JPH0610660B2 - Method for measuring film thickness and composition of alloy film - Google Patents

Method for measuring film thickness and composition of alloy film

Info

Publication number
JPH0610660B2
JPH0610660B2 JP59209097A JP20909784A JPH0610660B2 JP H0610660 B2 JPH0610660 B2 JP H0610660B2 JP 59209097 A JP59209097 A JP 59209097A JP 20909784 A JP20909784 A JP 20909784A JP H0610660 B2 JPH0610660 B2 JP H0610660B2
Authority
JP
Japan
Prior art keywords
composition
ray
alloy
film thickness
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59209097A
Other languages
Japanese (ja)
Other versions
JPS6188128A (en
Inventor
忠廣 安部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP59209097A priority Critical patent/JPH0610660B2/en
Priority to KR1019860700334A priority patent/KR900008955B1/en
Priority to US06/860,190 priority patent/US4764945A/en
Priority to PCT/JP1985/000551 priority patent/WO1986002164A1/en
Priority to EP85904879A priority patent/EP0197157B1/en
Priority to DE8585904879T priority patent/DE3583436D1/en
Priority to CA000492333A priority patent/CA1250061A/en
Publication of JPS6188128A publication Critical patent/JPS6188128A/en
Publication of JPH0610660B2 publication Critical patent/JPH0610660B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B15/00Measuring arrangements characterised by the use of electromagnetic waves or particle radiation, e.g. by the use of microwaves, X-rays, gamma rays or electrons
    • G01B15/02Measuring arrangements characterised by the use of electromagnetic waves or particle radiation, e.g. by the use of microwaves, X-rays, gamma rays or electrons for measuring thickness

Description

【発明の詳細な説明】Detailed Description of the Invention 【産業上の利用分野】[Industrial applications]

本発明は、合金被膜の膜厚及び組成測定方法に係り、特
に、Zn−Fe系合金めっき鋼板のオンラインでの分析
に用いるのに好適な、下地金属と同じ金属を含む合金被
膜の膜厚及び組成を測定する方法に関する。
The present invention relates to a method for measuring the film thickness and composition of an alloy film, and particularly to a film thickness of an alloy film containing the same metal as a base metal, which is suitable for use in online analysis of a Zn—Fe alloy plated steel sheet, and It relates to a method of measuring composition.

【従来の技術】[Prior art]

自動車車体、家庭電気製品及び建築材料用として、耐蝕
性、加工性、塗装性、溶接性等に優れた各種めっき鋼板
が開発されており、広く使用されている。これらのめっ
き鋼板の生産に際して、その品質を安定させるために
は、めっき被膜の厚さ(付着量)及び組成(成分含有
率)を分析して工程管理することが不可欠である。 めっき鋼板の分析方法としては、Znめっき鋼板やZn
−Ni合金めっき鋼板等のように、めっき被膜が下地鋼
板であるFe以外の成分からなるものについては、螢光
X線分析法により比較的簡単にめっき被膜の厚さ及び組
成が分析でき、この種の分析装置は既に実用化されてい
る。 しかしながら、最近、特に優れた特性が注目されている
Zn−Fe系合金めっき鋼板については、通常の螢光X
線法では、Znの螢光X線強度がめっき被膜中のZn又
はFeの含有率やめっき被膜の厚さによって変化するこ
と、及び、Feについては、下地鋼板から多量のFeの
螢光X線が発生し、それがめっき被膜中のFeの螢光X
線と区別がつかないことにより分析は不可能であった。 そのために、Zn−Fe系合金めっき鋼板の分析方法と
しては、次のような方法が従来から提案されている。そ
の第1は、特開昭55−24680で提案されている方
法で、これは、Zn−Feの合金化処理を施したZnめ
っき鋼板について、下地鋼板のFe以外の金属、即ち、
Znの螢光X線強度を相異なる2種の取出角で測定し、
両測定値を基に所定の連立方程式を解いて、前記めっき
鋼板のめっき厚さ及び合金化度(Fe含有率)を求める
ものである。この方法では、別に予め2種の取出角で充
分厚い純亜鉛試料のZnの螢光X線強度を測定してお
き、次に、同じX線分光器で合金化処理を施したZnめ
っき鋼板のZnの螢光X線強度を測定して、それぞれの
取出角について、先に求めた純亜鉛の螢光X線強度との
比で解析する。この取出角を変化させての螢光X線定量
法は、古くから教科書等に掲載されている螢光X線分析
法の基礎的論理で、誰もが知っている公知のものであ
る。 又、第2は特開昭58−223047で提案されている
方法で、これはZn−Fe合金めっき鋼板について、下
地鋼板からのFeの螢光X線が実質的に検出されない第
1の励起線入射角及び螢光X線取出角によるFeの螢光
X線強度から前記めっき被膜中のFe含有率を求め、
又、下地鋼板からのFeの螢光X線が検出される第2の
励起線入射角及び螢光X線取出角によるFeの螢光X線
強度から前記めっき被膜の厚さを求めるものである。
Various plated steel sheets having excellent corrosion resistance, workability, paintability, weldability, etc. have been developed and widely used for automobile bodies, household electric appliances and building materials. In order to stabilize the quality of these plated steel sheets in production, it is indispensable to analyze the thickness (adhesion amount) and composition (content ratio) of the plated coating to control the process. As a method of analyzing a plated steel sheet, Zn-plated steel sheet or Zn
-For Ni alloy plated steel sheets and the like, in which the plated coating is composed of a component other than Fe which is the base steel sheet, the thickness and composition of the plated coating can be relatively easily analyzed by the fluorescent X-ray analysis method. A kind of analyzer has already been put to practical use. However, with regard to Zn-Fe alloy plated steel sheets, which have recently been attracting attention for their particularly excellent characteristics, ordinary fluorescent X
In the X-ray method, the fluorescent X-ray intensity of Zn changes depending on the Zn or Fe content in the plating film and the thickness of the plating film. Occurs, and it is the fluorescence X of Fe in the plating film.
Analysis was not possible due to indistinguishability from the line. Therefore, the following method has been conventionally proposed as a method for analyzing a Zn-Fe alloy plated steel sheet. The first is a method proposed in JP-A-55-24680, which is a metal other than Fe of the base steel sheet, that is, a Zn-plated steel sheet subjected to an alloying treatment of Zn-Fe, that is,
The fluorescent X-ray intensity of Zn was measured at two different extraction angles,
A predetermined simultaneous equation is solved based on both measured values, and the plating thickness and alloying degree (Fe content rate) of the plated steel sheet are obtained. In this method, the fluorescent X-ray intensities of Zn of pure zinc samples with two sufficiently different take-off angles are measured in advance, and then the Zn-plated steel sheet alloyed with the same X-ray spectrometer is used. The fluorescent X-ray intensity of Zn is measured, and each extraction angle is analyzed by the ratio to the previously obtained fluorescent X-ray intensity of pure zinc. This fluorescent X-ray quantification method by changing the extraction angle is a basic logic of the fluorescent X-ray analysis method that has been published in textbooks for a long time, and is a publicly known method. The second method is a method proposed in Japanese Patent Laid-Open No. 58-223047, which is a first excitation line for Zn-Fe alloy-plated steel sheet in which the fluorescent X-rays of Fe from the base steel sheet are not substantially detected. The Fe content in the plating film is determined from the fluorescent X-ray intensity of Fe according to the incident angle and the fluorescent X-ray extraction angle,
Further, the thickness of the plating film is obtained from the intensity of the fluorescent X-rays of Fe based on the second incident angle of excitation rays at which the fluorescent X-rays of Fe from the base steel plate are detected and the angle of extraction of the fluorescent X-rays. .

