is formed with. An oxidant gas (air, oxygen-rich gas or the like, hereinafter, referred to as air) flows inside the fuel cell 1,
When a fuel gas such as H2, CO, or CH4 flows outside, O2- ions move in the fuel cell 1 to cause an electrochemical power generation reaction (hereinafter referred to as a power generation reaction). An electric potential difference is generated between them to generate power. Since the output of one fuel cell is limited, in an actual fuel cell power generator, a plurality of fuel cells 1 are used as a group. The fuel cell unit 1 is housed in a power generation reaction chamber 5, and an exhaust air chamber 6 partitioned by a partition 7 is provided above the power generation reaction chamber 5.
Is formed, and a fuel gas chamber 4 is formed below the power generation reaction chamber 5. A heat insulating material layer 10 is provided around the power generation reaction chamber 5, the exhaust air chamber 6, and the fuel gas chamber 4, and a module container 9 is further provided around the heat insulating material layer 10. In some cases, a heat insulating material layer is further provided around the module container 9.

【0004】それぞれの燃料電池セル1の内側には、空
気を供給するための細長い空気導入管2が内挿されてお
り、その下端は燃料電池セル1の底近くにまで達してい
る。この空気導入管2の下端から、空気が燃料電池セル
1の底に供給される。燃料電池セル1の底に供給された
空気は、上述の発電反応に寄与しつつ燃料電池セル1の
内側を上方に向かい、排空気室6を通って排空気として
排出される。燃料電池セル1の外側には、燃料ガス室4
から燃料ガス供給口3を介して上方に向けて、燃料ガス
(H2、CO、CH4等)が供給される。燃料ガスは、上
述の発電反応に寄与しつつ燃料電池セル1の外側を上方
に向かい、未反応の燃料ガスと、燃料電池セル1での発
電反応生成物ガス(CO2、H2O等)は、排燃料ガスと
して排出される。固体酸化物形燃料電池の発電反応部の
温度は、約900〜1000℃であるため、排空気や排
燃料ガスの保有する顕熱を熱交換器によって回収し、空
気や燃料ガスの予熱に用いることもある。また、排空気
と排燃料ガスを混合燃焼させ、その燃焼熱を熱交換器に
より回収して予熱をおこなうこともある。
[0004] An elongated air introduction pipe 2 for supplying air is inserted inside each fuel cell 1, and its lower end reaches near the bottom of the fuel cell 1. From the lower end of the air introduction pipe 2, air is supplied to the bottom of the fuel cell 1. The air supplied to the bottom of the fuel cell 1 goes upward inside the fuel cell 1 while contributing to the above-described power generation reaction, and is discharged as exhaust air through the exhaust air chamber 6. Outside the fuel cell 1, a fuel gas chamber 4
The fuel gas (H 2, CO, CH 4, etc.) is supplied upward from the fuel gas supply port 3. The fuel gas is directed upward outside the fuel cell 1 while contributing to the above-described power generation reaction, and unreacted fuel gas and power generation reaction product gas (CO2, H2O, etc.) in the fuel cell 1 are discharged. Emitted as fuel gas. Since the temperature of the power generation reaction section of the solid oxide fuel cell is about 900 to 1000 ° C., the sensible heat of the exhaust air and the exhaust fuel gas is collected by a heat exchanger and used for preheating the air and the fuel gas. Sometimes. Further, the exhaust air and the exhaust fuel gas may be mixed and combusted, and the combustion heat may be recovered by a heat exchanger to perform preheating.

【0005】[0005]

【発明が解決しようとする課題】上記のように反応温度
が高温の燃料電池発電装置においては、発電反応部の温
度が最適な温度に維持される必要がある。すなわち発電
反応部の周囲に断熱材層を設けて、放熱ロスを防止する
必要があるが、適切な断熱材の選定と適切な厚さの断熱
材層の設置によって放熱ロスを低減することが可能であ
る。しかしながら、放熱ロスを極小にするために断熱材
層を厚くするという対策が考えられるが、断熱材層が非
常に厚くなり、燃料電池のサイズが大きくなるため現実
的ではない。
In the fuel cell power generator having a high reaction temperature as described above, the temperature of the power generation reaction section needs to be maintained at an optimum temperature. In other words, it is necessary to provide a heat insulating material layer around the power generation reaction part to prevent heat loss, but it is possible to reduce heat loss by selecting an appropriate heat insulating material and installing a heat insulating material layer with an appropriate thickness. It is. However, measures to increase the thickness of the heat insulating material layer in order to minimize the heat dissipation loss can be considered, but this is not practical because the heat insulating material layer becomes extremely thick and the size of the fuel cell increases.

【0006】一方、排空気や発電反応部から排出される
排燃料ガスはその温度に相当する顕熱を有しているが、
排出ガスとともに燃料電池発電装置の外部に持ち出され
ている。この顕熱の持ち出しによるロスが低減されれ
ば、燃料電池発電装置の発電反応部を高温に維持するこ
とが容易になり、燃料電池発電装置の出力や効率を向上
させることが可能となる。前述のように熱交換器を用い
て排熱回収を行う方法では、熱交換器の設備コスト、維
持コストがかかるとともに設置スペースなどの問題が発
生し経済性の面で問題がある。
On the other hand, the exhaust air and the exhaust gas discharged from the power generation reaction section have sensible heat corresponding to the temperature.
It is taken out of the fuel cell power generator together with the exhaust gas. If the loss caused by taking out the sensible heat is reduced, it is easy to maintain the power generation reaction section of the fuel cell power generation device at a high temperature, and it is possible to improve the output and efficiency of the fuel cell power generation device. As described above, the method of recovering exhaust heat using a heat exchanger involves a facility cost and a maintenance cost of the heat exchanger, and also causes a problem such as an installation space, which is problematic in terms of economic efficiency.

【0007】本発明は、このような課題を解決し、排空
気や排燃料ガスが保有する顕熱の持ち出しによるロスを
低減し、高効率な発電を行える燃料電池発電装置を提供
することを目的とする。
An object of the present invention is to solve the above problems and to provide a fuel cell power generator capable of reducing power loss caused by taking out sensible heat of exhaust air or exhaust gas and generating electricity with high efficiency. And

【0008】[0008]

【課題を解決するための手段】上記課題解決するため、
第1の発明は、少なくとも、燃料極と空気極を備えた燃
料電池セルと、該燃料電池セルが収納された発電反応室
とからなり、該発電反応室内に、燃料ガスまたは発電反
応生成物ガスのどちらか一方が通過するように多孔体層
を設けたことを特徴とする燃料電池発電装置である。前
述のように、固体酸化物形燃料電池の発電反応部の温度
は約1000℃であるため、発電反応室内を流通する燃
料ガスおよび反応生成物ガスの温度も約1000℃とな
っている。
In order to solve the above problems,
A first invention comprises at least a fuel cell having a fuel electrode and an air electrode, and a power generation reaction chamber in which the fuel cell is housed, and a fuel gas or a power generation reaction product gas is provided in the power generation reaction chamber. The fuel cell power generator is characterized in that a porous layer is provided so that either one of them passes through. As described above, since the temperature of the power generation reaction section of the solid oxide fuel cell is about 1000 ° C., the temperature of the fuel gas and the reaction product gas flowing in the power generation reaction chamber is also about 1000 ° C.

【0009】高温ガスの流路内に多孔体層を設置する
と、「高温ガスの顕熱が輻射エネルギーに変換され、多
孔性固体壁(多孔体層)を境界面として上流側には高温
で均一な温度場が形成され、また強い輻射空間になる」
ことが知られている。(参考文献:燃焼の設計―理論と
実際―日本機会学会編など)
When a porous layer is installed in the flow path of the high-temperature gas, the sensible heat of the high-temperature gas is converted into radiant energy, and the porous solid wall (porous layer) is used as a boundary surface and a high-temperature uniform is formed upstream. It creates a strong temperature field and a strong radiation space. ''
It is known. (Reference: Combustion Design-Theory and Practice-Japan Opportunity Society, etc.)

【0010】本発明は、この公知技術を燃料電池発電装
置に応用したものであって、燃料電池発電装置内の発電
反応室内に、高温(約1000℃)の燃料ガスまたは反
応生成物ガスの少なくともどちらか一方が通過するよう
に多孔体層を設け、燃料ガスまたは反応生成物ガスが保
有する顕熱を輻射エネルギーに変換し、発電反応室の上
流側に存在する燃料電池発電装置の各構成部に強い輻射
熱を放出するようにしたものである。燃料ガスまたは反
応生成物ガスが保有する顕熱の持ち出しを大幅に低減
し、燃料電池発電装置の各構成部を高温に維持し、燃料
電池発電装置の高効率な安定運転を可能とする。
The present invention is an application of this known technique to a fuel cell power generator, in which at least a high-temperature (about 1000 ° C.) fuel gas or a reaction product gas is contained in a power generation reaction chamber of the fuel cell power generator. A porous layer is provided so that either one of them passes through, and sensible heat held by the fuel gas or reaction product gas is converted into radiant energy, and each component of the fuel cell power generation device existing upstream of the power generation reaction chamber It emits strong radiant heat. The sensible heat carried out by the fuel gas or the reaction product gas is greatly reduced, and each component of the fuel cell power generation device is maintained at a high temperature, thereby enabling the fuel cell power generation device to operate stably with high efficiency.

