JPH08287939A - Solid electrolyte fuel cell module - Google Patents

Solid electrolyte fuel cell module

Info

Publication number
JPH08287939A
JPH08287939A JP7089138A JP8913895A JPH08287939A JP H08287939 A JPH08287939 A JP H08287939A JP 7089138 A JP7089138 A JP 7089138A JP 8913895 A JP8913895 A JP 8913895A JP H08287939 A JPH08287939 A JP H08287939A
Authority
JP
Japan
Prior art keywords
air
power generation
chamber
fuel
generation chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7089138A
Other languages
Japanese (ja)
Other versions
JP3258518B2 (en
Inventor
Kenichiro Kosaka
健一郎 小阪
Hiroshi Ogata
寛 緒方
Osao Kudome
長生 久留
Katsumi Nagata
勝己 永田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP08913895A priority Critical patent/JP3258518B2/en
Publication of JPH08287939A publication Critical patent/JPH08287939A/en
Application granted granted Critical
Publication of JP3258518B2 publication Critical patent/JP3258518B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PURPOSE: To eliminate a malfunction so far caused in a lower tube plate, and reduce capacity in an air heat exchanger. CONSTITUTION: A radiation converting body 101 of a porous body is arranged, between a lower tube plate 11 and a lower power generation chamber 1, and an air supply chamber 102 whose upper part is partitioned by the lower tube plate 11 and lower part is partitioned by the radiation converting body 101 respectively, is arranged between a fuel discharge chamber 5 and the power generation chamber 1. An air supply pipe 104 is arranged to connect this air supply chamber 102 and an air heat exchanger 103 to preheat supply air SA by using exhaust air EA from the power generation chamber 1. The supply air SA is supplied to the air supply chamber 102 by this air supply pipe 104, and is passed through the inside of the radiation converting body 101 from the air supply chamber 102, and is heated, and is supplied to the power generation chamber 1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高温の作動温度になる
発電室上方に設置される燃料排出室を画成する下部管板
を高温から保護するとともに、発電室からの放射熱を効
果的に利用できるようにした固体電解質燃料電池モジュ
ールに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention protects a lower tube sheet which defines a fuel discharge chamber installed above a power generation chamber, which has a high operating temperature, from high temperature, and effectively radiates heat from the power generation chamber. The present invention relates to a solid electrolyte fuel cell module that can be used for

【0002】[0002]

【従来の技術】固体電解質燃料電池モジュールは、作動
温度が800℃から1000℃と高く、円筒状の電解質
の内側に燃料極を設けるとともに、外側に空気極を配置
した固体電解質燃料電池を複数個直列に接続し、一端が
閉鎖された円筒状の固体電解質燃料電池スタック(以下
単にスタックという)を鉛直に配設して、供給された燃
料と空気を使って発電を行う発電室を高温に維持する必
要がある。このため、発電室を、その内部に区画して設
ける容器の外周は、断熱材で被包されるとともに、空気
熱交換器を用いて発電室から排出される排空気との間で
再生熱交換を行い、供給空気を予熱するとともに、容器
内の発電室下方に輻射変換体を設けて、高温のスタック
から放射される熱により加熱された輻射変換体で、空気
熱交換器で予熱され、発電室に導入される途中の供給空
気を加熱するようにしている。
2. Description of the Related Art A solid electrolyte fuel cell module has a high operating temperature of 800 ° C. to 1000 ° C., and a plurality of solid electrolyte fuel cells having a fuel electrode inside a cylindrical electrolyte and an air electrode outside. A cylindrical solid electrolyte fuel cell stack (hereinafter simply referred to as a stack), which is connected in series and closed at one end, is arranged vertically, and the power generation chamber that uses the supplied fuel and air to generate electricity is maintained at a high temperature. There is a need to. Therefore, the outer periphery of the container provided inside the power generation chamber is covered with a heat insulating material, and regenerated heat is exchanged with the exhaust air discharged from the power generation chamber by using the air heat exchanger. In addition to preheating the supply air, a radiant converter is provided below the power generation chamber in the container, and the radiant converter heated by the heat radiated from the high temperature stack is preheated by the air heat exchanger to generate power. The supply air that is being introduced into the chamber is heated.

【0003】図2は、このような、従来の固体電解質燃
料電池モジュールを示す断面図である。図において、外
周が断熱材9で被包された容器12の内部には発電室1
が、上部を下部管板11で、下部を輻射変換体07で区
画されて形成されている。この発電室1には、内側に燃
料極、外側に電解質を介装して空気極を配置した固体電
解質燃料電池を複数直列に接続してなり、下端を閉鎖し
た円筒型のスタック2が多数鉛直状態に配置されてい
る。また、下部管板11で上部が区画された発電室1の
上方の容器12の内部には、下部管板11および下部管
板11と間隔を設けて、その上方に設けられた上部管板
10で区画された燃料排出室5が、さらに、上部管板1
0で下方が区画された燃料供給室3が、それぞれ画成さ
れている。また、輻射変換体7で下部が区画された発電
室1の下方の容器12の内部には、輻射変換体7と間隔
を設けて空気熱交換器6が設けられている。
FIG. 2 is a sectional view showing such a conventional solid electrolyte fuel cell module. In the figure, a power generation chamber 1 is provided inside a container 12 whose outer periphery is covered with a heat insulating material 9.
However, the upper part is partitioned by the lower tube sheet 11, and the lower part is partitioned by the radiation converter 07. In this power generation chamber 1, a plurality of solid-state electrolyte fuel cells, each having a fuel electrode inside and an air electrode disposed outside with an electrolyte interposed, are connected in series, and a large number of cylindrical stacks 2 each having a closed lower end are vertically arranged. It is arranged in a state. Further, inside the container 12 above the power generation chamber 1 whose upper portion is partitioned by the lower tube sheet 11, the lower tube sheet 11 and the upper tube sheet 10 provided above the lower tube sheet 11 are spaced apart from each other. The fuel discharge chamber 5 partitioned by the
The fuel supply chambers 3 whose lower portions are divided by 0 are respectively defined. An air heat exchanger 6 is provided inside the container 12 below the power generation chamber 1 whose lower portion is partitioned by the radiant converter 7 and at a distance from the radiant converter 7.

【0004】燃料供給室3には、外部から燃料ガスSF
を供給するための燃料導入管13が連結されており、こ
の燃料導入管13によって、燃料ガスSFは、容器12
の上端に設けられた燃料供給室3に供給される。また、
円筒型のスタック2の軸心部には、燃料供給管4が設置
され、その上端が燃料供給室3に連通するとともに、下
端はスタック2の端部が閉鎖された下端部に連通させて
いる。燃料ガスSFは、燃料供給室3から燃料供給管4
内を通ってスタック2の下端部に供給され、スタック2
の軸心部に設置された燃料供給管4の外周面に沿って上
昇するとき、スタック2の内側に設けた燃料極における
発電反応に使用された後、排燃料EFとなって、スタッ
ク2の上端に開口を設けた下部管板10を通過して、燃
料排出室5に集められ、燃料排出室5に設けた燃料排出
管14によって、容器12内から排気される。
Fuel gas SF is supplied to the fuel supply chamber 3 from the outside.
A fuel introducing pipe 13 for supplying the fuel gas SF to the container 12 is connected by the fuel introducing pipe 13.
Is supplied to the fuel supply chamber 3 provided at the upper end of the. Also,
A fuel supply pipe 4 is installed at the axial center of the cylindrical stack 2, and its upper end communicates with the fuel supply chamber 3 and its lower end communicates with the closed lower end of the stack 2. . The fuel gas SF is supplied from the fuel supply chamber 3 to the fuel supply pipe 4
It is supplied to the lower end of the stack 2 through
When ascending along the outer peripheral surface of the fuel supply pipe 4 installed at the axial center portion of the stack 2, after being used for power generation reaction in the fuel electrode provided inside the stack 2, it becomes exhausted fuel EF and becomes After passing through the lower tube sheet 10 having an opening at the upper end, they are collected in the fuel discharge chamber 5 and exhausted from the inside of the container 12 by the fuel discharge pipe 14 provided in the fuel discharge chamber 5.

【0005】また、燃料ガスSFとともに、スタック2
における発電に使用される供給空気SAは、空気導入管
15によって、外部から空気熱交換器6に供給される。
空気熱交換器6には、発電室1内で加熱された排空気E
Aを容器12へ排出するため、発電室1から垂下された
空気排出管8が連結されている。空気導入管15で供給
された供給空気SAは、空気排出管8で発電室1から排
出された排空気EAとの間で、再生熱交換を行い予熱さ
れる。空気熱交換器6で予熱された供給空気SAは、発
電室1の下部を区画する多孔体の素材で形成された輻射
変換体07の下方に供給される。輻射変換体07は、ス
タック2から放射される熱を受熱し高温となっており、
その内部を下方から上方へ通過する予熱された供給空気
SAをさらに加熱する。
Also, the stack 2 together with the fuel gas SF
The supply air SA used for power generation in the above is supplied to the air heat exchanger 6 from the outside by the air introduction pipe 15.
The air heat exchanger 6 includes exhaust air E heated in the power generation chamber 1.
In order to discharge A into the container 12, the air discharge pipe 8 hanging from the power generation chamber 1 is connected. The supply air SA supplied through the air introduction pipe 15 is preheated by regenerating heat exchange with the exhaust air EA discharged from the power generation chamber 1 through the air discharge pipe 8. The supply air SA preheated by the air heat exchanger 6 is supplied below the radiation conversion body 07 formed of a porous material that defines the lower portion of the power generation chamber 1. The radiation converter 07 receives the heat radiated from the stack 2 and has a high temperature,
The preheated supply air SA passing through the inside from below to above is further heated.

【0006】このように、発電室1内の発熱を利用し
て、輻射変換体7内で空気熱交換器6で予熱された供給
空気SAを、さらに加熱することで、発電室1内部での
空気の温度上昇幅を抑え、発電室1内部の温度差を小さ
くすることができる。また、輻射変換体7を通過して発
電室1内に供給された供給空気SAは、発電室1内に鉛
直状態に配設されている、スタック2の外周面に沿って
上昇するとき、スタック2の外側に設けた空気極におけ
る発電反応に使用されるとともに、発電室1内の冷却を
行う。また、発電室1内での発電等に使用され、900
〜1000℃に加熱された排空気EFは、前述の空気排
出管8に集められ、空気熱交換器6に排出され、供給空
気SAの予熱に使用された後、空気排出管16によって
容器12外へ排気される。
As described above, the heat generated in the power generation chamber 1 is used to further heat the supply air SA which has been preheated in the radiant converter 7 by the air heat exchanger 6. The temperature rise width of the air can be suppressed and the temperature difference inside the power generation chamber 1 can be reduced. Further, when the supply air SA that has passed through the radiation conversion body 7 and is supplied into the power generation chamber 1 rises along the outer peripheral surface of the stack 2, which is vertically arranged in the power generation chamber 1, It is used for power generation reaction in an air electrode provided outside the air conditioner 2, and cools the inside of the power generation chamber 1. It is also used for power generation in the power generation room 1,
The exhaust air EF heated to ˜1000 ° C. is collected in the above-mentioned air exhaust pipe 8, exhausted to the air heat exchanger 6 and used for preheating the supply air SA, and then the outside of the container 12 by the air exhaust pipe 16. Exhausted to.

【0007】このように、発電室1内は、スタック2に
おける発電のために、900〜1000℃の高温に保つ
必要があり、前述したように、発電室1を内部に収容す
る容器12の外周を被包する断熱材9により保温するこ
とにより、高温を保持するようにしている。また、発電
室1の上部を区画する下部管板10は、発電室1内に鉛
直状態に配置されているスタック2を支持すると同時
に、燃料排出室5内の排燃料EFと発電室1内の供給空
気SA又は排空気EAとが混合燃焼するのを防止してい
る。さらに、下部管板10とともに燃料排出室5を区画
し、容器12の上端に設置される燃料供給室3の下部を
区画する上部管板11は、スタック2の軸心部に垂下さ
せた燃料供給管4を支持すると共に、燃料供給室3と燃
料排出室5との隔壁となって、燃料ガスSFと排燃料E
Fとの混合を防止している。
As described above, the power generation chamber 1 must be maintained at a high temperature of 900 to 1000 ° C. for power generation in the stack 2. As described above, the outer periphery of the container 12 that houses the power generation chamber 1 therein. The heat is kept by the heat insulating material 9 for encapsulating so that the high temperature is maintained. Further, the lower tube sheet 10 that partitions the upper portion of the power generation chamber 1 supports the stack 2 that is vertically arranged in the power generation chamber 1, and at the same time, the exhaust fuel EF in the fuel discharge chamber 5 and the inside of the power generation chamber 1 It prevents the supply air SA or the exhaust air EA from being mixed and burned. Further, the upper tube sheet 11 that divides the fuel discharge chamber 5 together with the lower tube sheet 10 and the lower portion of the fuel supply chamber 3 that is installed at the upper end of the container 12 is provided with the fuel supply that is hung at the axial center of the stack 2. The pipe 4 is supported and serves as a partition wall between the fuel supply chamber 3 and the fuel discharge chamber 5 to form a fuel gas SF and an exhaust fuel E.
Mixing with F is prevented.

【0008】このような、従来の固体電解質燃料電池モ
ジュールでは、上述したように発電室1内はスタック2
における発電のために必要な作動温度800〜1000
℃を維持する必要がある一方、スタック2を発電室1内
で支持する下部管板11は、発電室1の上方に隣接して
設けられているため、発電室1内の高温にさらされるこ
とになる。このため、特に、下部管板11の温度が高温
となり、強度が低下し、多数のスタック2を支持するた
めには、厚肉化や高級材料の使用が必要となるなどの不
具合がある。
In such a conventional solid electrolyte fuel cell module, as described above, the stack 2 is formed in the power generation chamber 1.
800-1000 operating temperature required for power generation in
The lower tube sheet 11 that supports the stack 2 in the power generating chamber 1 is provided adjacent to and above the power generating chamber 1, so that the stack 2 is exposed to the high temperature in the power generating chamber 1. become. Therefore, in particular, the temperature of the lower tube sheet 11 becomes high, the strength is lowered, and in order to support a large number of stacks 2, there are problems such as thickening and the use of high-grade materials.

【0009】[0009]

【発明が解決しようとする課題】本発明は、上述した従
来の固体電解質燃料電池モジュールの不具合を解消する
ため、下部管板の高温化を低減するとともに、発電室か
らの放射熱を発電室に供給される供給空気の加熱に、よ
り効果的に利用できるようにして熱効率を高めた固体電
解質燃料電池モジュールを提供することを課題とする。
DISCLOSURE OF THE INVENTION The present invention solves the above-mentioned problems of the conventional solid oxide fuel cell module by reducing the temperature rise of the lower tube sheet and radiating heat from the power generating chamber to the power generating chamber. An object of the present invention is to provide a solid oxide fuel cell module that can be more effectively used for heating supplied supply air and has improved thermal efficiency.

【0010】[0010]

【課題を解決するための手段】このため、本発明の固体
電解質燃料電池モジュールは次の手段とした。
Therefore, the solid electrolyte fuel cell module of the present invention has the following means.

【0011】断熱材で被包された容器内部に画成された
発電室、発電室に垂設され、電解質を介して内側に燃料
極、外側に空気極を配置した固体電解質燃料電池を複数
個直列に接続し、下端を閉鎖した円筒状にされたスタッ
ク、容器内部の発電室上方に画成された燃料供給室、発
電室と燃料供給室の間に区画され、スタックの上端を開
口させた燃料排出室、一端を燃料供給室に開口させ、他
端をスタックの下端内部に開口させて、スタックの内部
に挿通された燃料供給管、および容器内部の発電室下方
に設置され、発電室に供給する供給空気を予熱する空気
熱交換器からなる固体電解質燃料電池モジュールにおい
て、 (1)発電室の上方に形成される燃料排出室の下方を区
画する下部管板で上方が区画される空気供給室の下方を
区画し、発電室と燃料排出室との間に空気供給室を形成
する、多孔質の素材で成形された輻射変換体を発電室上
方の容器内に設けた。
A plurality of solid electrolyte fuel cells each having a power generation chamber defined inside a container surrounded by a heat insulating material and vertically installed in the power generation chamber and having a fuel electrode inside and an air electrode outside through an electrolyte. Cylindrical stack connected in series and closed at the lower end, fuel supply chamber defined above the power generation chamber inside the container, partitioned between the power generation chamber and the fuel supply chamber, and the upper end of the stack was opened The fuel discharge chamber, one end of which is opened to the fuel supply chamber and the other end of which is opened to the inside of the lower end of the stack.The fuel supply pipe is inserted inside the stack, and is installed below the power generation chamber inside the container. In a solid oxide fuel cell module comprising an air heat exchanger for preheating supply air to be supplied, (1) Air supply whose upper part is partitioned by a lower tube plate which partitions a fuel discharge chamber formed above the power generation chamber. Power generation by dividing the lower part of the room A radiation converter formed of a porous material, which forms an air supply chamber between the chamber and the fuel discharge chamber, is provided in the container above the power generation chamber.

【0012】(2)発電室下方の容器内部に設置された
空気熱交換と空気供給室とを連結し、空気熱交換で予熱
された供給空気を、輻射変換体の上方から下方に通過さ
せて、さらに加熱するため、空気供給室に移送する空気
供給管を発電室内に設けた。
(2) The air heat exchange installed in the container below the power generation chamber and the air supply chamber are connected to each other, and the supply air preheated by the air heat exchange is passed downward from above the radiation converter. For further heating, an air supply pipe for transferring to the air supply chamber was provided inside the power generation chamber.

【0013】[0013]

【作用】本発明の固体電解質燃料電池モジュールは、上
述した(1),(2)の手段により、発電室内の温度に
比べて低い予熱後の供給空気を、下部管板の直下に供給
でき、下部管板の温度を低下させる。これにより、下部
管板の応力低下を低減でき、下部管板の厚肉化、若しく
は高温による応力低下の少ない高級材料の使用が回避で
き、低コストにできるとともに、軽量化によるコンパク
ト化が図れる。また、輻射変換体を下部管板と発電室と
の間に設置し、空気供給室に供給された予熱後の供給空
気を、輻射変換体の内部を通過させ、加熱して発電室に
供給することにより、発電室への供給空気の温度を上げ
ることができ、若しくは空気熱交換器の容量を低減し小
型化することができる。
In the solid electrolyte fuel cell module of the present invention, the supply air after preheating which is lower than the temperature in the power generation chamber can be supplied directly below the lower tube sheet by means of the above-mentioned means (1) and (2). Lower the temperature of the lower tube sheet. As a result, the lowering of the stress of the lower tube sheet can be reduced, the thickening of the lower tube sheet or the use of a high-grade material with less stress lowering due to high temperature can be avoided, the cost can be reduced, and the weight can be made compact. Further, the radiant converter is installed between the lower tube sheet and the power generation chamber, and the preheated supply air supplied to the air supply chamber is passed through the inside of the radiant converter to be heated and supplied to the power generation chamber. As a result, the temperature of the air supplied to the power generation chamber can be raised, or the capacity of the air heat exchanger can be reduced and downsized.

【0014】[0014]

【実施例】以下、本発明の固体電解質燃料電池モジュー
ルの実施例を、図面にもとづき説明する。図1は、本発
明の固体電解質燃料電池モジュールの一実施例を示す側
断面図である。なお、図2に示す部材と同一の部材に
は、同一符番を行って、詳細説明は省略した。
Embodiments of the solid oxide fuel cell module of the present invention will be described below with reference to the drawings. FIG. 1 is a side sectional view showing an embodiment of the solid oxide fuel cell module of the present invention. The same members as those shown in FIG. 2 are designated by the same reference numerals and detailed description thereof is omitted.

【0015】図において、101は発電室1の上方の容
器12内部に設けられた輻射変換体で、発電室1の上方
に形成される燃料排出室5の下方を区画する下部管板1
1とともに、発電室1と燃料排出室5との間に、空気供
給室102を区画、形成する。輻射変換体101は、セ
ラミック等の多孔質の素材で形成されている。103は
空気熱交換器で、図2に示す空気熱交換器06と略同一
構造をしているが、本実施例による空気熱交換器103
では、予熱した供給空気SAを直接発電室1へ放出せ
ず、発電室1内に立設された空気供給管104で空気供
給室102へ移送するとともに、発電室1内を下降する
排空気EAを直接内部へ取入れるようにして、供給空気
SAを予熱するようにしている。
In the figure, reference numeral 101 denotes a radiation converter provided inside the container 12 above the power generation chamber 1, and a lower tube sheet 1 for partitioning the lower side of a fuel discharge chamber 5 formed above the power generation chamber 1.
1, the air supply chamber 102 is defined and formed between the power generation chamber 1 and the fuel discharge chamber 5. The radiation converter 101 is formed of a porous material such as ceramic. Reference numeral 103 denotes an air heat exchanger, which has substantially the same structure as the air heat exchanger 06 shown in FIG. 2, but the air heat exchanger 103 according to the present embodiment.
Then, the preheated supply air SA is not directly discharged to the power generation chamber 1, but is transferred to the air supply chamber 102 by the air supply pipe 104 installed upright in the power generation chamber 1 and the exhaust air EA descending in the power generation chamber 1 Is directly taken into the inside to preheat the supply air SA.

【0016】以上、本実施例について、図2に示す従来
の固体電解質燃料電池モジュールとの相異する構成につ
いてのみ説明した。本実施例は、上述のように構成され
ているので、燃料導入管13を通って外部から燃料供給
室3へ供給された燃料ガスSFは、燃料供給室3と燃料
排出室5とを仕切る上部管板10に上端が支持された燃
料供給管4を通って、内側に燃料極、外側に空気極を配
置した固体電解質燃料電池を複数直列に接続して、燃料
排出室5と空気供給室102を仕切る下部管板11に上
端が支持され、発電室1内に吊下された円筒型のスタッ
ク2の下端部に導入される。
In this embodiment, only the structure different from that of the conventional solid oxide fuel cell module shown in FIG. 2 has been described above. Since the present embodiment is configured as described above, the fuel gas SF supplied from the outside to the fuel supply chamber 3 through the fuel introduction pipe 13 separates the fuel supply chamber 3 and the fuel discharge chamber 5 from the upper portion. A plurality of solid electrolyte fuel cells, each having a fuel electrode inside and an air electrode outside, are connected in series through a fuel supply pipe 4 whose upper end is supported by a tube plate 10 to form a fuel discharge chamber 5 and an air supply chamber 102. The upper end is supported by the lower tube sheet 11 for partitioning, and is introduced into the lower end of the cylindrical stack 2 suspended in the power generation chamber 1.

【0017】円筒型のスタック2の下端は、閉鎖されて
おり、下端部に導入された燃料ガスSFは、スタック2
の内側に設けられた燃料極における発電反応に使用され
つつ上昇し、排燃料EFとなって、スタッフ2の上端が
開口する燃料排出室5に流入する。そして、燃料排出管
5に設けられた燃料排出管14によって、容器12の外
部へ排出される。この燃料ガスSF、および排燃料EF
については、図2で示した従来例と全く同様にして、容
器12へ導入され、発電反応を行い、容器12から排出
される。
The lower end of the cylindrical stack 2 is closed, and the fuel gas SF introduced into the lower end is in the stack 2.
While being used for the power generation reaction in the fuel electrode provided inside the fuel cell, it rises and becomes exhausted fuel EF, which flows into the fuel exhaust chamber 5 where the upper end of the staff 2 is opened. Then, it is discharged to the outside of the container 12 by the fuel discharge pipe 14 provided in the fuel discharge pipe 5. This fuel gas SF and exhaust fuel EF
2 is introduced into the container 12 in the same manner as in the conventional example shown in FIG.

【0018】次に、供給空気SAは、空気導入管15に
よって、容器12の下端に設けられた空気熱交換器10
3へ供給される。空気熱交換器103では、発電室1内
を下降して空気熱交換器103に流入する排空気EA、
すなわち、空気極における発電反応、又は発電室1内の
冷却に使用され、高温にされた排空気EAと供給空気S
Aの間で熱交換を行う。空気熱交換器103により排空
気EAとの間で再生熱交換を行い、予熱された供給空気
SAは、発電室1を貫通して設けられた空気供給管10
4を通じて、下部管板11の下方に設置された空気供給
室10へ供給される。
Next, the supply air SA is supplied to the air heat exchanger 10 provided at the lower end of the container 12 by the air introduction pipe 15.
3 is supplied. In the air heat exchanger 103, exhaust air EA that descends in the power generation chamber 1 and flows into the air heat exchanger 103,
That is, the exhaust air EA and the supply air S, which are used for the power generation reaction in the air electrode or the cooling inside the power generation chamber 1 and have a high temperature, are supplied.
Heat exchange between A. The air heat exchanger 103 performs regenerative heat exchange with the exhaust air EA, and the preheated supply air SA is supplied with the air supply pipe 10 penetrating the power generation chamber 1.
4 to the air supply chamber 10 installed below the lower tube sheet 11.

【0019】空気供給室10へ供給された供給空気SA
は、下部管板11と輻射変換体12間との間を流れる
間、下部管板11を下面から冷却した後、発電室1から
の放射熱で加熱された輻射変換体12内を通過すると
き、さらに加熱され、発電室1の上方へ供給される。ま
た、上方から発電室1へ供給された供給空気SAは、ス
タック2の外周に沿って下降するとき、スタック2の外
側に設けられた空気極と発電反応し、発電を行い、90
0〜1000℃に加熱された排空気EAとなって、発電
室1下方に設けられた空気熱交換器103に流入する。
また、供給空気SAは、前述した発電反応に使用される
ほか、スタック2の発電に伴い発生する高温で加熱され
る容器2内部、例えば、前述した下部管板11、発電室
1を冷却にも使用される。空気熱交換器103に流入し
た排空気EAは、前述したように、供給空気SAと熱交
換して空気排出管16によって、容器12の外へ排出さ
れる。
Supply air SA supplied to the air supply chamber 10.
Is when passing through the radiant converter 12 heated by the radiant heat from the power generation chamber 1 after cooling the lower tube plate 11 from the lower surface while flowing between the lower tube plate 11 and the radiant converter 12. Further, it is heated and supplied to the upper side of the power generation chamber 1. Further, when the supply air SA supplied from above to the power generation chamber 1 descends along the outer periphery of the stack 2, it causes a power generation reaction with an air electrode provided outside the stack 2 to generate power.
Exhaust air EA heated to 0 to 1000 ° C. flows into the air heat exchanger 103 provided below the power generation chamber 1.
The supply air SA is used not only for the power generation reaction described above, but also for cooling the inside of the container 2 that is heated by the high temperature generated by the power generation of the stack 2, for example, the lower tube sheet 11 and the power generation chamber 1 described above. used. The exhaust air EA that has flowed into the air heat exchanger 103 exchanges heat with the supply air SA and is exhausted to the outside of the container 12 by the air exhaust pipe 16 as described above.

【0020】このように、本実施例の固体電解質燃料電
池モジュールは、発電室1内の温度に比べて、低い予熱
後の供給空気SAを下部管板11の直下に供給し、下部
管板11の温度を低下させることにより、高温により応
力が低下する下部管板11の応力低下を低減でき、下部
管板11の厚肉化、若しくは高温による応力低下の少な
い高級材料の使用が回避でき、低コストにできるととも
に、下部管板11を軽量にできる。
As described above, in the solid electrolyte fuel cell module of this embodiment, the supply air SA after preheating, which is lower than the temperature in the power generation chamber 1, is supplied immediately below the lower tube sheet 11, and the lower tube sheet 11 is supplied. By lowering the temperature of the lower tube sheet, it is possible to reduce the stress drop of the lower tube sheet 11 in which the stress drops due to the high temperature, and it is possible to avoid the thickening of the lower tube sheet 11 or the use of a high-grade material with less stress drop due to high temperature The cost can be reduced and the lower tube sheet 11 can be reduced in weight.

【0021】また、輻射変換体101を下部管板11と
発電室1との間に設置し、空気供給室102に供給され
た予熱後の供給空気を、輻射変換体101の内部を通過
させて、加熱して発電室1に供給するようにしたことに
より、発電室1への供給空気SAの温度を上げることが
できる。このことは、逆に言えば、所定温度の供給空気
SAを発電室1へ供給するために必要としていた容量の
大きい空気熱交換器103の容量が、低減できることを
意味しており、前記した下部管板11の軽量化と相俟っ
て、固体電解質燃料電池モジュールを小型化することが
できる。
The radiant converter 101 is installed between the lower tube sheet 11 and the power generation chamber 1, and the preheated supply air supplied to the air supply chamber 102 is passed through the inside of the radiant converter 101. The temperature of the supply air SA to the power generation chamber 1 can be raised by heating and supplying the power to the power generation chamber 1. In other words, this means that the capacity of the air heat exchanger 103, which has a large capacity and is required to supply the supply air SA having the predetermined temperature to the power generation chamber 1, can be reduced, and the lower part described above can be used. In combination with the weight reduction of the tube sheet 11, the solid electrolyte fuel cell module can be downsized.

【0022】[0022]

【発明の効果】以上説明したように、本発明の固体電解
質燃料電池モジュールによれば、特許請求の範囲に示す
構成により、次の効果が得られる。
As described above, according to the solid oxide fuel cell module of the present invention, the following effects can be obtained with the configuration shown in the claims.

【0023】(1)空気熱交換器により予熱された供給
空気は、発電室内の温度に比べて低く、この供給空気に
より下部管板の冷却を行うため、高温による応力低下に
対応するため、厚肉化や高級材料の使用を必要としてい
た、下部管板を軽量にできるとともに、低コストにでき
る。
(1) The supply air preheated by the air heat exchanger is lower than the temperature in the power generation chamber, and since the lower tube sheet is cooled by this supply air, stress reduction due to high temperature can be dealt with. The lower tube sheet, which required to be fleshed and used of high-quality materials, can be made lighter and the cost can be reduced.

【0024】(2)発電室と下部管板との間に設置した
輻射変換体により、発電室からの放射熱を回収し、供給
空気の加熱を行うため、発電室への供給温度を高くで
き、若しくは所定温度の供給空気を予熱して、発電室へ
するための空気熱交換器を小型化することができる。
(2) The radiation converter installed between the power generation chamber and the lower tube sheet recovers the radiant heat from the power generation chamber and heats the supply air, so that the temperature supplied to the power generation chamber can be increased. Alternatively, it is possible to miniaturize the air heat exchanger for preheating the supply air of a predetermined temperature to supply it to the power generation chamber.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の固体電解質燃料電池モジュールの一実
施例を示す側断面図。
FIG. 1 is a side sectional view showing an embodiment of a solid oxide fuel cell module of the present invention.

【図2】従来の固体電解質燃料電池モジュールの一例を
示す側断面図である。
FIG. 2 is a side sectional view showing an example of a conventional solid oxide fuel cell module.

【符号の説明】[Explanation of symbols]

1 発電室 2 スタック 3 燃料供給室 4 燃料供給管 5 燃料排出室 8 空気排出管 9 断熱材 10 上部管板 11 下部管板 12 容器 13 燃料導入管 14 燃料排出管 15 空気導入管 16 空気排出管 101 輻射変換体 102 空気供給室 103 空気熱交換器 104 空気供給管 06 空気熱交換器 07 輻射変換体 SA 供給空気 EA 排空気 SF 燃料ガス EF 排燃料 1 Power Generation Chamber 2 Stack 3 Fuel Supply Chamber 4 Fuel Supply Pipe 5 Fuel Discharge Chamber 8 Air Discharge Pipe 9 Heat Insulation Material 10 Upper Tube Plate 11 Lower Tube Plate 12 Container 13 Fuel Inlet Pipe 14 Fuel Outlet Pipe 15 Air Inlet Pipe 16 Air Outlet Pipe 101 Radiation converter 102 Air supply chamber 103 Air heat exchanger 104 Air supply pipe 06 Air heat exchanger 07 Radiation converter SA Supply air EA Exhaust air SF Fuel gas EF Exhaust fuel

───────────────────────────────────────────────────── フロントページの続き (72)発明者 永田 勝己 長崎市飽の浦町1番1号 三菱重工業株式 会社長崎造船所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Katsumi Nagata 1-1, Atsunouramachi, Nagasaki City Mitsubishi Heavy Industries Ltd. Nagasaki Shipyard Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 断熱材で被包された容器内部に画成され
た発電室、前記発電室に垂設され、電解質を介して内側
に燃料極、外側に空気極を配置した固体電解質燃料電池
を複数個直列に接続し、下端を閉鎖した円筒状にされた
スタック、前記容器内の前記発電室上方に画成された燃
料供給室、前記発電室と前記燃料供給室の間に区画さ
れ、前記スタックの上端を開口させた燃料排出室、一端
を前記燃料供給室に開口させ、他端を前記スタックの下
端内部に開口させて、前記スタックの内部に挿通された
燃料供給管、および前記容器内の前記発電室下方に設置
され、前記発電室に供給する供給空気を予熱する空気熱
交換器を具える固体電解質燃料電池モジュールにおい
て、前記発電室の上方に設置され、前記燃料排出室との
間に空気供給室を形成する多孔体の輻射変換体と、前記
空気熱交換器で予熱された供給空気を前記空気供給室に
移送する空気供給管を設けたことを特徴とする固体電解
質燃料電池モジュール。
1. A solid electrolyte fuel cell in which a power generation chamber defined inside a container surrounded by a heat insulating material, and a fuel electrode disposed vertically in the power generation chamber and having an electrolyte inside and a fuel electrode inside and an air electrode outside. A plurality of connected in series, a cylindrical stack having a closed lower end, a fuel supply chamber defined above the power generation chamber in the container, partitioned between the power generation chamber and the fuel supply chamber, A fuel discharge chamber having an upper end of the stack opened, a fuel supply pipe having one end opened to the fuel supply chamber and the other end opened to the inside of the lower end of the stack, and the fuel supply pipe inserted into the stack. In the solid electrolyte fuel cell module, which is installed in the lower part of the power generation chamber and has an air heat exchanger that preheats the supply air to be supplied to the power generation chamber, the solid electrolyte fuel cell module is installed above the power generation chamber and is connected to the fuel discharge chamber. Form an air supply chamber between A solid electrolyte fuel cell module, comprising: a porous radiant converter and an air supply pipe for transferring supply air preheated by the air heat exchanger to the air supply chamber.
JP08913895A 1995-04-14 1995-04-14 Solid electrolyte fuel cell module Expired - Fee Related JP3258518B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08913895A JP3258518B2 (en) 1995-04-14 1995-04-14 Solid electrolyte fuel cell module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08913895A JP3258518B2 (en) 1995-04-14 1995-04-14 Solid electrolyte fuel cell module

Publications (2)

Publication Number Publication Date
JPH08287939A true JPH08287939A (en) 1996-11-01
JP3258518B2 JP3258518B2 (en) 2002-02-18

Family

ID=13962524

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08913895A Expired - Fee Related JP3258518B2 (en) 1995-04-14 1995-04-14 Solid electrolyte fuel cell module

Country Status (1)

Country Link
JP (1) JP3258518B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002280050A (en) * 2001-03-21 2002-09-27 Toto Ltd Fuel cell power generating device
JP2004119239A (en) * 2002-09-27 2004-04-15 Mitsubishi Heavy Ind Ltd Fuel cell-gas turbine power generation equipment and combined cycle power generation equipment
KR101230087B1 (en) * 2011-10-04 2013-02-05 삼성에스디아이 주식회사 Solid oxide fuel cell stack

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002280050A (en) * 2001-03-21 2002-09-27 Toto Ltd Fuel cell power generating device
JP2004119239A (en) * 2002-09-27 2004-04-15 Mitsubishi Heavy Ind Ltd Fuel cell-gas turbine power generation equipment and combined cycle power generation equipment
KR101230087B1 (en) * 2011-10-04 2013-02-05 삼성에스디아이 주식회사 Solid oxide fuel cell stack

Also Published As

Publication number Publication date
JP3258518B2 (en) 2002-02-18

Similar Documents

Publication Publication Date Title
AU770522B2 (en) Integrated manifold/reformer for fuel cell systems
EP2661782B1 (en) Sofc hot box components
JP2644922B2 (en) Module isothermal reactor
US7008711B2 (en) Thermally integrated fuel cell power system
JP5109253B2 (en) Fuel cell
JPH04306568A (en) Method for dissipating heat from fuel cell and temperature balancing member
US3119671A (en) Upright fluid heating furnace with heat recovery system
WO2007066618A1 (en) Fuel cell
JPS62283570A (en) High temperature solid electrolyte type fuel cell
US8614029B2 (en) Plant with high-temperature fuel cells and a multi-component sleeve for a cell stack
US5405712A (en) Solid oxide fuel cell generator
US8507149B2 (en) Plant with high-temperature fuel cells and clamping device for a cell stack
JPH08287939A (en) Solid electrolyte fuel cell module
JP3268197B2 (en) Solid electrolyte fuel cell module
JP3611065B2 (en) Integrated fuel cell power generator
JP4326078B2 (en) Solid oxide fuel cell module
JPH08287937A (en) Solid electrolyte fuel cell module
JPS63128559A (en) Solid electrolyte fuel cell module
JP3354742B2 (en) Solid electrolyte fuel cell module
JP3349273B2 (en) Solid oxide fuel cell module
JP3377646B2 (en) Solid oxide fuel cell module
JPH06349513A (en) Cylindrical fuel cell module
JPH0794321B2 (en) Methanol reforming method using exhaust heat and exhaust heat recovery type methanol reformer
KR102570606B1 (en) Fuel cost reduction device using waste heat from fuel cell reformer
CN114447367B (en) Integrated thermal component, power generation system and solid oxide fuel cell

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20011106

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees