JPH06116645A - 耐硫化物応力割れ性に優る油井用鋼管の製法 - Google Patents

耐硫化物応力割れ性に優る油井用鋼管の製法

Info

Publication number
JPH06116645A
JPH06116645A JP4290744A JP29074492A JPH06116645A JP H06116645 A JPH06116645 A JP H06116645A JP 4290744 A JP4290744 A JP 4290744A JP 29074492 A JP29074492 A JP 29074492A JP H06116645 A JPH06116645 A JP H06116645A
Authority
JP
Japan
Prior art keywords
steel pipe
groove
laser beam
welding
welded steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4290744A
Other languages
English (en)
Inventor
Takahiro Kushida
隆弘 櫛田
Hirotsugu Inaba
洋次 稲葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP4290744A priority Critical patent/JPH06116645A/ja
Publication of JPH06116645A publication Critical patent/JPH06116645A/ja
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys

Landscapes

  • Laser Beam Processing (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

(57)【要約】 【目的】 優れた耐SSC性を発揮する高強度油井用溶
接鋼管を生産性良く製造できる方法を確立する。 【構成】 C:0.20超〜0.60%,Si:0.10〜0.80%,M
n:0.10〜1.00%,P:0.025 %以下,S: 0.002%以
下,sol.Al:0.01〜0.10%を含むと共に、Ca:0.0005〜
0.0050%,REM:0.0005〜0.01%のうちの1種以上を
含有するか、或いは更に所定量のCu,Ni,Cr,Mo,Nb,
V,Ti,Zr,Bのうちの1種以上をも含む熱延鋼板を、
成形ロ−ル群に供給して連続的にオ−プンパイプ状に成
形してから、スクイズロ−ルで加圧して両エッジを突合
わせレ−ザ−ビ−ムを照射して溶接鋼管となすに際し、
予め該突合わせ部の外周部分に外面側へ開脚するV溝を
設けておき、このV溝を上方に向けてV溝内へレ−ザ−
ビ−ムを照射して溶接鋼管とした後、鋼管全体に焼入れ
・焼戻しを施す。