【0011】第2の発明は、少なくとも、燃料極と空気
極を備えた燃料電池セルと、該燃料電池セルが収納され
た発電反応室と、該発電反応室もしくは前記燃料極から
排出された排燃料ガスが流入する排燃料ガス室とからな
り、該燃料ガス室内に、排燃料ガスが通過するように多
孔体層を設けたことを特徴とする燃料電池発電装置であ
る。本発明によって、高温の排燃料ガスが保有する顕熱
の持ち出しを大幅に低減し、排燃料ガス室などを高温に
維持し、燃料電池発電装置の高効率な安定運転が可能と
なる。
According to a second aspect of the present invention, there is provided a fuel cell having at least a fuel electrode and an air electrode, a power generation reaction chamber containing the fuel cell, and a discharge chamber discharged from the power generation reaction chamber or the fuel electrode. A fuel cell power generator, comprising a fuel gas chamber into which fuel gas flows, and a porous layer provided in the fuel gas chamber so that the fuel gas passes therethrough. According to the present invention, the sensible heat possessed by the high-temperature exhaust fuel gas is significantly reduced, the exhaust fuel gas chamber and the like are maintained at a high temperature, and the fuel cell power generator can operate stably with high efficiency.

【0012】第3の発明は、少なくとも、燃料極と空気
極を備えた燃料電池セルと、該燃料電池セルが収納され
た発電反応室と、前記空気極から排出された排空気が流
入する排空気室とからなり、該排空気室内に、排空気が
通過するように多孔体層を設けたことを特徴とする燃料
電池発電装置である。本発明によって、高温の排空気が
保有する顕熱の持ち出しを大幅に低減し、排空気室など
を高温に維持し、燃料電池発電装置の高効率な安定運転
が可能となる。
According to a third aspect of the present invention, there is provided a fuel cell having at least a fuel electrode and an air electrode, a power generation reaction chamber containing the fuel cell, and an exhaust gas into which exhaust air discharged from the air electrode flows. A fuel cell power generator comprising an air chamber, wherein a porous layer is provided in the exhaust air chamber so that the exhaust air passes therethrough. According to the present invention, the sensible heat possessed by the high-temperature exhaust air is greatly reduced, the exhaust air chamber and the like are maintained at a high temperature, and the fuel cell power generator can operate stably with high efficiency.

【0013】第4の発明は、少なくとも、燃料極と空気
極を備えた燃料電池セルと、該燃料電池セルが収納され
た発電反応室と、該発電反応室もしくは前記燃料極から
排出された排燃料ガスと前記空気極から排出された排空
気が流入して燃焼する排燃料ガス燃焼室とからなり、該
燃料ガス燃焼室内に、燃焼ガスが通過するように多孔体
層を設けたことを特徴とする燃料電池発電装置である。
本発明によって、高温の燃焼ガスが保有する顕熱の持ち
出しを大幅に低減し、排燃料ガス燃焼室などを高温に維
持し、燃料電池発電装置の高効率な安定運転が可能とな
る。
According to a fourth aspect of the present invention, there is provided a fuel cell having at least a fuel electrode and an air electrode, a power generation reaction chamber containing the fuel cell, and an exhaust gas discharged from the power generation reaction chamber or the fuel electrode. A fuel gas combustion chamber comprising a fuel gas and exhaust gas discharged from the air electrode, wherein the exhaust gas flows into the combustion chamber, wherein a porous layer is provided in the fuel gas combustion chamber so that the combustion gas passes therethrough. It is a fuel cell power generator.
According to the present invention, the sensible heat possessed by the high-temperature combustion gas is significantly reduced, the exhaust gas combustion chamber and the like are maintained at a high temperature, and the fuel cell power generator can operate stably with high efficiency.