【発明が解決しようとする問題点】[Problems to be Solved by the Invention]

しかしながら、生産ラインでは、めっき鋼板は例えば1
00m/minという高速で流れているので、めっき鋼板
は必ず大なり小なりばたついており、特開昭55−24
680で提案された前者の方法では、当然分析精度が悪
くなる。 又、合金めっき鋼板のめっき被膜の厚さは一般に20〜
30g/m2(約3〜4μm)と非常に薄いので、特開昭
58−223047で提案された後者の方法では、めっ
き被膜中の金属の螢光X線を正確に測定できる程の強い
強度を得ようとすると、その薄いめっき被膜層だけを励
起することは実際上不可能で、どうしても下地鋼板の金
属も励起することになる。従って、この場合、めっき被
膜中のFeと下地鋼板のFeの両方の螢光X線強度を測
定することになって、正確な分析ができなくなる。更
に、オンライン化を考えた場合、第1のX線光学系にお
ける低角度の入射角=取出角=5°では、X線管球の大
きさ、X線分析系の構造上、分析計の保護カバー等から
しても実際にそのような装置を作製することは不可能で
あった。 従って、従来提案されているような方法にはいずれも問
題があるので、結局は、従来通り、めっき被膜層だけを
電解又は適当な酸により溶解除去し、その除去量からめ
っき被膜の厚さを、又、溶解液の鉄量を化学分析してめ
っき被膜中のFe含有率を求めるという化学分析法に頼
らずるを得ない。しかしながら、この化学分析法は、下
地鋼板を溶かさずにめっき被膜層だけを溶解することは
大変困難であるので、著しい熟練と長時間を要し、しか
も製品から試料を採取する破壊分析であり、オンライン
化もできないので、工程管理への測定結果の反映が非常
に遅くなるという問題点を有していた。 一方、特開昭50−17695において、連続的に移動
する鋼板に一低角度をもって特性X線及び白色X線を照
射する手段と、この照射点からのブラッグの条件を満足
する波長の回折X線及び螢光X線を検出する手段と、こ
れらの検出信号を分析してそれぞれの集合組織、元素等
の強度値を検知する手段とを備えたことを特徴とする鋼
板の連続品質検査装置も提案されているが、鋼板自体の
集合組織と添加合金元素の含有率測定を目的としてお
り、本発明とは対象とする鋼板が異なり、目的及び構成
が異なるだけでなく、膜厚を検出することは行われてい
なかった。
However, in the production line, the plated steel sheet is, for example, 1
Since the steel sheet flows at a high speed of 00 m / min, the plated steel sheet always flutters if it is large or small.
The former method proposed in 680 naturally results in poor analysis accuracy. In addition, the thickness of the plating film of the alloy-plated steel sheet is generally 20 to
Since it is very thin at 30 g / m 2 (about 3 to 4 μm), the latter method proposed in Japanese Patent Laid-Open No. 58-223047 has a strong intensity enough to accurately measure the fluorescent X-ray of the metal in the plating film. In order to obtain the above, it is practically impossible to excite only the thin plating film layer, and the metal of the base steel sheet is inevitably excited. Therefore, in this case, the fluorescent X-ray intensities of both Fe in the plating film and Fe in the base steel sheet are measured, and accurate analysis cannot be performed. Further, considering online, at a low incident angle = extraction angle = 5 ° in the first X-ray optical system, the size of the X-ray tube and the structure of the X-ray analysis system protect the analyzer. It was impossible to actually manufacture such a device even from a cover or the like. Therefore, there are problems in any of the methods that have been proposed in the past, so in the end, as is the case, only the plating film layer is dissolved and removed by electrolysis or a suitable acid, and the thickness of the plating film is determined from the amount removed. Moreover, it is unavoidable to rely on the chemical analysis method of chemically analyzing the iron content of the solution to obtain the Fe content in the plating film. However, since this chemical analysis method is very difficult to dissolve only the plating film layer without melting the base steel sheet, it requires a great deal of skill and time, and is a destructive analysis in which a sample is taken from the product. Since it cannot be brought online, there is a problem that the measurement results are reflected in the process control very slowly. On the other hand, in Japanese Unexamined Patent Publication No. 50-17695, means for irradiating a continuously moving steel plate with characteristic X-rays and white X-rays at a low angle, and diffracted X-rays having a wavelength satisfying the Bragg condition from this irradiation point. And a continuous quality inspection apparatus for steel plates, characterized by comprising means for detecting fluorescent X-rays and means for analyzing the detection signals of these and detecting the intensity values of the respective textures, elements, etc. However, the purpose is to measure the content of the texture and additive alloy elements of the steel sheet itself, the steel sheet targeted by the present invention is different, not only the purpose and configuration is different, it is not possible to detect the film thickness. Was not done.

【発明の目的】[Object of the Invention]

本発明は、前記従来の問題点を解消すべくなされたもの
で、下地金属と同じ金属を含む合金被膜の膜厚及び組成
を、同時に且つ非破壊的にオンラインで測定することが
できる合金被膜の膜厚及び組成測定方法を提供すること
を目的とする。
The present invention has been made to solve the above conventional problems, and an alloy coating film capable of simultaneously and nondestructively measuring the film thickness and composition of an alloy coating film containing the same metal as a base metal online. An object is to provide a film thickness and composition measuring method.

【問題点を解決するための手段】[Means for solving problems]

本発明は、下地金属と同じ金属を含む合金被膜の膜厚及
び組成を測定するに際して、第1図にその要旨を示す如
く、予め、対象となる前記合金被膜の組成の変化範囲を
網羅するように、所定照射条件にて所定特性X線を照射
した場合の、回折角θと、合金被膜の組成との組成回折
角関係を求めておき、更に、予め、対象となる前記合金
被膜の膜厚の変化範囲及び組成の変化範囲を網羅するよ
うに、所定照射条件にて所定白色X線を照射した場合
の、下地金属とは異なる金属からの螢光X線の強度と、
合金被膜の膜厚及び組成との膜厚組成螢光強度関係を求
めておき、実際の被測定物体の合金被膜の膜厚及び組成
の測定時には、該被測定物体に対して、前記組成回折角
関係を求めた時の前記所定照射条件と同一条件にて前記
特性X線を照射して、この時の回折角θを回折X線検出
器により測定し、更に、該被測定物体に対して、前記膜
厚組成螢光強度関係を求めた時の前記所定照射条件と同
一条件にて前記白色X線を照射して、この時の、下地金
属とは異なる金属からの螢光X線の強度を、前記回折X
線検出器とは別個に設置した螢光X線検出器により測定
し、測定された前記回折角θと、前記組成回折角関係と
に基づいて、前記被測定物体の合金被膜の組成を求め、
更に、前記被測定物について求められた該合金被膜の組
成及び測定された前記螢光X線の強度と、前記膜厚組成
螢光強度関係とに基づいて、前記被測定物体の合金被膜
の膜厚を求めるようにして、前記目的を達成したもので
ある。 又、本発明の実施態様は、前記特性X線及び白色X線を
単一のX線源から発生させるようにして、測定装置の構
成を簡略化できるようにしたものである。 又、本発明の他の実施態様は、前記合金被膜を、Feを
主成分の1つとして含有する合金被膜としたものであ
る。
The present invention, when measuring the film thickness and composition of an alloy coating containing the same metal as the underlying metal, covers the range of change in the composition of the target alloy coating in advance, as shown in FIG. In addition, the composition diffraction angle relationship between the diffraction angle θ and the composition of the alloy coating in the case of irradiating with the predetermined characteristic X-ray under the predetermined irradiation condition is obtained, and further, the film thickness of the target alloy coating is further calculated in advance. Intensity of fluorescent X-rays from a metal different from the base metal when the white X-rays are irradiated under predetermined irradiation conditions so as to cover the range of change and the range of change in composition,
The film thickness composition fluorescence intensity relationship with the film thickness and composition of the alloy film is obtained, and when measuring the film thickness and composition of the alloy film of the actual measured object, the composition diffraction angle is measured with respect to the measured object. The characteristic X-rays are irradiated under the same conditions as the predetermined irradiation conditions when the relationship is obtained, and the diffraction angle θ at this time is measured by a diffraction X-ray detector, and further, with respect to the measured object, The white X-rays are irradiated under the same conditions as the predetermined irradiation conditions for obtaining the film thickness composition fluorescence intensity relationship, and the intensity of the fluorescence X-rays from a metal different from the base metal at this time is determined. , The diffraction X
Measured by a fluorescent X-ray detector installed separately from the line detector, based on the measured diffraction angle θ and the composition diffraction angle relationship, determine the composition of the alloy coating of the measured object,
Further, based on the composition of the alloy coating obtained for the object to be measured and the intensity of the fluorescent X-ray measured, and the film thickness composition fluorescence intensity relationship, the film of the alloy coating of the object to be measured. The above object was achieved by determining the thickness. Further, in the embodiment of the present invention, the characteristic X-rays and the white X-rays are generated from a single X-ray source so that the structure of the measuring device can be simplified. In another embodiment of the present invention, the alloy coating film is an alloy coating film containing Fe as one of the main components.

【作用】[Action]

前述の如く、めっき被膜等の合金被膜の膜厚及び組成の
オンラインでの測定には種々の問題があり、特に、下地
金属と同じ金属を含む合金被膜については、より困難な
ものとなっている。 このような下地金属と同じ金属を含む合金被膜の膜厚及
び組成をオンラインで測定するために、本発明において
は、特に、X線回折法と螢光X線分析法とを併用するよ
うにしている。又、このように併用されるX線回折法及
び螢光X線分析法それぞれについても、本発明特有の種
々の工夫がなされている。 例えば、本発明で行われるX線回折法においては、対象
となる合金被膜の金属成分の含有率に従って、後述する
(1)式に示される結晶格子面間隔とX線回折角との関
係に着目すると共に、後述する実施例の説明でも言及す
るとおり、更に、その結晶の格子面間隔d(格子定数)
が合金中の金属含有率の大小に伴なって変化するものと
して観測されるという点を見い出してなされている。 従って、本発明では、予め、組成測定対象となる前記合
金被膜の組成の変化範囲を網羅するように、即ち、対象
となる合金被膜の金属成分の含有率の変化範囲を網羅す
るように、所定照射条件にて所定特性X線を照射した場
合の、回折角θと、合金被膜の組成との組成回折角関係
を求めるようにしておく。 例えば、後述する実施例の第3図においては、ZnとF
eとでなる合金めっき被膜について、Feの含有率10
%から25%までの範囲について、そのX線回折角2θ
の関係が、前述のような組成回折角関係として予め求め
られている。 一方、本発明で行われる螢光X線分析法についても、本
発明特有の工夫がなされている。即ち、本発明において
は、螢光X線分析法にて合金被膜の膜厚を測定する際
に、前述のようにX線回折法にて得られた組成測定結果
を用いるようにしている。この点で、前述する組成回折
角関係と、後述する膜厚組成螢光強度関係とは、ペアで
用いられ、測定精度向上に寄与しているものの1つと思
われる。 又、このような螢光X線分析法において、本発明では特
に、下地金属とは異なる金属からの螢光X線強度を測定
するようにしている。 例えば後述する実施例においては、鋼板上になされたZ
n−Fe合金めっきについて、Feの下地金属とは異な
るZnの金属からの螢光X線強度をまず測定するように
している。例えば後述する実施例では、Znの螢光X線
の波長が、Feの螢光X線の波長と異なる点に着目し、
分光結晶26等によってZnの螢光X線だけを分光し、
その強度を測定するようにしている。 第1図は、本発明の要旨を示すフローチャートである。 この第1図のステップ102においては、まず、対象と
なる合金被膜の組成の変化範囲を網羅する『組成回折角
関係』を求めると共に、該合金皮膜の膜厚の変化範囲及
び組成の変化範囲を網羅する『膜厚組成螢光強度関係』
を求める。これは、例えば、後述する実施例の第3図に
示されるような組成回折角関係や、第5図に示される膜
厚組成螢光強度関係等を求めるものである。 前記組成回折角関係は、回折角θと合金被膜の組成との
相関関係である。例えば前述の第3図においては、Zn
−Fe合金めっきについて、Fe含有率が10%から2
5%までの範囲について、回折角θと合金被膜の組成中
のFe含有率(あるいはZn含有率)との一義的な関係
が予め求められている。 一方、前記膜厚組成螢光強度関係は、対象となる合金被
膜の膜厚の変化範囲及び組成の変化範囲を網羅するよう
な、即ち、例えば対象となる合金被膜の膜厚の変化範囲
やその金属成分の含有率の変化範囲を網羅するような、
所定照射条件にて所定白色X線を照射した場合の、下地
金属とは異なる金属からの螢光X線の強度と、合金被膜
の膜厚及び組成との関係である。例えば、後述する実施
例における膜厚組成螢光強度関係は、第5図に示される
如く、10%から25%までのFe含有率毎の、Zn螢
光X線強度とめっき付着量との関係となっている。 なお、前記組成回折角関係を求める際の特性X線や、該
特性X線の照射条件については、本発明は特に限定する
ものではない。例えば、これらは、実験的に求めるよう
にしてもよい。 例えば後述する実施例においては、波長λが2.291
ÅであるCrKα線を入射角ψ≒33.5度にて照射す
ることで、第3図のグラフに示されるような良好な結果
が得られている。即ち、Feの含有率の相違が、X線回
折角2θの相違として検出可能な結果が得られている。 又、本発明においては、前述の膜厚組成螢光強度関係を
求める際の、白色X線や該白色X線の照射条件を特に限
定するものではない。 例えば、後述する実施例では、特定X線を照射する際に
副次的に照射される白色X線を用いることで、第5図に
示されるような良好な結果が得られている。即ち、後述
する実施例の白色X線及びこの照射条件においては、予
め合金被膜のFe含有率がわかれば、測定されるZn螢
光X線強度に対応して、そのめっき付着量を効果的に求
めることができるような、良好な特性を得ている。 次にステップ104では、実際の被測定物体の合金被膜
の膜厚及び組成の測定に際して、特性X線の照射及び白
色X線の照射を行う。これは、該被測定物体に対して、
前記組成回折角関係を求めたときの前記所定照射条件と
同一条件にて、同一の特性X線を照射するというもので
ある。又、この特性X線の照射時には、その回折角θを
回折X線検出器により測定する。更に、該被測定物体に
対して、前記膜厚組成螢光強度関係を求めたときの前記
所定照射条件と同一条件にて、同一の白色X線を照射す
る。この白色X線の照射の際には、下地金属とは異なる
金属からの螢光X線の強度を、前記回折X線検出器とは
別個に設置した螢光X線検出器により測定する。 なお、前記特性X線の照射及び回折角θの測定と、前記
白色X線の照射及び螢光X線の強度測定とは、どちらを
先に行ってもよく、又、同時に行ってもよい。 ステップ106では、前記ステップ104にて測定され
た前記回折角θと、前記ステップ102において得られ
た前記組成回折角関係とに基づいて、前記被測定物体の
合金被膜の組成を求める。例えば後述する実施例におい
ては、測定されたX線回折角2θが66度から68度ま
での範囲では、第3図に示されるとおり、Zn−Fe合
金めっきのFe含有率(%)を一義的に求めることがで
きている。 続いてステップ108では、前記ステップ106にて求
められた前記被測定物についての合金被膜の組成、及び
前記ステップ104にて測定された前記螢光X線の強度
と、前記ステップ102にて求められた前記膜厚組成螢
光強度関係とに基づいて、前記被測定物体の合金被膜の
膜厚を求める。例えば、後述する実施例においては、第
5図に示されるような膜厚組成螢光強度関係を用いるこ
とで、0〜約25(g/m)のめっき付着量を求める
ことが可能となっている。 以上説明した通り、本発明においては、X線回折法及び
螢光X線分析法を併用することで、又、これらX線回折
法及び螢光X線分析法それぞれに本発明特有の工夫をな
すことによって、従来測定が困難であった合金被膜の膜
厚及び組成を、同時に且つ非破壊的にオンラインで測定
することが可能である。
As described above, there are various problems in online measurement of the film thickness and composition of an alloy film such as a plating film, and in particular, an alloy film containing the same metal as the base metal becomes more difficult. . In order to measure the film thickness and composition of an alloy coating film containing the same metal as the base metal online, the X-ray diffraction method and the fluorescent X-ray analysis method are used in combination in the present invention. There is. Also, various ideas peculiar to the present invention have been made for the X-ray diffraction method and the fluorescent X-ray analysis method used together as described above. For example, in the X-ray diffraction method performed in the present invention, attention is paid to the relationship between the crystal lattice plane spacing and the X-ray diffraction angle shown in the formula (1) described later according to the content ratio of the metal component of the alloy coating to be targeted. In addition, as described later in the description of the embodiments, the lattice spacing d (lattice constant) of the crystal is further increased.
Has been found to change as the content of metal in the alloy changes. Therefore, in the present invention, in advance, so as to cover the range of change in the composition of the alloy coating as the composition measurement target, that is, to cover the range of change in the content rate of the metal component of the alloy coating as the target, The compositional diffraction angle relationship between the diffraction angle θ and the composition of the alloy coating when a predetermined characteristic X-ray is irradiated under the irradiation conditions is obtained. For example, in FIG. 3 of the embodiment described later, Zn and F
Fe content of the alloy plating film consisting of e and 10
% To 25%, the X-ray diffraction angle 2θ
Is previously obtained as the composition diffraction angle relationship as described above. On the other hand, the fluorescent X-ray analysis method performed in the present invention has also been devised unique to the present invention. That is, in the present invention, when the film thickness of the alloy coating film is measured by the fluorescent X-ray analysis method, the composition measurement result obtained by the X-ray diffraction method is used as described above. In this respect, the compositional diffraction angle relationship described above and the film thickness composition fluorescence intensity relationship described later are used in pairs, and are considered to be ones that contribute to the improvement of measurement accuracy. Further, in such a fluorescent X-ray analysis method, particularly in the present invention, the fluorescent X-ray intensity from a metal different from the base metal is measured. For example, in the examples described below, Z made on a steel plate
Regarding the n-Fe alloy plating, the fluorescent X-ray intensity from the metal of Zn different from the base metal of Fe is first measured. For example, in Examples described later, focusing on the point that the wavelength of the fluorescent X-ray of Zn is different from the wavelength of the fluorescent X-ray of Fe,
Disperses only the fluorescent X-rays of Zn by the dispersive crystal 26,
I try to measure its strength. FIG. 1 is a flowchart showing the gist of the present invention. In step 102 of FIG. 1, first, a “composition diffraction angle relationship” covering the composition change range of the target alloy film is obtained, and the film thickness change range and composition change range of the alloy film are determined. Coverage "Film thickness composition Fluorescence intensity relationship"
Ask for. This is to obtain, for example, the composition diffraction angle relationship as shown in FIG. 3 of the embodiment described later, the film thickness composition fluorescence intensity relationship as shown in FIG. The composition diffraction angle relationship is a correlation between the diffraction angle θ and the composition of the alloy film. For example, in FIG. 3 described above, Zn
Regarding Fe alloy plating, the Fe content is 10% to 2
For the range up to 5%, a unique relationship between the diffraction angle θ and the Fe content (or Zn content) in the composition of the alloy coating is obtained in advance. On the other hand, the film thickness composition fluorescence intensity relationship is such that it covers the change range of the film thickness and the change range of the composition of the target alloy film, that is, for example, the change range of the film thickness of the target alloy film and its To cover the change range of the content rate of metal components,
This is a relationship between the intensity of fluorescent X-rays from a metal different from the base metal and the film thickness and composition of the alloy coating when a predetermined white X-ray is irradiated under a predetermined irradiation condition. For example, as shown in FIG. 5, the relationship between the film thickness composition fluorescence intensity and the Zn fluorescence X-ray intensity for each Fe content of 10% to 25% and the plating adhesion amount is shown in FIG. Has become. The present invention is not particularly limited to the characteristic X-rays for obtaining the composition diffraction angle relationship and the irradiation conditions of the characteristic X-rays. For example, these may be obtained experimentally. For example, in the embodiment described later, the wavelength λ is 2.291.
By irradiating the CrKα ray which is Å with the incident angle ψ≈33.5 degrees, good results as shown in the graph of FIG. 3 are obtained. That is, the difference in the Fe content can be detected as the difference in the X-ray diffraction angle 2θ. Further, in the present invention, there is no particular limitation on the white X-rays and the irradiation conditions of the white X-rays when obtaining the above-mentioned film thickness composition fluorescence intensity relationship. For example, in Examples described later, by using the white X-rays that are secondarily emitted when the specific X-rays are emitted, good results as shown in FIG. 5 are obtained. That is, in the white X-rays and the irradiation conditions of Examples described later, if the Fe content of the alloy coating is known in advance, the amount of plating adhered to the Zn fluorescent X-rays can be effectively determined according to the measured Zn fluorescent X-ray intensity. It has good characteristics that can be obtained. Next, in step 104, characteristic X-ray irradiation and white X-ray irradiation are performed when the film thickness and composition of the actual alloy coating of the object to be measured are measured. This is
The same characteristic X-ray is irradiated under the same conditions as the predetermined irradiation conditions when the composition diffraction angle relationship is obtained. When the characteristic X-ray is irradiated, the diffraction angle θ is measured by the diffraction X-ray detector. Further, the same white X-ray is irradiated to the object to be measured under the same conditions as the predetermined irradiation conditions when the relationship of the film thickness composition fluorescence intensity is obtained. At the time of this white X-ray irradiation, the intensity of fluorescent X-rays from a metal different from the base metal is measured by a fluorescent X-ray detector installed separately from the diffractive X-ray detector. Either the characteristic X-ray irradiation and the diffraction angle θ measurement or the white X-ray irradiation and the fluorescent X-ray intensity measurement may be performed first or simultaneously. In step 106, the composition of the alloy coating of the object to be measured is determined based on the diffraction angle θ measured in step 104 and the composition diffraction angle relationship obtained in step 102. For example, in Examples described later, when the measured X-ray diffraction angle 2θ is in the range of 66 degrees to 68 degrees, the Fe content (%) of the Zn—Fe alloy plating is uniquely determined as shown in FIG. Can be asked to. Then, in step 108, the composition of the alloy coating of the object to be measured obtained in step 106, the intensity of the fluorescent X-ray measured in step 104, and the step 102 are obtained. The film thickness of the alloy film of the object to be measured is determined based on the film thickness composition fluorescence intensity relationship. For example, in Examples described later, by using the film thickness composition fluorescence intensity relationship as shown in FIG. 5, it is possible to obtain a plating adhesion amount of 0 to about 25 (g / m 2 ). ing. As described above, in the present invention, the X-ray diffraction method and the fluorescent X-ray analysis method are used in combination, and each of the X-ray diffraction method and the fluorescent X-ray analysis method has its own features. By doing so, it is possible to simultaneously and nondestructively measure the film thickness and composition of the alloy coating film online, which was conventionally difficult to measure.

【実施例】【Example】

以下図面を参照して、本発明の実施例を詳細に説明す
る。 本実施例は、鋼板上にZn−Fe合金めっきを施したZ
n−Fe合金めっき鋼板の合金めっき被膜の膜厚及び組
成測定に本発明を適用したもので、その測定装置の実施
例は、第2図に示す如く構成されている。 この実施例において、めっき槽10でめっきされたZn
−Fe合金めっき鋼板12は、矢印A方向に搬送されて
いる。該Zn−Fe合金めっき鋼板12の水平搬送部
(又は垂直搬送部)の適当な位置には、Crターゲット
等適当な波長の特性X線を発生する強力なX線管球14
が配設され、該X線管球14から照射されるX線が、ソ
ーラースリット16を介してZn−Fe合金めっき鋼板
12に向けて入射角ψで入射されている。すると、Zn
−Fe合金めっき鋼板12のめっき被膜層に形成れてい
るZn−Fe金属間化合物の相の各結晶格子面により、
X線は次に示すブラッグの式で回折される。 λ=2dsinθ…(1) ここで、λは波長、θは角度、dは、Zn−Fe金属間
化合物の結晶格子面間隔である。 具体的には、本実施例のX線回折法で用いる特性X線
は、第4図に示す如く、X線管球14の放射スペクトル
に含まれるCrKα線であり、その波長λは2.291
Åである。本実施例では、Zn−Fe合金めっき鋼板1
2のめっき被膜層に形成されているZn−Fe合金のδ
x相(100)面からの回折線を組成分析に用いること
にし、X線の照射は入射角ψ≒=33.5度としてい
る。又、後述する如くFe(又はZn)の含有率にて変
化するX線回折角2θは、67度付近となっている。 このとき、Zn−Fe金属間化合物の結晶は、Fe(又
はZn)の含有率によって格子常数が変化するので、X
線回折角2θが偏位する。即ち、Fe(又はZn)の含
有率に応じてX線回折角2θが変化する。ここでは(1
00)面の例を示したが、(110)面でも同様のこと
は可能であることは言うまでもない。 第3図は、本実施例で用いる、予め求められている組成
回折関係を示す線図である。 本実施例では、ソーラースリット17、ゴニオメータ1
8、回折X線検出器20及び計数回路22により、第3
図の例に示す如く、任意の結晶格子面について、Fe
(又はZn)の含有率(%)とX線回折角2θとの関係
を求めるようにしている。この組成回折関係は、第3図
に示されるように、測定されたX線回折角2θとこの時
のZn−Fe合金めっき被膜中のFe含有率(%)から
求められるものである。めっき層からの同じ結晶格子面
によるX線回折角2θを測定すれば、Zn−Fe合金め
っき鋼板12のめっき被膜中のFe含有率(%)(又は
Zn含有率(%)=100−Fe含有率(%))が求め
られるものである。 例えば、第3図に示されるような組成回折関係は、回帰
式やデータテーブル等として記憶しておくことができる
ことは明らかである。従って、X線回折角2θ(度)が
測定されれば、このような回帰式やデータテーブル等を
用いる処理にてFe含有率(%)を求めることができ
る。 一方、特性X線を発生させるX線管球14からは、通常
第4図に示す如く、白色X線も発生しているので、本実
施例では、この白色X線を有効に利用している。即ち、
この白色X線は、Zn−Fe合金めっき鋼板12に含ま
れている金属を励起して、その金属に対応する波長をも
った螢光X線を発生させるので、そのときのZnの螢光
X線を用いて分析を行う。具体的には、白色X線により
励起されたZn−Fe合金めっき鋼板12中に含まれて
いる金属の螢光X線は、ソーラースリット24を介して
分光結晶26によりZnの螢光X線だけが分光され、ソ
ーラースリット28を介して螢光X線検出器30及び計
数回路32によってその強度が測定される。 この螢光X線検出器30によって検出されるZnの螢光
X線強度は、先に述べたようにZn−Fe合金めっき被
膜中のZn(又はFe)の含有率と厚さによって変化す
るので、通常の方法では分析できないが、前記の通りX
線回折法でめっき被膜中のZn含有率が分析できるの
で、Znの螢光X線強度からめっき被膜の厚さを求める
ことができる。 第5図は、本実施例で用いる、予め求められている膜厚
組成螢光強度関係を示す線図である。 この第5図は、Znの螢光X線強度とめっき被膜の厚さ
(めっき付着量)との関係を調べた一例であるが、Fe
含有率(%)がわかれば、Znの螢光X線強度から容易
にめっき被膜の厚さが求められることがわかる。このと
き、Znの螢光X線強度に対するFeの影響量を求めて
おいて、Fe含有率で補正することによりめっき被膜の
厚さを求めるようにしてもよい。 例えば、第5図に示されせるような、Fe含有率(%)
毎のZnの螢光X線強度とめっき付着量との関係は、回
帰式やデータテーブル等として記憶しておくことができ
ることは明らかである。従って、前述のような第3図等
を用いたX線回折法にてFe含有率(%)が求められ、
又、Znの螢光X線強度が測定されれば、このような回
帰式やデータテーブル等にて、合金中のFeとZnとの
比率にかかわらず、即ち、Fe含有率が10%から25
%の範囲では、めっき付着量を求めることができる。 前記X線回折法の任意の結晶格子面の回折角度2θを求
めるための走査による一連のX線回折強度と、前記螢光
X線強度は同時に測定され、それぞれコンピュータ34
に入力される。このコンピュータ34では各種演算が行
われて、合金めっき被膜中のFe含有率とめっき厚さが
求められる。 本実施例では、第3図に示されるような組成回折関係
が、コンピュータ34のメモリ中のデータテーブルとし
て記憶されている。又、X線回折角2θ(度)が測定さ
れると、このようなデーターブルを用いながら、コンピ
ュータ34中のプログラムにてFe含有率(%)を求め
ることができる。このプログラムは、主として、データ
テーブル参照処理を行うものである。 又、本実施例では、第5図に示されるような、Fe含有
率(%)毎のZnの螢光X線強度とめっき付着量との関
係が、コンピュータ34のメモリ中のデータテーブルと
して記憶されている。又、前述のようなX線回折法にて
Fe含有率(%)が求められ、又、Znの螢光X線強度
が測定されると、このようなデータテーブルを用いなが
ら、コンピュータ34中のプログラムにて、合金中のF
eとZnとの比率にかかわらず(Fe含有率が10%か
ら25%の範囲)、めっき付着量を求めることができ
る。このプログラム、主として、データテーブル参照処
理を行うものである。 このような一連のコンピュータ34の処理結果は、現場
ラインの表示器36に表示されると共に、プロセスコン
ピュータ38にも入力され、その分析値を基にしてめっ
き槽10のめっき条件等が制御される。 本実施例においては、特性X線及び白色X線を単一のX
線管球14から発生させるようにしているので、測定装
置の構成が簡略である。なお特性X線及び白色X線を発
生させる方法はこれに限定されず、特性X線を発生させ
る、例えばCrターゲットのX線管球と、白色X線の発
生強度が強い、例えばタングステンターゲットのX線管
球の2種のX線管球を使用したり、他のX線源を使用す
ることも可能である。 なお前記実施例においては、本発明が、Zn−Fe合金
めっき鋼板の合金めっき被膜の膜厚及び組成の測定に適
用されていたが、本発明の適用範囲はこれに限定され
ず、下地金属と同じ金属を含む合金被膜の膜厚及び組成
の測定全てに適用できることは明らかである。
Embodiments of the present invention will be described in detail below with reference to the drawings. In the present example, a Z-plated Zn-Fe alloy on a steel plate was used.
The present invention is applied to the measurement of the film thickness and composition of the alloy plating film of an n-Fe alloy-plated steel sheet, and an embodiment of the measuring device is configured as shown in FIG. In this example, Zn plated in the plating tank 10
The —Fe alloy plated steel sheet 12 is conveyed in the direction of arrow A. A strong X-ray tube 14 for generating a characteristic X-ray having an appropriate wavelength such as a Cr target is provided at an appropriate position of the horizontal conveyance section (or vertical conveyance section) of the Zn-Fe alloy plated steel sheet 12.
The X-rays emitted from the X-ray tube 14 are incident on the Zn—Fe alloy-plated steel sheet 12 through the solar slit 16 at an incident angle ψ. Then Zn
By the respective crystal lattice planes of the phase of the Zn-Fe intermetallic compound formed in the plating film layer of the -Fe alloy plated steel sheet 12,
X-rays are diffracted by the Bragg equation shown below. λ = 2 dsin θ (1) where λ is the wavelength, θ is the angle, and d is the crystal lattice spacing of the Zn-Fe intermetallic compound. Specifically, as shown in FIG. 4, the characteristic X-ray used in the X-ray diffraction method of this embodiment is the CrKα ray included in the radiation spectrum of the X-ray tube 14, and its wavelength λ is 2.291.
It is Å. In this example, a Zn—Fe alloy plated steel sheet 1
Of the Zn-Fe alloy formed in the plating film layer of No. 2
The diffraction line from the x-phase (100) plane is used for the composition analysis, and the X-ray irradiation is performed at an incident angle ψ≈ = 33.5 degrees. Further, as will be described later, the X-ray diffraction angle 2θ that changes depending on the Fe (or Zn) content is around 67 degrees. At this time, in the crystal of the Zn-Fe intermetallic compound, the lattice constant changes depending on the Fe (or Zn) content, so X
The line diffraction angle 2θ deviates. That is, the X-ray diffraction angle 2θ changes depending on the Fe (or Zn) content. Here (1
Although the example of the (00) plane is shown, it goes without saying that the same can be done for the (110) plane. FIG. 3 is a diagram showing a previously obtained composition diffraction relationship used in this example. In this embodiment, the solar slit 17 and the goniometer 1
8, the diffraction X-ray detector 20 and the counting circuit 22
As shown in the example of the figure, for any crystal lattice plane, Fe
The relationship between the (or Zn) content (%) and the X-ray diffraction angle 2θ is determined. This composition diffraction relationship is obtained from the measured X-ray diffraction angle 2θ and the Fe content (%) in the Zn—Fe alloy plating film at this time, as shown in FIG. When the X-ray diffraction angle 2θ from the same crystal lattice plane from the plating layer is measured, the Fe content rate (%) in the plating film of the Zn—Fe alloy plated steel sheet 12 (or the Zn content rate (%) = 100−Fe content). The rate (%) is required. For example, it is obvious that the composition diffraction relationship as shown in FIG. 3 can be stored as a regression equation or a data table. Therefore, if the X-ray diffraction angle 2θ (degrees) is measured, the Fe content rate (%) can be obtained by a process using such a regression equation or a data table. On the other hand, white X-rays are also normally generated from the X-ray tube 14 that generates the characteristic X-rays, as shown in FIG. 4, so in the present embodiment, the white X-rays are effectively used. . That is,
The white X-rays excite the metal contained in the Zn-Fe alloy plated steel sheet 12 to generate fluorescent X-rays having a wavelength corresponding to the metal, so that the fluorescent X of Zn at that time is generated. Perform the analysis using lines. Specifically, the fluorescent X-rays of the metal contained in the Zn—Fe alloy plated steel sheet 12 excited by the white X-rays are only the fluorescent X-rays of Zn by the dispersive crystal 26 via the solar slit 24. Is dispersed, and its intensity is measured by the fluorescent X-ray detector 30 and the counting circuit 32 through the solar slit 28. Since the fluorescent X-ray intensity of Zn detected by the fluorescent X-ray detector 30 changes depending on the Zn (Fe) content and the thickness in the Zn-Fe alloy plating film as described above. , Which cannot be analyzed by the usual method, but as described above, X
Since the Zn content in the plated coating can be analyzed by the line diffraction method, the thickness of the plated coating can be determined from the fluorescent X-ray intensity of Zn. FIG. 5 is a diagram showing the relationship between the film thickness composition and the fluorescence intensity, which is obtained in advance and is used in this example. FIG. 5 shows an example of investigating the relationship between the fluorescent X-ray intensity of Zn and the thickness of the plating film (plating adhesion amount).
If the content (%) is known, it can be seen that the thickness of the plating film can be easily obtained from the fluorescent X-ray intensity of Zn. At this time, the amount of influence of Fe on the fluorescent X-ray intensity of Zn may be obtained, and the thickness of the plating film may be obtained by correcting with the Fe content. For example, as shown in FIG. 5, Fe content (%)
It is clear that the relationship between the fluorescent X-ray intensity of Zn and the plating adhesion amount for each can be stored as a regression equation or a data table. Therefore, the Fe content (%) is obtained by the X-ray diffraction method using FIG.
Further, if the fluorescent X-ray intensity of Zn is measured, the regression formula, data table, or the like shows that the Fe content in the alloy is 10% to 25% regardless of the ratio between Fe and Zn in the alloy.
In the range of%, the plating adhesion amount can be obtained. A series of X-ray diffraction intensities by scanning for obtaining the diffraction angle 2θ of an arbitrary crystal lattice plane of the X-ray diffraction method and the fluorescence X-ray intensity are measured at the same time.
Entered in. The computer 34 performs various calculations to obtain the Fe content in the alloy plating film and the plating thickness. In this embodiment, the composition diffraction relationship as shown in FIG. 3 is stored as a data table in the memory of the computer 34. Further, when the X-ray diffraction angle 2θ (degree) is measured, the Fe content (%) can be obtained by the program in the computer 34 while using such a data table. This program mainly performs a data table reference process. Further, in the present embodiment, the relationship between the fluorescent X-ray intensity of Zn and the plating adhesion amount for each Fe content (%) is stored as a data table in the memory of the computer 34 as shown in FIG. Has been done. Further, when the Fe content (%) is obtained by the X-ray diffraction method as described above, and the fluorescent X-ray intensity of Zn is measured, the data in the computer 34 is stored in the computer 34 using such a data table. In the alloy, F in the program
Regardless of the ratio of e to Zn (Fe content ratio is in the range of 10% to 25%), the amount of deposited plating can be obtained. This program mainly performs the data table reference process. The series of processing results of the computer 34 are displayed on the field line display 36 and also input to the process computer 38, and the plating conditions and the like of the plating tank 10 are controlled based on the analyzed values. . In this embodiment, the characteristic X-rays and the white X-rays are combined into a single X-ray.
Since it is generated from the filament tube 14, the structure of the measuring device is simple. The method of generating the characteristic X-rays and the white X-rays is not limited to this, and the characteristic X-rays are generated, for example, an X-ray tube of a Cr target and a strong white X-ray generation intensity, for example, an X-ray of a tungsten target. It is also possible to use two types of X-ray tube, namely, a X-ray tube, or another X-ray source. In addition, in the said Example, this invention was applied to the measurement of the film thickness and composition of the alloy plating film of a Zn-Fe alloy plating steel plate, However, the application range of this invention is not limited to this, and it is a base metal. Obviously, it can be applied to all measurements of film thickness and composition of alloy coatings containing the same metal.

【発明の効果】 以上説明した通り、本発明によれば、従来非常に測定が
困難であった、Zn−Fe合金めっき鋼板等の、下地金
属と同じ金属を含む合金被膜の膜厚及び組成を、同時に
且つ非破壊的に高精度でオンライン測定することが可能
となる。従って、合金被膜の膜厚及び組成を、オンライ
ンで測定して、分析結果を直ちにラインにフィードバッ
クすることが可能となり、Zn−Fe合金めっき鋼板等
の安定操業、品質向上に寄与するところが非常に大であ
る等の優れた効果を有する。
As described above, according to the present invention, the film thickness and composition of an alloy coating film containing the same metal as a base metal, such as a Zn—Fe alloy plated steel sheet, which has been very difficult to measure conventionally, can be obtained. At the same time, it is possible to perform nondestructive, high-accuracy online measurement. Therefore, it becomes possible to measure the film thickness and composition of the alloy coating film online and immediately feed back the analysis result to the line, which greatly contributes to stable operation and quality improvement of Zn-Fe alloy plated steel sheet and the like. It has excellent effects such as

【図面の簡単な説明】[Brief description of drawings]

第1図は、本発明に係る合金被膜の膜厚及び組成測定方
法の要旨を示す流れ図、第2図は、本発明が採用された
Zn−Fe合金めっき鋼板の合金めっき被膜の膜厚及び
組成測定装置の実施例の構成を示すブロック線図、第3
図は、前記実施例に用いられる、X線回折角とFe含有
率の関係に基づいた組成回折角関係の一例を示す線図、
第4図は、前記実施例で用いられているCrターゲット
のX線管球から発生するX線の波長分布を示す線図、第
5図は、前記実施例に用いられる、Znの螢光X線強度
及びFe含有率とめっき付着量(膜厚)の関係に基づい
た膜厚組成螢光強度関係の一例を示す線図である。 12……Zn−Fe合金めっき鋼板、 14……X線管球、 2θ……X線回折角、 18……ゴニオメータ、 20……回折X線検出器、 26……分光結晶、 30……螢光X線検出器、 34……コンピュータ。
FIG. 1 is a flow chart showing the summary of the method for measuring the film thickness and composition of an alloy film according to the present invention, and FIG. 2 is the film thickness and composition of an alloy plating film of a Zn—Fe alloy plated steel sheet to which the present invention is adopted. Block diagram showing a configuration of an embodiment of a measuring device, the third
The figure is a diagram showing an example of the composition diffraction angle relationship based on the relationship between the X-ray diffraction angle and the Fe content, which is used in the above Examples,
FIG. 4 is a diagram showing the wavelength distribution of X-rays generated from the X-ray tube of the Cr target used in the above embodiment, and FIG. 5 is the fluorescence X of Zn used in the above embodiment. It is a diagram which shows an example of the film thickness composition fluorescence intensity relationship based on the relationship between the line strength and the Fe content and the plating adhesion amount (film thickness). 12 ... Zn-Fe alloy plated steel sheet, 14 ... X-ray tube, 2θ ... X-ray diffraction angle, 18 ... Goniometer, 20 ... Diffraction X-ray detector, 26 ... Spectroscopic crystal, 30 ... Quartz Optical X-ray detector, 34 ... Computer.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】下地金属と同じ金属を含む合金被膜の膜厚
及び組成を測定するに際して、 予め、対象となる前記合金被膜の組成の変化範囲を網羅
するように、所定照射条件にて所定特性X線を照射した
場合の、回折角θと、合金被膜の組成との組成回折角関
係を求めておき、 更に、予め、対象となる前記合金被膜の膜厚の変化範囲
及び組成の変化範囲を網羅するように、所定照射条件に
て所定白色X線を照射した場合の、下地金属とは異なる
金属からの螢光X線の強度と、合金被膜の膜厚及び組成
との膜厚組成螢光強度関係を求めておき、 実際の被測定物体の合金被膜の膜厚及び組成の測定時に
は、該被測定物体に対して、前記組成回折角関係を求め
た時の前記所定照射条件と同一条件にて前記特性X線を
照射して、この時の回折角θを回折X線検出器により測
定し、 更に、該被測定物体に対して、前記膜厚組成螢光強度関
係を求めた時の前記所定照射条件と同一条件にて前記白
色X線を照射して、この時の、下地金属とは異なる金属
からの螢光X線の強度を、前記回折X線検出器とは別個
に設置した螢光X線検出器により測定し、 測定された前記回折角θと、前記組成回折角関係とに基
づいて、前記被測定物体の合金被膜の組成を求め、 更に、前記被測定物について求められた該合金被膜の組
成及び測定された前記螢光X線の強度と、前記膜厚組成
螢光強度関係とに基づいて、前記被測定物体の合金被膜
の膜厚を求めるようにしたことを特徴とする合金被膜の
膜厚及び組成測定方法。
1. When measuring the film thickness and composition of an alloy coating film containing the same metal as the base metal, a predetermined characteristic is given under a predetermined irradiation condition so as to cover the range of change in the composition of the alloy coating film in advance. The composition diffraction angle relationship between the diffraction angle θ and the composition of the alloy coating when X-rays are radiated is calculated, and the change range of the film thickness and the change range of the composition of the target alloy coating are determined in advance. To cover the above, the intensity of fluorescent X-rays from a metal different from the base metal and the film thickness and composition of the alloy coating when the predetermined white X-rays are irradiated under predetermined irradiation conditions The strength relationship is obtained in advance, and at the time of actually measuring the film thickness and the composition of the alloy film of the measured object, the measured condition is the same as the predetermined irradiation condition when the composition diffraction angle relationship is calculated. And irradiate the characteristic X-ray with the diffraction angle θ at this time. Measurement with a line detector, and further irradiating the object to be measured with the white X-rays under the same conditions as the predetermined irradiation conditions when the relationship of the film thickness composition fluorescence intensity is obtained, The intensity of fluorescent X-rays from a metal different from the underlying metal is measured by a fluorescent X-ray detector installed separately from the diffraction X-ray detector, and the measured diffraction angle θ and On the basis of the composition diffraction angle relationship, the composition of the alloy coating of the object to be measured is determined, and the composition of the alloy coating determined on the object to be measured and the intensity of the fluorescent X-ray measured, and A film thickness and composition measuring method of the alloy film, wherein the film thickness of the alloy film of the object to be measured is obtained based on the film thickness composition fluorescence intensity relationship.
【請求項2】前記特性X線及び白色X線を、単一のX線
源から発生させるようにした特許請求の範囲第1項記載
の合金被膜の膜厚及び組成測定方法。
2. The method for measuring the film thickness and composition of an alloy coating according to claim 1, wherein the characteristic X-rays and the white X-rays are generated from a single X-ray source.
【請求項3】前記合金被膜が、Feを主成分の1つとし
て含有す合金被膜である特許請求の範囲第1項又は第2
項記載の合金被膜の膜厚及び組成測定方法。
3. The alloy coating according to claim 1, wherein the alloy coating contains Fe as one of the main components.
The method for measuring the film thickness and composition of the alloy film according to the item.
JP59209097A 1984-05-10 1984-10-05 Method for measuring film thickness and composition of alloy film Expired - Lifetime JPH0610660B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP59209097A JPH0610660B2 (en) 1984-10-05 1984-10-05 Method for measuring film thickness and composition of alloy film
KR1019860700334A KR900008955B1 (en) 1984-05-10 1985-10-03 Method of measuring layer theckness and composition of alloy plating
US06/860,190 US4764945A (en) 1984-10-05 1985-10-03 Method of measuring layer thickness and composition of alloy plating
PCT/JP1985/000551 WO1986002164A1 (en) 1984-10-05 1985-10-03 Method of determining thickness and composition of alloy film
EP85904879A EP0197157B1 (en) 1984-10-05 1985-10-03 Method of determining thickness and composition of alloy film
DE8585904879T DE3583436D1 (en) 1984-10-05 1985-10-03 METHOD FOR DETERMINING THE THICKNESS AND COMPOSITION OF AN ALLOY FILM.
CA000492333A CA1250061A (en) 1984-10-05 1985-10-04 Method of measuring layer thickness and composition of alloy plating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59209097A JPH0610660B2 (en) 1984-10-05 1984-10-05 Method for measuring film thickness and composition of alloy film

Publications (2)

Publication Number Publication Date
JPS6188128A JPS6188128A (en) 1986-05-06
JPH0610660B2 true JPH0610660B2 (en) 1994-02-09

Family

ID=16567234

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59209097A Expired - Lifetime JPH0610660B2 (en) 1984-05-10 1984-10-05 Method for measuring film thickness and composition of alloy film

Country Status (1)

Country Link
JP (1) JPH0610660B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6378056A (en) * 1986-09-20 1988-04-08 Rigaku Denki Kogyo Kk Total reflection fluorescent x-ray analyzer
JPH01216244A (en) * 1988-02-25 1989-08-30 Nippon Telegr & Teleph Corp <Ntt> Method and device for evaluating composition distribution of semiconductor mixed crystal
JPH01244344A (en) * 1988-03-25 1989-09-28 Hitachi Ltd Apparatus for measuring x-ray absorbing spectrum
WO2010026750A1 (en) * 2008-09-02 2010-03-11 国立大学法人京都大学 Total-reflection fluorescent x-ray analysis device, and total-reflection fluorescent x-ray analysis method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5017695A (en) * 1973-06-14 1975-02-25
JPS58223047A (en) * 1982-06-18 1983-12-24 Sumitomo Metal Ind Ltd Method for x ray fluorescence analysis
JPS59195146A (en) * 1983-04-19 1984-11-06 Sumitomo Metal Ind Ltd Fluorescent x-ray analysis of plating film

Also Published As

Publication number Publication date
JPS6188128A (en) 1986-05-06

Similar Documents

Publication Publication Date Title
KR900008955B1 (en) Method of measuring layer theckness and composition of alloy plating
KR101572765B1 (en) METHOD AND DEVICE FOR DETERMINING Fe-Zn ALLOY PHASE THICKNESS OF HOT-DIP GALVANIZED STEEL SHEET
EP0348574B1 (en) Method of simultaneously measuring thickness and composition of film and apparatus therefor
JPH0610660B2 (en) Method for measuring film thickness and composition of alloy film
CN109563606B (en) Method for measuring alloying degree and/or plating adhesion amount of galvanized steel sheet
JPS60202339A (en) X-ray fluorescence analysis method
JP5962615B2 (en) Method for measuring the degree of alloying of galvannealed steel sheets
JP2873125B2 (en) Method and apparatus for measuring coating weight
JP4302852B2 (en) Method for measuring surface oxide of metal material and X-ray diffractometer
KR100489298B1 (en) Method of measuring alloying degree for galvannealed steels by XRD
JPH056139B2 (en)
JPS61132847A (en) Method and instrument for fluorescent x-ray analysis of two-layered plating film
KR100685024B1 (en) Device of Measuring Phase Fraction and Alloying Degree for Galvannealed Steels
JPH0545305A (en) Method for measuring alloying degree of alloyzinc-plated layer
JP2563016B2 (en) Fluorescent X-ray analysis method and apparatus using effective wavelength
JPS6367121B2 (en)
JPS6188129A (en) Method for measuring film thickness and composition of alloy coat
JPS6014109A (en) Measuring device of buld-up quantity of plating of galvanized steel plate
JPH05256800A (en) Measuring method of x-ray diffraction strength under coating
JP2003014669A (en) On-line measurement by method for x-ray fluorescence analyzing surface treating film adhering amount on zinc- plated steel sheet
JP2002098657A (en) Measurement method and device of amount of adhesion of metal phase contained in plated layer
JPH0643889B2 (en) How to measure the amount of plating of metal materials
JPH0440655B2 (en)
JPS62135755A (en) Method for quantitative determination of plating film on metallic material
JPH02257045A (en) Method and device for measuring plated deposit of plated steel sheet and composition of plated film

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term