JP4302852B2 - Method for measuring surface oxide of metal material and X-ray diffractometer - Google Patents

Method for measuring surface oxide of metal material and X-ray diffractometer Download PDF

Info

Publication number
JP4302852B2
JP4302852B2 JP2000098665A JP2000098665A JP4302852B2 JP 4302852 B2 JP4302852 B2 JP 4302852B2 JP 2000098665 A JP2000098665 A JP 2000098665A JP 2000098665 A JP2000098665 A JP 2000098665A JP 4302852 B2 JP4302852 B2 JP 4302852B2
Authority
JP
Japan
Prior art keywords
ray
oxide
diffracted
component
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000098665A
Other languages
Japanese (ja)
Other versions
JP2001281175A (en
Inventor
稔 酒井
山本  公
啓一 吉岡
直樹 松浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Rigaku Corp
Original Assignee
JFE Steel Corp
Rigaku Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp, Rigaku Corp filed Critical JFE Steel Corp
Priority to JP2000098665A priority Critical patent/JP4302852B2/en
Publication of JP2001281175A publication Critical patent/JP2001281175A/en
Application granted granted Critical
Publication of JP4302852B2 publication Critical patent/JP4302852B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、例えば鋼板製造工程において鋼板表面に生成する酸化物などの金属材表面酸化物の測定方法および該測定方法に用いるX線回折装置に関する。
【0002】
【従来の技術】
鋼板製造工程で鋼板表面に生成するFe3O4 、FeO などから成る酸化物(スケール)は、鋼板表面に高圧水を噴射するか、あるいは、鋼板を酸性液中に通板し洗浄することにより除去する。
鋼板表面の酸化物の組成と量は最終製品の性状に大きな影響を及ぼすことから、製造工程で酸化物の組成と量を正確に測定し、制御することが重要となる。
【0003】
酸化物の組成と量を測定する方法としては、下記の方法が用いられている。
すなわち、1つの方法は、ブロムメタノールを用いて鋼板表面の酸化物を表面から剥離し、乳鉢で粉砕し、X線回折を行う方法である。
この場合、マグネタイトとウスタイトの混合比を変えた数種類の粉末サンプル(標準サンプル)を基準として定量する。
【0004】
しかしながら、上記した方法は、試料調製などに長時間を要する問題があり、さらに、鋼板表面における酸化物の分布状態を知ることができない。
他の方法として、酸化物が形成された鋼板自体をX線回折し、標準サンプルと比較し定量する方法が用いられている。
しかしながら、上記した方法の場合、スケールが多層構造であると、表層において下層からの回折X線の吸収が生じ、下層の測定ができない。
【0005】
さらに、スケール中には金属鉄が存在するため、下地鋼板からの回折X線の減衰率からは正しいスケール厚さを求めることはできない。
すなわち、上記した方法の場合、多層構造から成る表面酸化物の組成と量を正確に測定することができないという問題があった。
X線を励起源として用いた表面組成の測定手法は工業的に広く用いられており、例えば蛍光X線を用いてめっき層の組成および厚さを測定する方法があり、この方法によればめっきなどにおける亜鉛と鉄の組成比を求めることは可能であるが、鉄の酸化物の量を種類ごとに求めるためには構造解析を行う必要があり、上記の方法では不可能である。
【0006】
すなわち、従来、上記した問題を解決し、鋼板などの金属材表面の酸化物の組成と量を測定することが可能で、スケール制御の指標となる金属材表面酸化物の測定方法および該測定方法に用いるX線回折装置が求められていた。
【0007】
【発明が解決しようとする課題】
本発明は、前記した従来技術の問題点を解決し、鋼板などの金属材の表面に存在する酸化物の組成と量を迅速かつ正確に非破壊で測定することが可能な金属材表面酸化物の測定方法および該測定方法に好適に用いられるX線回折装置を提供することを目的とする。
【0008】
【課題を解決するための手段】
第1の発明は、表面酸化物層上層として酸化物Aを有し、表面酸化物層下層として酸化物Bを有する金属材に特性X線または単色化したX線を照射し、前記金属材から放射される酸化物Aの回折X線強度IA および酸化物Bの回折X線強度IB を測定し、酸化物Aの回折X線強度IA と予め求めた検量線とから、表面酸化物層上層の酸化物Aの存在量WA を求め、さらに、酸化物Bの回折X線強度IB を上層の酸化物Aによる酸化物Bの回折X線吸収率と前記酸化物Aの存在量W A で補正し酸化物Bの回折X線強度:IB.com を求め、該IB.com と予め求めた検量線とから、表面酸化物層下層の酸化物Bの存在量WB を求めることを特徴とする金属材表面酸化物の測定方法である。
【0009】
第2の発明は、表面酸化物層上層として酸化物Aを有し、表面酸化物層下層として酸化物Bを有する金属材の表面酸化物を金属材搬送中に測定する金属材表面酸化物の測定方法であって、回折角度2θを固定したX線回折装置と、金属材の基準位置に対して取り出し角βを固定した蛍光X線検出器を用い、前記金属材に特性X線または単色化したX線を照射し、金属材から放射される酸化物Aの回折X線強度IA および酸化物Bの回折X線強度IB を測定すると共に、金属材から放射されるマトリックス金属の蛍光X線強度IFXの経時的変化を測定することにより金属材の基準位置からの変位を求め、該変化に基づき前記した回折X線強度IA およびIB を補正し、得られた酸化物Aの回折X線強度IA の補正値IA.0 と予め求めた検量線とから、上層の酸化物Aの存在量WA を求め、さらに、前記で得られた酸化物Bの回折X線強度IB の補正値IB.0 を上層の酸化物Aによる酸化物Bの回折X線吸収率と前記酸化物Aの存在量W A で補正し酸化物Bの回折X線強度:IB.0.com を求め、該IB.0.com と予め求めた検量線とから、下層の酸化物Bの存在量WB を求めることを特徴とする金属材表面酸化物の測定方法である。
【0010】
第3の発明は、試料表面にX線を照射するX線管球2と、いずれもが取り出し角が固定された2個以上の回折X線検出器3A、3Bと、該回折X線検出器3A、3Bのそれぞれで検出された試料表面層から放射される試料表面層のA成分、B成分それぞれの回折X線強度を計数する計数回路部8Aと、該計数回路部8Aで計数された試料表面層のA成分の回折X線強度IA および予め求めた検量線の両者に基づき試料表面層のA成分の存在量WA を求める演算手段9Aと、前記計数回路部8Aで計数された試料表面層のB成分の回折X線強度IB および予め求めた検量線の両者に基づき試料表面層のB成分の存在量WB を求める演算手段9Bを有し、さらに、前記演算手段(9B)が、前記試料表面層のB成分の回折X線強度I B を試料表面層のA成分による回折X線吸収率と前記酸化物Aの存在量W A とで補正し試料表面層のB成分の回折X線強度:I B.com を求め、該I B.com と予め求めた検量線とから、試料表面層のB成分の存在量W B を求める演算手段であることを特徴とするX線回折装置である。
【0012】
第4の発明は、搬送中の試料表面にX線を照射するX線管球2と、いずれもが取り出し角が固定された2個以上の回折X線検出器3A、3Bと、該回折X線検出器3A、3Bのそれぞれで検出された試料表面層から放射される試料表面層のA成分、B成分それぞれの回折X線強度を計数する計数回路部8Aと、取り出し角が固定された蛍光X線検出器3Cと、該蛍光X線検出器3Cで検出された蛍光X線強度を計数する計数回路部8Bと、該計数回路部8Bで計数された蛍光X線強度に基づき前記回折X線検出器3A、3Bと試料との距離の変化による前記A成分、B成分それぞれの回折X線強度の計数値の変化を補正する演算手段9Cと、該演算手段9Cで補正された試料表面層のA成分の回折X線強度IA.0 および予め求めた検量線の両者に基づき試料表面層のA成分の存在量 A を求める演算手段9Dと、前記演算手段9Cで補正された試料表面層のB成分の回折X線強度IB.0 および予め求めた検量線の両者に基づき試料表面層のB成分の存在量を求める演算手段9Eを有し、さらに、前記演算手段(9E)が、前記演算手段(9C)で補正された試料表面層のB成分の回折X線強度I B.0 から試料表面層のA成分による回折X線吸収率と前記酸化物Aの存在量W A とで補正したB成分の回折X線強度:I B.com を求め、得られたI B.com の値と予め求めた検量線とから、試料表面層のB成分の存在量W B を求める演算手段であることを特徴とするX線回折装置である。
【0014】
なお、前記した第1の発明〜第4の発明における各検量線は、成分組成、成分濃度が既知の複数個の試料を用いて予め求めることができる。
【0015】
【発明の実施の形態】
以下、本発明をさらに詳細に説明する。
図1(a) に、本発明のX線回折装置の一例を示し、図1(b) に、図1(a) のX線管球−X線検出器収納部の一例を示す。
図1において、1はX線管球−X線検出器収納部、2はX線管球、3、3A、3Bは回折X線検出器、3Cは蛍光X線検出器、4は高電圧発生部、5は波高分析器、6はX線検出器高電圧印加装置、7は測定角度コントローラ、8A、8Bは計数回路部、9A、9B、9C、9D、9Eは演算手段、10はレコーダ、11はプリンタ、12はデイスプレー、13は送水装置、15A 、15B 、15C はソーラースリット、Sは鋼板など金属材の試料、2θA 、2θB は測定する試料表面のA成分、B成分に対応する回折X線の回折角度、αは試料S表面へのX線入射角、βは蛍光X線検出器3Cに対する蛍光X線の取り出し角を示す。
【0016】
図1に示すX線回折装置においては、X線管球2からX線を入射角αで試料S表面に照射し、試料S表面から放射される試料表面のA成分、B成分に対応する回折X線をそれぞれX線検出器3A、3Bで検出し、蛍光X線を蛍光X線検出器3Cで検出する。
本発明のX線回折装置の回折X線検出器3A、3Bは、測定する試料表面の成分数に応じた基数を設置することが好ましい。
【0017】
図1に示すX線回折装置において、回折X線検出器3Aおよび回折X線検出器3Bは、測定する試料表面のA成分、B成分に対応する回折X線の回折角度2θA 、2θB に固定してあるため、通常のカウンタースキャン方式(θ−2θ方式)と異なり、迅速に数秒で測定が可能である。
これは、上記した構成のX線回折装置を鋼板など金属板などの連続製造ラインに設置することによって、連続的に流れる金属板など測定対象試料の表面の組成と各成分の量を同時にオンラインで迅速かつ正確に測定し、迅速な操業管理が可能となるためである。
【0018】
また、本発明のX線回折装置においては、図1に示すように、取り出し角βに固定された蛍光X線検出器3Cが設置されていることが好ましい。
これは、上記した蛍光X線検出器3Cによって、金属板などの試料表面から回折X線と同時に放射されるマトリックスの特性X線(蛍光X線)強度の経時変化を測定することによって、回折X線検出器(3A、3B)と金属板などの試料表面との距離の経時的変化を補正することができ、より正確な測定が可能となるためである。
【0019】
以下、本発明の金属材表面酸化物の測定方法およびX線回折装置を、連続的に通板される鋼板の鋼板表面酸化物層における上層のFe3O4 および下層のFeO の測定を例として説明する。
すなわち、試料が連続的に通板される鋼板の場合、図1に示すX線回折装置において、X線管球2からX線を入射角αで鋼板試料Sの表面に照射し、試料Sの表面から放射されるFeO 、Fe3O4 に対応する回折X線をそれぞれX線検出器3A、3Bで検出する。
【0020】
また、好ましくは、さらに、試料Sの表面から放射される蛍光X線を蛍光X線検出器3Cで検出する。
回折X線検出器3Aおよび回折X線検出器3Bは、測定するFeO 、Fe3O4 に対応する回折X線の回折角度2θA 、2θB に固定する。
また、蛍光X線検出器3Cを配設する場合は、取出角βに固定することが好ましい。
【0021】
なお、X線の入射角αはできるだけ高角度とし、鋼板のバタツキによる回折X線強度の変動を小さくすることが好ましい。
本発明においては、回折X線検出器を設置する際に、予め、回折角2θを決定する。
図2に、図1に示したX線回折装置の回折X線検出器3Bの取付け角度、すなわちFe3O4 に対応する回折X線の回折角度2θB を決定するために、カウンタースキャン方式(θ−2θ方式)で行った鋼板試料のX線回折結果の1例を示す。
【0022】
用いた鋼板試料は、スケールがマグネタイト(Fe3O4 )単一組成の試料である。
すなわち、図2に示すように、鋼板試料のスケール中のFe3O4 を検出する回折X線検出器の取付け角度は、例えば回折角2θ(:2θB )が90°となるように設定する。
【0023】
次に、本発明者らは、スケールがFe3O4 単一組成でスケール量が10〜74g/m2の範囲の複数の鋼板試料について、Fe3O4 の(511) 面(回折角2θ=90°)の回折X線強度を測定した。
各試料の回折X線強度の測定時間は1sであった。
次に、スケール(Fe3O4) 量と回折X線強度との関係を求めた。
【0024】
なお、鋼板のスケール量は、ブロム・メタノールを用いて鋼板表面から剥離したスケールを秤量して求めた。
図3に、スケール(Fe3O4) 量と回折X線強度との関係を示す。
図3に示すように、多少のバラツキはあるものの、スケール(Fe3O4) 量:W(Fe3O4)とFe3O4[(511) 面] の回折X線強度:I(Fe3O4)との間に良好な相関関係を有する下記式(1) で近似される検量線が得られた。
【0025】
W(Fe3O4)=f(I(Fe3O4))=1.38×10-8〔I(Fe3O4)〕2 −8.21×10-5〔I(Fe3O4)〕−1.55………(1)
得られた検量線の精度を検討するために、下記式(2) で求められるσd を計算した。
【0026】
【数1】