【0014】第5の発明は、前記多孔体層がセラミック
で構成されたことを特徴とする燃料電池発電装置であ
る。燃料電池発電装置の中でも運転温度が1000℃近
傍の固体酸化物形燃料電池において金属材料が使用でき
ない場合などには、耐熱性に優れるセラミックで構成さ
れた多孔体層を採用し、本発明の効果を得ることができ
る。
According to a fifth aspect, there is provided a fuel cell power generator, wherein the porous layer is made of ceramic. In the case where a metal material cannot be used in a solid oxide fuel cell having an operating temperature of around 1000 ° C. even in a fuel cell power generator, a porous layer made of ceramic having excellent heat resistance is adopted, and the effect of the present invention is obtained. Can be obtained.

【0015】第6の発明は、前記多孔体層が金属で構成
されたことを特徴とする燃料電池発電装置である。燃料
電池発電装置の運転温度が比較的低く金属材料が使用可
能な場合は、比較的安価で加工性の良い金属で構成され
た多孔体層を採用し、本発明の効果を得ることができ
る。
A sixth invention is a fuel cell power generator wherein the porous layer is made of a metal. When the operating temperature of the fuel cell power generation device is relatively low and a metal material can be used, a porous layer made of a metal that is relatively inexpensive and has good workability can be employed to obtain the effects of the present invention.

【0016】[0016]

【発明の実施の形態】以下に図面を参照して本発明をよ
り具体的に説明する。図1は本発明の一実施例を示す燃
料電池発電装置の構成図である。燃料電池セル1は、有
底筒状の固体酸化物形燃料電池セルであり、複数本の燃
料電池セル1が発電反応室5に収納されている。発電反
応室5の上部には隔壁7によって仕切られた排空気室6
が形成され、発電反応室5の下部には燃料ガス室4が形
成されている。発電反応室5、排空気室6および燃料ガ
ス室4の周囲には断熱材層10が配設されており、さら
にその周囲はモジュール容器9が設置されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below more specifically with reference to the drawings. FIG. 1 is a configuration diagram of a fuel cell power generation device showing one embodiment of the present invention. The fuel cell 1 is a solid oxide fuel cell having a bottomed cylindrical shape, and a plurality of fuel cells 1 are housed in a power generation reaction chamber 5. In the upper part of the power generation reaction chamber 5, an exhaust air chamber 6 partitioned by a partition wall 7 is provided.
Is formed, and a fuel gas chamber 4 is formed below the power generation reaction chamber 5. A heat insulating material layer 10 is provided around the power generation reaction chamber 5, the exhaust air chamber 6, and the fuel gas chamber 4, and a module container 9 is further provided around the heat insulating material layer 10.

【0017】それぞれの燃料電池セル1の内側には、空
気を供給するための細長い空気導入管2が内挿されてお
り、その下端は燃料電池セル1の底近くにまで達してい
る。この空気導入管2の下端から、空気が燃料電池セル
1の底に供給される。燃料電池セル1の底に供給された
空気は、上述の発電反応に寄与しつつ燃料電池セル1の
内側を上方に向かい、排空気室6に流入し排空気として
排出される。燃料電池セル1の外側には、燃料ガス室4
から燃料ガス供給口3を介して、上方に向けて燃料ガス
(H2、CO、CH4等)が供給される。燃料ガスは、上
述の発電反応に寄与しつつ燃料電池セル1の外側を上方
に向かう。発電反応室5の上方には多孔体層11が設け
られており、発電反応によって生成した発電反応生成物
ガス(CO2、H2O等)および未反応の燃料ガスは、こ
の多孔体層11を通過して排燃料ガスとして排出され
る。固体酸化物形燃料電池の発電反応部の温度は約90
0〜1000℃であるため、発電反応生成物ガスと未反
応の燃料ガスも約900〜1000℃相当の顕熱を保有
している。これらの高温ガスが多孔体層11を通過する
際に、保有する顕熱が輻射エネルギーに変換され、高温
ガスの上流側(すなわち発電反応室5)に輻射熱として
放射される。従って、反応排ガスが発電反応室5から持
ち出す顕熱量が大幅に低減され、発電反応室5の温度低
下を防ぐことが可能となる。
An elongated air introduction pipe 2 for supplying air is inserted inside each fuel cell 1, and the lower end of the air introduction pipe 2 reaches near the bottom of the fuel cell 1. From the lower end of the air introduction pipe 2, air is supplied to the bottom of the fuel cell 1. The air supplied to the bottom of the fuel cell 1 flows upward inside the fuel cell 1 while contributing to the above-described power generation reaction, flows into the exhaust air chamber 6, and is exhausted as exhaust air. Outside the fuel cell 1, a fuel gas chamber 4
The fuel gas (H 2, CO, CH 4, etc.) is supplied upward from the fuel gas supply port 3. The fuel gas goes upward outside the fuel cell 1 while contributing to the above-described power generation reaction. A porous layer 11 is provided above the power generation reaction chamber 5, and a power generation reaction product gas (CO 2, H 2 O, etc.) and an unreacted fuel gas generated by the power generation reaction pass through the porous layer 11. And is emitted as exhaust fuel gas. The temperature of the power generation reaction section of the solid oxide fuel cell is about 90
Since the temperature is 0 to 1000 ° C., the power generation reaction product gas and the unreacted fuel gas also have sensible heat corresponding to about 900 to 1000 ° C. When these high-temperature gases pass through the porous layer 11, the sensible heat possessed is converted into radiant energy and radiated to the upstream side of the high-temperature gas (that is, the power generation reaction chamber 5) as radiant heat. Therefore, the amount of sensible heat carried out by the reaction exhaust gas from the power generation reaction chamber 5 is significantly reduced, and it is possible to prevent the temperature of the power generation reaction chamber 5 from decreasing.

