JPH0660879B2 - Simultaneous analysis of coating thickness and composition - Google Patents

Simultaneous analysis of coating thickness and composition

Info

Publication number
JPH0660879B2
JPH0660879B2 JP59091886A JP9188684A JPH0660879B2 JP H0660879 B2 JPH0660879 B2 JP H0660879B2 JP 59091886 A JP59091886 A JP 59091886A JP 9188684 A JP9188684 A JP 9188684A JP H0660879 B2 JPH0660879 B2 JP H0660879B2
Authority
JP
Japan
Prior art keywords
layer
ray
rays
fluorescent
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59091886A
Other languages
Japanese (ja)
Other versions
JPS60236052A (en
Inventor
直樹 松浦
壮一 押田
Original Assignee
理学電機工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 理学電機工業株式会社 filed Critical 理学電機工業株式会社
Priority to JP59091886A priority Critical patent/JPH0660879B2/en
Publication of JPS60236052A publication Critical patent/JPS60236052A/en
Publication of JPH0660879B2 publication Critical patent/JPH0660879B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/223Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material by irradiating the sample with X-rays or gamma-rays and by measuring X-ray fluorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/07Investigating materials by wave or particle radiation secondary emission
    • G01N2223/076X-ray fluorescence

Description

【発明の詳細な説明】 この発明は、主として、鋼板の上に鉄および亜鉛からな
るメッキ被膜を複数層有する試料の被膜の厚みと組成の
同時分析法に関するものである。
The present invention mainly relates to a method for simultaneously analyzing the thickness and composition of a coating of a sample having a plurality of plated coatings made of iron and zinc on a steel sheet.

Znメッキ鋼板のように、メッキ被膜が下地金属のFe
以外の成分からなる試料については、螢光X線分析法に
よりメッキ被膜厚さを定量する方法が実用化されてい
る。つまり、メッキ被膜から発生するZn−Kαまたは
下地金属から発生するFe−Kαの螢光X線強度を測定
し、予め求めておいた検量線からメッキ被膜の厚さを求
めることができる。
Like Zn-plated steel, the plating film is Fe, which is the base metal.
With respect to samples composed of other components, a method of quantifying the plating film thickness by a fluorescent X-ray analysis method has been put into practical use. That is, the fluorescent X-ray intensity of Zn-Kα generated from the plated coating or Fe-Kα generated from the base metal can be measured, and the thickness of the plated coating can be determined from the calibration curve obtained in advance.

ところが、Fe−Zn合金メッキ鋼板の場合は、メッキ
被膜成分中に下地金属と同一の元素Feが含まれている
ので、従来の螢光X線分析方法によってメッキ被膜厚さ
や組成を測定することは不可能であるとされていた。
However, in the case of a Fe-Zn alloy-plated steel sheet, since the element Fe, which is the same as the base metal, is contained in the plating film component, it is not possible to measure the plating film thickness and composition by the conventional fluorescent X-ray analysis method. It was said to be impossible.

そこで、従来より、下地からの螢光X線が実質的に検出
されない小さな見込角(入射角)および取出角で螢光X
線の強度を測定するとともに、下地からの螢光X線が検
出される大きな見込角および取出角で螢光X線の強度を
測定することにより、メッキ被膜の厚みと組成の分析を
可能にした分析方法が知られている(特開昭58−22
3047号公報参照)。
Therefore, conventionally, fluorescence X-rays from the base are not substantially detected, and fluorescence X-rays are obtained at a small viewing angle (incident angle) and extraction angle.
It is possible to analyze the thickness and composition of the plating film by measuring the intensity of the X-ray and the intensity of the fluorescent X-ray at a large viewing angle and extraction angle at which the fluorescent X-ray from the substrate is detected. An analysis method is known (Japanese Patent Laid-Open No. 58-22 / 1983).
(See Japanese Patent No. 3047).

しかし、この先行技術では、見込角および取出角が、た
とえば5°程度の小さな角度になるので、十分なX線強
度を得るには入射させるビームを細くしなければならな
いなど、周知のように、装置の構造が複雑になるなどの
問題を生じる。
However, in this prior art, since the prospect angle and the take-off angle are small angles of, for example, about 5 °, it is well known that the incident beam must be thin to obtain sufficient X-ray intensity. This causes problems such as a complicated structure of the device.

また、メッキ金属板を分析する場合にはオンライン測定
を行うことがある。つまり、メッキ金属板の生産ライン
に分析装置を設置し、連続的に移動するメッキ金属板に
ビームを照射し、測定を行うことがある。この場合、金
属板にバタツキが生じるのであるが、見込角および取出
角が小さいと、上記バタツキにより、若干角度が変化す
ることで、試料中を通過する光路差が大きく変化する。
そのため、分析精度が著しく低下する。
In addition, online analysis may be performed when a plated metal plate is analyzed. That is, an analyzer may be installed on a plated metal plate production line, and a continuously moving plated metal plate may be irradiated with a beam for measurement. In this case, flapping occurs on the metal plate. However, if the projected angle and the take-out angle are small, the flapping causes a slight change in the angle, resulting in a large change in the optical path difference passing through the sample.
Therefore, the analysis accuracy is significantly reduced.

