JP2002098657A - Measurement method and device of amount of adhesion of metal phase contained in plated layer - Google Patents

Measurement method and device of amount of adhesion of metal phase contained in plated layer

Info

Publication number
JP2002098657A
JP2002098657A JP2000288228A JP2000288228A JP2002098657A JP 2002098657 A JP2002098657 A JP 2002098657A JP 2000288228 A JP2000288228 A JP 2000288228A JP 2000288228 A JP2000288228 A JP 2000288228A JP 2002098657 A JP2002098657 A JP 2002098657A
Authority
JP
Japan
Prior art keywords
ray
amount
phase
metal phase
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000288228A
Other languages
Japanese (ja)
Inventor
Toru Fujimura
亨 藤村
Akira Yamamoto
山本  公
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP2000288228A priority Critical patent/JP2002098657A/en
Priority to CA002390236A priority patent/CA2390236A1/en
Priority to CN01802854A priority patent/CN1392956A/en
Priority to PCT/JP2001/008093 priority patent/WO2002025257A1/en
Priority to KR1020027006225A priority patent/KR20020060741A/en
Priority to EP01970121A priority patent/EP1233265A4/en
Priority to US10/130,711 priority patent/US6821361B2/en
Priority to TW090123387A priority patent/TW500922B/en
Publication of JP2002098657A publication Critical patent/JP2002098657A/en
Pending legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the measurement accuracy of the amount of adhesion of a metallic phase by improving X-ray diffraction intensity from the metallic phase contained in a plated layer in a method for measuring the amount of adhesion of the metallic phase contained in the plated layer using the X-ray diffraction method. SOLUTION: The X-ray intensity data are improved by measuring diffraction X rays from the metallic phase contained in the plated layer at a plurality of positions to the same Debey ring and integrating the obtained diffraction X-ray intensity data.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、金属めっき層に含
まれる金属相、特には2以上の合金相中の所望の1以上
の金属相の付着量を、X線回折手法により、連続的、か
つ正確に測定する非破壊的測定方法に関する。
BACKGROUND OF THE INVENTION The present invention relates to a method for measuring the amount of a metal phase contained in a metal plating layer, in particular, a desired one or more metal phases in two or more alloy phases, by an X-ray diffraction technique. The present invention relates to a non-destructive measuring method for accurately and accurately measuring.

【0002】[0002]

【従来の技術】複数の金属相、特に合金相を含むめっき
の品質特性(加工時の耐剥離性、耐食性等)はめっき層
中の各金属相の付着量に依存して著しく変動する。従っ
て、高品質のめっき製品を製造するためには、めっき層
中の各金属相の付着量を正確に測定し、熱処理条件によ
る合金化処理等の製造条件を管理することが重要であ
る。複数の金属相を含むめっき層を有するめっき製品の
代表例として、めっき層中に複数の異なるFe−Zn合
金相を有する溶融亜鉛めっき鋼板又は合金化溶融亜鉛め
っき鋼板がある。そのうち合金化溶融亜鉛めっき鋼板
は、溶接性、塗装後の耐食性および塗膜密着性等の品質
特性を向上させる目的で、溶融亜鉛めっき後に加熱して
母材である鋼板のFeとめっき層のZnを相互拡散さ
せ、めっき層を積極的に合金化(合金化処理)させたも
のである。なお、合金化を積極的に行わない溶融亜鉛め
っき鋼板においてもFe−Zn合金相は生成し、品質特
性に影響を及ぼす場合がある。
2. Description of the Related Art The quality characteristics (eg, peeling resistance and corrosion resistance during processing) of a plating containing a plurality of metal phases, particularly an alloy phase, fluctuate significantly depending on the amount of each metal phase in the plating layer. Therefore, in order to produce a high quality plated product, it is important to accurately measure the amount of each metal phase in the plating layer and to control production conditions such as alloying treatment by heat treatment conditions. As a typical example of a plated product having a plating layer containing a plurality of metal phases, there is a galvanized steel sheet or an alloyed galvanized steel sheet having a plurality of different Fe—Zn alloy phases in the plating layer. Among them, the alloyed hot-dip galvanized steel sheet is heated after hot-dip galvanizing to improve the quality characteristics such as weldability, corrosion resistance after coating and coating film adhesion, so that the Fe of the base steel sheet and the Zn of the plating layer are heated. Are interdiffused, and the plating layer is positively alloyed (alloyed). In addition, even in a hot-dip galvanized steel sheet in which alloying is not actively performed, an Fe—Zn alloy phase is generated, which may affect quality characteristics.

【0003】合金化溶融亜鉛めっき鋼板のめっき層に含
まれるFe−Zn合金相は、δ1 相(FeZn7 )を主
体としたものとなるが、加熱処理の過不足により鋼板側
にはΓ相(Fe3 Zn10)、めっき表面にはζ相(Fe
Zn13)が少量存在する。合金化溶融亜鉛めっき鋼板の
めっき層におけるδ1 相、Γ相およびζ相の分布の一例
を合金化溶融亜鉛めっき鋼板のめっき層の断面図として
図1に示す。めっき層の品質特性はめっき層中のΓ相お
よびζ相の付着量に依存して著しく変動する。従って、
高品質の合金化溶融亜鉛めっき鋼板を製造するために
は、Γ相およびζ相の付着量を正確に測定し、加熱処理
条件、例えば加熱温度または加熱時間を制御して、常に
これらの相の付着量を適切に管理することが重要であ
る。
[0003] The Fe-Zn alloy phase contained in the plating layer of the alloyed hot-dip galvanized steel sheet is mainly composed of the δ 1 phase (FeZn 7 ), but due to excessive or insufficient heat treatment, the Γ phase is present on the steel sheet side. (Fe 3 Zn 10 ), ζ phase (Fe
Zn 13 ) is present in small amounts. FIG. 1 is a cross-sectional view of a plated layer of an alloyed hot-dip galvanized steel sheet, showing an example of the distribution of δ 1 phase, Γ phase, and ζ phase in the plated layer of the galvannealed steel sheet. The quality characteristics of the plating layer fluctuate significantly depending on the amount of the attached phase I and II in the plating layer. Therefore,
In order to produce high-quality galvannealed steel sheets, it is necessary to accurately measure the amount of adhesion of the ζ phase and 加熱 phase and to control the heat treatment conditions, for example, the heating temperature or heating time, and to constantly control the It is important to properly control the amount of adhesion.

【0004】合金化溶融亜鉛めっき鋼板のめっき層に含
まれる合金相の付着量を比較的精度よく測定することが
可能な方法として、これまでに、例えば特開平9−33
455号公報に開示されている方法がある。この方法
は、母材表面のめっき層側に形成された複数の合金相を
有するめっき金属板にX線を照射し、得られる回折線強
度を用いてめっき層の合金化度を測定するに際し、試験
材の前記各合金相および前記母材の所定の結晶面間隔に
対応する回折X線強度測定値と、同一めっき層構造の基
準材についての前記所定の結晶面間隔に対応する回折X
線の理論強度式とを用い、試験材の合金相の付着量を求
め、合金化度を算出するものである。しかし、このよう
な回折X線を用いた測定法では、蛍光X線を用いた測定
法に比較してバックグランド成分が大きいという問題が
ある。バックグランド成分は主に、他のピークの重畳、
コンプトン散乱X線、蛍光X線であり、これらのうち蛍
光X線は、薄膜フィルターを用いることによりある程度
除去できるが、他のピークの重畳、コンプトン散乱X
線、エネルギーの近接した蛍光X線を完全に除去するこ
とは難しい。そのため回折X線強度が弱く、結果とし
て、測定精度が悪くなるという問題を有している。これ
は上記Γ相およびζ相の測定のように、複数の金属相を
含むめっき層中に微量に含まれる金属相の付着量を測定
する際に特に問題となる。複数の金属相を含むめっき層
に対する回折X線の使用では、上述した他のピークの重
畳が発生しやすく、かつ微量相からの回折X線強度自体
が弱いためである。さらに、めっき鋼板の製造時のめっ
き処理工程のようなオンライン表面処理工程中での測定
または短時間で測定結果をフィードバックすることが必
要とされる場合には、シンチレーションカウンターでの
計測時間を長くし、それにより回折X線のカウント数を
増やすことができないため、上記の問題が顕著となる。
上記特開平9−33445号の発明では、適切な理論強
度式の設定により上記問題に対処しているが、根本的な
問題である回折X線強度が弱い点は何ら解消できていな
い。
[0004] As a method capable of relatively accurately measuring the adhesion amount of an alloy phase contained in a plating layer of an alloyed hot-dip galvanized steel sheet, for example, Japanese Unexamined Patent Publication No. 9-33 discloses a method.
No. 455 discloses a method. In this method, when irradiating a plating metal plate having a plurality of alloy phases formed on the plating layer side of the base material surface with X-rays and measuring the degree of alloying of the plating layer using the obtained diffraction line intensity, A measured diffraction X-ray intensity corresponding to a predetermined crystal plane spacing between the alloy phase and the base material of the test material and a diffraction X-ray intensity corresponding to the predetermined crystal plane spacing for a reference material having the same plating layer structure.
The amount of adhesion of the alloy phase of the test material is determined by using the theoretical strength formula of the line, and the degree of alloying is calculated. However, such a measuring method using diffracted X-rays has a problem that the background component is large as compared with a measuring method using fluorescent X-rays. The background component is mainly the superposition of other peaks,
Compton scattered X-rays and fluorescent X-rays. Of these, fluorescent X-rays can be removed to some extent by using a thin film filter.
It is difficult to completely remove fluorescent X-rays having similar energy. Therefore, there is a problem that the intensity of the diffracted X-ray is weak, and as a result, the measurement accuracy is deteriorated. This is particularly problematic when measuring the amount of adhesion of a trace amount of a metal phase contained in a plating layer containing a plurality of metal phases, as in the measurement of the Γ phase and the ζ phase. This is because the use of diffracted X-rays for a plating layer containing a plurality of metal phases tends to cause the above-mentioned superimposition of other peaks, and the intensity of diffracted X-rays from trace phases is itself weak. In addition, if it is necessary to perform measurement in an online surface treatment process such as a plating process in the production of plated steel sheets or to feed back the measurement results in a short time, increase the measurement time in the scintillation counter. This makes it impossible to increase the number of diffracted X-rays.
In the invention of Japanese Patent Application Laid-Open No. 9-33445, the above problem is dealt with by setting an appropriate theoretical intensity formula, but the fundamental problem of weak diffraction X-ray intensity cannot be solved at all.

【0005】[0005]

【発明が解決しようとする課題】本発明は、前記事情に
鑑み、めっき層に含まれる金属相からの回折X線強度を
高め、それによりめっき層に含まれる金属相の付着量の
測定精度を向上させ、もって、高品質のめっき製品の製
造に寄与することを目的とする。
SUMMARY OF THE INVENTION In view of the above circumstances, the present invention increases the intensity of diffraction X-rays from a metal phase contained in a plating layer, thereby improving the measurement accuracy of the adhesion amount of the metal phase contained in the plating layer. The purpose is to improve and thereby contribute to the manufacture of high quality plated products.

【0006】[0006]

【課題を解決するための手段】上述したように、回折X
線を用いた測定では、バックグランド成分が蛍光X線を
用いた方法に比べて多く、特開平9−33445号公報
に記載されているような各合金相の回折X線によるデバ
イ環上の1点に単独のシンチレーションカウンターを配
置した場合、特に複数の合金相を含むめっき層中に微量
に存在する相を測定する場合には、該位置で測定される
回折X線が必ずしも十分な強度を有することは保証され
ておらず、金属相の付着量の測定精度の向上は望めなか
った。本発明者らは前記課題を解決するため鋭意研究を
行い、同一のデバイ環に対して複数の位置で回折X線を
測定し、これを積算することにより、回折X線強度を高
めることができることを確認した。本発明はこの知見に
基づくものであり、その構成は以下のとおりである。 (1)X線回折法を用いて、めっき層に含まれる金属相
の付着量を測定する方法において、金属相からの回折X
線を、同一のデバイ環に対して複数の位置で測定し、得
られた回折X線強度データを積算することにより、X線
強度データを高めることを特徴とするめっき層に含まれ
る金属相の付着量の測定方法。 (2)前記金属相が合金相である(1)のめっき層に含
まれる金属相の付着量の測定方法。 (3)前記金属相が2以上の相からなる(1)または
(2)のめっき層に含まれる金属相の付着量の測定方
法。 (4)前記2以上の相のうちの1以上の相の付着量を測
定することを特徴とする(3)のめっき層に含まれる金
属相の付着量の測定方法。 (5)前記めっき層が溶融亜鉛めっき層又は合金化溶融
亜鉛めっき層であることを特徴とする(1)ないし
(4)のめっき層に含まれる金属相の付着量の測定方
法。 (6)前記測定を鋼板のオンライン表面処理を行う工程
中に行うことを特徴とする(1)ないし(5)のめっき
層に含まれる金属相の付着量の測定方法。 (7)X線ビームを照射するX線源と、該X線を照射さ
れた物質から生じる回折X線の1または2以上の各デバ
イ環上に複数配置される回折X線を検出するためのX線
検出器と、該X線検出器で得られた強度データを同一デ
バイ環に対して積算する積算計とを有することを特徴と
する測定装置。 (8)溶融亜鉛めっき層又は合金化溶融亜鉛めっき層に
含まれる金属相の付着量を測定することを特徴とする
(7)の測定装置。 (9)(5)ないし(6)の測定方法でめっき層に含ま
れる金属相の付着量を測定し、その結果を用いて合金化
処理条件を制御することを特徴とする溶融亜鉛めっき鋼
板又は合金化溶融亜鉛めっき鋼板の製造方法。
As described above, diffraction X
In the measurement using X-rays, the background component is larger than that in the method using fluorescent X-rays, and one component on the Debye ring by the diffraction X-rays of each alloy phase as described in JP-A-9-33445 is used. When a single scintillation counter is placed at a point, especially when measuring a small amount of a phase present in a plating layer containing a plurality of alloy phases, the diffracted X-ray measured at that position does not necessarily have a sufficient intensity. This was not guaranteed, and improvement in the measurement accuracy of the amount of metal phase attached could not be expected. Means for Solving the Problems The present inventors have conducted intensive research to solve the above-mentioned problem, and can measure the diffraction X-rays at a plurality of positions with respect to the same Debye ring and increase the diffraction X-ray intensity by integrating them. It was confirmed. The present invention is based on this finding, and the configuration is as follows. (1) In the method of measuring the adhesion amount of the metal phase contained in the plating layer using the X-ray diffraction method, the diffraction X
X-ray intensity is measured at a plurality of positions with respect to the same Debye ring, and the obtained diffraction X-ray intensity data is integrated to increase the X-ray intensity data. How to measure the amount of adhesion. (2) The method for measuring the adhesion amount of a metal phase contained in a plating layer according to (1), wherein the metal phase is an alloy phase. (3) The method according to (1) or (2), wherein the metal phase comprises two or more phases. (4) The method for measuring the adhesion amount of a metal phase contained in a plating layer according to (3), wherein the adhesion amount of one or more phases of the two or more phases is measured. (5) The method according to any one of (1) to (4), wherein the plating layer is a hot-dip galvanized layer or an alloyed hot-dip galvanized layer. (6) The method according to any one of (1) to (5), wherein the measurement is performed during a step of performing an on-line surface treatment of the steel sheet. (7) An X-ray source for irradiating an X-ray beam, and a plurality of diffracted X-rays generated from a substance irradiated with the X-ray, for detecting a plurality of diffracted X-rays arranged on each of Debye rings A measuring apparatus comprising: an X-ray detector; and an integrator that integrates intensity data obtained by the X-ray detector for the same Debye ring. (8) The measuring apparatus according to (7), wherein the amount of the metal phase contained in the galvanized layer or the galvannealed layer is measured. (9) A hot-dip galvanized steel sheet or a hot-dip galvanized steel sheet characterized in that the adhesion amount of a metal phase contained in a plating layer is measured by the measurement method of (5) or (6), and the alloying treatment conditions are controlled using the result. Manufacturing method of galvannealed steel sheet.

【0007】[0007]

【発明の実施の形態】以下、図面を参照して本発明を更
に詳細に説明するが、本発明はこれらの例に限定されな
い。本発明のめっき層に含まれる金属相の付着量の測定
方法では、めっき層に含まれる金属相からの回折X線
を、同一のデバイ環に対して複数の位置で測定し、得ら
れた回折X線強度データを積算することにより、X線強
度データを高め、それにより金属相の付着量の測定精度
を向上させることを特徴とする。そのため、本発明の測
定方法では、金属相からの回折X線による同一のデバイ
環に対して複数の位置で回折X線を検出するため、測定
対象となる金属相からの回折X線によるデバイ環上の同
一のデバイ環に対して複数の位置に回折X線を検出する
ためのX線検出器を配置する。図2は、本発明の測定方
法の概念図である。図2において、X線源11からスリ
ット12を介して照射されたX線は、鋼板の表面13に
入射し、めっき層に含まれる金属相(図示していない)
により回折X線を生じる。回折X線は照射X線の入射方
向に対し円錐状に広がるが、円錐の底をなす部分がデバ
イ環20である。本発明では該デバイ環上にX線検出器
16を複数配置し、スリット14を介して回折X線を検
出・測定する。複数あるX線検出器16で得られた回折
X線強度データはデータ積算計23で積算することによ
って高められ、それにより金属相の付着量の測定精度が
向上する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in more detail with reference to the drawings, but the present invention is not limited to these examples. In the method for measuring the adhesion amount of the metal phase contained in the plating layer of the present invention, the diffraction X-rays from the metal phase contained in the plating layer are measured at a plurality of positions with respect to the same Debye ring, and the obtained diffraction It is characterized in that the X-ray intensity data is increased by integrating the X-ray intensity data, thereby improving the measurement accuracy of the adhesion amount of the metal phase. Therefore, in the measuring method of the present invention, since the diffraction X-ray is detected at a plurality of positions with respect to the same Debye ring by the diffraction X-ray from the metal phase, the Debye ring by the diffraction X-ray from the metal phase to be measured is detected. X-ray detectors for detecting diffracted X-rays are arranged at a plurality of positions with respect to the same Debye ring. FIG. 2 is a conceptual diagram of the measuring method of the present invention. In FIG. 2, X-rays emitted from an X-ray source 11 through a slit 12 are incident on a surface 13 of a steel sheet, and a metal phase (not shown) included in a plating layer.
Generates diffracted X-rays. The diffracted X-rays spread in a conical shape with respect to the incident direction of the irradiation X-rays, and the Debye ring 20 forms the bottom of the cone. In the present invention, a plurality of X-ray detectors 16 are arranged on the Debye ring, and diffracted X-rays are detected and measured through the slit 14. The diffracted X-ray intensity data obtained by the plurality of X-ray detectors 16 is increased by integrating the data with the data integrator 23, thereby improving the measurement accuracy of the amount of the adhered metal phase.

【0008】図3はデバイ環上に複数のX線検出器が配
置されている様子を示す部分拡大図である。図3におい
て、20はデバイ環を表し、16は該デバイ環上に配置
されたX線検出器を表す。符号AないしCはX線検出器
が同一のデバイ環上に複数配置されていることを表して
いる。デバイ環上に配置するX線検出器の数および位置
は図3に示すものに限定されず、必要に応じて適宜選択
することができるが、めっき付着量の少ない層を測定す
る場合に、検出に充分な精度が得られる測定強度になる
所定の範囲を選択する。例えば、めっき層に複数の金属
相が含まれ、かつ測定対象とする金属相が非常に微量で
ある場合のように、バックグランド成分が多く、しかも
所望の回折X線の相対強度が顕著に弱い場合は、デバイ
環上に配置するX線検出器の数を適宜増加させればよ
い。なお、めっき層、特に溶融亜鉛めっき鋼板又は合金
化溶融亜鉛めっき鋼板のような合金相は、多結晶であ
り、得られる回折X線強度にデバイ環方向での有意な強
度分布は存在しないため、X線検出器はデバイ環上のい
ずれの位置に配置してもよく、他の構造物の配置等の周
辺状況を考慮に入れて、適宜配置してよい。
FIG. 3 is a partially enlarged view showing a state in which a plurality of X-ray detectors are arranged on the Debye ring. In FIG. 3, reference numeral 20 denotes a Debye ring, and 16 denotes an X-ray detector arranged on the Debye ring. Symbols A to C indicate that a plurality of X-ray detectors are arranged on the same Debye ring. The number and positions of the X-ray detectors arranged on the Debye ring are not limited to those shown in FIG. 3 and can be appropriately selected as needed. Is selected within a range where the measurement intensity is sufficient to obtain sufficient accuracy. For example, as in the case where the plating layer contains a plurality of metal phases and the amount of the metal phase to be measured is extremely small, the background component is large and the relative intensity of the desired diffracted X-ray is remarkably weak. In such a case, the number of X-ray detectors arranged on the Debye ring may be appropriately increased. The plating layer, particularly an alloy phase such as a hot-dip galvanized steel sheet or an alloyed hot-dip galvanized steel sheet is polycrystalline, and the obtained diffraction X-ray intensity does not have a significant intensity distribution in the Debye ring direction. The X-ray detector may be arranged at any position on the Debye ring, and may be arranged as appropriate in consideration of surrounding conditions such as arrangement of other structures.

【0009】本発明が測定対象とする金属相は1つの相
に限定されず、複数の金属相であってよい。例えば、図
1に示す合金化溶融亜鉛鋼板のめっき層の場合、Γ相、
δ1相およびζ相の全ての付着量を同時に測定すること
もできる。図4に合金化溶融亜鉛鋼板のめっき層に含ま
れるΓ相、δ1 相およびζ相の付着量を測定する場合の
測定装置の一例を示す。X線源11よりスリット12を
介して合金化溶融亜鉛めっき鋼板の表面13に照射され
たX線はΓ相、δ1 相、ζ相により各々回折X線を生じ
る。回折X線はX線の照射方向を軸に円錐状に広がり、
各合金相に対応したデバイ環20、21、22を形成す
る。なお、図4における20,21,22の順序は必ず
しも、実際の測定におけるデバイ環の順序と一致しな
い。16〜18は各々のデバイ環上に複数配置したX線
検出器であり、16はδ1 相測定用、17はζ相測定用
および18はΓ相測定用のシンチレーションカウンター
を表す。15および19は上述したバックグランド要素
測定用のシンチレーションカウンターである。これらシ
ンチレーションカウンターで検出されたX線強度データ
はデータ処理装置24で積算され、各金属相の付着量が
測定される。図4では、Γ相、δ1 相およびζ相の全て
にX線検出器を複数配置しているが、本発明の測定法は
少なくとも1つの同一デバイ環に対して複数の位置で測
定すればよく、全てのデバイ環に対して複数のX線検出
器を配置することは必ずしも必要ではなく、予想される
回折X線強度を考慮してX線検出器を複数配置するか、
単独配置するかを適宜選択してよい。例えば、上記合金
化溶融亜鉛めっき鋼板の場合、ζ相およびΓ相のような
めっき層に微量に存在する金属相に対してはX線の検出
強度を高めるためにデバイ環上に複数の位置で測定し、
δ1 相のようなめっき層中の多量に含まれる金属相につ
いては、回折X線強度が他の金属相に比べ強いため、単
独の位置で測定してもよい。
The metal phase to be measured in the present invention is not limited to one phase, but may be a plurality of metal phases. For example, in the case of a galvannealed steel sheet shown in FIG.
It is also possible to simultaneously measure all adhesion amount of [delta] 1 phase and ζ phase. FIG. 4 shows an example of a measuring apparatus for measuring the adhesion amounts of the Γ phase, δ 1 phase and ζ phase contained in the galvannealed steel sheet. The X-rays emitted from the X-ray source 11 to the surface 13 of the galvannealed steel sheet through the slits 12 generate diffracted X-rays by the Γ phase, δ 1 phase, and ζ phase, respectively. Diffracted X-rays spread conically around the X-ray irradiation direction,
Debye rings 20, 21, and 22 corresponding to each alloy phase are formed. The order of 20, 21, 22 in FIG. 4 does not always match the order of the Debye ring in the actual measurement. Reference numerals 16 to 18 denote a plurality of X-ray detectors arranged on each Debye ring, 16 denotes a scintillation counter for δ 1 phase measurement, 17 denotes a scintillation counter for ζ phase measurement, and 18 denotes a scintillation counter for Γ phase measurement. 15 and 19 are scintillation counters for measuring the background element described above. The X-ray intensity data detected by these scintillation counters are integrated by the data processor 24, and the amount of each metal phase is measured. In FIG. 4, a plurality of X-ray detectors are arranged in all of the Γ phase, the δ 1 phase and the 、 phase. However, the measurement method of the present invention is applicable to at least one same Debye ring at a plurality of positions. Well, it is not always necessary to arrange a plurality of X-ray detectors for all Debye rings, or to arrange a plurality of X-ray detectors in consideration of expected diffraction X-ray intensity,
Whether to dispose them alone may be appropriately selected. For example, in the case of the above alloyed hot-dip galvanized steel sheet, a metal phase such as a 微量 phase and a Γ phase, which is present in a trace amount in a plating layer, is placed at a plurality of positions on a Debye ring in order to increase the X-ray detection intensity. Measure,
The metal phase contains a large amount of the plating layer, such as [delta] 1-phase, diffraction X-ray intensity is stronger than other metal phase may be measured in a single position.

【0010】本発明の測定方法は、鋼板のオンライン表
面処理を行う工程中に行ってもよい。本発明の測定方法
は、同一のデバイ環に対して複数の位置で回折X線を測
定し、得られた回折X線強度データを積算することによ
り、X線強度データが高められているため、短時間で高
い精度で金属相の付着量を測定できるので、鋼板のオン
ライン表面処理工程中に測定することで、該測定結果を
表面処理工程にフィードバックし、めっき層に含まれる
金属相の付着量の最適化を図ることができる。なお、上
記および後述する実施例では合金化溶融亜鉛めっき鋼板
を例に本発明を説明するが、本発明の方法の測定対象は
これに限定されずめっき層に含まれる金属相の付着量の
測定に広く利用できる。
[0010] The measuring method of the present invention may be performed during a step of performing an on-line surface treatment of a steel sheet. The measurement method of the present invention measures the diffracted X-rays at a plurality of positions on the same Debye ring, and integrates the obtained diffracted X-ray intensity data, so that the X-ray intensity data is increased. Since the amount of metal phase attached can be measured in a short time and with high accuracy, by measuring it during the online surface treatment step of the steel sheet, the measurement result is fed back to the surface treatment step, and the attached amount of metal phase contained in the plating layer is measured. Can be optimized. In the examples described above and below, the present invention will be described by taking a galvannealed steel sheet as an example. However, the measurement target of the method of the present invention is not limited to this, and the measurement of the amount of the metal phase contained in the plating layer is measured. Widely available to.

【0011】本発明の測定装置は、X線ビームを照射す
るX線源と、該X線を照射された物質から生じる回折X
線の1または2以上の各デバイ環上に複数配置される回
折X線を検出するためのX線検出器と、該X線検出器で
得られる回折X線強度データを同一のデバイ環に対して
積算する積算計とを有することを特徴とする。X線源
は、X線ビームを発生するX線発生装置と、X線ビーム
の発散を制限するスリットで構成される。本発明の装置
に使用することができるX線発生装置は、封入型X線管
球または回転対陰極である。いずれもフィラメントと金
属の対陰極の間に数十kVの高電圧をかけた状態で、フ
ィラメントに電流を流すことにより発生した熱電子が高
電圧により加速され、金属ターゲットに衝突することで
X線を発生させる。ターゲットは、X線の試料による吸
収や測定精度を考慮して選択され、Cu、Cr、Fe、
Co、Mo等が使用される。本発明の測定装置では、鉄
系試料の測定に適したCr、Fe、Coが好ましく、C
rがSN比が優れることから特に好ましい。スリット
は、X線ビームの縦方向の発散を抑制するためのソーラ
スリットと、試料への水平面内の発散角を制限するため
の発散スリットからなる。X線管球などの金属ターゲッ
トから発生するX線は、目的とするKα線の他に、Kβ
線や白色X線成分が含まれるため、これらの成分を除去
し単色化する必要がある。X線ビームの単色化は、金属
箔でつくられたKβフィルターを受光スリットの前に挿
入するか、またはモノクロメータを用いるかにより行
う。X線ビームを物質表面に照射することにより生じた
回折線は、受光スリットを介して集光され、さらにソー
ラスリットと散乱スリットを介してデバイ環上に配置さ
れたX線検出器で検出・測定される。
The measuring apparatus of the present invention comprises an X-ray source for irradiating an X-ray beam, and a diffraction X-ray generated from the substance irradiated with the X-ray.
An X-ray detector for detecting a plurality of diffracted X-rays arranged on each of one or more Debye rings of the X-ray, and diffracted X-ray intensity data obtained by the X-ray detector for the same Debye ring And an integrator that performs integration. The X-ray source includes an X-ray generator that generates an X-ray beam, and a slit that limits the divergence of the X-ray beam. An X-ray generator that can be used in the device of the present invention is an enclosed X-ray tube or a rotating anti-cathode. In each case, when a high voltage of several tens of kV is applied between the filament and the metal negative electrode, the thermoelectrons generated by applying a current to the filament are accelerated by the high voltage, and collide with the metal target to produce X-rays. Generate. The target is selected in consideration of the absorption of the X-ray by the sample and the measurement accuracy, and Cu, Cr, Fe,
Co, Mo, etc. are used. In the measuring apparatus of the present invention, Cr, Fe, and Co suitable for measuring an iron-based sample are preferable.
r is particularly preferred because of its excellent SN ratio. The slit includes a solar slit for suppressing the divergence of the X-ray beam in the vertical direction and a divergence slit for limiting a divergence angle in a horizontal plane to the sample. X-rays generated from a metal target such as an X-ray tube can be converted into Kβ
Since a line and a white X-ray component are included, it is necessary to remove these components and make them monochromatic. The X-ray beam is made monochromatic by inserting a Kβ filter made of a metal foil in front of the light receiving slit or by using a monochromator. Diffraction lines generated by irradiating the X-ray beam on the material surface are collected through the light receiving slit, and are detected and measured by the X-ray detector arranged on the Debye ring via the solar slit and the scattering slit. Is done.

【0012】本発明の装置で使用することができるX線
検出器としては、シンチレーションカウンター、プロポ
ーショナルカウンター、半導体検出器があり、これらの
うち最も一般的なのがシンチレーションカウンターであ
る。本発明の装置では、1または2以上の回折X線の同
一のデバイ環に対し、X線検出器を複数配置する。デバ
イ環上に配置するX線検出器の数および位置は特に限定
されず、必要に応じて適宜選択してよい。例えば、バッ
クグランド成分が多く、かつ測定対象である回折X線強
度が微弱であることが予想される場合には、X線検出器
を適宜増加する。また、単結晶面へX線照射した場合の
ように、デバイ環上における回折X線強度に配向性があ
る場合には、配向性を考慮して検出器を配置する。な
お、2以上の回折X線のデバイ環上に各々X線検出器を
配置する場合、全てのデバイ環上に複数のX線検出器を
配置することは必ずしも必要ではない。例えば、前記溶
融亜鉛めっき層又は合金化溶融亜鉛めっき層中のζ相、
Γ相のような微量に含まれる相からの微弱な回折X線の
デバイ環に対しては、X線強度を高めるため、X線検出
器を複数配置し、δ1 相のような多量に含まれる相から
の相対強度の強い回折X線からのデバイ環に対しては、
単独のX線検出器を配置してもよい。
X-ray detectors that can be used in the apparatus of the present invention include a scintillation counter, a proportional counter, and a semiconductor detector, of which the most common is a scintillation counter. In the apparatus of the present invention, a plurality of X-ray detectors are arranged for the same Debye ring of one or more diffracted X-rays. The number and positions of the X-ray detectors arranged on the Debye ring are not particularly limited, and may be appropriately selected as needed. For example, when the background component is large and the intensity of the diffracted X-ray to be measured is expected to be weak, the number of X-ray detectors is appropriately increased. When the intensity of the diffracted X-ray on the Debye ring has an orientation, such as when a single crystal plane is irradiated with an X-ray, the detector is arranged in consideration of the orientation. In the case where X-ray detectors are arranged on the Debye rings of two or more diffracted X-rays, it is not always necessary to arrange a plurality of X-ray detectors on all Debye rings. For example, a phase in the hot-dip galvanized layer or the alloyed hot-dip galvanized layer,
For Debye ring of the weak diffraction X-rays from phase contained in trace amounts, such as Γ phase, to increase the X-ray intensity, the X-ray detector plurality placed, contained in a large amount, such as [delta] 1-phase For the Debye ring from diffracted X-rays with a strong relative intensity from the phase
A single X-ray detector may be provided.

【0013】同一のデバイ環上に配置されたX線検出器
で得られた回折X線強度データを積算するための積算計
は、該X線強度データを積算することができれば特に限
定されない。例えば、シンチレーションカウンターで得
られた計数値を積算する積算計が挙げられる。積算計
は、個々のデバイ環についてのものであってもよいが、
全てのデバイ環に設置されたX線検出器で得られたX線
強度データを同一のデバイ環について各々積算し、バッ
クグランド測定用のX線検出器で得られた測定値を差し
引いて測定結果を出力するデータ処理装置であってもよ
い。なお、本発明の測定装置の対象とする測定物は、必
ずしもめっき層に含まれる金属相の付着量に限定され
ず、例えば、組成物中の微量成分であってもよい。
The integrator for integrating the diffracted X-ray intensity data obtained by the X-ray detectors arranged on the same Debye ring is not particularly limited as long as the X-ray intensity data can be integrated. For example, there is an integrator that integrates the count value obtained by the scintillation counter. The integrator may be for an individual Debye ring,
X-ray intensity data obtained by the X-ray detectors installed in all Debye rings are integrated for the same Debye ring, and the measurement results obtained by subtracting the measurement values obtained by the X-ray detector for background measurement May be a data processing device that outputs the data. The object to be measured by the measuring apparatus of the present invention is not necessarily limited to the amount of the metal phase contained in the plating layer, and may be, for example, a trace component in the composition.

【0014】本発明の別の1つの態様は、上記本発明の
測定方法を用いた合金化溶融亜鉛めっき鋼板の製造方法
である。本発明の製造方法では、本発明の測定方法を用
いて、鋼板のオンライン表面処理工程中にめっき層に含
まれる金属相を測定し、得られた測定結果に基づいて、
めっき層の合金化処理条件、すなわち鋼板の加熱処理条
件、例えば加熱温度または加熱時間を制御して、めっき
層に含まれる金属相の付着量を最適条件に管理すること
により、めっき層に含まれる金属相の付着量が最適化さ
れた合金化溶融亜鉛めっき鋼板を製造する。好ましく
は、鋼板の表面処理工程におけるラインスピードが50
〜120m/minでの合金化処理後の合金化溶融亜鉛
めっき鋼板のめっき層の付着量をδ1 相が20〜114
g/m2 、Γ相が0〜2g/m2 、ζ相が0〜4g/m
2 の範囲になるように制御する。
Another aspect of the present invention is a method for producing an alloyed hot-dip galvanized steel sheet using the above-described measuring method of the present invention. In the production method of the present invention, using the measurement method of the present invention, the metal phase contained in the plating layer is measured during the online surface treatment step of the steel sheet, and based on the obtained measurement result,
Alloying treatment conditions for the plating layer, that is, heat treatment conditions for the steel sheet, for example, by controlling the heating temperature or heating time, by controlling the amount of metal phase contained in the plating layer to optimal conditions, contained in the plating layer Manufactures alloyed hot-dip galvanized steel sheets with optimized amounts of metal phase. Preferably, the line speed in the steel sheet surface treatment step is 50
~120M / adhesion amount of the coating layer of the galvannealed steel sheet after alloying treatment [delta] 1 phase at min is 20 to 114
g / m 2, Γ phases 0~2g / m 2, ζ phase 0~4g / m
Control to be in the range of 2 .

【0015】[0015]

【実施例】以下に、合金化溶融亜鉛めっき鋼板に関する
実施例を参照して本発明の測定方法および装置を説明す
る。ただし、いうまでもなく本発明の方法および装置
は、これに限定されない。本実施例では、合金化溶融亜
鉛めっき鋼板のめっき層に存在する金属相のうち、鋼板
製品の品質上もっとも付着量精度を求められるζ相を測
定対象とした。鋼板製品においてζ相に要求される付着
量測定値のばらつき幅(付着量精度)は0.37g/m
2 以下である。ここで付着量の測定値は、回折X線のカ
ウント数を標準データを使ってめっき量に換算した場合
の値である。本実施例では、X線源にCr管球を用い、
管電圧40kV、管電流70mAでX線(Kα線)を照
射し、ζ相のデバイ環に対して2個所でX線を測定でき
る装置を用いて、ζ相の結晶面間隔d=1.26Åの回
折ピーク強度を1個(比較例)または2個(実施例)の
シンチレーションカウンターで測定した。その結果、シ
ンチレーションカウンターが1個の場合は、繰り返し精
度が4.0%(比較例)であったが、2個にした場合
は、3.4%(実施例)となった。ここで繰り返し精度
とは、下記式(1)によって示されるものである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The measuring method and apparatus according to the present invention will be described below with reference to embodiments relating to galvannealed steel sheets. However, it goes without saying that the method and apparatus of the present invention are not limited to this. In this example, among the metal phases existing in the plating layer of the alloyed hot-dip galvanized steel sheet, the ζ phase, which requires the highest amount of adhesion in terms of the quality of the steel sheet product, was measured. The variation width (adhesion amount accuracy) of the adhesion amount measurement value required for the ζ phase in steel sheet products is 0.37 g / m
2 or less. Here, the measured value of the adhesion amount is a value when the count number of the diffracted X-ray is converted into a plating amount using standard data. In this embodiment, a Cr tube is used as the X-ray source,
X-rays (Kα rays) are radiated at a tube voltage of 40 kV and a tube current of 70 mA, and using a device capable of measuring X-rays at two locations on the ζ-phase Debye ring, the 面 -phase crystal plane spacing d = 1.26Å Were measured with one (Comparative Example) or two (Example) scintillation counters. As a result, when one scintillation counter was used, the repetition accuracy was 4.0% (comparative example), but when two scintillation counters were used, the repetition accuracy was 3.4% (example). Here, the repeatability is represented by the following equation (1).

【式1】 ただし、iはi回目の測定、nは全繰り返し測定回数、
i はi回目の回折X線強度、Xa はn回の回折X線強
度の平均値を示す。ζ相の付着量における精度の検出限
界はそれぞれ0.39g/m2 (比較例)、0.34g
/m2 (実施例)となり、シンチレーションカウンター
を2個にした本発明ではζ相の付着量の測定の繰り返し
精度が向上し、要求される付着量測定精度を達成するこ
とが出来ることが確認された。
(Equation 1) Where i is the i-th measurement, n is the total number of repeated measurements,
X i represents the i-th diffraction X-ray intensity, and X a represents the average value of the n-th diffraction X-ray intensity.精度 The detection limit of the accuracy in the amount of the attached phase is 0.39 g / m 2 (comparative example) and 0.34 g, respectively.
/ M 2 (Example), and it was confirmed that in the present invention in which the number of scintillation counters was two, the repeatability of the measurement of the adhesion amount of the ζ phase was improved, and the required adhesion amount measurement accuracy could be achieved. Was.

【0016】[0016]

【発明の効果】以上述べたように、本発明のめっき層に
含まれる金属相の付着量の測定方法は、金属相からの回
折X線を、同一のデバイ環に対して複数の位置で測定
し、得られる回折X線強度データを積算することによ
り、X線強度データが高められていることから、めっき
層に含まれる金属相、特に、めっき層に微量に含まれる
金属相の測定精度が向上する。これは、特に鋼板のオン
ライン表面処理工程時のような短時間で測定結果を得る
ことが必要な場合に有効である。さらに、本発明の測定
方法を用いる溶融亜鉛めっき鋼板または合金化溶融亜鉛
めっき鋼板の製造方法は、精度の高い金属相の付着量に
関する測定結果を短時間で製造工程にフィードバックで
きることから、高品質のめっき鋼板の製造に寄与する。
また、本発明の測定装置は、X線ビームを照射するX線
源と、該X線を照射された物質から生じる1または2以
上の回折X線の各デバイ環上に複数配置された回折X線
を検出するためのX線検出器と、該X線検出器で得られ
た強度データを同一のデバイ環に対して積算する積算計
とを備えるため、本発明の測定方法を実施する上で好適
である。また、本発明の測定装置は、組成物中の微量成
分の検出・測定に適する。
As described above, the method for measuring the amount of the metal phase contained in the plating layer according to the present invention measures the diffracted X-rays from the metal phase at a plurality of positions with respect to the same Debye ring. Then, by integrating the obtained diffraction X-ray intensity data, since the X-ray intensity data is enhanced, the measurement accuracy of the metal phase contained in the plating layer, particularly, the metal phase contained in a trace amount in the plating layer is reduced. improves. This is particularly effective when it is necessary to obtain a measurement result in a short time, such as during an online surface treatment step of a steel sheet. Furthermore, the method for producing a hot-dip galvanized steel sheet or an alloyed hot-dip galvanized steel sheet using the measurement method of the present invention can provide a high-quality measurement result regarding the amount of adherence of a metal phase to the manufacturing process in a short time. Contributes to the production of plated steel sheets.
Further, the measuring apparatus of the present invention comprises an X-ray source for irradiating an X-ray beam, and a plurality of diffraction X-rays arranged on each Debye ring of one or more diffraction X-rays generated from the substance irradiated with the X-ray. An X-ray detector for detecting X-rays and an integrator for integrating the intensity data obtained by the X-ray detector with respect to the same Debye ring are included in implementing the measurement method of the present invention. It is suitable. Further, the measuring device of the present invention is suitable for detecting and measuring a trace component in a composition.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 合金化溶融亜鉛めっき鋼板、特に合金化の進
行しためっき層に含まれるζ相、δ1 相およびΓ相の分
布を示す断面図である。
FIG. 1 is a cross-sectional view showing distributions of a ζ phase, a δ 1 phase, and a Γ phase contained in an alloyed hot-dip galvanized steel sheet, particularly, a plated layer in which alloying has progressed.

【図2】 本発明に測定方法の概念図である。FIG. 2 is a conceptual diagram of a measuring method according to the present invention.

【図3】 本発明の測定方法において、同一のデバイ環
上に複数のX線検出器が配置されている様子を示す部分
拡大図である。
FIG. 3 is a partially enlarged view showing a state in which a plurality of X-ray detectors are arranged on the same Debye ring in the measurement method of the present invention.

【図4】 合金化溶融亜鉛めっき鋼板のめっき層中のΓ
相、δ1 相およびζ相の付着量を測定する本発明の測定
装置の概念図である。
[Fig. 4] Γ in the coating layer of galvannealed steel sheet
Phase is a conceptual diagram of a measuring apparatus of the present invention to measure the deposition amount of [delta] 1 phase and ζ phase.

【符号の説明】[Explanation of symbols]

11 X線源 12 スリット 13 鋼板の表面又は合金化溶融亜鉛めっき鋼板の表面 14 スリット 15 バックグラウンド要素測定用シンチレーションカ
ウンター 16 X線検出器又はδ1 相測定用シンチレーションカ
ウンター 17 ζ相測定用シンチレーションカウンター 18 Γ相測定用シンチレーションカウンター 19 バックグラウンド要素測定用シンチレーションカ
ウンター 20 デバイ環又はデバイ環(δ1 相) 21 デバイ環(ζ相) 22 デバイ環(Γ相) 23 データ積算計 24 データ処理装置
Reference Signs List 11 X-ray source 12 Slit 13 Surface of steel plate or surface of galvannealed steel plate 14 Slit 15 Scintillation counter for background element measurement 16 X-ray detector or scintillation counter for δ 1 phase measurement 17 シ ン Scintillation counter for phase measurement 18シ ン Phase measurement scintillation counter 19 Background element measurement scintillation counter 20 Debye ring or Debye ring (δ 1 phase) 21 Debye ring (ζ phase) 22 Debye ring (Γ phase) 23 Data integrator 24 Data processor

フロントページの続き Fターム(参考) 2G001 AA01 BA18 CA01 DA01 DA02 DA06 FA12 GA01 GA13 HA01 JA04 JA06 JA11 JA15 KA09 KA11 LA02 MA05 SA01 SA04Continued on the front page F-term (reference) 2G001 AA01 BA18 CA01 DA01 DA02 DA06 FA12 GA01 GA13 HA01 JA04 JA06 JA11 JA15 KA09 KA11 LA02 MA05 SA01 SA04

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】X線回折法を用いて、めっき層に含まれる
金属相の付着量を測定する方法において、金属相からの
回折X線を、同一のデバイ環に対して複数の位置で測定
し、得られる回折X線強度データを積算することによ
り、X線強度データを高めることを特徴とするめっき層
に含まれる金属相の付着量の測定方法。
1. A method for measuring the amount of a metal phase contained in a plating layer using an X-ray diffraction method, wherein diffracted X-rays from the metal phase are measured at a plurality of positions with respect to the same Debye ring. A method for measuring the amount of adhesion of the metal phase contained in the plating layer, wherein the obtained diffraction X-ray intensity data is integrated to increase the X-ray intensity data.
【請求項2】前記金属相が合金相である請求項1に記載
のめっき層に含まれる金属相の付着量の測定方法。
2. The method according to claim 1, wherein the metal phase is an alloy phase.
【請求項3】前記金属相が2以上の相からなる請求項1
または2に記載のめっき層に含まれる金属相の付着量の
測定方法。
3. The method of claim 1, wherein said metal phase comprises two or more phases.
Or the method for measuring the adhesion amount of the metal phase contained in the plating layer according to 2.
【請求項4】前記2以上の相のうちの1以上の相の付着
量を測定することを特徴とする請求項3に記載のめっき
層に含まれる金属相の付着量の測定方法。
4. The method according to claim 3, wherein the amount of adhesion of one or more phases of the two or more phases is measured.
【請求項5】前記めっき層が溶融亜鉛めっき層又は合金
化溶融亜鉛めっき層であることを特徴とする請求項1な
いし4のいずれかに記載のめっき層に含まれる金属相の
付着量の測定方法。
5. The method according to claim 1, wherein the plating layer is a hot-dip galvanized layer or an alloyed hot-dip galvanized layer. Method.
【請求項6】前記測定を鋼板のオンライン表面処理を行
う工程中に行うことを特徴とする請求項1ないし5のい
ずれかに記載のめっき層に含まれる金属相の付着量の測
定方法。
6. The method according to claim 1, wherein the measurement is performed during a step of performing an on-line surface treatment of the steel sheet.
【請求項7】X線ビームを照射するX線源と、該X線を
照射された物質から生じる回折X線の1または2以上の
各デバイ環上に複数配置される回折X線を検出するため
のX線検出器と、該X線検出器で得られた強度データを
同一のデバイ環に対して積算する積算計とを有すること
を特徴とする測定装置。
7. An X-ray source for irradiating an X-ray beam and detecting a plurality of diffracted X-rays arranged on one or more of each Debye ring of diffracted X-rays generated from the material irradiated with the X-ray. A measuring device, comprising: an X-ray detector for calculating the intensity data obtained by the X-ray detector;
【請求項8】溶融亜鉛めっき層又は合金化溶融亜鉛めっ
き層に含まれる金属相の付着量を測定することを特徴と
する請求項7に記載の測定装置。
8. The measuring apparatus according to claim 7, wherein the amount of the metal phase contained in the galvanized layer or the galvannealed layer is measured.
【請求項9】請求項5ないし6に記載の測定方法でめっ
き層に含まれる金属相の付着量を測定し、その結果を用
いて合金化処理条件を制御することを特徴とする溶融亜
鉛めっき鋼板又は合金化溶融亜鉛めっき鋼板の製造方
法。
9. A hot-dip galvanizing method comprising measuring the amount of metal phase contained in a plating layer by the measuring method according to claim 5 and using the result to control alloying treatment conditions. A method for manufacturing a steel sheet or galvannealed steel sheet.
JP2000288228A 2000-09-22 2000-09-22 Measurement method and device of amount of adhesion of metal phase contained in plated layer Pending JP2002098657A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2000288228A JP2002098657A (en) 2000-09-22 2000-09-22 Measurement method and device of amount of adhesion of metal phase contained in plated layer
CA002390236A CA2390236A1 (en) 2000-09-22 2001-09-18 Method and apparatus for quantitatively measuring metal phase by x-ray diffractometry and method of producing galvanized steel sheet using the method and apparatus
CN01802854A CN1392956A (en) 2000-09-22 2001-09-18 Quantitative measuring method and apparatus of metal phase using X-ray diffraction method, and method for making plated steel sheet using them
PCT/JP2001/008093 WO2002025257A1 (en) 2000-09-22 2001-09-18 Quantitative measuring method and apparatus of metal phase using x-ray diffraction method, and method for making plated steel sheet using them
KR1020027006225A KR20020060741A (en) 2000-09-22 2001-09-18 Quantitative measuring method and apparatus of metal phase using x-ray diffraction method, and method for making plated steel sheet using them
EP01970121A EP1233265A4 (en) 2000-09-22 2001-09-18 Quantitative measuring method and apparatus of metal phase using x-ray diffraction method, and method for making plated steel sheet using them
US10/130,711 US6821361B2 (en) 2000-09-22 2001-09-18 Quantitative measuring method and apparatus of metal phase using x-ray diffraction method, and method for making plated steel sheet using them
TW090123387A TW500922B (en) 2000-09-22 2001-09-21 Quantitative measuring method and apparatus of metal phase using X-ray diffraction method, and method for making plated steel sheet using them

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000288228A JP2002098657A (en) 2000-09-22 2000-09-22 Measurement method and device of amount of adhesion of metal phase contained in plated layer

Publications (1)

Publication Number Publication Date
JP2002098657A true JP2002098657A (en) 2002-04-05

Family

ID=18771850

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000288228A Pending JP2002098657A (en) 2000-09-22 2000-09-22 Measurement method and device of amount of adhesion of metal phase contained in plated layer

Country Status (1)

Country Link
JP (1) JP2002098657A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002098656A (en) * 2000-09-27 2002-04-05 Kawasaki Steel Corp On-line measurement method and device of amount of adhesion of metal phase contained in plated layer
JP2009085659A (en) * 2007-09-28 2009-04-23 Rigaku Corp X-ray diffraction measuring instrument equipped with debye-scherrer optical system and x-ray diffraction measuring method therefor
JP2012181199A (en) * 2012-04-11 2012-09-20 Toshiba Corp Adhesion amount monitoring method of titanium oxide
JP2015078934A (en) * 2013-10-17 2015-04-23 国立大学法人金沢大学 Diffraction ring measurement apparatus

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5035834B1 (en) * 1971-07-06 1975-11-19
JPS5137285A (en) * 1974-09-25 1976-03-29 Mitsubishi Heavy Ind Ltd X senoryokusokuteihoho
JPS51108884A (en) * 1975-03-14 1976-09-27 Nippon Electron Optics Lab x senkaisetsusokuteisochi
JPS5220320A (en) * 1975-08-08 1977-02-16 Nisshin Steel Co Ltd Method of measuring grain size of a cold rolled stainless steel strip which is being annealed and apparatus for the same
JPS5518989A (en) * 1978-07-28 1980-02-09 Hitachi Ltd Two-dimensional position detecting type counting tube
JPS56143949A (en) * 1980-04-10 1981-11-10 Rigaku Denki Kk X-ray diffraction apparatus
JPH02253144A (en) * 1989-03-27 1990-10-11 Mitsubishi Electric Corp X-ray diffraction device
JPH04161843A (en) * 1990-10-25 1992-06-05 Rigaku Corp X-ray measuring apparatus
JPH06347247A (en) * 1993-06-10 1994-12-20 Sumitomo Metal Ind Ltd Measuring method of thickness of alloy phase of plated layer
JPH0933455A (en) * 1995-07-14 1997-02-07 Sumitomo Metal Ind Ltd Method for measuring alloyed degree of alloying plated layer
JP2000147200A (en) * 1998-11-06 2000-05-26 Rigaku Corp Monochromator device and x-ray device

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5035834B1 (en) * 1971-07-06 1975-11-19
JPS5137285A (en) * 1974-09-25 1976-03-29 Mitsubishi Heavy Ind Ltd X senoryokusokuteihoho
JPS51108884A (en) * 1975-03-14 1976-09-27 Nippon Electron Optics Lab x senkaisetsusokuteisochi
JPS5220320A (en) * 1975-08-08 1977-02-16 Nisshin Steel Co Ltd Method of measuring grain size of a cold rolled stainless steel strip which is being annealed and apparatus for the same
JPS5518989A (en) * 1978-07-28 1980-02-09 Hitachi Ltd Two-dimensional position detecting type counting tube
JPS56143949A (en) * 1980-04-10 1981-11-10 Rigaku Denki Kk X-ray diffraction apparatus
JPH02253144A (en) * 1989-03-27 1990-10-11 Mitsubishi Electric Corp X-ray diffraction device
JPH04161843A (en) * 1990-10-25 1992-06-05 Rigaku Corp X-ray measuring apparatus
JPH06347247A (en) * 1993-06-10 1994-12-20 Sumitomo Metal Ind Ltd Measuring method of thickness of alloy phase of plated layer
JPH0933455A (en) * 1995-07-14 1997-02-07 Sumitomo Metal Ind Ltd Method for measuring alloyed degree of alloying plated layer
JP2000147200A (en) * 1998-11-06 2000-05-26 Rigaku Corp Monochromator device and x-ray device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002098656A (en) * 2000-09-27 2002-04-05 Kawasaki Steel Corp On-line measurement method and device of amount of adhesion of metal phase contained in plated layer
JP2009085659A (en) * 2007-09-28 2009-04-23 Rigaku Corp X-ray diffraction measuring instrument equipped with debye-scherrer optical system and x-ray diffraction measuring method therefor
JP2012181199A (en) * 2012-04-11 2012-09-20 Toshiba Corp Adhesion amount monitoring method of titanium oxide
JP2015078934A (en) * 2013-10-17 2015-04-23 国立大学法人金沢大学 Diffraction ring measurement apparatus

Similar Documents

Publication Publication Date Title
WO2002025257A1 (en) Quantitative measuring method and apparatus of metal phase using x-ray diffraction method, and method for making plated steel sheet using them
CN103649679B (en) The measuring method of the Fe-Zn alloy phase thickness of alloyed hot-dip galvanized steel plate and measurement apparatus
KR900008955B1 (en) Method of measuring layer theckness and composition of alloy plating
KR101793395B1 (en) On-line plating adhesion determination device for galvannealed steel sheet and galvannealed steel sheet production line
CN108680127B (en) Method and apparatus for measuring plating
JPH04232448A (en) Apparatus for measuring amount of iron contained in zinc layer
JP6573047B1 (en) Plating adhesion evaluation device, plating adhesion evaluation method, alloyed hot dip galvanized steel sheet manufacturing equipment, and alloyed hot dip galvanized steel sheet manufacturing method
JP2002098657A (en) Measurement method and device of amount of adhesion of metal phase contained in plated layer
JPH0739987B2 (en) Simultaneous measurement of film thickness and composition
JP2002098656A (en) On-line measurement method and device of amount of adhesion of metal phase contained in plated layer
JPH0933455A (en) Method for measuring alloyed degree of alloying plated layer
JP2002168811A (en) Method and apparatus for measuring alloy phase adhesion in plated layer using x-ray diffraction method
JP5962615B2 (en) Method for measuring the degree of alloying of galvannealed steel sheets
JPS60202339A (en) X-ray fluorescence analysis method
JP2001281175A (en) Measuring method for metal surface oxide and x-ray diffraction device
JPH0610660B2 (en) Method for measuring film thickness and composition of alloy film
KR20040056207A (en) Method of measuring alloying degree for galvannealed steels by XRD
JPS6014109A (en) Measuring device of buld-up quantity of plating of galvanized steel plate
KR100685024B1 (en) Device of Measuring Phase Fraction and Alloying Degree for Galvannealed Steels
JPH0545305A (en) Method for measuring alloying degree of alloyzinc-plated layer
JP2002228430A (en) Method for measuring mass of deposit per unit area of plating or of surface-treating coating
JPH05203593A (en) Method and device for measuring plating adhesion quantity
JP2563016B2 (en) Fluorescent X-ray analysis method and apparatus using effective wavelength
JPS62108139A (en) Method for inspecting film of electroplated strip
KR20040056245A (en) X-ray optics system for measuring phase fraction and alloying degree of galvannealed steels

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100215

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100330