Figure 0004302852
【0027】
この結果、10〜80g/m2のFe3O4 付着量に対してσd として2.0g/m2 が得られ、十分な精度でFe3O4 量(g/m2)を定量できることが分かった。
次に、スケール組成がマグネタイト(Fe3O4) およびウスタイト(FeO) の2成分である鋼板試料を用いて、FeO の(220) 面の回折X線強度を測定し、下記(1) 、(2) の手順でスケール中 FeO濃度とFeO の回折X線強度との関係を求めた。
【0028】
(1) スケール中 FeO濃度の測定:
スケール組成比の決定は、用いた鋼板の断面について走査電子顕微鏡(SEM) の反射電子像を数箇所測定し、画像解析を行うことによりスケール中の析出物や孔を除去しFe3O4 と FeOの面積比を求め、それぞれの密度を乗することにより行った。
【0029】
すなわち、例えば、 SEM像でFe3O4 の厚さが5μmで、 FeOの厚さが1μmで、観察した範囲が20μmの場合、Fe3O4 の面積は1×10-6(cm2) で、FeO の面積は 0.2×10-6(cm2) となる。
断面と直交する方向にhcmの幅をとれば、体積はそれぞれ1×10-6h(cm3) および 0.2×10-6h(cm3) である。
【0030】
また、Fe3O4 および FeOの密度は、それぞれ5.0g/cm3および5.7g/cm3であるので、それぞれの質量は 5.0×10-6h(g) および1.14×10-6h(g) である。
したがって、上記した試料の場合、スケール全体に対する FeOの濃度は、18.6mass%となる。
上記の測定を複数の試料について行った結果、これら試料のスケール中の FeO濃度は0〜70mass%であった。
【0031】
(2) スケール中 FeO濃度とFeO の回折X線強度との関係の調査:
上記で用いた鋼板試料において、高次酸化物であるFe3O4 はスケールの表層側(表面酸化物層における上層)に存在し、低次酸化物である FeOは下地鋼板側(表面酸化物層における下層)に存在する。
この結果、下層に存在する FeOからの回折X線の一部は表層のFe3O4 に吸収される。
【0032】
このため、上記した鋼板試料のFe3O4[(511) 面] の回折X線強度:I(Fe3O4) と前記式(1) の検量線を用いて鋼板試料のFe3O4 の量:W(Fe3O4)(g/m2)を求め、下記式(3) に基づき、FeO の(220) 面の回折X線強度:I(FeO) を、Fe3O4 による質量吸収係数:μ(m2/g)で補正した回折X線強度補正値:I(FeO).com を求めた。
【0033】
I(FeO).com =I(FeO) /exp[−μ・W(Fe3O4) ] ………(3)
上記式(3) 中、μ=67.5(m2/g)を示す。
次に、上記した複数の試料についてスケール中の FeOの量:W(FeO)(g/m2)と吸収補正したFeO の(220) 面の回折X線強度補正値:I(FeO).com との関係を求め、図4および下記式(4) で近似される検量線を得た。
【0034】
W(FeO)=g(I(FeO).com )=1.57×10-4〔I(FeO).com 2 −1.73×10-2〔I(FeO).com 〕………(4)
次に、前記した式(2) と同様の計算式で、検量線の精度を求めた結果、σd は3.4(g/m2) であり、十分な精度で下層のFeO を分析できることが分かった。
さらに、得られたFeO 量 (g/m2) 、Fe3O4 量(g/m2)からスケール中のFeO 濃度を求めた結果を、化学分析値と対比して図5に示す。
【0035】
FeO 濃度もσd =3.1 mass%で分析できることが分かった。
以下、本発明における金属材表面酸化物の測定方法を、上記した鋼板試料の表面酸化物層における上層のFe3O4 および下層のFeO の測定を例として説明する。すなわち、X線管球からのX線を鋼板表面に照射し、鋼板表面から放射されるFe3O4 およびFeO それぞれの回折X線強度I(Fe3O4) 、I(FeO) を測定する。
【0036】
次に、鋼板試料表面の酸化物層の内、上層に存在するFe3O4 の存在量W(Fe3O4) を、上記で得られたFe3O4 の回折X線強度I(Fe3O4) と、予め求めたFe3O4 の存在量W(Fe3O4)とFe3O4 の回折X線強度I(Fe3O4)との関係を示す検量線である前記した式(1) とから求める。
次に、上記で得られたFeO の(220) 面の回折X線強度I(FeO) をFe3O4 の存在量W(Fe3O4) および前記式(3) の両者に基づき補正した回折X線強度補正値:I(FeO).com を求める。
【0037】
上記で得られた回折X線強度補正値:I(FeO).com および前記式(4) の検量線からスケール中のFeO の存在量W(FeO) さらにはFeO 濃度を求めることができる。
以上、本発明の金属板表面酸化物の測定方法を、鋼板試料におけるFe3O4 およびFeO の測定を例として説明したが、本発明によれば、図1に例示したX線回折装置を金属板の通板(搬送)ラインに設置することによって、金属板表面の各種酸化物の組成と量を同時にオンラインで迅速かつ正確に測定することができる。
【0038】
すなわち、本発明のX線回折装置を、例えば鋼板試料におけるFe3O4 およびFeO の測定装置として用いる場合、X線回折装置は、下記(1) 〜(4) の各機器から構成される。
(1) 鋼板試料表面にX線を照射するX線管球2
(2) 取り出し角が固定された回折X線検出器3A、3B
(3) 計数回路部8A
計数回路部8Aにおいては、鋼板試料表面層から放射されるFe3O3 、FeO それぞれの回折X線強度を計数する。
【0039】
(4) 演算手段9A、9B
演算手段9Aにおいては、計数回路部8Aで計数された鋼板試料表面層のFe3O4 の回折X線強度I(Fe3O4) および予め求めた前記した式(1) で例示される検量線に基づき、鋼板試料表面層上層のFe3O4 の存在量W(Fe3O4) を求める。
すなわち、演算手段9Aとしては、前記した式(1) で例示される検量線を予め記憶し、計数回路部8Aで計数された鋼板試料表面層のFe3O4 の回折X線強度I(Fe3O4) に基づいて鋼板試料表面層上層のFe3O4 の存在量W(Fe3O4) を求める記憶・演算装置を用いることができる。
【0040】
演算手段9Bにおいては、<1> 上記で得られたW(Fe3O4) 、<2> 計数回路部8Aで計数された鋼板試料表面層のFeO の回折X線強度I(FeO) および<3> 前記した式(3) で例示される補正式から、上層の酸化物Fe3O4 の回折X線吸収率で補正した酸化物FeO の回折X線強度:I(FeO).com を求める。
次に、演算手段9Bにおいては、上記で得られた回折X線強度:I(FeO).com と、予め求めた前記した式(4) で例示される検量線に基づき、鋼板試料表面層下層のFeO の存在量W(FeO) を求める。
【0041】
すなわち、演算手段9Bとしては、前記した式(3) で例示される補正式および式(4) で例示される検量線の両者を予め記憶し、計数回路部8Aで計数された鋼板試料表面層のFeO の回折X線強度I(FeO) および演算手段9Aで求められた鋼板試料表面層上層のFe3O4 の存在量W(Fe3O4) に基づいて鋼板試料表面層下層のFeO の存在量W(FeO) を求める記憶・演算装置を用いることができる。
【0042】
本発明においては、さらに下記(5) 〜(7) の機器を配設することによって、前記した回折X線検出器(3A、3B)と金属材の試料Sとの距離の経時的変化による回折X線強度の変化を補正し、さらに正確な酸化物の測定が可能となる。
(5) 蛍光X線検出器3C
取り出し角βが固定された蛍光X線検出器3C
(6) 計数回路部8B
蛍光X線検出器3Cで検出された蛍光X線強度を計数する計数回路部8B
(7) 演算手段9C
演算手段9Cにおいては、計数回路部8Bで計数された蛍光X線強度に基づき回折X線検出器(3A、3B)と金属材との距離の経時的変化によるA成分、B成分それぞれの回折X線強度の計数値の経時的変化を補正する。
【0043】
以下、鋼板表面の酸化物の測定を例として、上記した蛍光X線強度による補正方法について述べる。
蛍光X線の取り出し角度をβとすると、測定中に鋼板が基準位置に対してdだけ垂直方向に動いた時、蛍光X線検出器と鋼板との距離はd/sinβ変化する。
蛍光X線検出器と測定円の中心との距離をLとすると、蛍光X線強度比は下記式(5) で示される。
【0044】
1/I0 =L2/(L+d/sinβ)2 ………(5)
上記式(5) 中、
0 :鋼板が基準位置にある時の蛍光X線強度
1 :鋼板が垂直方向にdだけ基準位置よりずれている時の蛍光X線強度
を示す。
【0045】
すなわち、例えば鋼板のマトリックスであるFeの蛍光X線強度を得ることによって、前記式(5) によってdを求めることができる。
回折X線の検出角度をδとすると、L、d、δは全て既知のパラメータであるので、下記式(6) から回折X線の真の強度T1 を求めることができる。
1 =T0 ・L2/(L+d/sinδ)2 ………(6)
なお、上記式(6) 中、
0 :測定された回折X線の見掛け上の強度
1 :測定された回折X線の真の強度
を示す。
【0046】
上記した回折X線の真の強度T1 の演算方法を、前記した回折X線強度:I(Fe3O4) および回折X線強度:I(FeO) に適用し、鋼板が基準位置にある場合のI(Fe3O4) およびI(FeO) を求め、得られたそれぞれの値と、前記した式(1) 、(3) 、(4) とから、さらに正確なFe3O4 、FeO の存在量を求めることができる。なお、前記した5種類の記憶・演算装置は、単一(一台)の記憶・演算装置とすることができる。
【0047】
【実施例】
以下、本発明を実施例に基づいてさらに具体的に説明する。
熱間圧延設備→酸洗設備→冷間圧延設備の工程順序からなる冷延鋼板の製造ラインにおいて、酸洗設備の入口側に前記した図1に示すX線回折装置を設置し、前記した方法で、鋼板表面に存在するスケール中のFe3O3 、FeO の存在量を測定した。
【0048】
なお、上記した測定においては、図1に示す蛍光X線検出器3Cによって鋼板のマトリックスであるFeの蛍光X線強度を測定し、回折X線検出器(3A、3B)と鋼板試料Sとの距離の経時的変化による回折X線強度の変化を補正し、距離補正後の回折X線強度:I(Fe3O4) および回折X線強度:I(FeO) に基づきスケール中のFe3O3 、FeO の存在量を測定した。
【0049】
また、本実施例においては、得られた測定結果に基づき酸洗設備への通板速度を制御した。
なお、X線回折装置の測定条件は、下記の通りとした。
照射X線:Cr-Kα線(波長:0.229nm )
Fe3O3 の回折角度2θ:90°
FeO の回折角度2θ :64°
この結果、上記した制御を行うことによって鋼板の酸洗不良の発生量を、従来の1/2に低減することが可能となった。
【0050】
【発明の効果】
本発明によれば、金属板などの金属材の表面に存在する酸化物の組成と存在量を迅速かつ正確に非破壊で測定し、金属材表面酸化物の量を制御することが可能となった。
【図面の簡単な説明】
【図1】本発明のX線回折装置の一例を示す説明図(a) およびX線管球−X線検出器収納部の一例を示す説明図(b) である。
【図2】鋼板試料のX線回折結果(θ−2θ方式)を示すグラフである。
【図3】スケール(Fe3O4) 量とFe3O4[(511) 面] の回折X線強度との関係を示すグラフである。
【図4】スケール中の FeO量と吸収補正したFeO[(220) 面] の回折X線強度補正値との関係を示すグラフである。
【図5】スケール中の FeO濃度の化学分析値とX線回折法による分析値との関係を示すグラフである。
【符号の説明】
1 X線管球−X線検出器収納部
2 X線管球
3、3A、3B 回折X線検出器(:X線検出器)
3C 蛍光X線検出器
4 高電圧発生部
5 波高分析器
6 X線検出器高電圧印加装置
7 測定角度コントローラ
8A、8B 計数回路部
9A、9B、9C、9D、9E 演算手段
10 プリンタ
11 レコーダ
12 デイスプレー
13 送水装置
15A 、15B 、15C ソーラースリット
S 試料[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for measuring a metal material surface oxide such as an oxide formed on the surface of a steel plate in a steel plate manufacturing process, for example, and an X-ray diffractometer used in the measurement method.
[0002]
[Prior art]
Oxide (scale) composed of Fe 3 O 4 , FeO, etc. formed on the surface of the steel plate in the steel plate manufacturing process is either by spraying high-pressure water on the surface of the steel plate or by passing the steel plate into an acidic solution and washing it. Remove.
Since the composition and amount of oxide on the surface of the steel plate have a great influence on the properties of the final product, it is important to accurately measure and control the composition and amount of oxide in the manufacturing process.
[0003]
The following method is used as a method for measuring the composition and amount of the oxide.
That is, one method is a method in which bromomethanol is used to peel the oxide on the surface of the steel plate from the surface, and the powder is pulverized in a mortar and X-ray diffraction is performed.
In this case, quantification is performed based on several types of powder samples (standard samples) with different mixing ratios of magnetite and wustite.
[0004]
However, the above-described method has a problem that it takes a long time for sample preparation and the like, and furthermore, the oxide distribution state on the steel sheet surface cannot be known.
As another method, a method is used in which the steel plate itself on which the oxide is formed is X-ray diffracted and quantified by comparison with a standard sample.
However, in the case of the method described above, if the scale has a multilayer structure, absorption of diffracted X-rays from the lower layer occurs in the surface layer, and measurement of the lower layer is impossible.