【0018】図2は、本発明の他の一実施例を示す燃料
電池発電装置の構成図である。本実施例では多孔体層1
1が排空気室6の上方に設けられており、排空気はこの
多孔体層11を通過して排出される。前述のように固体
酸化物形燃料電池の発電反応部の温度は約900〜10
00℃であるため、排空気も約900〜1000℃相当
の顕熱を保有している。これらの高温の排空気が多孔体
層11を通過する際に、保有する顕熱が輻射エネルギー
に変換され、排空気の上流側(すなわち排空気室6の多
孔体層11より下の部分)に輻射熱として放射される。
従って、排空気が排空気室6から持ち出す顕熱量が大幅
に低減され、排空気室6や排空気室6の下部の発電反応
室5の温度低下を防ぐことが可能となる。
FIG. 2 is a configuration diagram of a fuel cell power generator according to another embodiment of the present invention. In this embodiment, the porous layer 1
1 is provided above the exhaust air chamber 6, and the exhaust air passes through the porous layer 11 and is exhausted. As described above, the temperature of the power generation reaction section of the solid oxide fuel cell is about 900 to 10
Since the temperature is 00 ° C., the exhaust air also has sensible heat equivalent to about 900 to 1000 ° C. When these high-temperature exhaust air passes through the porous material layer 11, the sensible heat held therein is converted into radiant energy, and on the upstream side of the exhaust air (that is, the portion of the exhaust air chamber 6 below the porous material layer 11). Radiated as radiant heat.
Therefore, the amount of sensible heat taken out of the exhaust air from the exhaust air chamber 6 is greatly reduced, and it is possible to prevent the temperature of the exhaust air chamber 6 and the power generation reaction chamber 5 below the exhaust air chamber 6 from dropping.

【0019】図3は、本発明の他の一実施例を示す燃料
電池発電装置の構成図である。本実施例では、発電反応
室5の上部に隔壁12で隔てられて排燃料ガス燃焼室8
が設けられており、排燃料ガス燃焼室8の上方に多孔体
層11が設けられている。隔壁12にはガス流通口13
が設けられており、発電反応室5から排出される未反応
の燃料ガスと、発電反応生成物ガス(CO2、H2O等)
は排燃料ガス燃焼室8に流入する。一方、排空気は燃料
電池セル1の内側を上方に向かって排燃料ガス燃焼室8
に流入する。排燃料ガス燃焼室8では、未反応の燃料ガ
スと排空気中の酸素によって燃焼反応が起こる。このと
きの1000℃以上の燃焼排ガスが多孔体層11を通過
する際に、保有する顕熱が輻射エネルギーに変換され、
燃焼排ガスの上流側(すなわち排燃料ガス燃焼室8の多
孔体層11より下の部分)に輻射熱として放射される。
従って、燃焼排ガスが排燃料ガス燃焼室8から持ち出す
顕熱量が大幅に低減され、排燃料ガス燃焼室8や排燃料
ガス燃焼室8の下部の発電反応室5の温度低下を防ぐこ
とが可能となる。
FIG. 3 is a configuration diagram of a fuel cell power generation device showing another embodiment of the present invention. In the present embodiment, the exhaust gas combustion chamber 8 is separated from the power generation reaction chamber 5 by a partition wall 12.
Is provided, and a porous layer 11 is provided above the exhaust fuel gas combustion chamber 8. A gas flow port 13 is provided in the partition 12.
And an unreacted fuel gas discharged from the power generation reaction chamber 5 and a power generation reaction product gas (CO2, H2O, etc.)
Flows into the exhaust fuel gas combustion chamber 8. On the other hand, the exhaust air flows upward inside the fuel cell unit 1 to the exhaust fuel gas combustion chamber 8.
Flows into. In the exhaust fuel gas combustion chamber 8, a combustion reaction occurs by unreacted fuel gas and oxygen in the exhaust air. At this time, when the combustion exhaust gas of 1000 ° C. or more passes through the porous material layer 11, the sensible heat held is converted into radiant energy,
The combustion exhaust gas is radiated as radiant heat to the upstream side (that is, the portion of the exhaust fuel gas combustion chamber 8 below the porous layer 11).
Therefore, the amount of sensible heat carried out by the combustion exhaust gas from the exhaust gas combustion chamber 8 is greatly reduced, and the temperature of the exhaust gas combustion chamber 8 and the power generation reaction chamber 5 below the exhaust gas combustion chamber 8 can be prevented from lowering. Become.

【0020】多孔体層11は、金属ファイバーまたはセ
ラミックファイバーなどの焼結体、発泡体、不織布など
やこれらの積層体など多様な材質形態のものが使用でき
る。設置場所の温度条件などによって適切なものを選定
すれば良い。なお、前述の実施例に限らず、燃料電池発
電装置の各部において高温ガスの流路に多孔体層を設置
して、顕熱の回収を行うことが可能である。
The porous layer 11 can be made of various materials such as a sintered body such as a metal fiber or a ceramic fiber, a foamed body, a non-woven fabric, or a laminate thereof. An appropriate one may be selected depending on the temperature conditions of the installation location. The present invention is not limited to the above-described embodiment, and it is possible to recover a sensible heat by installing a porous layer in the flow path of the high-temperature gas in each part of the fuel cell power generator.

【0021】[0021]

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の一実施例を示す燃料電池発電装置の
構成図である。
FIG. 1 is a configuration diagram of a fuel cell power generation device showing one embodiment of the present invention.

【図2】 本発明の他の一実施例を示す燃料電池発電装
置の構成図である。
FIG. 2 is a configuration diagram of a fuel cell power generator according to another embodiment of the present invention.

【図3】 本発明の他の一実施例を示す燃料電池発電装
置の構成図である。
FIG. 3 is a configuration diagram of a fuel cell power generator according to another embodiment of the present invention.

【図4】 従来の燃料電池発電装置の一般的な構成図で
ある。
FIG. 4 is a general configuration diagram of a conventional fuel cell power generator.

【符号の説明】[Explanation of symbols]

1:セル 2:空気導入管 3:燃料ガス供給口 4:燃料ガス室 5:発電反応室 6:排空気室 7、12:隔壁 8:排燃料ガス燃焼室 9:モジュール容器 10:断熱材層 11:多孔体層 13:ガス流通口 1: Cell 2: Air introduction pipe 3: Fuel gas supply port 4: Fuel gas chamber 5: Power generation reaction chamber 6: Exhaust air chamber 7, 12: Partition wall 8: Exhaust fuel gas combustion chamber 9: Module container 10: Thermal insulation layer 11: Porous layer 13: Gas flow port

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】少なくとも、燃料極と空気極を備えた燃料
電池セルと、該燃料電池セルが収納された発電反応室と
からなり、該発電反応室内に、燃料ガスまたは発電反応
生成物ガスのもどちらか一方が通過するように多孔体層
を設けたことを特徴とする燃料電池発電装置。
1. A fuel cell comprising at least a fuel electrode and an air electrode, and a power generation reaction chamber in which the fuel cell is housed, wherein fuel gas or power generation reaction product gas is contained in the power generation reaction chamber. A fuel cell power generator, wherein a porous layer is provided so that either one of them passes through.
【請求項2】少なくとも、燃料極と空気極を備えた燃料
電池セルと、該燃料電池セルが収納された発電反応室
と、該発電反応室もしくは前記燃料極から排出された排
燃料ガスが流入する排燃料ガス室とからなり、該燃料ガ
ス室内に、排燃料ガスが通過するように多孔体層を設け
たことを特徴とする燃料電池発電装置。
2. A fuel cell having at least a fuel electrode and an air electrode, a power generation reaction chamber containing the fuel cell, and exhaust fuel gas discharged from the power generation reaction chamber or the fuel electrode. A fuel cell power generating device, comprising: a fuel cell chamber for exhaust gas; and a porous layer provided in the fuel gas chamber so that the fuel gas passes therethrough.
【請求項3】少なくとも、燃料極と空気極を備えた燃料
電池セルと、該燃料電池セルが収納された発電反応室
と、前記空気極から排出された排空気が流入する排空気
室とからなり、該排空気室内に、排空気が通過するよう
に多孔体層を設けたことを特徴とする燃料電池発電装
置。
3. A fuel cell having at least a fuel electrode and an air electrode, a power generation reaction chamber containing the fuel cell, and an exhaust air chamber into which exhaust air discharged from the air electrode flows. Wherein a porous layer is provided in the exhaust air chamber so that the exhaust air passes therethrough.
【請求項4】少なくとも、燃料極と空気極を備えた燃料
電池セルと、該燃料電池セルが収納された発電反応室
と、該発電反応室もしくは前記燃料極から排出された排
燃料ガスと前記空気極から排出された排空気が流入して
燃焼する排燃料ガス燃焼室とからなり、該燃料ガス燃焼
室内に、燃焼ガスが通過するように多孔体層を設けたこ
とを特徴とする燃料電池発電装置。
4. A fuel cell having at least a fuel electrode and an air electrode, a power generation reaction chamber in which the fuel cell is housed, and a fuel gas exhausted from the power generation reaction chamber or the fuel electrode. A fuel cell comprising: an exhaust fuel gas combustion chamber in which exhaust air discharged from an air electrode flows and burns, and a porous layer is provided in the fuel gas combustion chamber so that combustion gas passes therethrough. Power generator.
【請求項5】前記多孔体層がセラミックで構成されたこ
とを特徴とする請求項1〜4のいずれか1項に記載の燃
料電池発電装置。
5. The fuel cell power generator according to claim 1, wherein the porous layer is made of ceramic.
【請求項6】前記多孔体層が金属で構成されたことを特
徴とする請求項1〜4のいずれか1項に記載の燃料電池
発電装置。
6. The fuel cell power generator according to claim 1, wherein said porous layer is made of a metal.
JP2001079764A 2001-03-21 2001-03-21 Fuel cell power generating device Pending JP2002280050A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001079764A JP2002280050A (en) 2001-03-21 2001-03-21 Fuel cell power generating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001079764A JP2002280050A (en) 2001-03-21 2001-03-21 Fuel cell power generating device

Publications (1)

Publication Number Publication Date
JP2002280050A true JP2002280050A (en) 2002-09-27

Family

ID=18936150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001079764A Pending JP2002280050A (en) 2001-03-21 2001-03-21 Fuel cell power generating device

Country Status (1)

Country Link
JP (1) JP2002280050A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010232042A (en) * 2009-03-27 2010-10-14 Hitachi Ltd Fuel cell power generation module

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57113561A (en) * 1980-12-22 1982-07-15 Westinghouse Electric Corp Fuel battery generator
JPS5864771A (en) * 1981-09-29 1983-04-18 ウエスチングハウス・エレクトリック・コーポレーション Fuel battery generating device and method of operating same
JPS6350451A (en) * 1986-08-19 1988-03-03 Furukawa Alum Co Ltd Manufacture of corrosion-resisting aluminum-alloy thin-wall pipe excellent in cold workability
JPH0362460A (en) * 1989-07-31 1991-03-18 Mitsubishi Heavy Ind Ltd Solid electrolyte fuel cell
JPH0613097A (en) * 1992-06-25 1994-01-21 Mitsubishi Heavy Ind Ltd Solid electrolyte fuel cell power generation system
JPH06349513A (en) * 1993-06-04 1994-12-22 Mitsubishi Heavy Ind Ltd Cylindrical fuel cell module
JPH08255618A (en) * 1995-03-16 1996-10-01 Kyushu Electric Power Co Inc Solid electrolyte type fuel cell
JPH08287939A (en) * 1995-04-14 1996-11-01 Mitsubishi Heavy Ind Ltd Solid electrolyte fuel cell module
JPH09102323A (en) * 1995-07-28 1997-04-15 Nippon Telegr & Teleph Corp <Ntt> Solid-electrolyte fuel cell
JPH09129256A (en) * 1995-10-30 1997-05-16 Mitsubishi Heavy Ind Ltd Solid electrolyte fuel cell module
JPH11185774A (en) * 1997-12-19 1999-07-09 Chubu Electric Power Co Inc Stack structure of unit cell for solid electrolyte fuel cell
JP2001043881A (en) * 1999-07-29 2001-02-16 Mitsubishi Heavy Ind Ltd Solid electrolyte type fuel cell module
JP2002190306A (en) * 2000-12-22 2002-07-05 Mitsubishi Heavy Ind Ltd Fuel cell

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57113561A (en) * 1980-12-22 1982-07-15 Westinghouse Electric Corp Fuel battery generator
JPS5864771A (en) * 1981-09-29 1983-04-18 ウエスチングハウス・エレクトリック・コーポレーション Fuel battery generating device and method of operating same
JPS6350451A (en) * 1986-08-19 1988-03-03 Furukawa Alum Co Ltd Manufacture of corrosion-resisting aluminum-alloy thin-wall pipe excellent in cold workability
JPH0362460A (en) * 1989-07-31 1991-03-18 Mitsubishi Heavy Ind Ltd Solid electrolyte fuel cell
JPH0613097A (en) * 1992-06-25 1994-01-21 Mitsubishi Heavy Ind Ltd Solid electrolyte fuel cell power generation system
JPH06349513A (en) * 1993-06-04 1994-12-22 Mitsubishi Heavy Ind Ltd Cylindrical fuel cell module
JPH08255618A (en) * 1995-03-16 1996-10-01 Kyushu Electric Power Co Inc Solid electrolyte type fuel cell
JPH08287939A (en) * 1995-04-14 1996-11-01 Mitsubishi Heavy Ind Ltd Solid electrolyte fuel cell module
JPH09102323A (en) * 1995-07-28 1997-04-15 Nippon Telegr & Teleph Corp <Ntt> Solid-electrolyte fuel cell
JPH09129256A (en) * 1995-10-30 1997-05-16 Mitsubishi Heavy Ind Ltd Solid electrolyte fuel cell module
JPH11185774A (en) * 1997-12-19 1999-07-09 Chubu Electric Power Co Inc Stack structure of unit cell for solid electrolyte fuel cell
JP2001043881A (en) * 1999-07-29 2001-02-16 Mitsubishi Heavy Ind Ltd Solid electrolyte type fuel cell module
JP2002190306A (en) * 2000-12-22 2002-07-05 Mitsubishi Heavy Ind Ltd Fuel cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010232042A (en) * 2009-03-27 2010-10-14 Hitachi Ltd Fuel cell power generation module

Similar Documents

Publication Publication Date Title
CA2397682C (en) Multipurpose reversible electrochemical system
JP5109252B2 (en) Fuel cell
AU2002219941A1 (en) Multipurpose reversible electrochemical system
JP2006302881A (en) Fuel cell assembly
US20080085434A1 (en) Integrated fuel cell stack and catalytic combustor apparatus, assembly, and method of use
JP2004319462A (en) Fuel cell assembly
JP6415962B2 (en) Fuel cell cartridge and fuel cell module
JP5248829B2 (en) Fuel cell module
JP2007080760A (en) Fuel cell
JP2010114092A (en) Fuel cell assembly
JP4706190B2 (en) Solid oxide fuel cell
NZ538947A (en) Solid oxide fuel cell stack assembly having tapered diffusion layers
JP2012109256A (en) Fuel cell assembly
JP2007128739A (en) Fuel cell
JP2007080761A (en) Fuel cell and its starting method
JP3346784B2 (en) Vertical stripe cylindrical solid electrolyte fuel cell
JP4475861B2 (en) Solid oxide fuel cell unit
JP2002280050A (en) Fuel cell power generating device
JP4859359B2 (en) Operation method of fuel cell
KR101081100B1 (en) Seperator for high temperature fuel cells
JP2009076275A (en) Fuel cell module
JP6982586B2 (en) Fuel cell cartridges, fuel cell modules and combined cycle systems
JP6973759B1 (en) Tube type SOFC
JP2005216618A (en) Operation method of power generation system
WO2022092051A1 (en) Fuel cell power generation system, and control method for fuel cell power generation system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101213

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110411