また、オンライン測定でない場合にも、試料の表面粗さ
や反りや波うちにより、入射角および取出角が若干変化
することで、同様な問題が生じる。
Even in the case of non-online measurement, the incident angle and the take-out angle slightly change due to the surface roughness, warpage, and waviness of the sample, which causes the same problem.

一方、シリコンウエハに積層する被膜は、多層膜からな
り、かつ、各層が1500Å〜3000Å程度の極めて薄い場合
があるので、下地や下層の被膜から螢光X線が検出され
ないようにするには、見込角または取出角が極めて小さ
く(0.1°程度)なる。そのため、シリコンウエハの僅
かな厚みの変化等により、やはり、分析精度が低下す
る。
On the other hand, the film to be laminated on the silicon wafer is composed of a multilayer film, and each layer may be extremely thin, about 1500 Å to 3000 Å, so in order to prevent the fluorescent X-rays from being detected from the underlying or lower layer film, The projected or extracted angle is extremely small (about 0.1 °). Therefore, due to a slight change in the thickness of the silicon wafer and the like, the accuracy of analysis also deteriorates.

そこで、メッキ被膜に含まれる金属のL系列の螢光X線
の強度に基づき組成を定量し、一方、上記金属のK系列
の螢光X線の強度および上記L系列の螢光X線の強度に
基づき膜厚を定量する螢光X線分析法が提案されている
(特願昭59−60357号(特開昭60−20233
9号))。この先行技術は、上記L系列の螢光X線の波
長が長く、そのため、L系列の螢光X線がメッキ被膜で
吸収されることから、L系列の螢光X線の強度からメッ
キ被膜の組成が一義的に定まることに着目したものであ
る。つまり、L系列の螢光X線は、下地からの螢光X線
が実質的に検出されないので、通常の厚みのメッキ被膜
では、L系列の螢光X線の強度から、メッキ被膜の組成
を求めることができる。
Therefore, the composition is quantified based on the intensity of the L-series fluorescent X-rays of the metal contained in the plating film, while the intensity of the K-series fluorescent X-rays of the metal and the intensity of the L-series fluorescent X-rays are determined. Based on this, a fluorescent X-ray analysis method for quantifying the film thickness has been proposed (Japanese Patent Application No. 59-60357 (Japanese Patent Application Laid-Open No. 60-20233).
No. 9))). In this prior art, the wavelength of the above-mentioned L-series fluorescent X-rays is long, and therefore the L-series fluorescent X-rays are absorbed by the plating film. It focuses on the fact that the composition is uniquely determined. In other words, the fluorescent X-rays of the L series do not substantially detect the fluorescent X-rays from the base. Therefore, in the case of a plating film of ordinary thickness, the composition of the plating film is determined from the intensity of the L-series fluorescent X-rays. You can ask.

しかし、このように下地からの螢光X線が実質的に検出
されないようにしたのでは、被膜が多数層設けられてい
る場合の、上層の被膜についての分析しか行えず、上か
ら2層目およびこれよりも下層の被膜については分析を
行うことができない。
However, if the fluorescent X-rays from the base are not substantially detected in this way, only the analysis of the upper layer film can be performed when a large number of layers are provided, and the second layer from the top can be analyzed. Also, no analysis can be performed on the lower layer coating.

特に、複数層の被膜を有するメッキ鋼板では、上層の被
膜が極めて薄い場合が多く(たとえば1μm程度)、し
たがって、下地1(第2層目)から螢光X線が実質的に
検出されないようにしたのでは、L系列の螢光X線を用
いても入射角および取出角が著しく小さく(1°程度)
なり、前述のように、種々の不都合が生じる。
In particular, in a plated steel sheet having a plurality of layers of coating, the coating of the upper layer is often extremely thin (for example, about 1 μm), so that fluorescent X-rays are not substantially detected from the base 1 (second layer). As a result, the incident and extraction angles are extremely small (about 1 °) even with the use of L-series fluorescent X-rays.
As described above, various inconveniences occur.

この発明は、上記従来の問題に鑑みてなされたもので、
複数層の被膜および下地に同一の元素が含まれている被
膜の厚みと組成の同時分析法を可能にするとともに、見
込角(入射角)および取出角を実用上問題とならない程
度の角度範囲に設定して、装置の構造が複雑にならず、
しかも、分析精度を向上させることを目的とする。
This invention has been made in view of the above conventional problems,
Enables simultaneous analysis of the thickness and composition of multiple layers of coatings and coatings that contain the same element in the underlying layer, and makes the projection angle (incident angle) and extraction angle within an angle range that does not pose a practical problem. By setting, the structure of the device does not become complicated,
Moreover, the purpose is to improve the analysis accuracy.

上記目的を達成するために、この発明方法は、まず、下
地、第1層の被膜および第2層の被膜に同一の第1の元
素が含まれ、かつ、第1層および第2層の被膜に同一の
第2の元素が含まれている試料の螢光X線分析におい
て、上記第1および第2の元素について螢光X線の強度
を、エネルギ、取出角または見込角の少なくとも1つを
互いに相違させて4種類測定し、螢光X線の発生原理に
基づく理論X線強度算出式を、上記4種類の測定強度に
かかる螢光X線が少なくとも第1層および第2層の被膜
から発生するとして設定し、上記測定した螢光X線の強
度と、上記理論X線強度算出式とを用いて逐次近似法に
より未知の厚みと組成を求める。
In order to achieve the above object, in the method of the present invention, first, the same first element is contained in the base, the first layer coating and the second layer coating, and the first layer and second layer coatings are contained. In a fluorescent X-ray analysis of a sample containing the same second element in, the intensity of the fluorescent X-ray for the first and second elements is determined by at least one of energy, extraction angle or prospect angle. Four types of measurements are performed in different manners, and the theoretical X-ray intensity calculation formula based on the principle of generation of fluorescent X-rays is calculated from the coating of at least the first and second layers of the fluorescent X-rays related to the above four types of measurement intensities. The unknown thickness and composition are determined by the successive approximation method using the intensity of the fluorescent X-rays measured above and the theoretical X-ray intensity calculation formula.

この発明方法によれば、螢光X線が少なくとも両被膜か
ら発生するとして理論X線強度算出式を設定しているか
ら、第2層から螢光X線が発生してもよいので、見込角
および取出角を実用上問題とならない程度に大きくする
ことができる。したがって、装置の構造が簡単になると
ともに、試料の表面のレベルが変化して、見込角および
取出角が多少変化しても、光路差が差程大きく変化しな
いので、周知のように分析精度が向上する。
According to the method of the present invention, since the theoretical X-ray intensity calculation formula is set such that the fluorescent X-rays are generated from at least both films, the fluorescent X-rays may be generated from the second layer. And the take-off angle can be increased to such an extent that it does not pose a problem in practice. Therefore, the structure of the device is simplified and the optical path difference does not change so much even when the level of the surface of the sample changes and the viewing angle and the take-out angle change slightly. improves.

また、上記のように、螢光X線が両被膜から発生すると
しているので、複数層の被膜を有していても、これらの
組成と膜厚を測定することができる。
Further, as described above, since the fluorescent X-rays are generated from both coatings, the composition and the film thickness of these coatings can be measured even if the coating has a plurality of layers.

一例をあげると鋼板上に大量の亜鉛と小量の鉄よりなる
下層鍍金並びに大量の鉄と小量の亜鉛よりなる上層鍍金
を施した試料においては、 上層鍍金附着量……t1(1〜10g/m2) 上層鍍金中鉄の量……W1Fe(50〜100wt%) 同 亜鉛の量…W1Zn(0〜50wt%) 下層鍍金附着層……t2(10〜50g/m2) 下層鍍金中鉄の量……W2Fe(10〜30wt%) 同 亜鉛の量…W2Zn(70〜90wt%) の6種の未知量を求めることになる。このように試料を
構成する元素が鉄と亜鉛の2種類であつて、未知量が上
記6種であるために、従来は検量法による定量分析が不
可能であつた。しかし測定される螢光X線の強度Iiは、
その測定に利用するX線iによつて定まる質量吸収係数
のような物理定数をu、入射X線の見込角および螢光X
線の取出角等測定条件によつて定まる定数をVとする
と、 Ii=f(t1,t2,W1Fe,W2Fe,W1Zn,W2Zn,u,V)・・・(1) で表わすことができる。更にこのような2層鍍金試料に
おいては、 W1Fe+W1Zn=1.0……(2) W2Fe+W2Zn=1.0……(3) が成立するから、未知量はt1,t2,W1Fe,W2Feだけであつ
て、4種類の独立な測定線を用いることによつて各被膜
の厚みと組成との分析を行うことができる。例えばZn
−Kα,Zn−Kβ,Fe−Kα,Fe−Kβ,Zn−
Lα,Fe−Lα等測定に利用する螢光X線によつて質
量吸収係数のような物理量が相違して、その発生に寄与
する未知量の相関が異なるため、前記(1)式のuが相違
することになる。また1次X線の入射角すなわち見込角
ψあるいは取出角ψ等を相違させるときは、検出さ
れる螢光X線の強度と前記未知量との関係が相違して
(1)式におけるVが異なることになる。
As an example, in a sample in which a lower layer plating consisting of a large amount of zinc and a small amount of iron and an upper layer plating consisting of a large amount of iron and a small amount of zinc were applied on a steel plate, the upper layer plating amount ...... t 1 (1 10g / m 2 ) Amount of iron in the upper plating …… W 1Fe (50 to 100wt%) Amount of the same zinc ・ ・ W 1Zn (0 to 50wt%) Lower plating attachment layer …… t 2 (10 to 50g / m 2 ) It will be determined an unknown amount of six of the amount of the underlying plating in the iron ...... W 2Fe (10~30wt%) the amount of the zinc ... W 2Zn (70~90wt%). As described above, since the elements constituting the sample are two kinds of iron and zinc and the unknown amounts are the above-mentioned six kinds, quantitative analysis by the calibration method has heretofore been impossible. However, the measured fluorescent X-ray intensity I i is
The physical constant such as the mass absorption coefficient determined by the X-ray i used for the measurement is u, the expected angle of the incident X-ray and the fluorescence X.
Let V be a constant determined by the measurement conditions such as the take-out angle of the line, I i = f (t 1 , t 2 , W 1Fe , W 2Fe , W 1Zn , W 2Zn , u, V) (1) Can be expressed as Furthermore, in such a two-layer plated sample, W 1Fe + W 1Zn = 1.0 ...... (2) W 2Fe + W 2Zn = 1.0 ...... (3) holds, so the unknown quantities are t 1 , t 2 , W 1Fe , With W 2 Fe only, the thickness and composition of each coating can be analyzed by using four independent measurement lines. For example, Zn
-Kα, Zn-Kβ, Fe-Kα, Fe-Kβ, Zn-
Since the physical quantity such as the mass absorption coefficient is different depending on the fluorescent X-rays used for the measurement of Lα, Fe-Lα, etc., and the correlation of the unknown quantity contributing to the generation is different, u in the formula (1) is It will be different. Further, when the incident angle of the primary X-rays, that is, the expected angle ψ 1 or the extraction angle ψ 2 is changed, the relationship between the detected fluorescence X-ray intensity and the unknown amount is different.
V in the formula (1) is different.

従つて測定に利用する螢光X線によつて定まる物理定数
をu1,u2,u3,u4、また見込角等の測定条件によつて定ま
る装置の定数をV1,V2,V3,V4とすると、それぞれの場合
において検出される螢光X線の強度I1,I2,I3,I4は I1=f(t1,t2,W1Fe,W2Fe,W1Zn,W2Zn,u1,V1)・・・(4) I2=f(t1,t2,W1Fe,W2Fe,W1Zn,W2Zn,u2,V2)・・・(5) I3=f(t1,t2,W1Fe,W2Fe,W1Zn,W2Zn,u3,V3)・・・(6) I4=f(t1,t2,W1Fe,W2Fe,W1Zn,W2Zn,u4,V4)・・・(7) で表わされて、上記(2)〜(7)の6式から前述のような2
層鍍金層の各々の厚みと組成とを求めることができる。
しかしこの6式の連立方程式は一般に解析的に解を得る
ことが出来ないから、通常は逐次近似計算法によつて所
望の未知量を求めるものであるが、電子計算機を測定装
置の一部として組込むことにより短時間で測定値を算出
することができる。
Therefore, the physical constants determined by the fluorescent X-rays used for measurement are u 1 , u 2 , u 3 , u 4 , and the device constants determined by the measurement conditions such as the prospect angle are V 1 , V 2 , If V 3 and V 4 are given, the intensity of the fluorescent X-ray detected in each case I 1 , I 2 , I 3 , I 4 is I 1 = f (t 1 , t 2 , W 1Fe , W 2Fe , W 1Zn , W 2Zn , u 1 , V 1 ) ・ ・ ・ (4) I 2 = f (t 1 , t 2 , W 1Fe , W 2Fe , W 1Zn , W 2Zn , u 2 , V 2 ) ・ ・ ・(5) I 3 = f (t 1 , t 2 , W 1Fe , W 2Fe , W 1Zn , W 2Zn , u 3 , V 3 ) ・ ・ ・ (6) I 4 = f (t 1 , t 2 , W 1Fe , W 2Fe , W 1Zn , W 2Zn , u 4 , V 4 ) ... (7), and from the above 6 formulas (2) to (7), 2
The thickness and composition of each of the layer-plated layers can be determined.
However, since the simultaneous equations of these six equations cannot generally obtain an analytical solution, the desired unknown quantity is usually obtained by the successive approximation calculation method. However, an electronic computer is used as a part of the measuring device. By incorporating it, the measured value can be calculated in a short time.

つぎに本発明の実施例を説明する。第1図のように下地
金属板の表面に組成の異なる第1および第2の2種の鍍
金層を設けた試料1に照射する1次X線の見込角ψ、お
よび検出する螢光X線の種類並びに取出角を第1表の
ように設定して、その各螢光X線の強度を同時に測定す
る。第1図は この測定装置の構成図で、試料1にX線を照射する線源
2をその見込角が20°となるように対設すると共に螢光
X線の取出角がそれぞれ30°,80°,20°および80°と
なるようにX線検出器3〜6を対設してある。その各検
出器の出力をそれぞれ増幅器7〜10を介して波高分析器
11〜14に加え、第1表に示したような検出X線の波高分
析を行つて、計数器15〜18でその強度を測定する。この
4個の計数器の出力を演算器19に加えて、前述のように
逐次演算を行つた結果が表示器20で表示される。
Next, examples of the present invention will be described. As shown in FIG. 1, the prospective angle ψ of the primary X-ray radiated to the sample 1 having the first and second plating layers having different compositions provided on the surface of the underlying metal plate, and the fluorescent X-ray to be detected The type and the extraction angle are set as shown in Table 1, and the intensities of the respective fluorescent X-rays are simultaneously measured. Figure 1 In the configuration diagram of this measuring device, the source 1 for irradiating the sample 1 with X-rays is installed so as to have an expected angle of 20 °, and the extraction angles of the fluorescent X-rays are 30 °, 80 °, and 20 °, respectively. The X-ray detectors 3 to 6 are provided so as to be at 80 ° and 80 °. The output of each detector is passed through amplifiers 7 to 10 to a pulse height analyzer.
In addition to 11-14, the wave height analysis of the detected X-ray as shown in Table 1 is performed, and the intensity is measured by the counters 15-18. The outputs of the four counters are added to the arithmetic unit 19, and the result of the sequential calculation as described above is displayed on the display unit 20.

また他の実施例としては第2図に矢印で示したように見
込角ψおよび取出角を可変とした線源2および1つの
螢光X線検出器21を試料1に対設してある。その検出器
21の出力を増幅器22で増幅して波高分析器23、計数器2
4、演算器25および表示器20に順次加えるようにしたも
ので、このような装置においては見込角および取出角を
変化させることによつて、前記第1式のVが変化するこ
とになる。
As another embodiment, as shown by the arrow in FIG. 2, the source 2 and one fluorescent X-ray detector 21 having variable angles of view φ and extraction are provided opposite to the sample 1. Its detector
The output of 21 is amplified by the amplifier 22, and the pulse height analyzer 23 and the counter 2
4, the arithmetic unit 25 and the display unit 20 are sequentially added, and in such a device, V of the first formula is changed by changing the projected angle and the take-out angle.

次に第1図、第2図における演算器19あるいは25による
逐次近似演算について説明する。まず測定された螢光X
線強度を理論強度スケールに変換すると共に装置の要素
を規格化して測定強度Xiが理論強度と同一スケールで表
わされような処理を施し、その規格化した強度をYiとす
る。なおこのためには純鉄あるいは純鉛の板における螢
光X線の強度に対する比を用いると共に標準試料の螢光
X線強度と理論X線強度との相関により回帰する等の方
法を別用する。
Next, the successive approximation calculation by the calculator 19 or 25 in FIGS. 1 and 2 will be described. First measured fluorescence X
The line strength is converted into a theoretical strength scale, and the elements of the apparatus are standardized to perform processing such that the measured strength X i is represented on the same scale as the theoretical strength, and the standardized strength is defined as Y i . For this purpose, the ratio of the intensity of the fluorescent X-rays on the plate of pure iron or pure lead to the intensity of the fluorescent X-rays and the method of regressing by the correlation between the fluorescent X-ray intensity of the standard sample and the theoretical X-ray intensity are used. .

また未知量についてはその初期値▲t(o) 1▼,▲t(o) 2
▼,▲W(o) 1Fe▼,▲W(o) 2Fe▼等を設定して、未知量
から理論X線強度を算出することにより、以下第n回目
の逐次近似値▲t(n) 1▼,▲t(n) 2▼,▲W(n) 1Fe▼,
▲W(n) 2Fe▼を得る。更に前述のような4種の測定線に
対して規格化された測定量Y1,Y2,Y3,Y4但し、▲In 1▼,▲In 2▼・・・・はn次近似値による
理論X線強度 で与えられるが、この連立方程式をΔt1,Δt2,Δ
W1Fe,ΔW2Feについて解くと、その近似は ▲t(n+1) 1▼=▲t(n) 1▼+Δt1・・・(12) ▲t(n+1) 2▼=▲t(n) 2▼+Δt2・・・(13) ▲W(n+1) 1Fe▼=▲W(n) 1Fe▼+ΔW1Fe・・・(14) ▲W(n+1) 2Fe▼=▲W(n) 2Fe▼+ΔW2Fe・・・(15) となるから、第n次近似値の各未知量と(n+1)次近似値
の未知量とを比較して収束条件の判断を行い、逐次近似
を更に継続する場合は前記(8)〜(11)式の計算から繰返
す。
For unknown quantities, their initial values ▲ t (o) 1 ▼, ▲ t (o) 2
By setting ▼, ▲ W (o) 1Fe ▼, ▲ W (o) 2Fe ▼, etc. and calculating the theoretical X-ray intensity from the unknown quantity, the nth successive approximation value ▲ t (n) 1 ▼, ▲ t (n) 2 ▼, ▲ W (n) 1Fe ▼,
Obtain ▲ W (n) 2 Fe ▼. Furthermore, the measured quantities Y 1 , Y 2 , Y 3 , Y 4 standardized for the four types of measurement lines described above are However, ▲ I n 1 ▼, ▲ I n 2 ▼ ... Are given by the theoretical X-ray intensity based on the n-th order approximation value, and this simultaneous equation is expressed by Δt 1 , Δt 2 , Δ.
Solving for W 1Fe and ΔW 2Fe , the approximation is ▲ t (n + 1) 1 ▼ = ▲ t (n) 1 ▼ + Δt 1・ ・ ・ (12) ▲ t (n + 1) 2 ▼ = ▲ t ( n) 2 ▼ + Δt 2・ ・ ・ (13) ▲ W (n + 1) 1Fe ▼ = ▲ W (n) 1Fe ▼ + ΔW 1Fe・ ・ ・ (14) ▲ W (n + 1) 2Fe ▼ = ▲ W ( n) 2Fe ▼ + ΔW 2Fe (15) Therefore , each unknown quantity of the nth approximation value and the unknown quantity of the (n + 1) th approximation value are compared to judge the convergence condition, and successively. When the approximation is further continued, the calculation is repeated from the equations (8) to (11).

なお第3図のように下地26の上に第1層27および第2層
28の被膜が形成された試料に強度IのX線を見込角ψ
βで入射させて、各層から何れもψの取出角をもつて
螢光X線を検出する場合において、実際に測定される螢
光X線の強度をI1,I2,I3とすると、付着量t1で鉄の含有
量がW1Feの第1層27、付着量がt2で鉄の含有量がW2Fe
第2層28、および付着量を無限大とみなすことのできる
下地26からの理論上の螢光X線強度I1′,I2′,I3′は 但し▲μp 1▼,▲μp 2▼,▲μp 3▼は入射X線に対する
各層の総質量吸収係数 ▲μ ▼,▲μ ▼,▲μ ▼は測定X線に対す
る各層の総質量吸収係数 μ/ρは入射X線に対する分析元素の質量吸収係数 ▲μj i▼はi物質のjX線に対する質量吸収係数 である。
As shown in FIG. 3, the first layer 27 and the second layer are formed on the base 26.
The X-ray with intensity I 0 was applied to the sample on which 28 coatings were formed.
When the fluorescence X-rays are detected with an extraction angle of ψ i from each layer with β incident, let the intensity of the actually measured fluorescence X-rays be I 1 , I 2 , and I 3. , A first layer 27 with a deposit of t 1 and an iron content of W 1Fe, a second layer 28 with a deposit of t 2 and an iron content of W 2Fe , and a substrate for which the deposit can be regarded as infinite The theoretical fluorescent X-ray intensities I 1 ′, I 2 ′ and I 3 ′ from 26 are However, ▲ μ p 1 ▼, ▲ μ p 2 ▼, and ▲ μ p 3 ▼ are the total mass absorption coefficients of each layer for incident X-rays ▲ μ s 1 ▼, ▲ μ s 2 ▼, and ▲ μ s 3 ▼ are measurement X-rays. mass absorption coefficient total mass absorption coefficient mu / [rho of each mass absorption coefficient of the analysis element to the incident X-ray ▲ mu j i ▼ is for jX line i substance to Is.

つぎに鋼板上に亜鉛と鉄とからなる2層の鍍金層を設け
た試料について、1次X線の見込角を20°螢光X線Zn
−Lαの取出角を30°、Zn−Kαの取出角を80°およ
び20°、Fe−Kαの取出角を80°として上述のような
本発明の方法で測定を行つた結果では、その正確度とし
て下表の結果を得ることができた。な dは、X線分析値をX.A,化学分析値をC.Aとするとき で定義される値である。
Next, regarding the sample in which two plating layers made of zinc and iron were provided on the steel plate, the expected angle of the primary X-ray was 20 ° and the fluorescent X-ray Zn
When the extraction angle of -Lα is 30 °, the extraction angles of Zn-Kα are 80 ° and 20 °, and the extraction angle of Fe-Kα is 80 °, the measurement is performed by the method of the present invention as described above. As a result, the results shown in the table below were obtained. Na Oh d is when the X-ray analysis value is XA and the chemical analysis value is CA It is a value defined by.

【図面の簡単な説明】[Brief description of drawings]

第1図および第2図はそれぞれ本発明の方法を実施する
場合の装置の構成を示した図、第3図は本発明の原理を
説明するための略線図である。なお図において1は試
料、2〜6はX線検出器、7〜10は増幅器、11〜14は波
高分析器、15〜18は計数器、19は演算器、20は表示器、
21はX線検出器、22は増幅器、23は波高分析器、24は計
数器、25は演算器である。
1 and 2 are diagrams showing the construction of an apparatus for carrying out the method of the present invention, and FIG. 3 is a schematic diagram for explaining the principle of the present invention. In the figure, 1 is a sample, 2 to 6 are X-ray detectors, 7 to 10 are amplifiers, 11 to 14 are wave height analyzers, 15 to 18 are counters, 19 is a calculator, 20 is a display,
21 is an X-ray detector, 22 is an amplifier, 23 is a wave height analyzer, 24 is a counter, and 25 is a calculator.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】下地、第1層の被膜および第2層の被膜に
同一の第1の元素が含まれ、かつ、第1層および第2層
の被膜に同一の第2の元素が含まれ、第1層および第2
層の被膜のそれぞれは、第1および第2の元素からなっ
ている試料の螢光X線分析において、 上記第1および第2の元素について螢光X線の強度を、
試料への入射X線のエネルギ、取出角φまたは見込角ψ
の少なくとも1つを互いに相違させて4種類測定し、 螢光X線の発生原理に基づく下記理論X線強度算出式
を、上記4種類の測定強度にかかる螢光X線が少なくと
も第1層および第2層の被膜から発生するとして設定
し、 上記測定した螢光X線の強度と、上記理論X線強度算出
式とを用いて逐次近似法により未知の厚みと組成を求め
る被膜の厚みと組成の同時分析法。 理論X線強度算出式:第1層の被膜、第2層の被膜およ
び下地からの理論X線強度の和をI′としたとき、 ただし、下添字1,2,3はそれぞれ、第1層の被膜、
第2層の被膜および下地のそれぞれを表す。 ▲μP 1▼、▲μP 2▼、▲μP 3▼は入射X線に対する各層
の総質量吸収係数 ▲μS 1▼、▲μS 2▼、▲μS 3▼は測定X線に対する各層
の総質量吸収係数 μ/ρは入射X線に対する分析元素の質量吸収係数 ψはX線の見込み角 φはX線の取出し角 t1、t2は第1層、第2層の付着量(厚さ) W1a、W2aは第1層、第2層における第1の元素の含有率
をそれぞれ表す。
1. An underlayer, a first layer coating and a second layer coating contain the same first element, and a first layer and a second layer coating contain the same second element. , First layer and second
Each of the coatings of the layers, in the fluorescent X-ray analysis of the sample consisting of the first and second elements, shows the intensity of the fluorescent X-rays for the first and second elements,
Energy of incident X-ray to sample, extraction angle φ or projected angle ψ
At least one of which is different from each other, and four types are measured, and the following theoretical X-ray intensity calculation formula based on the principle of generation of fluorescent X-rays is used. The thickness and composition of the coating, which is set to be generated from the coating of the second layer, is used to obtain an unknown thickness and composition by the successive approximation method using the measured fluorescent X-ray intensity and the theoretical X-ray intensity calculation formula. Simultaneous analysis method. Theoretical X-ray intensity calculation formula: When the sum of theoretical X-ray intensities from the first layer coating, the second layer coating and the ground is I ', However, the subscripts 1, 2 and 3 are the first layer coating,
Each of the second layer coating and the base is shown. ▲ μ P 1 ▼, ▲ μ P 2 ▼, ▲ μ P 3 ▼ are the total mass absorption coefficients of each layer for incident X-rays ▲ μ S 1 ▼, ▲ μ S 2 ▼, ▲ μ S 3 ▼ are for the measured X-rays The total mass absorption coefficient μ / ρ of each layer is the mass absorption coefficient of the analytical element for incident X-rays ψ i is the X-ray angle of view φ i is the X-ray extraction angle t 1 , t 2 of the first layer and the second layer The adhered amounts (thicknesses) W 1a and W 2a represent the contents of the first element in the first layer and the second layer, respectively.
JP59091886A 1984-05-10 1984-05-10 Simultaneous analysis of coating thickness and composition Expired - Lifetime JPH0660879B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59091886A JPH0660879B2 (en) 1984-05-10 1984-05-10 Simultaneous analysis of coating thickness and composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59091886A JPH0660879B2 (en) 1984-05-10 1984-05-10 Simultaneous analysis of coating thickness and composition

Publications (2)

Publication Number Publication Date
JPS60236052A JPS60236052A (en) 1985-11-22
JPH0660879B2 true JPH0660879B2 (en) 1994-08-10

Family

ID=14039041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59091886A Expired - Lifetime JPH0660879B2 (en) 1984-05-10 1984-05-10 Simultaneous analysis of coating thickness and composition

Country Status (1)

Country Link
JP (1) JPH0660879B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6188129A (en) * 1984-10-05 1986-05-06 Kawasaki Steel Corp Method for measuring film thickness and composition of alloy coat
JPH0668473B2 (en) * 1985-03-15 1994-08-31 住友金属工業株式会社 Method and apparatus for fluorescent X-ray analysis of laminated body
GB8725741D0 (en) * 1987-11-03 1987-12-09 Secretary Trade Ind Brit Control of pyrometallurgical processes
US4959848A (en) * 1987-12-16 1990-09-25 Axic Inc. Apparatus for the measurement of the thickness and concentration of elements in thin films by means of X-ray analysis
JP3820049B2 (en) * 1998-07-16 2006-09-13 パナリティカル ビー ヴィ Method and apparatus for fluorescent X-ray analysis of thin film
JP3706989B2 (en) * 1999-04-07 2005-10-19 富士通株式会社 Method for measuring film thickness using fluorescent X-ray
EP1076222A1 (en) * 1999-08-10 2001-02-14 Corus Aluminium Walzprodukte GmbH X-ray fluorescence measurement of aluminium sheet thickness
ES2247933B1 (en) * 2004-07-15 2007-05-16 Asociacion De Investigacion De Las Industrias Ceramicas A.I.C.E. METHOD AND NON-DESTRUCTIVE DEVICE FOR THE MEASUREMENT OF DENSITY IN CERAMIC TILES.
JP4520360B2 (en) * 2005-05-13 2010-08-04 日東精工株式会社 Program for calculating impurity concentration in plating film
JP4262734B2 (en) * 2005-09-14 2009-05-13 株式会社リガク X-ray fluorescence analyzer and method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5429843A (en) * 1977-08-10 1979-03-06 Nippon Steel Corp Controlling method for composition and thickness of plated multicomponent alloy films
JPS5636045A (en) * 1979-08-31 1981-04-09 Sumitomo Metal Ind Ltd Quantity determination method for sticking quantity of plating metal and quantity of component in ni-zn alloy-plated steel plate
JPS58223047A (en) * 1982-06-18 1983-12-24 Sumitomo Metal Ind Ltd Method for x ray fluorescence analysis
JPS60202339A (en) * 1984-03-27 1985-10-12 Sumitomo Metal Ind Ltd X-ray fluorescence analysis method

Also Published As

Publication number Publication date
JPS60236052A (en) 1985-11-22

Similar Documents

Publication Publication Date Title
KR900008955B1 (en) Method of measuring layer theckness and composition of alloy plating
JP4262734B2 (en) X-ray fluorescence analyzer and method
JPH0660879B2 (en) Simultaneous analysis of coating thickness and composition
JPH03505251A (en) Methods for measuring thickness and composition of films on substrates
EP0348574B1 (en) Method of simultaneously measuring thickness and composition of film and apparatus therefor
US5579362A (en) Method of and apparatus for the quantitative measurement of paint coating
JPH0541940B2 (en)
JPH0619268B2 (en) Method for measuring thickness of coating film on metal
JP4302852B2 (en) Method for measuring surface oxide of metal material and X-ray diffractometer
JPH0576574B2 (en)
KR100489298B1 (en) Method of measuring alloying degree for galvannealed steels by XRD
JPS61210932A (en) Method and instrument for fluorescent x-ray analysis of laminated body
JPH056139B2 (en)
JPS6188128A (en) Method for measuring film thickness and composition of alloy coat
JPH06222019A (en) Nondestructive quantitative analysis of multilayer thin film
JPS6367121B2 (en)
JP2563016B2 (en) Fluorescent X-ray analysis method and apparatus using effective wavelength
JPH07260715A (en) Method and apparatus for measuring thickness of alloy plating phase
JP2571482B2 (en) Method and apparatus for measuring adhesion amount of multilayer coating film
JPH04355313A (en) Method for measuring thickness of paint film on metal
JPH04131751A (en) Fluorescent x-ray analytical method
JPS6325540A (en) Fluorescence x-ray analyzer for metallic film
JP2003014669A (en) On-line measurement by method for x-ray fluorescence analyzing surface treating film adhering amount on zinc- plated steel sheet
JPH0726921B2 (en) Instrumental analysis method for surface coating of metal plate
JPH02107952A (en) X-ray diffraction measurement for powder