[0005]
Furthermore, since metallic iron exists in the scale, the correct scale thickness cannot be obtained from the attenuation factor of the diffracted X-rays from the base steel plate.
That is, in the case of the above-described method, there is a problem that the composition and amount of the surface oxide having a multilayer structure cannot be measured accurately.
The surface composition measurement method using X-rays as an excitation source is widely used industrially. For example, there is a method of measuring the composition and thickness of a plating layer using fluorescent X-rays. It is possible to determine the composition ratio of zinc and iron in the above, but it is necessary to perform structural analysis in order to determine the amount of iron oxide for each type, which is not possible with the above method.
[0006]
That is, conventionally, it is possible to measure the composition and amount of an oxide on the surface of a metal material such as a steel sheet, which solves the above-described problem, and a method for measuring the surface oxide of a metal material that serves as an index for scale control and the measurement method There has been a demand for an X-ray diffractometer to be used for the above.
[0007]
[Problems to be solved by the invention]
The present invention solves the above-mentioned problems of the prior art, and enables a metal material surface oxide capable of measuring the composition and amount of an oxide present on the surface of a metal material such as a steel plate quickly and accurately in a nondestructive manner. It is an object of the present invention to provide an X-ray diffractometer suitably used for the measurement method.
[0008]
[Means for Solving the Problems]
In the first invention, the metal material having the oxide A as the upper layer of the surface oxide layer and the oxide B as the lower layer of the surface oxide layer is irradiated with characteristic X-rays or monochromatic X-rays, the diffracted X-ray intensity I B of the diffracted X-ray intensity I a and the oxide B of oxide a to be emitted was measured, and a diffracted X-ray intensity I a of the oxide a obtained in advance with a calibration curve, surface oxides determine the abundance W a layer upper layer of oxide a, further, oxides abundance of diffracted X-ray absorption factor the oxide a oxide B diffracted X-ray intensity I B by the upper layer of the oxide a and B The diffracted X-ray intensity of oxide B: I B.com is obtained by correcting with W A, and the abundance W B of oxide B in the lower layer of the surface oxide layer is obtained from I B.com and the calibration curve obtained in advance. This is a method for measuring the surface oxide of a metal material.
[0009]
According to a second aspect of the present invention, there is provided a metal material surface oxide for measuring a surface oxide of a metal material having an oxide A as an upper layer of the surface oxide layer and an oxide B as a lower layer of the surface oxide layer during transport of the metal material. A measurement method using an X-ray diffractometer with a fixed diffraction angle 2θ and a fluorescent X-ray detector with a fixed extraction angle β with respect to a reference position of the metal material. and it was irradiated with X-rays, as well as measuring the diffracted X-ray intensity I B of the diffracted X-ray intensity I a and the oxide B of oxide a to be emitted from the metal material, the fluorescent X of matrix metal which is emitted from a metal material By measuring the change over time of the line intensity I FX , the displacement from the reference position of the metal material is obtained, and the above-mentioned diffraction X-ray intensities I A and I B are corrected based on the change. and a correction value I A.0 diffracted X-ray intensity I a previously determined with a calibration curve, Determine the abundance W A of oxide A layer, further, the diffracted X-oxides B correction value I B.0 of the diffracted X-ray intensity I B of the oxide B obtained above by the upper layer of the oxide A diffracted X-ray intensity of the corrected oxide B with the linear absorption rate and abundance W a of the oxide a: seek I B.0.com, from a previously obtained calibration curve with the I B.0.Com a measuring method of a metal material surface oxides and obtains the abundance W B of the lower side of the oxide B.
[0010]
The third invention comprises an X-ray tube 2 that irradiates a sample surface with X-rays, two or more diffracted X-ray detectors 3A and 3B each having a fixed take-off angle, and the diffracted X-ray detector. A counting circuit unit 8A for counting the diffracted X-ray intensities of the A component and B component of the sample surface layer radiated from the sample surface layer detected by each of 3A and 3B, and a sample counted by the counting circuit unit 8A calculation means 9A for determining the abundance W a of the a component of the sample surface layer based on both of the diffracted X-ray intensity I a and previously obtained calibration curve of the a component of the surface layer, the sample was counted in the counting circuit section 8A have a calculation means 9B for determining the abundance W B of the B component of the diffracted X-ray intensity I B and previously obtained sample surface layer based on both of the calibration curve of the B component of the surface layer, further, the computing means (9B) but a diffraction X-ray absorptivity diffracted X-ray intensity I B of the B component of the sample surface layer by component a of the sample surface layer Serial oxide abundance W A and the correction diffracted X-ray intensity of the B component of the sample surface layer of A: seeking I B.com, from a previously obtained calibration curve with the I B.com, the sample surface layer it is an X-ray diffractometer, wherein calculating means der Rukoto for determining the abundance W B of the B component.
[0012]
The fourth invention is an X-ray tube 2 for irradiating the surface of a sample being conveyed with X-rays, two or more diffraction X-ray detectors 3A and 3B each having a fixed extraction angle, and the diffraction X A counting circuit 8A for counting the diffracted X-ray intensities of the A and B components of the sample surface layer radiated from the sample surface layer detected by each of the line detectors 3A and 3B, and a fluorescence with a fixed take-off angle X-ray detector 3C, counting circuit unit 8B for counting the fluorescent X-ray intensity detected by the fluorescent X-ray detector 3C, and the diffracted X-ray based on the fluorescent X-ray intensity counted by the counting circuit unit 8B Calculation means 9C for correcting the change in the count values of the diffracted X-ray intensities of the A component and B component due to the change in the distance between the detectors 3A and 3B and the sample, and the sample surface layer corrected by the calculation means 9C abundance of a components of the sample surface layer based on both of the diffracted X-ray intensity I A.0 and previously obtained calibration curve of a component Calculation means 9D seeking A, abundance of B component of the diffracted X-ray intensity I B.0 and previously obtained calibration curve sample surface layer based on both the B component of the sample surface layer, which is corrected by said calculating means 9C have a calculation means 9E seeking further said calculation means (9E) is of the computation means (9C) sample surface layer from the diffraction X-ray intensity I B.0 of the B component of the corrected sample surface layer a diffracted X-ray intensity of the corrected B component in the abundance W a of the oxide a and the diffracted X-ray absorption rate by components: seek I B.com, previously determined and the obtained value of I B.com calibration from the line, an X-ray diffractometer, wherein calculating means der Rukoto for determining the abundance W B of the B component of the sample surface layer.
[0014]
Each calibration curve in the first to fourth inventions described above can be obtained in advance using a plurality of samples whose component composition and component concentration are known.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in more detail.
FIG. 1 (a) shows an example of the X-ray diffraction apparatus of the present invention, and FIG. 1 (b) shows an example of the X-ray tube-X-ray detector storage part of FIG. 1 (a).
In FIG. 1, 1 is an X-ray tube-X-ray detector housing, 2 is an X-ray tube, 3, 3A and 3B are diffracted X-ray detectors, 3C is a fluorescent X-ray detector, and 4 is a high voltage generator. , 5 is a pulse height analyzer, 6 is an X-ray detector high voltage application device, 7 is a measurement angle controller, 8A and 8B are counting circuit units, 9A, 9B, 9C, 9D and 9E are arithmetic means, 10 is a recorder, 11 is a printer, 12 is a display, 13 is a water supply device, 15A, 15B and 15C are solar slits, S is a sample of a metal material such as a steel plate, 2θ A and 2θ B are A component and B component of the sample surface to be measured The diffraction angle of the diffracted X-ray, α is the X-ray incident angle on the surface of the sample S, β is the fluorescent X-ray extraction angle with respect to the fluorescent X-ray detector 3C.
[0016]
In the X-ray diffractometer shown in FIG. 1, X-rays from an X-ray tube 2 are irradiated onto the surface of the sample S at an incident angle α, and diffraction corresponding to the A component and B component of the sample surface emitted from the sample S surface. X-rays are detected by X-ray detectors 3A and 3B, respectively, and fluorescent X-rays are detected by fluorescent X-ray detector 3C.
The diffracted X-ray detectors 3A and 3B of the X-ray diffractometer of the present invention are preferably provided with a radix corresponding to the number of components on the sample surface to be measured.
[0017]
In the X-ray diffractometer shown in FIG. 1, the diffracted X-ray detector 3A and the diffracted X-ray detector 3B are arranged at diffraction angles 2θ A and 2θ B of diffracted X-rays corresponding to the A component and B component of the sample surface to be measured. Since it is fixed, unlike a normal counter scan method (θ-2θ method), it can be measured quickly in a few seconds.
This is because the composition of the surface of the sample to be measured, such as a continuously flowing metal plate, and the amount of each component are simultaneously online by installing the X-ray diffractometer configured as described above on a continuous production line such as a metal plate. This is because it enables quick and accurate measurement and quick operation management.
[0018]
Further, in the X-ray diffraction apparatus of the present invention, as shown in FIG. 1, it is preferable that a fluorescent X-ray detector 3C fixed at the take-out angle β is installed.
This is because the X-ray fluorescence detector 3C measures the time-dependent change in the characteristic X-ray (fluorescence X-ray) intensity of the matrix simultaneously emitted from the sample surface such as a metal plate. This is because the change over time in the distance between the line detector (3A, 3B) and the surface of the sample such as a metal plate can be corrected, and more accurate measurement becomes possible.
[0019]
Hereinafter, the measurement method and X-ray diffractometer of the metal material surface oxide of the present invention are taken as an example of the measurement of the upper layer Fe 3 O 4 and the lower layer FeO 2 in the steel sheet surface oxide layer of the steel plate to be continuously passed. explain.
That is, in the case of a steel plate through which the sample is continuously passed, in the X-ray diffraction apparatus shown in FIG. 1, the surface of the steel plate sample S is irradiated with X-rays from the X-ray tube 2 at an incident angle α. Diffracted X-rays corresponding to FeO and Fe 3 O 4 emitted from the surface are detected by X-ray detectors 3A and 3B, respectively.
[0020]
Further, preferably, the fluorescent X-ray emitted from the surface of the sample S is further detected by the fluorescent X-ray detector 3C.
The diffracted X-ray detector 3A and the diffracted X-ray detector 3B are fixed at diffraction angles 2θ A and 2θ B of diffracted X-rays corresponding to FeO 2 and Fe 3 O 4 to be measured.
Further, when the fluorescent X-ray detector 3C is provided, it is preferably fixed at the extraction angle β.
[0021]
Note that it is preferable that the incident angle α of X-rays be as high as possible to reduce the fluctuation of the diffracted X-ray intensity due to the flickering of the steel sheet.
In the present invention, the diffraction angle 2θ is determined in advance when the diffraction X-ray detector is installed.
FIG. 2 shows a counter scan method (in order to determine the diffraction angle 2θ B of the diffracted X-ray corresponding to Fe 3 O 4 , that is, the mounting angle of the diffracted X-ray detector 3B of the X-ray diffractometer shown in FIG. An example of the result of X-ray diffraction of a steel sheet sample performed by (θ-2θ method) is shown.
[0022]
The steel plate sample used is a sample whose scale is a single composition of magnetite (Fe 3 O 4 ).
That is, as shown in FIG. 2, the attachment angle of the diffraction X-ray detector for detecting Fe 3 O 4 in the scale of the steel sheet sample is set so that, for example, the diffraction angle 2θ (: 2θ B ) is 90 °. .
[0023]
Next, the inventors of the present invention made a Fe 3 O 4 (511) plane (diffraction angle 2θ) for a plurality of steel sheet samples having a single composition of Fe 3 O 4 and a scale amount of 10 to 74 g / m 2. = 90 °) was measured.
The measurement time of the diffraction X-ray intensity of each sample was 1 s.
Next, the relationship between the amount of scale (Fe 3 O 4 ) and the diffraction X-ray intensity was determined.
[0024]
The scale amount of the steel sheet was obtained by weighing the scale peeled off from the steel sheet surface using bromine / methanol.
FIG. 3 shows the relationship between the amount of scale (Fe 3 O 4 ) and the diffraction X-ray intensity.
As shown in FIG. 3, although there is some variation, the amount of scale (Fe 3 O 4 ): W (Fe 3 O 4 ) and the diffraction X-ray intensity of Fe 3 O 4 [(511) plane]: I (Fe A calibration curve approximated by the following formula (1) having a good correlation with 3 O 4 ) was obtained.
[0025]