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】この発明は、硫化水素を含んだ原
油や天然ガスを掘削するための油井管として優れた性能
を発揮するところの、耐硫化物応力割れ性に優れた油井
用溶接鋼管の製造方法に関するものである。
【0002】
【従来技術とその課題】従来、油井掘削用の鋼管には
“溶接鋼管”ではなくて“継目無し鋼管”を適用するの
が一般的である。なぜなら、油井掘削用鋼管は自重量に
よって降伏応力が付加された状態で腐食環境に曝される
ため、硫化物応力割れ(以降“SSC”と略記する)に
対して十分な抵抗性が要求される上、土圧によるコラプ
スに対しても高い抵抗性を必要とし、これらの点を勘案
した場合、信頼性において継目無し鋼管の方が優れてい
たためである。
【0003】もっとも、油井管用途に要求される耐SS
C性レベルを備えた鋼材一般については、今までの検討
からその製造条件がほぼ判明しているので、油井管用途
として溶接鋼管を意図する場合でも鋼管母材部の信頼性
確保の面では何ら懸念は持たれていない。ただ、問題は
「溶接部の信頼性」である。
【0004】即ち、溶接鋼管の場合には、母材部の信頼
性は十分であったとしても溶接部に溶接欠陥が存在しが
ちであり、これが湿潤H2 S環境に曝されると鋼表面の
腐食により発生した水素が鋼中に侵入し溶接欠陥部にト
ラップされてSSCの起点となり、耐SSC性を劣化さ
せることとなる。
【0005】しかしながら、耐SSC性の点では満足で
きる性能が得られる継目無し鋼管もコストや生産性、更
には真円度,曲がりの面では溶接鋼管に及ばないことか
ら、耐SSC性の点でも十分な信頼性が持てる溶接鋼管
が望まれていた。
【0006】ところで、鋼管のシ−ム溶接に際しては、
一般にサブマ−ジア−ク溶接法(以降“SAW”と略記
する)又は電縫溶接法(以降“ERW”と略記する)が
適用される。このうち、SAWは溶接欠陥が発生しにく
く、例え欠陥を生じても非破壊検査で発見して補修する
ことが可能という利点があるものの、油井管のような高
強度高炭素材の溶接においては溶接割れの問題があって
適用が困難である。また、溶接入熱を低減すればこのよ
うな材料でもSAWが可能であるが、必然的に溶接速度
が遅くなるため生産性が著しく損なわれる。
【0007】一方、ERWの場合には溶接速度を速くし
て能率良く鋼管を製造することが可能であるが、信頼性
の点で問題がある。これは、酸素が存在する雰囲気で溶
接を行うとスケ−ル等の欠陥誘起物質が接合部に混入し
て溶接欠陥を多発するからであり、大気中での溶接では
勿論、不活性ガスシ−ルド中であってもそのシ−ルドが
不完全となりがちであるので溶接欠陥を十分に抑え切る
ことは困難である。また、高周波投入電力が低いと溶融
不足による冷接欠陥も発生する。逆に、高周波投入電力
が高いと、強い電磁力による溶鋼の不安定減少が生じペ
ネトレ−タ−欠陥が発生する。
【0008】そこで、最近、ERW鋼管の溶接欠陥を減
少させ信頼性を向上させるための手段が種々検討されて
いる。例えば、ERW鋼管の接合部及び近傍の熱影響部
に存在する酸化物系介在物の大きさ及び個数を限定する
ことで鋼管の耐食性を向上させ、これによって耐HIC
性を改善しようとの提案が見られる(特開昭60−21
3366号公報)。しかしながら、耐SSC性を改善す
るために電縫溶接部及び熱影響部の酸化物寸法を限定す
るのは実用的な手段とは言い難い。即ち、十〜数十ミク
ロン程度の酸化物であってもその形状等によってはSS
Cの起点となり得るが、このように小さい欠陥を目視或
いは非破壊検査で判別することは事実上不可能に近く、
また光学顕微鏡によるミクロ検査をERW鋼管のような
連続で大量生産するもの全てに実施することも困難だか
らである。
【0009】そのため、本出願人等は先に、溶接欠陥自
体をほぼ“0”に減少させることで耐SSC性に優れる
油井用溶接鋼管を製造する方法を提案した(特開平3−
268877号公報)。なお、この方法の特徴は、両エ
ッジ近傍の表面酸化物を除去するために逆極性消耗電極
ワイヤ−を使用して溶接する点と、溶接部のアプセット
量を板厚の 1/5以上とする点にある。即ち、逆極性の電
極ワイヤ−を使用した場合にはイオンが母材に衝突して
表面をクリ−ニングする作用が生じ、酸化物巻き込みに
よる溶接欠陥が抑えられる上、アプセット量を板厚の 1
/5以上と高くすることで欠陥誘起物質が溶接部から押し
出されるので溶接欠陥は殆ど見られなくなり、介在物に
起因するSSCは十分防止することができた。
【0010】ところで、SSCの原因を大きく分けると
“介在物”と“硬化組織”になる。このうち、溶接欠陥
は酸化物系介在物が主であり、溶接衝合面におけるSS
Cの原因となるこのような欠陥誘起物質の混入、ペネト
レ−タ−状欠陥や冷接欠陥の発生を防ぐことは、上記提
案になる“逆極性ワイヤ−を用いるERW溶接”によっ
ても可能である。しかし、その後の検討により、この方
法では母材と溶接ワイヤ−の成分差による強度差或いは
耐食性の差、更にはERWにはアプセットが必須である
がその際形成されるメタルフロ−の影響が、得られる鋼
管の耐SSC性に悪影響を及ぼすことが懸念された。
【0011】一方、これらとは別に、“ERWと同等の
溶接速度”でかつ“SAWと同等の溶接部性能”を有す
る製管溶接法を開発するため、最近、溶接熱源に炭酸ガ
スレ−ザ−ビ−ムを使用することが検討されている。例
えば、特開平2−70379号公報には、ERWの高周
波加熱に引き続いてレ−ザ−ビ−ムによる溶接(以降
“レ−ザ−溶接”と略記する)を行う製管溶接方法が開
示されている。
【0012】このレ−ザ−溶接によっても溶接欠陥を減
少させることが可能であり、またこの場合には多少とも
成分の異なるワイヤ−を用いる必要がないので管全体の
焼入れ・焼戻し処理後は母材及び溶接部に硬さの差を生
じず、応力・歪集中の観点からも耐SSC性にとって有
利である。更に、母材と溶接部の耐食性の差による選択
腐食、即ち電縫鋼管で言うところの“溝食”も生じな
い。従って、これらの点から、レ−ザ−溶接は溶接ワイ
ヤ−を必要とするSAW溶接や逆極性ワイヤ−を用いる
ERW溶接に比べてより有利であると言える。
【0013】しかしながら、レ−ザ−溶接ではERWと
本質的に異なる溶融溶接のため溶接部欠陥の発生は抑制
されるが、溶接速度は従来の一般的なERWに比べて 1
/51/10と極めて遅く、レ−ザ−発振機やその他の付帯
設備を考慮すると決して経済的に優位にあるとは言い難
い。また、高周波加熱とレ−ザ−溶接を組み合わせた製
管溶接法でも、その溶接速度はレ−ザ−単独の溶接法に
比較して高々2倍程度にしかならない。
【0014】このようなことから、本発明が目的とした
のは、API規格(アメリカ石油協会規格)によるL8
0級以上の高強度を有し、かつ優れた耐SSC性を発揮
する油井用溶接鋼管を、薄肉サイズのものであっても生
産性良く製造し得る方法を確立することである。
【0015】
【課題を解決するための手段】本発明は、上記目的を達
成すべく様々な観点から行われた本発明者等の研究結果
を基にして完成されたもので、「C:0.20超〜0.60%
(以降、 成分割合を表す%は重量%とする),Si:0.10〜
0.80%, Mn:0.10〜1.00%, P: 0.025%以
下,S: 0.002%以下, sol.Al:0.01〜0.10%を含
み、 かつCa:0.0005〜0.0050%, 希土類元素:0.
0005〜0.01%のうちの1種以上を含有するか、 或いは更
にCu:0.05〜0.50%, Ni:0.05〜0.50%, C
r:0.05〜1.20%,Mo:0.05〜1.00%, Nb:0.01
〜0.15%, V:0.01〜0.15%,Ti:0.01〜0.15%,
Zr:0.01〜0.15%, B:0.0005〜0.0050%の
うちの1種以上をも含み、 残部がFe及び不可避不純物か
ら成る熱延鋼板を成形ロ−ル群に供給して連続的にオ−
プンパイプ状に成形してから、 このオ−プンパイプを対
設されたスクイズロ−ルで加圧して両エッジを突合わ
せ、 その突合わせ部にレ−ザ−ビ−ムを照射して溶接鋼
管となすに際し、 予め該突合わせ部の外周部分に外面側
へ開脚するV溝を設けておき、 このV溝を上方に向けて
V溝内へレ−ザ−ビ−ムを照射し(この際に突合わせ部
及びその近傍を不活性ガスシ−ルドするのが好ましい)
溶接鋼管とした後、 鋼管全体をAc3点以上に加熱して焼
入れし、 更に600〜Ac1点の温度域で焼戻すことによ
り、 耐SSC性に優れた高強度油井用溶接鋼管を高い生
産性の下で安定製造し得るようにした点」に大きな特徴
を有している。
【0016】
【作用】耐SSC性に優れる高強度油井用溶接鋼管を得
るためには、当然のことながら優れた耐SSC性や強度
を発揮する素材鋼板を用いる必要があると共に、製管後
に管全体の焼入れ・焼戻し処理を施して、鋼板製造時の
履歴に関係なく耐SSC性に優れた母材性能が得られる
ようにすることが欠かせない。そのため、素材として適
用する熱延鋼板の成分組成を指定したが、各成分の含有
割合は次の理由によって特定範囲に限定した。
【0017】 Cは鋼管に所定の強度(L80級以上の強度)を確保す
る作用があるが、その含有量が0.20%以下であると上記
強度の保証が困難となり、一方、0.60%を超えて含有さ
せると靭性,溶接性が劣化することから、C含有量は0.
20超〜0.60%と定めたが、望ましくは0.25〜0.50%に調
整するのが良い。
【0018】Si Siは鋼の脱酸のために0.10%以上の含有量を確保する必
要があり、一方、0.80%を超え含有させると靭性劣化を
招く上、焼戻し脆化防止のためにもこの値以下に抑える
ことが必要であることから、Si含有量は0.10〜0.80%と
定めた。
【0019】Mn Mnも鋼管に所定の強度を確保する作用があるが、その含
有量が0.10%未満では所望する強度が確保できず、一
方、1.00%を超えて含有させると耐SSC性の低下を招
くことから、Mn含有量は0.10〜1.00%と定めた。
【0020】 Pは不可避不純物であり、その含有量は低いほど望まし
い。特に、 0.025%を超えてPが含有されると母材偏析
部の合金元素濃度が高くなり、母材の耐SSC性低下が
顕著となる上、焼戻し脆化の点でも悪影響が出て来るこ
とから、P含有量は 0.025%以下と定めた。
【0021】 Sも不可避不純物であってその含有量は低いほど望まし
い。特に、 0.002%を超えてSが含有されるとCa或いは
REM(希土類元素)による硫化物系介在物の形態制御
が不可能なMnSが生成し、耐SSC性の低下が著しくな
ることから、含有量は 0.002%以下と定めた。
【0022】sol.Al 鋼の脱酸のために0.01%以上のsol.Al含有量を確保する
必要があるが、その含有量が0.10%を超えると鋼材の清
浄度確保が困難となることから、sol.Al含有量は0.01〜
0.10%と定めた。
【0023】Ca,及びREM(希土類元素) これらの成分は硫化物系介在物の形態制御を通じて耐S
SC性の向上作用を発揮するので1種又は2種の添加が
なされるが、何れもその含有量が0.0005%未満では前記
作用による所望の効果が十分に得られず、一方、Caの場
合には0.0050%を超えて含有されるとCa系介在物の増加
により耐SSC性の劣化を招き、またREMの場合には
0.01%を超えて含有されると酸化物系介在物の増加によ
り耐HIC(水素誘起割れ)性が劣化を招くことから、
Ca含有量は0.0005〜0.0050%、REM含有量の場合は0.
0005〜0.01%とそれぞれ限定した。
【0024】Cu,Ni,Cr,Mo,Nb,V,Ti,Zr,及びB これらの成分には何れも鋼管の強度及び靱性を改善する
作用があるので、必要により1種又は2種以上の添加が
なされるが、各成分は次の理由で含有割合の規制がなさ
れた。
【0025】a) Cu,及びNi 何れの場合も、含有量が0.05%未満であると強度及び靭
性の改善効果が不十分であり、一方、0.50%を超えて含
有されると溶接性が低下する。 b) Cr 含有量が0.05%未満では強度及び靭性の改善効果が不十
分であり、一方、1.20%を超えて含有されると靭性の低
下,耐SSC性の低下を招く。 c) Mo 含有量が0.05%未満では強度及び靭性の改善効果が不十
分であり、一方、1.00%を超えて含有されると靭性の低
下を招く。 d) Nb,V,Ti,及びZr 何れの場合も、含有量が0.01%未満では強度及び靭性の
改善効果が不十分であり、一方、0.15%を超えて含有さ
れると靭性の低下を招く。 e) B 含有量が0.0005%未満では強度,靭性の改善効果が不十
分であり、一方、0.0050%を超えて含有されると靭性の
低下を招く。
【0026】さて、本発明法においては、まず上記成分
組成の素材熱延鋼板を常法通りに連続ロ−ル成形してオ
−プンパイプ状とし、溶接して製管するが、この際にア
−クを使用(併用)して溶接を行うと、それが補助的な
ものであってもしかるべき肉厚が必要となり、ERWが
適用されるような薄肉サイズの鋼管を得ることができな
い。
【0027】そこで、本発明法では、ア−クを使用(併
用)せずにレ−ザ−ビ−ムのみでオ−プンパイプの突合
わせ部を溶接する。これにより、ERW製造サイズの如
き薄肉のものであっても支障無く溶接鋼管が製造され
る。
【0028】また、本発明法において、突合わせ部の外
周部分に予め外面側へ開脚するV溝を設けておくのは、
突合わせ部にV溝を形成することにより実質的に肉厚が
減少するので、溶接の高速化が可能となるからである。
また、V溝を設けてレ−ザ−ビ−ムで溶かし込みながら
溶接するので健全な接合を達成するためのアプセット量
が減り、SSCの起点となる酸化物は残存しないし、ア
プセットにより形成される“SSCを伝播させるメタル
フロ−”も認められなくなる。しかも、低入熱化するこ
とができるので衝合部にSSC感受性を高くするメタル
フロ−が形成されにくく、そのため耐SSC性は一層向
上する。
【0029】更に、レ−ザ−ビ−ム溶接に際して前記V
溝を上方に向け、V溝内へレ−ザ−ビ−ムを下向きに照
射する理由は、V溝を上方に向けたことにより凝固方向
が安定化かつ均一化する上、不純物や介在物が管外面へ
効率良く浮上して排出されるためにHIC,SSCの起
点となる酸化物等が残存せず、溶接部の耐HIC性及び
耐SSC性が一層向上するためである。この場合、パイ
プ肉厚方向にレ−ザ−ビ−ムを照射する垂直照射がエネ
ルギ−効率の点で最も好ましい。しかし、斜め下向き照
射でも十分に効果が得られるので、設備面でレ−ザ−の
取付け位置が制限される場合は斜め下向き照射でも構わ
ない。V溝の向きについては、レ−ザ−ビ−ムがV溝の
肩部に当たることなくV溝底に焦点を結べば良いから、
V溝のV角度の 1/2位置は12時方向からの回転が許容
されることになり、一般的には15°程度までである
が、レ−ザ−設備を12時方向から移動させた場合は更
に大きな回転が許容されることは言うまでもない。
【0030】なお、上向き照射を行った場合(即ちV溝
を下方に向けた場合)には、溶融金属が溶け落ちたり、
また湯流れによってビ−ド形状がアンダ−カット等望ま
しくないものになる。
【0031】一方、工業的見地からは、突合わせ部にV
溝を形成するということは突合わせ精度の緩和につなが
る上、レ−ザ−の光学系を単純化できるという利点もも
たらす。つまり、レ−ザ−溶接での突合わせ部について
は、レ−ザ−ビ−ム径が小さいためにこれまで高い精度
が必要と考えられてきたが、本発明者等の実験により
「突合わせ部の外周部分にV溝の如き多少のギャップが
存在しても溶接に何ら悪影響を及ぼさない」ことが明ら
かとなり、上記の如き工業的利益の享受が可能であるこ
とが確認された。
【0032】そして、溶接時には、溶接部或いはその近
傍を窒素ガス,アルゴンガス等の不活性ガスでシ−ルド
することが推奨される。この不活性ガスシ−ルドによ
り、溶接部突合わせ面の酸化や、酸化物の巻き込み残留
による耐HIC及び耐SSC性の劣化が抑えられ、これ
らの性能が更に向上する。
【0033】ここで、前記V溝について詳述する。図1
は、本発明に従った溶接鋼管の製造方法での成形途中に
おける母材の状態〔図1ノ(a)〕と、溶接直前における母
材の状態〔図1ノ(b)〕とをそれぞれ示す模式図である。
即ち、板厚tの母材1がオ−プンパイプに成形され〔図
1ノ(a)〕た後、溶接に際してそのエッジが突合わされる
〔図1ノ(b)〕が、突合わせ部の外周部分には外面側へ開
脚する幅a,深さbのV溝2が設けられている。
【0034】V溝を設ける方法としては、 「エッジを突
合わせた場合にV溝になるような形状に予めエッジ面の
隅部を処理された帯状母材を使用する方法」, 「成形ロ−
ルの手前でエッジ面を連続的に切削又は成形加工する方
法」, 「母材がオ−プンパイプに成形された後の溶接直前
に切削又は成形加工にて連続的にV溝を付ける方法」或
いは 「成形ロ−ルのロ−ル孔型を変更することによりV
溝を得る方法」 等があるが、何れを採用しても良い。な
お、V溝は正確にV字形である必要はなく、若干の凹凸
があったり、多少の曲率があっても差支えはない。
【0035】また、図2は、V溝2の形状とレ−ザ−ビ
−ム3との関係を示した模式図であるが、この関係か
ら、V溝2は次の各式を満足するものであることが望ま
しいと言える。 a/b > D/f, a×b ≦ 2×(P/v), t−b ≦ 4×(P/v), a ≦ 2×(P/v)。
【0036】なお、以下に上記各式の意味するところを
説明する。 (1) a/b>D/f この式は、母材エッジ端の突合わせ部に光軸心を一致さ
せたところの、ビ−ム径がDのレ−ザ−ビ−ム3を焦点
距離fで集光させた場合に、レ−ザ−ビ−ム3がV溝2
の肩部4に当たるかどうかを決定するものである。
【0037】図2の(a) は「a/b≦D/f」の場合で
あり、この図から明らかな如くレ−ザ−ビ−ム3はV溝
の肩部4に当たる。その結果、該肩部4で金属プラズマ
が発生し、レ−ザ−ビ−ム3がそのプラズマに吸収され
て溶込み深さが減少するので好ましくない。図2の(b)
は「a/b>D/f」の場合であり、V溝の底部5にレ
−ザ−ビ−ム3が集中するので効率良く深い溶込みが得
られる。即ち、高速溶接のためには「a/b>D/f」
の関係にあることが望ましい訳である。
【0038】(2) a×b≦2×(P/v) この式は、溶接部の外面側にアンダビ−ド(母材表面よ
り凹んだ欠陥ビ−ド)を発生させないための条件を表し
ている。つまり、アンダビ−ドを発生させないために
は、V溝2が溶融金属で十分に埋められることが必要で
ある。V溝2の溶融金属の量はV溝2の断面積と供給さ
れる溶融金属量とで決定される。そして、V溝2の断面
積は1/2(a×b)で表される。また、レ−ザ−ビ−ムの
出力をP(kW),溶接速度をV(m/min)とすると、
溶融金属量は入熱量(P/V)と比例するから、アンダ
ビ−ドの防止条件は「a×b≦k×(P/v)」とな
る。なお、kは比例定数であり、このkの値は多数の実
験結果から“2”とするのが適切であることが分かっ
た。
【0039】(3) t−b≦4×(P/v) 突合わせ部にV溝を設けることにより、レ−ザ−で溶か
し込まなければならない板厚は(t−b)に減少し、溶
接速度の高速化を図ることができる。レ−ザ−の溶込み
深さは入熱(p/v)と比例関係にあることから、「t
−b≦p×(P/v)」の関係式が得られる。なお、p
も比例定数であり、やはり多数の実験結果よりこのpの
値は“4”とするのが適切であることが分かった。
【0040】(4) a≦2×(P/v) この式は、溶接部にアンダカットを生じさせないための
条件式である。即ち、図3は、V溝2の幅aがビ−ド幅
Baより過剰に大きい場合に発生するアンダカット6を示
しているが、溶接部にアンダカット6を生じさせないた
めには、V溝2の溝幅aはビ−ド幅Baより小さいことが
必要である。いま、溶接速度v(m/min)を一定とする
と、ビ−ト幅Baは入熱(p/v)に比例するので、a≦
q×(P/v)の関係式が得られる。なお、qも比例定
数であり、同じく実験結果からqの値は“2”とするの
適当であることが明らかとなった。
【0041】オ−プンパイプの突合わせ部が溶接された
後は、鋼管全体に熱処理(焼入れ・焼戻し処理)が施さ
れるが、その熱処理条件は次の理由によって規定され
た。 A) 焼入れ温度 焼入れに先立って鋼管全体をAc3点以上の温度域へ加熱
するのは、加熱時にオ−ステナイト単相として細粒鋼を
得るために必要な処理であり、加熱温度がこの温度未満
であると混粒となって製品鋼管の耐SSC性が劣化す
る。なお、加熱温度は望ましくは1100℃以下とする
のが良く、これを超えると粗粒となって耐SSC性が低
下する傾向を見せるので注意を要する。。
【0042】b) 焼戻し温度 焼戻し温度が600℃未満であると材料が軟化せず、高
硬度のために製品の耐SSC性が悪くなる。一方、Ac1
点の温度を超えると一部オ−ステナイト変態が生じて所
定の強度が得られないばかりか、残留オ−ステナイトや
焼戻されないマルテンサイト相が生じてやはり製品の耐
SSC性が低下する。
【0043】次いで、本発明を実施例により説明する。
【実施例】まず、製管母材として、焼入れ・焼戻し処理
後は優れた耐SSC性と高強度が得られるところの、表
1に示した成分組成の熱延鋼板を準備した。なお、表1
には熱処理後母材の強度及び耐SSC性(L方向)を調
査した結果も併記した。
【0044】
【表1】
【0045】次に、上記母材を成形ロ−ル群によりオ−
プンパイプ状に成形してその両エッジを突合わせ、その
突合わせ部の外周部分に成形したV溝を真上に向けた姿
勢として、該V溝内にレ−ザ−ビ−ムを垂直に照射し、
表2及び表3に示す条件で突合わせ部の溶接を行った。
なお、レ−ザ−源として、最大出力10kWの炭酸ガス
レ−ザ−発振機を使用し、板厚に応じてレ−ザ−出力P
を5kW及び10kWにそれぞれ調整した。また、集光
前のビ−ム径Dは30mm,ミラ−(放物面鏡)の焦点距
離fは150mmであり、焦点はV溝の底部に設定した。
また、比較のために、同様母材を用い従来のERWにて
溶接した製管材も用意した。
【0046】
【表2】
【0047】
【表3】
【0048】そして、これら溶接鋼管に表2及び表3に
示す条件の熱処理を施した後、母材及び溶接部の耐SS
C性を評価した。なお、SSC試験片は、図4に示した
如く、溶接部の場合は溶接衝合面が中央に位置するよう
にT方向に切り出し、一方、母材部についてはL方向に
切り出した。また、これらのSSC試験片は、素材の板
厚に応じて図5に示す2種類の試験片を使い分けた。即
ち、母材A,B及びD〜Mといった板厚の比較的厚いも
のは平行部6.35φの試験片(X)を、板厚の薄い素材C
については平行部4φの試験片(Y)を使用した。な
お、何れの素材についても板厚の関係上ネジ部が欠けた
まま試験片に加工し、試験時にテフロンテ−プ等を巻付
けてシ−ルした。
【0049】これら試験片をNACE浴(0.5%酢酸,5
%食塩水,25℃,1気圧H2 S飽和)中で、SMYS
(最小規格化応力)の80%及び72%の引張応力を付
加し応力を付与し、720hrの試験期間中に破断の有無
を調査した。試験本数は各2本ずつとした。なお、図6
は上記SSC試験装置の概要図である。
【0050】これらの試験結果を表2及び表3に併記し
た(なお、 母材に関する試験結果は表1に併記した)。
ここで、表2及び表3の試番1,10及び20が従来のER
W製管法によるものの例、試番2,3,11,12,21及び
22がV溝を設けずに行った従来のレ−ザ−溶接の例であ
り、その他が本発明例であるが、この表2及び表3に示
される試験結果からは次のことが分かる。
【0051】[I] 鋼材A(板厚12.7mm)に従来のE
RW溶接を施した試番1では、溶接部は「σth/σys≧
72%」を満足していない。なお、σthは割れ発生下限
応力、σysは降伏応力である。レ−ザ−出力が10kW
の時、V溝を設けない従来のレ−ザ−溶接を施した試番
2では、溶接部は「σth/σys≧72%」を満足するも
のの、「σth/σys≧80%」は満足しない。また、溶
接速度3m/minが限界速度であって、溶接速度を限界以
上に上げた試番3では溶込み不足が発生し、しかも耐S
SC性が低下している。
【0052】これに対して、本発明例たる試番4及び5
では、何れも耐SSC性が「σth/σys≧80%」と良
好であり、しかも試番5の結果から明らかなように溶接
速度を上げることが可能であった。
【0053】一方、試番6〜9は本発明に係る例ではあ
るが、それぞれ望ましい範囲を外れているので試番4及
び5に比べ耐SSC性に劣っている。しかし、従来例に
比べれば良好な耐SSC性を有していて、「σth/σys
≧72%」は満足することが分かる。
【0054】なお、このうち、試番6は前述した式「a
/b>D/f」を満たさない場合であり、レ−ザ−ビ−
ムがV溝の底部に集中しないことにより溶込み不足が発
生した。試番7は、式「a≦2×(P/v)」を満たさ
ない場合であり、溝幅が広すぎてアンダ−カットを発生
した。試番8は、式「t−b≦4×(P/v)」を満た
さない場合であり、溝が浅いことにより溶込み不足が発
生した。試番9は、式「a×b≦2×(P/v)」を満
たさない場合であり、溶融金属が不足しアンダ−カット
を発生した。
【0055】[II] 鋼材B(板厚 8.6mm)に従来のE
RW溶接を施した試番10では、溶接部は「σth/σys≧
72%」を満足していない。レ−ザ−出力が10kWの
時、V溝を設けない従来のレ−ザ−溶接を施した試番11
では、溶接部は「σth/σys≧72%」を満足するもの
の、「σth/σys≧80%」は満足しない。また、溶接
速度3m/minが限界速度であって、溶接速度を限界以上
に上げた試番12では溶込み不足が発生し、しかも耐SS
C性が低下している。
【0056】これに対して、本発明例たる試番13,14及
び15では、何れも優れた耐SSC性を示し、「σth/σ
ys≧80%」を満足する結果となっており、しかも試番
15の結果から明らかなように、試番11に比べて溶接速度
を2倍に上げることが可能であった。
【0057】一方、試番16〜19は本発明に係る例ではあ
るが、それぞれ望ましい範囲を外れているので、試番13
〜15に比べ耐SSC性に劣っている。しかし、従来例に
比べれば良好な耐SSC性を有していて、「σth/σys
≧72%」は満足することが分かる。
【0058】なお、このうち、試番16は式「a/b>D
/f」を満たさない場合であり、レ−ザ−ビ−ムがV溝
の底部に集中しないことにより溶込み不足が発生した。
試番17は、式「a×b≦2×(P/v)」を満たさない
場合であり、溶融金属が不足してアンダ−カットを発生
した。試番18は、式「t−b≦4×(P/v)」を満た
さない場合であり、溝が浅いことにより溶込み不足が発
生した。試番19は、式「a≦2×(P/v)」を満たさ
ない場合であり、溝幅が広すぎてアンダ−カットを発生
した。
【0059】[III] 鋼材C(板厚 4.8mm)に従来のE
RW溶接を施した試番20では、溶接部は「σth/σys≧
72%」を満足していない。レ−ザ−出力が5kWの
時、V溝を設けない従来のレ−ザ−溶接を施した試番21
では、溶接部は「σth/σys≧72%」を満足するもの
の「σth/σys≧80%」は満足しない。また、溶接速
度4m/minが限界速度であって、溶接速度を限界以上に
上げた試番22では溶込み不足が発生し、しかも耐SSC
性が低下している。
【0060】これに対して、本発明例たる試番23,24及
び25では、何れも優れた耐SSC性を示し、「σth/σ
ys≧80%」を満足する結果となっており、しかも試番
25の結果から明らかなように、試番21に比べて溶接速度
を2倍に上げることが可能であった。
【0061】一方、試番26〜29は本発明に係る例ではあ
るが、それぞれ望ましい範囲を外れているので、試番23
〜25に比べ耐SSC性に劣っている。しかし、従来例に
比べれば良好な耐SSC性を有していることが分かる。
【0062】なお、このうち、試番26は式「t−b≦4
×(P/v)」を満たさない場合であり、溝が浅いこと
により溶込み不足が発生した。試番27は、式「a×b≦
2×(P/v)」を満たさない場合であり、溶融金属が
不足してアンダ−カットを発生した。試番28は、式「a
≦2×(P/v)」を満たさない場合であり、溝幅が広
すぎてアンダ−カットを発生した。試番29は、式「a/
b>D/f」を満たさない場合であり、レ−ザ−ビ−ム
がV溝の底部に集中しないことにより溶込み不足が発生
した。
【0063】[IV] 更に、本発明法により優れた耐S
SC性を示す溶接鋼管を製造することができることを、
板厚11.1mmの“その他の各成分系”を網羅した鋼材D〜
Mによる試験によって確認した。
【0064】このように、表2及び表3に示される結果
からも明らかな如く、本発明法に従って製造された溶接
鋼管は溶接部においても優れた耐SSC性を有している
のに対して、製造条件が本発明で規定する条件を満たし
ていない比較例や従来のERW鋼管では十分な耐SSC
性を有していないことが分かる。
【0065】なお、従来のERWを適用した場合の平均
的な溶接速度は、板厚4.8mm のC鋼で20m/min,板厚
8.6mm のB鋼で10m/min,板厚12.7mmのA鋼で8m/m
in程度であるが、この試験を通じて、本発明法による溶
接速度はこのERWでの溶接速度の約 1/2に相当し、V
溝を設けない従来のレ−ザ−溶接製管速度の2〜3倍と
なることも確認された。
【0066】
【効果の総括】以上に説明した如く、この発明によれ
ば、湿潤環境で油井掘削用鋼管に適用しても十分に満足
できる耐SSC性を示すERW製造サイズの高強度溶接
鋼管を能率良く安定に製造することが可能となるなど、
産業上極めて有用な効果がもたらされる。
【図面の簡単な説明】
【図1】溶接前のV溝形状の一例を示す説明図である。
【図2】V溝寸法とレ−ザ−ビ−ム経路の関係を示す説
明図である。
【図3】V溝寸法が過大時のビ−ド形状を示した説明図
である。
【図4】SSC調査用試験片の採取部位に関する説明図
である。
【図5】実施例で採用したSSC試験片の形状・寸法の
説明図である。
【図6】実施例で採用したSSC試験装置の概念図であ
る。
【符号の説明】
1 母材 2 V溝 3 レ−ザ−ビ−ム 4 V溝の肩部 5 V溝の底部 6 アンダカット

Claims (3)

    【特許請求の範囲】
  1. 【請求項1】 重量割合にてC:0.20超〜0.60%,
    Si:0.10〜0.80%, Mn:0.10〜1.00%,P: 0.025
    %以下, S: 0.002%以下, sol.Al:0.01〜0.
    10%を含有すると共に、更にCa:0.0005〜0.0050%,
    希土類元素:0.0005〜0.01%のうちの1種以上をも
    含み、残部がFe及び不可避不純物から成る熱延鋼板を成
    形ロ−ル群に供給して連続的にオ−プンパイプ状に成形
    してから、このオ−プンパイプを対設されたスクイズロ
    −ルで加圧して両エッジを突合わせ、その突合わせ部に
    レ−ザ−ビ−ムを照射して溶接鋼管となすに際し、予め
    該突合わせ部の外周部分に外面側へ開脚するV溝を設け
    ておき、このV溝を上方に向けてV溝内へレ−ザ−ビ−
    ムを照射し溶接鋼管とした後、鋼管全体をAc3点以上に
    加熱して焼入れし、更に600〜Ac1点の温度域で焼き
    戻すことを特徴とする、耐硫化物応力割れ性に優れる油
    井用溶接鋼管の製造方法。
  2. 【請求項2】 重量割合にてC:0.20超〜0.60%,
    Si:0.10〜0.80%, Mn:0.10〜1.00%,P: 0.025
    %以下, S: 0.002%以下, sol.Al:0.01〜0.
    10%を含み、かつCa:0.0005〜0.0050%, 希土類
    元素:0.0005〜0.01%のうちの1種以上を含有すると共
    に、更にCu:0.05〜0.50%, Ni:0.05〜0.50%,
    Cr:0.05〜1.20%,Mo:0.05〜1.00%, Nb:
    0.01〜0.15%, V:0.01〜0.15%,Ti:0.01〜0.15
    %, Zr:0.01〜0.15%, B:0.0005〜0.0050
    %のうちの1種以上をも含み、残部がFe及び不可避不純
    物から成る熱延鋼板を成形ロ−ル群に供給して連続的に
    オ−プンパイプ状に成形してから、このオ−プンパイプ
    を対設されたスクイズロ−ルで加圧して両エッジを突合
    わせ、その突合わせ部にレ−ザ−ビ−ムを照射して溶接
    鋼管となすに際し、予め該突合わせ部の外周部分に外面
    側へ開脚するV溝を設けておき、このV溝を上方に向け
    てV溝内へレ−ザ−ビ−ムを照射し溶接鋼管とした後、
    鋼管全体をAc3点以上に加熱して焼入れし、更に600
    〜Ac1点の温度域で焼き戻すことを特徴とする、耐硫化
    物応力割れ性に優れる油井用溶接鋼管の製造方法。
  3. 【請求項3】 溶接時に、突合わせ部及びその近傍を不
    活性ガスシ−ルドすることを特徴とする、請求項1又は
    2に記載の耐硫化物応力割れ性に優れる油井用溶接鋼管
    の製造方法。
JP4290744A 1992-10-05 1992-10-05 耐硫化物応力割れ性に優る油井用鋼管の製法 Pending JPH06116645A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4290744A JPH06116645A (ja) 1992-10-05 1992-10-05 耐硫化物応力割れ性に優る油井用鋼管の製法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4290744A JPH06116645A (ja) 1992-10-05 1992-10-05 耐硫化物応力割れ性に優る油井用鋼管の製法

Publications (1)

Publication Number Publication Date
JPH06116645A true JPH06116645A (ja) 1994-04-26

Family

ID=17759970

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4290744A Pending JPH06116645A (ja) 1992-10-05 1992-10-05 耐硫化物応力割れ性に優る油井用鋼管の製法

Country Status (1)

Country Link
JP (1) JPH06116645A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5900079A (en) * 1995-04-28 1999-05-04 Nkk Corporation Method for producing a steel pipe using a high density energy beam
CN102296233A (zh) * 2010-06-23 2011-12-28 宝山钢铁股份有限公司 高频电阻焊石油套管用钢及其制造方法
CN105256243A (zh) * 2015-10-23 2016-01-20 北大方正集团有限公司 一种油井用耐腐蚀钢及其生产方法
WO2019171624A1 (ja) * 2018-03-09 2019-09-12 日新製鋼株式会社 鋼管および鋼管の製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5900079A (en) * 1995-04-28 1999-05-04 Nkk Corporation Method for producing a steel pipe using a high density energy beam
CN102296233A (zh) * 2010-06-23 2011-12-28 宝山钢铁股份有限公司 高频电阻焊石油套管用钢及其制造方法
CN105256243A (zh) * 2015-10-23 2016-01-20 北大方正集团有限公司 一种油井用耐腐蚀钢及其生产方法
WO2019171624A1 (ja) * 2018-03-09 2019-09-12 日新製鋼株式会社 鋼管および鋼管の製造方法

Similar Documents

Publication Publication Date Title
RU2427662C2 (ru) Высокопрочная сварная стальная труба для трубопровода, обладающая превосходной низкотемпературной вязкостью, и способ ее изготовления
US9616527B2 (en) Process for laser-arc hybrid welding aluminized metal workpieces
CA2657518C (en) Hot bend pipe and a process for its manufacture
JP4811166B2 (ja) 引張強度800MPaを超える超高強度溶接鋼管の製造方法
JP5516680B2 (ja) 電縫溶接部の耐hic性および低温靭性に優れた電縫鋼管およびその製造方法
KR20190021444A (ko) 전봉 용접 스테인리스 클래드 강관 및 그의 제조 방법
US6140601A (en) Laser-welded steel pipe and method therefor
JPH0941083A (ja) 耐hic及び耐sscc特性に優れた電縫管及びその製造方法
JPH1017980A (ja) 低降伏比溶接鋼管およびその製造方法
Ichiyama et al. Flash-butt welding of high strength steels
JPH09194998A (ja) 溶接鋼管およびその製造方法
JPH06116645A (ja) 耐硫化物応力割れ性に優る油井用鋼管の製法
JP3319358B2 (ja) 耐水素誘起割れ性、耐硫化物応力割れ性および低温靭性に優れたラインパイプ用溶接鋼管の製造方法
JPH03268877A (ja) 耐硫化物応力割れ性油井用溶接鋼管の製造法
JPH08309428A (ja) 溶接鋼管の製造方法
JPH08120346A (ja) 耐硫化物応力割れ性に優れる油井用溶接鋼管の製造方法
JPH08174249A (ja) 溶接鋼管の製造方法
JPH08141762A (ja) 溶接部靭性に優れた高C−高Cr含有溶接鋼管の製造方法
Contuzzi et al. Study on properties and microstructure of laser beam butt welded joints of Al-Si coated USIBOR® 1500 steel
JP3146886B2 (ja) 耐水素誘起割れ性および耐硫化物応力割れ性に優れるラインパイプ用溶接鋼管の製造方法
JP2001140040A (ja) 耐硫化物応力割れ性に優れた低炭素フェライト−マルテンサイト二相ステンレス溶接鋼管
JPH09194997A (ja) 溶接鋼管およびその製造方法
Kumar et al. Effect of post weld heat treatment on impact toughness of SA 516 GR. 70 Low Carbon Steel Welded by Saw Process
JPS6260462B2 (ja)
Mohammadijoo Development of a welding process to improve welded microalloyed steel characteristics