W (Fe 3 O 4 ) = f (I (Fe 3 O 4 )) = 1.38 × 10 −8 [I (Fe 3 O 4 )] 2 −8.21 × 10 −5 [I (Fe 3 O 4 )] − 1.55 ……… (1)
In order to examine the accuracy of the obtained calibration curve, σ d obtained by the following equation (2) was calculated.
[0026]
[Expression 1]
Figure 0004302852
[0027]
As a result, 2.0 g / m 2 is obtained as σ d for 10 to 80 g / m 2 of Fe 3 O 4 adhesion, and the amount of Fe 3 O 4 (g / m 2 ) can be quantified with sufficient accuracy. I understood.
Next, the diffraction X-ray intensity of the (220) plane of FeO was measured using a steel sheet sample whose scale composition was two components of magnetite (Fe 3 O 4 ) and wustite (FeO), and the following (1), ( The relationship between the FeO concentration in the scale and the diffraction X-ray intensity of FeO was obtained by the procedure in 2).
[0028]
(1) Measurement of FeO concentration in scale:
The scale composition ratio was determined by measuring several reflected electron images of the scanning electron microscope (SEM) on the cross section of the steel sheet used, and performing image analysis to remove precipitates and pores in the scale and remove Fe 3 O 4 The area ratio of FeO was obtained and multiplied by the respective densities.
[0029]
That is, for example, in the SEM image, when the thickness of Fe 3 O 4 is 5 μm, the thickness of FeO is 1 μm, and the observed range is 20 μm, the area of Fe 3 O 4 is 1 × 10 −6 (cm 2 ). Thus, the area of FeO is 0.2 × 10 −6 (cm 2 ).
If the width of hcm is taken in the direction perpendicular to the cross section, the volumes are 1 × 10 −6 h (cm 3 ) and 0.2 × 10 −6 h (cm 3 ), respectively.
[0030]
Moreover, since the densities of Fe 3 O 4 and FeO are 5.0 g / cm 3 and 5.7 g / cm 3 , respectively, their masses are 5.0 × 10 −6 h (g) and 1.14 × 10 −6 h (g ).
Therefore, in the case of the above sample, the concentration of FeO with respect to the entire scale is 18.6 mass%.
As a result of performing the above measurement on a plurality of samples, the FeO concentration in the scale of these samples was 0 to 70 mass%.
[0031]
(2) Investigation of the relationship between the FeO concentration in the scale and the diffraction X-ray intensity of FeO:
In the steel plate sample used above, Fe 3 O 4 which is a high-order oxide is present on the surface side of the scale (upper layer in the surface oxide layer), and FeO which is a low-order oxide is on the base steel plate side (surface oxide). Present in the lower layer).
As a result, part of the diffracted X-rays from FeO existing in the lower layer is absorbed by the surface Fe 3 O 4 .
[0032]
Thus, the diffracted X-ray intensity of Fe 3 O 4 of the steel plate samples the [(511) plane]: I (Fe 3 O 4 ) and Fe 3 O 4 of the steel sheet sample using the calibration curve of the equation (1) Of W: Fe (O 3 O 4 ) (g / m 2 ), and based on the following formula (3), the diffraction X-ray intensity of the (220) plane of FeO: I (FeO) is determined by Fe 3 O 4 . Diffraction X-ray intensity correction value corrected by mass absorption coefficient: μ (m 2 / g): I (FeO) .com was determined.
[0033]
I (FeO). Com = I (FeO) / exp [−μ · W (Fe 3 O 4 )] ……… (3)
In the above formula (3), μ = 67.5 (m 2 / g) is shown.
Next, the amount of FeO in the scale: W (FeO) (g / m 2 ) and the corrected X-ray diffraction intensity of the (220) plane of absorption corrected FeO: I (FeO). Com The calibration curve approximated by FIG. 4 and following formula (4) was obtained.
[0034]
W (FeO) = g (I (FeO). Com ) = 1.57 × 10 −4 [I (FeO). Com ] 2 −1.73 × 10 −2 [I (FeO). Com ] (4)
Next, as a result of obtaining the accuracy of the calibration curve using the same calculation formula as the above-mentioned formula (2), σ d is 3.4 (g / m 2 ), and it is found that the lower layer FeO can be analyzed with sufficient accuracy. It was.
Further, FIG. 5 shows the result of obtaining the FeO concentration in the scale from the obtained FeO amount (g / m 2 ) and Fe 3 O 4 amount (g / m 2 ) in comparison with the chemical analysis value.
[0035]
It was found that the FeO concentration can be analyzed at σ d = 3.1 mass%.
Hereinafter, the method for measuring the surface oxide of a metal material according to the present invention will be described by taking, as an example, the measurement of the upper Fe 3 O 4 and the lower FeO 2 in the surface oxide layer of the above steel sheet sample. That is, X-rays from an X-ray tube are irradiated on the steel plate surface, and the diffracted X-ray intensities I (Fe 3 O 4 ) and I (FeO) of Fe 3 O 4 and FeO emitted from the steel plate surface are measured. .
[0036]
Then, among the oxide layer of the steel sheet sample surface, the presence of Fe 3 O 4 that is present in the upper layer W (Fe 3 O 4), diffraction X-ray intensity I of Fe 3 O 4 obtained above (Fe and 3 O 4), a calibration curve showing the relationship between a previously obtained Fe 3 O 4 abundance W (Fe 3 O 4) and Fe 3 O 4 of the diffracted X-ray intensity I (Fe 3 O 4) wherein It is obtained from the equation (1).
Was then corrected based on both of the diffracted X-ray intensity of the (220) plane of FeO obtained in I abundance (FeO) and Fe 3 O 4 W (Fe 3 O 4) and the formula (3) Diffraction X-ray intensity correction value: I (FeO) .com is obtained.
[0037]
Diffraction X-ray intensity correction value obtained above: I (FeO) .com and the calibration curve of the above equation (4) can determine the FeO abundance W (FeO) and the FeO concentration in the scale.
As described above, the method for measuring the surface oxide of the metal plate according to the present invention has been described by taking the measurement of Fe 3 O 4 and FeO 2 in a steel plate sample as an example. According to the present invention, the X-ray diffractometer illustrated in FIG. By installing in the plate passing (conveying) line, the composition and amount of various oxides on the surface of the metal plate can be simultaneously measured quickly and accurately on-line.
[0038]
That is, when the X-ray diffractometer of the present invention is used, for example, as a measurement device for Fe 3 O 4 and FeO 2 in a steel sheet sample, the X-ray diffractometer is composed of the following devices (1) to (4).
(1) X-ray tube 2 that irradiates the surface of a steel sheet with X-rays 2
(2) Diffraction X-ray detectors 3A and 3B with fixed extraction angles
(3) Counting circuit unit 8A
In the counting circuit unit 8A, the diffraction X-ray intensities of Fe 3 O 3 and FeO radiated from the steel sheet sample surface layer are counted.
[0039]
(4) Calculation means 9A, 9B
In the calculation means 9A, the diffraction X-ray intensity I (Fe 3 O 4 ) of the Fe 3 O 4 of the steel sheet sample surface layer counted by the counting circuit unit 8A and the calibration exemplified by the previously obtained equation (1) Based on the line, the abundance W (Fe 3 O 4 ) of Fe 3 O 4 in the upper surface layer of the steel sheet sample is determined.
That is, as the calculation means 9A, a calibration curve exemplified by the above-described equation (1) is stored in advance, and the diffracted X-ray intensity I (Fe of Fe 3 O 4 of the steel sheet sample surface layer counted by the counting circuit unit 8A. Based on 3 O 4 ), it is possible to use a storage / arithmetic device for obtaining the Fe 3 O 4 abundance W (Fe 3 O 4 ) in the upper surface layer of the steel sheet sample.
[0040]
In the calculating means 9B, <1> W (Fe 3 O 4 ) obtained above, <2> the diffraction X-ray intensity I (FeO) of FeO of the steel sheet surface layer counted by the counting circuit section 8A and <3> from the correction equation exemplified by the equation (3), the diffraction X-ray intensity of the oxides FeO corrected by the upper oxide Fe 3 O 4 of the diffraction X-ray absorption factor of: I a (FeO) com. Ask.
Next, in the calculation means 9B, based on the diffraction X-ray intensity obtained above: I (FeO) .com and the calibration curve exemplified in the above-described equation (4), the steel sheet sample surface layer lower layer The amount of FeO present W (FeO) is obtained.
[0041]
That is, as the calculation means 9B, both the correction equation exemplified by the above-described equation (3) and the calibration curve exemplified by the equation (4) are stored in advance, and the steel sheet sample surface layer counted by the counting circuit unit 8A Based on the diffraction X-ray intensity I (FeO) of FeO and the abundance W (Fe 3 O 4 ) of Fe 3 O 4 in the upper surface layer of the steel sheet sample obtained by the arithmetic means 9A, A storage / arithmetic unit for obtaining the abundance W (FeO) can be used.
[0042]
In the present invention, further, the following devices (5) to (7) are provided, whereby diffraction due to a change in the distance between the diffraction X-ray detector (3A, 3B) and the metal sample S over time is provided. The change in the X-ray intensity is corrected, and the oxide can be measured more accurately.
(5) X-ray fluorescence detector 3C
Fluorescent X-ray detector 3C with fixed extraction angle β
(6) Counting circuit section 8B
Counting circuit unit 8B for counting the intensity of fluorescent X-ray detected by the fluorescent X-ray detector 3C
(7) Calculation means 9C
In the calculation means 9C, the diffraction X of each of the A component and the B component due to the change over time of the distance between the diffraction X-ray detector (3A, 3B) and the metal material based on the fluorescent X-ray intensity counted by the counting circuit unit 8B. Correct the change in the line strength count over time.
[0043]
Hereinafter, the correction method based on the fluorescent X-ray intensity will be described by taking the measurement of the oxide on the steel sheet surface as an example.
Assuming that the extraction angle of fluorescent X-rays is β, the distance between the fluorescent X-ray detector and the steel plate changes by d / sin β when the steel plate moves vertically by d with respect to the reference position during measurement.
If the distance between the fluorescent X-ray detector and the center of the measurement circle is L, the fluorescent X-ray intensity ratio is expressed by the following formula (5).
[0044]
I 1 / I 0 = L 2 / (L + d / sin β) 2 (5)
In the above formula (5),
I 0 : X-ray fluorescence intensity when the steel sheet is at the reference position I 1 : X-ray fluorescence intensity when the steel sheet is deviated from the reference position by d in the vertical direction.
[0045]
That is, for example, by obtaining the fluorescent X-ray intensity of Fe which is a matrix of a steel plate, d can be obtained by the above formula (5).
Assuming that the detected angle of the diffracted X-ray is δ, L, d, and δ are all known parameters, so the true intensity T 1 of the diffracted X-ray can be obtained from the following equation (6).
T 1 = T 0 · L 2 / (L + d / sin δ) 2 (6)
In the above formula (6),
T 0 : Apparent intensity of measured diffraction X-ray T 1 : Indicates the true intensity of measured diffraction X-ray.
[0046]
The above-described method for calculating the true intensity T 1 of the diffracted X-ray is applied to the above-described diffracted X-ray intensity: I (Fe 3 O 4 ) and diffracted X-ray intensity: I (FeO), and the steel plate is at the reference position. I (Fe 3 O 4 ) and I (FeO) for each case, and from the obtained values and the above formulas (1), (3), (4), more accurate Fe 3 O 4 , The abundance of FeO can be determined. The five types of storage / calculation devices described above can be a single (one) storage / calculation device.
[0047]
【Example】
Hereinafter, the present invention will be described more specifically based on examples.
In the production line for cold-rolled steel sheets comprising the process sequence of hot rolling equipment → pickling equipment → cold rolling equipment, the X-ray diffraction apparatus shown in FIG. Then, the abundance of Fe 3 O 3 and FeO in the scale existing on the steel sheet surface was measured.
[0048]
In the measurement described above, the fluorescent X-ray intensity of Fe, which is a matrix of the steel plate, is measured by the fluorescent X-ray detector 3C shown in FIG. 1, and the diffraction X-ray detector (3A, 3B) and the steel plate sample S are measured. distance variations of the diffracted X-ray intensity by time course of correction, the diffracted X-ray intensity after distance correction: I (Fe 3 O 4) and the diffracted X-ray intensity: Fe 3 in the scale on the basis of the I (FeO) O 3. The abundance of FeO was measured.
[0049]
Moreover, in the present Example, the plate | board speed to a pickling facility was controlled based on the obtained measurement result.
The measurement conditions of the X-ray diffractometer were as follows.
Irradiation X-ray: Cr-Kα ray (wavelength: 0.229 nm)
Fe 3 O 3 diffraction angle 2θ: 90 °
FeO diffraction angle 2θ: 64 °
As a result, by performing the above-described control, it is possible to reduce the amount of defective pickling of the steel sheet to ½ of the conventional amount.
[0050]
【The invention's effect】
According to the present invention, it is possible to quickly and accurately measure non-destructively the composition and abundance of an oxide present on the surface of a metal material such as a metal plate, and to control the amount of metal surface oxide. It was.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram (a) showing an example of an X-ray diffraction apparatus of the present invention and an explanatory diagram (b) showing an example of an X-ray tube-X-ray detector storage unit.
FIG. 2 is a graph showing an X-ray diffraction result (θ-2θ method) of a steel sheet sample.
FIG. 3 is a graph showing the relationship between the amount of scale (Fe 3 O 4 ) and the diffraction X-ray intensity of Fe 3 O 4 [(511) plane].
FIG. 4 is a graph showing the relationship between the amount of FeO in the scale and the diffraction X-ray intensity correction value of FeO [(220) plane] corrected for absorption.
FIG. 5 is a graph showing the relationship between the chemical analysis value of the FeO concentration in the scale and the analysis value by the X-ray diffraction method.
[Explanation of symbols]
1 X-ray tube-X-ray detector housing 2 X-ray tube 3, 3A, 3B Diffraction X-ray detector (: X-ray detector)
3C X-ray fluorescence detector 4 High voltage generator 5 Wave height analyzer 6 X-ray detector high voltage application device 7 Measuring angle controller
8A, 8B counting circuit
9A, 9B, 9C, 9D, 9E Calculation means
10 Printer
11 Recorder
12 Day spray
13 Water supply device
15A, 15B, 15C Solar Slit S Sample

Claims (4)

表面酸化物層上層として酸化物Aを有し、表面酸化物層下層として酸化物Bを有する金属材に特性X線または単色化したX線を照射し、前記金属材から放射される酸化物Aの回折X線強度IA および酸化物Bの回折X線強度IB を測定し、酸化物Aの回折X線強度IA と予め求めた検量線とから、表面酸化物層上層の酸化物Aの存在量WA を求め、さらに、酸化物Bの回折X線強度IB を上層の酸化物Aによる回折X線吸収率と前記酸化物Aの存在量W A で補正し酸化物Bの回折X線強度IB.com を求め、該IB.com と予め求めた検量線とから、表面酸化物層下層の酸化物Bの存在量WB を求めることを特徴とする金属材表面酸化物の測定方法。Oxide A emitted from the metal material by irradiating the metal material having oxide A as the upper layer of the surface oxide layer and the metal material having oxide B as the lower layer of the surface oxide layer with characteristic X-rays or monochromatic X-rays Diffracted X-ray intensity I A and oxide B diffracted X-ray intensity I B are measured, and from the diffracted X-ray intensity I A of oxide A and the calibration curve determined in advance, oxide A on the upper surface oxide layer Determination of the amount W a exists, further oxides diffracted X-ray intensity I B were corrected by upper diffracted X-ray absorption rate by the oxide a and the abundance W a of the oxide a oxide B of B calculated diffracted X-ray intensity I B.com, previously determined from a calibration curve, the surface oxide layer underlying the oxide metal material surface oxidation and obtaining an abundance W B of B and the I B.com Measuring method of things. 表面酸化物層上層として酸化物Aを有し、表面酸化物層下層として酸化物Bを有する金属材の表面酸化物を金属材搬送中に測定する金属材表面酸化物の測定方法であって、回折角度2θを固定したX線回折装置と、金属材の基準位置に対して取り出し角βを固定した蛍光X線検出器を用い、金属材に特性X線または単色化したX線を照射し、金属材から放射される酸化物Aの回折X線強度IA および酸化物Bの回折X線強度IB を測定すると共に、金属材から放射されるマトリックス金属の蛍光X線強度IFXの経時的変化を測定することにより金属材の基準位置からの変位を求め、該変位に基づき前記した回折X線強度IA およびIB を補正し、得られた酸化物Aの回折X線強度IA の補正値IA.0 と予め求めた検量線とから、上層の酸化物Aの存在量WA を求め、さらに、前記で得られた酸化物Bの回折X線強度IB の補正値IB.0 を上層の酸化物Aによる回折X線吸収率と前記酸化物Aの存在量W A で補正し酸化物Bの回折X線強度:IB.0.com を求め、該IB.0.com と予め求めた検量線とから、下層の酸化物Bの存在量WB を求めることを特徴とする金属材表面酸化物の測定方法。A metal material surface oxide measuring method for measuring a surface oxide of a metal material having an oxide A as an upper layer of a surface oxide layer and an oxide B as a lower layer of a surface oxide layer during transportation of the metal material, Using a X-ray diffractometer with a fixed diffraction angle 2θ and a fluorescent X-ray detector with a fixed extraction angle β with respect to the reference position of the metal material, the metal material is irradiated with characteristic X-rays or monochromatic X-rays, The diffraction X-ray intensity I A of the oxide A emitted from the metal material and the diffraction X-ray intensity I B of the oxide B are measured, and the fluorescence X-ray intensity I FX of the matrix metal emitted from the metal material is measured over time. By measuring the change, the displacement of the metal material from the reference position is obtained, and based on the displacement, the diffracted X-ray intensities I A and I B are corrected, and the diffracted X-ray intensity I A of the obtained oxide A is corrected. and a correction value I A.0 previously obtained a calibration curve, presence of the upper oxide a Determine the amount W A, further, the abundance of the diffracted X-ray intensity I B of the correction value I B.0 the upper layer of the oxide A by the diffraction X-ray absorption rate between the oxide A oxide B obtained above The diffracted X-ray intensity of oxide B: I B.0.com is obtained by correcting with W A, and the existing amount of oxide B in the lower layer W B is obtained from the I B.0.com and the calibration curve obtained in advance. A method for measuring a surface oxide of a metal material. 試料表面にX線を照射するX線管球(2) と、いずれもが取り出し角が固定された2個以上の回折X線検出器(3A、3B)と、該回折X線検出器(3A、3B)のそれぞれで検出された試料表面層から放射される試料表面層のA成分、B成分それぞれの回折X線強度を計数する計数回路部(8A)と、該計数回路部(8A)で計数された試料表面層のA成分の回折X線強度IA および予め求めた検量線の両者に基づき試料表面層のA成分の存在量WA を求める演算手段(9A)と、前記計数回路部(8A)で計数された試料表面層のB成分の回折X線強度IB および予め求めた検量線の両者に基づき試料表面層のB成分の存在量WB を求める演算手段(9B)を有し、さらに、前記演算手段(9B)が、前記試料表面層のB成分の回折X線強度I B を試料表面層のA成分による回折X線吸収率と前記酸化物Aの存在量W A とで補正し試料表面層のB成分の回折X線強度:I B.com を求め、該I B.com と予め求めた検量線とから、試料表面層のB成分の存在量W B を求める演算手段であることを特徴とするX線回折装置。An X-ray tube (2) that irradiates the sample surface with X-rays, two or more diffracted X-ray detectors (3A, 3B) each having a fixed extraction angle, and the diffracted X-ray detector (3A) 3B) a counting circuit unit (8A) for counting the diffracted X-ray intensities of the A component and B component of the sample surface layer radiated from the sample surface layer detected in each of the above, and the counting circuit unit (8A) and arithmetic means for obtaining the abundance W a of the a component of the diffracted X-ray intensity I a and pre-determined calibration curve sample surface layer based on both the a component of the counted sample surface layer (9A), the counting circuit have a calculation means for calculating the abundance W B of the B component of the diffracted X-ray intensity I B and previously obtained sample surface layer based on both of the calibration curve of the B component of the counted sample surface layer (8A) (9B) and, further, the computing means (9B) comprises a diffraction X-ray absorptivity diffracted X-ray intensity I B of the B component of the sample surface layer by component a of the sample surface layer Diffracted X-ray intensity of the B component of the oxide corrected sample surface layer with the abundance W A of A: seeking I B.com, from a previously obtained calibration curve with the I B.com, the sample surface layer X-ray diffractometer, wherein calculating means der Rukoto for determining the abundance W B of the B component. 搬送中の試料表面にX線を照射するX線管球(2) と、いずれもが取り出し角が固定された2個以上の回折X線検出器(3A、3B)と、該回折X線検出器(3A、3B)のそれぞれで検出された試料表面層から放射される試料表面層のA成分、B成分それぞれの回折X線強度を計数する計数回路部(8A)と、取り出し角が固定された蛍光X線検出器(3C)と、該蛍光X線検出器(3C)で検出された蛍光X線強度を計数する計数回路部(8B)と、該計数回路部(8B)で計数された蛍光X線強度に基づき前記回折X線検出器(3A、3B)と試料との距離の変化による前記A成分、B成分それぞれの回折X線強度の計数値の変化を補正する演算手段(9C)と、該演算手段(9C)で補正された試料表面層のA成分の回折X線強度I A.0 および予め求めた検量線の両者に基づき試料表面層のA成分の存在量W A を求める演算手段(9D)と、前記演算手段(9C)で補正された試料表面層のB成分の回折X線強度I B.0 および予め求めた検量線の両者に基づき試料表面層のB成分の存在量を求める演算手段(9E)を有し、さらに、前記演算手段(9E)が、前記演算手段(9C)で補正された試料表面層のB成分の回折X線強度I B.0 から試料表面層のA成分による回折X線吸収率と前記酸化物Aの存在量W A とで補正したB成分の回折X線強度:I B.com を求め、得られたI B.com の値と予め求めた検量線とから、試料表面層のB成分の存在量W B を求める演算手段であることを特徴とするX線回折装置 An X-ray tube (2) that irradiates the surface of the sample being transported with X-rays, two or more diffracted X-ray detectors (3A, 3B) each having a fixed take-off angle, and diffracted X-ray detection Counting circuit (8A) that counts the diffracted X-ray intensities of the A and B components of the sample surface layer radiated from the sample surface layer detected by each of the detectors (3A and 3B), and the take-off angle is fixed The fluorescent X-ray detector (3C), the counting circuit unit (8B) for counting the fluorescent X-ray intensity detected by the fluorescent X-ray detector (3C), and the counting circuit unit (8B) were counted. Arithmetic means (9C) for correcting changes in the count values of the diffracted X-ray intensities of the A component and B component due to changes in the distance between the diffracted X-ray detector (3A, 3B) and the sample based on the fluorescent X-ray intensity When, a components of the sample surface layer based on both the calculation means (9C) diffracted X-ray intensity of the a component of the corrected sample surface layer with I A.0 and previously obtained calibration curve And arithmetic means for obtaining the abundance W A (9D), the sample surface based on both said arithmetic means (9C) diffracted X-ray intensity of the B component of the corrected sample surface layer with I B.0 and previously obtained calibration curve A calculating means (9E) for determining the abundance of the B component in the layer, and the calculating means (9E) further calculates the diffracted X-ray intensity I of the B component of the sample surface layer corrected by the calculating means (9C); diffracted X-ray intensity of the B component that is corrected by the abundance W a from B.0 and the diffracted X-ray absorption rate by the a component of the sample surface layer wherein the oxide a: seek I B.com, resulting I B from the value of .com and previously determined with a calibration curve, X-rays diffractometer it said arithmetic means der Rukoto for determining the abundance W B of the B component of the sample surface layer.
JP2000098665A 2000-03-31 2000-03-31 Method for measuring surface oxide of metal material and X-ray diffractometer Expired - Fee Related JP4302852B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000098665A JP4302852B2 (en) 2000-03-31 2000-03-31 Method for measuring surface oxide of metal material and X-ray diffractometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000098665A JP4302852B2 (en) 2000-03-31 2000-03-31 Method for measuring surface oxide of metal material and X-ray diffractometer

Publications (2)

Publication Number Publication Date
JP2001281175A JP2001281175A (en) 2001-10-10
JP4302852B2 true JP4302852B2 (en) 2009-07-29

Family

ID=18613124

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000098665A Expired - Fee Related JP4302852B2 (en) 2000-03-31 2000-03-31 Method for measuring surface oxide of metal material and X-ray diffractometer

Country Status (1)

Country Link
JP (1) JP4302852B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BRPI0919654B1 (en) 2008-10-22 2019-07-30 Lg Chem, Ltd. OLIVINE TYPE IRONYL PHOSPHATE, CATHOD MIXTURE AND SECONDARY BATTERY
JP6040717B2 (en) * 2012-11-12 2016-12-07 Jfeスチール株式会社 Cold rolled steel sheet manufacturing method
JP6044280B2 (en) * 2012-11-12 2016-12-14 Jfeスチール株式会社 Cold rolled steel sheet manufacturing method
JP6094156B2 (en) * 2012-11-12 2017-03-15 Jfeスチール株式会社 Iron oxide analysis method
JP6600929B1 (en) * 2018-07-31 2019-11-06 パルステック工業株式会社 X-ray diffraction measurement system and X-ray diffraction measurement system
CN113533396A (en) * 2021-06-23 2021-10-22 包头钢铁(集团)有限责任公司 Heavy rail sample iron scale phase detection method

Also Published As

Publication number Publication date
JP2001281175A (en) 2001-10-10

Similar Documents

Publication Publication Date Title
JP4262734B2 (en) X-ray fluorescence analyzer and method
KR900008955B1 (en) Method of measuring layer theckness and composition of alloy plating
JP4302852B2 (en) Method for measuring surface oxide of metal material and X-ray diffractometer
EP0348574B1 (en) Method of simultaneously measuring thickness and composition of film and apparatus therefor
JPH0541940B2 (en)
JPH0660879B2 (en) Simultaneous analysis of coating thickness and composition
JPH0933455A (en) Method for measuring alloyed degree of alloying plated layer
JPH0619268B2 (en) Method for measuring thickness of coating film on metal
KR100489298B1 (en) Method of measuring alloying degree for galvannealed steels by XRD
JPS61210932A (en) Method and instrument for fluorescent x-ray analysis of laminated body
JPH06347247A (en) Measuring method of thickness of alloy phase of plated layer
JPS60202339A (en) X-ray fluorescence analysis method
JPH0576574B2 (en)
JPS61259151A (en) X-ray analyser
JP6520865B2 (en) Method of measuring degree of alloying and / or plating adhesion of galvanized steel sheet
JPH056139B2 (en)
JPS6367121B2 (en)
JP2873125B2 (en) Method and apparatus for measuring coating weight
JP2563016B2 (en) Fluorescent X-ray analysis method and apparatus using effective wavelength
JPH0610660B2 (en) Method for measuring film thickness and composition of alloy film
JPH07260715A (en) Method and apparatus for measuring thickness of alloy plating phase
JPH0435028B2 (en)
JPH06331576A (en) Analysis of iron zinc alloy plating layer on iron
JPS61277041A (en) Method and apparatus for fluorescent x-ray analysis of metal film
JPS60133308A (en) Method for measuring attached amount of plated film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060921

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081209

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20090116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090421

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090423

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120501

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120501

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130501

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140501

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees