JP5962615B2 - Method for measuring the degree of alloying of galvannealed steel sheets - Google Patents

Method for measuring the degree of alloying of galvannealed steel sheets Download PDF

Info

Publication number
JP5962615B2
JP5962615B2 JP2013167582A JP2013167582A JP5962615B2 JP 5962615 B2 JP5962615 B2 JP 5962615B2 JP 2013167582 A JP2013167582 A JP 2013167582A JP 2013167582 A JP2013167582 A JP 2013167582A JP 5962615 B2 JP5962615 B2 JP 5962615B2
Authority
JP
Japan
Prior art keywords
concentration
phase
alloying
average
plating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013167582A
Other languages
Japanese (ja)
Other versions
JP2014055353A (en
Inventor
朋弘 青山
朋弘 青山
亘 谷本
亘 谷本
永野 英樹
英樹 永野
野呂 寿人
寿人 野呂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2013167582A priority Critical patent/JP5962615B2/en
Publication of JP2014055353A publication Critical patent/JP2014055353A/en
Application granted granted Critical
Publication of JP5962615B2 publication Critical patent/JP5962615B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Coating With Molten Metal (AREA)

Description

本発明は、合金化溶融亜鉛めっき鋼板のめっき層中の平均Fe濃度を測定する合金化溶融亜鉛めっき鋼板の合金化度測定方法に関する。   The present invention relates to a method for measuring the degree of alloying of an alloyed hot-dip galvanized steel sheet, which measures the average Fe concentration in the plated layer of the alloyed hot-dip galvanized steel sheet.

合金化溶融亜鉛めっき鋼板(以下、GA鋼板)は、溶接性、加工性、塗装後耐食性および塗膜密着性等の品質特性に優れるため、広く利用されている。GA鋼板のめっき層には、熱拡散処理によってその厚さ方向にFeやZnの濃度分布が生じる。すなわち、めっき層では、その表面から下地鋼板側に向かってFe濃度が増加し、複数のFe−Zn合金相が形成される。一般に、めっき層には、表面から下地鋼板側に向かって、ζ相(FeZn13)、δ相(FeZn7−10)、Γ相およびΓ相(FeZn10およびFe11Zn40、以下、Γ相とΓ相とをあわせて単にΓ相と呼ぶ)が形成される。これは、めっき層の合金化が進むにつれて下地鋼板からFeが拡散することにより、金属亜鉛、すなわちη相が消失し、ζ相、δ相、Γ相が順次生成、成長するためである。 Alloyed hot-dip galvanized steel sheets (hereinafter referred to as GA steel sheets) are widely used because they are excellent in quality characteristics such as weldability, workability, post-coating corrosion resistance, and coating film adhesion. In the plated layer of the GA steel sheet, a concentration distribution of Fe or Zn is generated in the thickness direction by the thermal diffusion treatment. That is, in the plating layer, the Fe concentration increases from the surface toward the base steel plate, and a plurality of Fe—Zn alloy phases are formed. Generally, the plating layer has a ζ phase (FeZn 13 ), a δ 1 phase (FeZn 7-10 ), a Γ phase and a Γ 1 phase (Fe 3 Zn 10 and Fe 11 Zn 40 , Hereinafter, the Γ phase and the Γ 1 phase are simply referred to as a Γ phase). This is because as the alloying of the plating layer proceeds, Fe diffuses from the underlying steel sheet, so that the metallic zinc, that is, the η phase disappears, and the ζ phase, δ 1 phase, and Γ phase are sequentially generated and grown.

めっき層は、これらの合金相のうちδ相を主体として形成され、Γ相、ζ相が少量形成される。このめっき層中のFe濃度は、通常、10重量%前後に制御されるが、加熱処理の過不足があった場合にFe濃度が変動し、Γ相、ζ相の割合が増加したり、さらに金属亜鉛、すなわちη相が残存したりする。 The plating layer is formed mainly of the δ 1 phase of these alloy phases, and a small amount of Γ phase and ζ phase are formed. The Fe concentration in the plating layer is usually controlled to around 10% by weight. However, when the heat treatment is excessive or insufficient, the Fe concentration fluctuates, and the ratio of the Γ phase and the ζ phase increases. Metal zinc, that is, the η phase remains.

めっき層の品質特性はめっき層中の各合金相の割合に依存して著しく変動するため、高品質のGA鋼板を製造するためには、めっき層の合金化度(めっき層中の平均Fe濃度)を正確に測定し、加熱温度または加熱時間などの加熱処理条件を制御して、合金化度を適正な範囲に管理する必要がある。   Since the quality characteristics of the plating layer vary significantly depending on the ratio of each alloy phase in the plating layer, the degree of alloying of the plating layer (the average Fe concentration in the plating layer) is necessary to produce a high-quality GA steel sheet. ) Is accurately measured, and heat treatment conditions such as heating temperature or heating time are controlled, and the degree of alloying needs to be managed within an appropriate range.

従来、GA鋼板の合金化度を評価する技術としては、最も簡易な方法である合金化直後のめっき層表面の色調変化を目視や光度計によって判定する方法や、製造後のGA鋼板の一部を採取し、酸やアルカリなどでめっき層を溶解して、めっき層中の平均Fe濃度を測定する化学分析法が知られている。   Conventionally, as a technique for evaluating the degree of alloying of a GA steel sheet, the simplest method is a method for judging the color change of the plating layer surface immediately after alloying by visual observation or a photometer, or a part of the GA steel sheet after production. A chemical analysis method is known in which a sample layer is collected, the plating layer is dissolved with acid or alkali, and the average Fe concentration in the plating layer is measured.

また、GA鋼板の合金化度、すなわちめっき層の合金化度を非破壊で短時間かつ正確に測定するために、X線回折法(以下、XRD法と記す)を用い、各Fe−Zn合金相やα−Fe、η相の回折強度と合金化度との関係から、合金化度を評価する方法が多数提案されている。例えば、特許文献1および非特許文献1には、めっき層と下地鋼板との界面近傍に存在するΓ相やζ相の回折強度とバックグラウンドとの関係式をFe濃度の算出指標として用いる方法が記載されている。また、特許文献2〜5には、複数のFe−Zn合金相の回折強度から求めた関係式をFe濃度の算出指標として用いる方法が記載されている。また、特許文献6には、Fe−Zn合金相の回折強度と半価幅とからなる関係式に加えて、合金相の回折ピーク角度を合金化の指標として用いる方法も記載されている。   Further, in order to measure the alloying degree of the GA steel sheet, that is, the alloying degree of the plating layer in a non-destructive manner in a short time and accurately, an X-ray diffraction method (hereinafter referred to as XRD method) is used, and each Fe-Zn alloy is used. Many methods for evaluating the degree of alloying have been proposed from the relationship between the diffraction intensity of the phase, α-Fe, and η phase and the degree of alloying. For example, in Patent Document 1 and Non-Patent Document 1, there is a method in which a relational expression between a diffraction intensity of a Γ phase or a ζ phase existing in the vicinity of an interface between a plating layer and a base steel plate and a background is used as an index for calculating Fe concentration. Have been described. Patent Documents 2 to 5 describe a method in which a relational expression obtained from the diffraction intensities of a plurality of Fe—Zn alloy phases is used as an index for calculating Fe concentration. Patent Document 6 also describes a method of using the diffraction peak angle of the alloy phase as an index for alloying, in addition to the relational expression composed of the diffraction intensity and the half width of the Fe—Zn alloy phase.

特許第2542906号公報Japanese Patent No. 2542906 特許第2707865号公報Japanese Patent No. 2707865 特公昭56−12314号公報Japanese Examined Patent Publication No. 56-12314 特許第2534834号公報Japanese Patent No. 2534834 特開平9−33455号公報JP-A-9-33455 特開昭52−21887号公報JP-A-52-21887

川崎製鉄技報、18(1986)2、p.31Kawasaki Steel Technical Report, 18 (1986) 2, p. 31

しかしながら、合金化直後のめっき層表面の色調変化を目視や光度計によって判定する方法や、めっき層中の平均Fe濃度を測定する化学分析法によれば、不正確であったり、試料採取から測定終了までに長時間を要したりするため、加熱処理条件へのフィードバックが遅れてしまう。   However, according to the method of judging the color tone change of the plating layer surface immediately after alloying by visual observation or a photometer, or the chemical analysis method for measuring the average Fe concentration in the plating layer, it is inaccurate or measured from sampling. Since it takes a long time to finish, the feedback to the heat treatment condition is delayed.

また、特許文献1や非特許文献1に記載の方法によれば、めっき層中に占めるζ相やΓ相の体積比率が小さいため、合金化の進展に対して、これらの合金相の減少や増加の割合が小さく、感度が不足するという問題があった。さらに、Γ層の回折強度をFe濃度の算出指標として用いる場合には、Γ層はめっき最下層に形成されるため、Γ層の回折強度は減衰の影響を受けやすく、めっき付着量による変動の影響が大きいという問題があった。   In addition, according to the methods described in Patent Document 1 and Non-Patent Document 1, since the volume ratio of the ζ phase and the Γ phase in the plating layer is small, the reduction of these alloy phases with respect to the progress of alloying There was a problem that the rate of increase was small and the sensitivity was insufficient. Further, when the diffraction intensity of the Γ layer is used as an index for calculating the Fe concentration, since the Γ layer is formed in the lowermost layer of the plating, the diffraction intensity of the Γ layer is easily affected by attenuation, and the fluctuation due to the amount of plating adhered. There was a problem that the influence was great.

さらに、特許文献2〜5に記載の方法においては、各合金相の検出角度を固定しているために、測定時の鋼板温度や各合金相中に固溶するFeあるいはZnの濃度の変化に伴う回折ピーク位置のずれによって、正確な強度を測定することができず、合金化度を正しく評価できないという問題があった。さらに、これらの方法における合金化度の指標は、複雑な計算式からなる経験式に基づいており、計算や解析が非常に煩雑になるという問題もあった。また、特許文献6には、Fe−Zn合金相の回折ピーク強度と合金化度との間の具体的な関連性についての記載がなく、そのままでは特許文献6に記載の方法を合金化度の定量測定に応用することができないという問題があった。   Furthermore, in the methods described in Patent Documents 2 to 5, since the detection angle of each alloy phase is fixed, the steel plate temperature at the time of measurement and the concentration of Fe or Zn dissolved in each alloy phase change. Due to the accompanying shift of the diffraction peak position, there is a problem that an accurate strength cannot be measured and the degree of alloying cannot be evaluated correctly. Furthermore, the index of alloying degree in these methods is based on an empirical formula consisting of complicated calculation formulas, and there is a problem that calculation and analysis become very complicated. In addition, Patent Document 6 does not describe a specific relationship between the diffraction peak intensity of the Fe—Zn alloy phase and the degree of alloying. There was a problem that it could not be applied to quantitative measurement.

本発明は、上記に鑑みてなされたものであって、合金化溶融亜鉛めっき鋼板の合金化度を非破壊で簡易かつ正確に測定可能な合金化溶融亜鉛めっき鋼板の合金化度測定方法を提供することを目的とする。   The present invention has been made in view of the above, and provides a method for measuring the degree of alloying of an alloyed hot-dip galvanized steel sheet capable of measuring the degree of alloying of the alloyed hot-dip galvanized steel sheet in a nondestructive manner simply and accurately. The purpose is to do.

上述した課題を解決し、目的を達成するために、本発明に係る合金化溶融亜鉛めっき鋼板の合金化度測定方法は、合金化溶融亜鉛めっき層が表面に存在する試料にX線を照射するステップと、該試料のめっき層を構成する合金相の回折ピーク角度を測定するステップと、前記回折ピーク角度の変化からめっき層中の平均Fe濃度をめっき層の合金化度として算出するステップと、を含むことを特徴とする。   In order to solve the above-described problems and achieve the object, a method for measuring the degree of alloying of an alloyed hot-dip galvanized steel sheet according to the present invention irradiates a sample having an alloyed hot-dip galvanized layer on the surface with X-rays. Measuring a diffraction peak angle of an alloy phase constituting the plating layer of the sample; calculating an average Fe concentration in the plating layer as a degree of alloying of the plating layer from a change in the diffraction peak angle; It is characterized by including.

また、本発明に係る合金化溶融亜鉛めっき鋼板の合金化度測定方法は、上記発明において、前記合金相は、δ相であることを特徴とする。 Moreover, in the above invention, the method for measuring the degree of alloying of the galvannealed steel sheet according to the present invention is characterized in that the alloy phase is a δ 1 phase.

また、本発明に係る合金化溶融亜鉛めっき鋼板の合金化度測定方法は、上記発明において、前記めっき層中の平均Fe濃度を算出するステップは、前記回折ピーク角度の変化量を以下に示す数式(1)に代入することによってめっき層中の平均Fe濃度を算出するステップを含むことを特徴とする。   Further, in the method of measuring the degree of alloying of the galvannealed steel sheet according to the present invention, in the above invention, the step of calculating the average Fe concentration in the plating layer is a mathematical expression showing the change amount of the diffraction peak angle as follows: The method includes a step of calculating an average Fe concentration in the plating layer by substituting in (1).

平均Fe濃度=a×回折ピーク角度の変化量+b …(1)
ただし、a,bは定数
Average Fe concentration = a × difference of diffraction peak angle + b (1)
Where a and b are constants

また、本発明に係る合金化溶融亜鉛めっき鋼板の合金化度測定方法は、上記発明において、前記回折ピーク角度を測定するステップは、1次元X線検出器又は2次元X線検出器を用いて回折X線を測定するステップを含むことを特徴とする。 Moreover, in the above invention, the method of measuring the degree of alloying of the galvannealed steel sheet according to the present invention includes the step of measuring the diffraction peak angle using a one-dimensional X-ray detector or a two-dimensional X-ray detector. The method includes a step of measuring diffracted X-rays.

本発明によれば、合金化溶融亜鉛めっき鋼板の合金化度を非破壊で簡易かつ正確に測定することができる。   According to the present invention, the degree of alloying of an alloyed hot-dip galvanized steel sheet can be easily and accurately measured nondestructively.

図1は、本発明が適用されるGA鋼板のめっき層の構成を示す断面模式図である。FIG. 1 is a schematic cross-sectional view showing a configuration of a plated layer of a GA steel plate to which the present invention is applied. 図2は、GA鋼板のめっき層中の平均Fe濃度とめっき層を構成する各合金相の体積割合との関係を示す図である。FIG. 2 is a diagram showing the relationship between the average Fe concentration in the plating layer of the GA steel sheet and the volume ratio of each alloy phase constituting the plating layer. 図3は、GA鋼板の各合金相中のFe濃度を示す図である。FIG. 3 is a diagram showing the Fe concentration in each alloy phase of the GA steel sheet. 図4は、本発明の一実施形態に係るGA鋼板のめっき付着量とめっき層中の平均Fe濃度との関係を示す図である。FIG. 4 is a diagram showing the relationship between the coating amount of the GA steel sheet and the average Fe concentration in the plating layer according to an embodiment of the present invention. 図5は、GA鋼板の各合金相の理論的な回折角度を示す図である。FIG. 5 is a diagram showing theoretical diffraction angles of the respective alloy phases of the GA steel plate. 図6は、本実施の形態に係る各合金相の回折ピーク強度とめっき層中の平均Fe濃度との関係を示す図である。FIG. 6 is a diagram showing the relationship between the diffraction peak intensity of each alloy phase and the average Fe concentration in the plating layer according to the present embodiment. 図7は、各合金相の理論的な回折角度からの回折ピーク角度のずれとめっき層中の平均Fe濃度との関係を示す図である。FIG. 7 is a diagram showing the relationship between the deviation of the diffraction peak angle from the theoretical diffraction angle of each alloy phase and the average Fe concentration in the plating layer. 図8は、δ相の回折ピーク角度のずれと試料傾斜の変化量との関係を示す図である。FIG. 8 is a diagram showing the relationship between the shift of the diffraction peak angle of the δ 1 phase and the amount of change in the sample tilt. 図9は、δ相の回折ピーク角度のずれと適正な測定位置からの試料表面垂直方向の距離の変化量との関係を示す図である。FIG. 9 is a diagram showing the relationship between the shift in the diffraction peak angle of the δ 1 phase and the amount of change in the distance in the direction perpendicular to the sample surface from the appropriate measurement position. 図10は、本発明の実施例及び比較例におけるめっき層中の平均Fe濃度の測定結果を示す図である。FIG. 10 is a diagram showing the measurement results of the average Fe concentration in the plating layer in the examples and comparative examples of the present invention. 図11は、本発明により合金化溶融亜鉛めっき鋼板のFe濃度をオンラインで測定する際に用いられるX線回折装置の測定ヘッド部の構成を示す模式図である。FIG. 11 is a schematic diagram showing a configuration of a measurement head portion of an X-ray diffraction apparatus used when measuring the Fe concentration of an alloyed hot-dip galvanized steel sheet on-line according to the present invention. 図12は、本発明の一実施形態に係る試料の鋼中成分を示す図である。FIG. 12 is a diagram showing components in steel of a sample according to one embodiment of the present invention. 図13は、本発明による実施例3のめっき層中の平均Fe濃度の測定結果を示す図である。FIG. 13 is a diagram showing the measurement results of the average Fe concentration in the plating layer of Example 3 according to the present invention. 図14は、従来例による比較例3のめっき層中の平均Fe濃度の測定結果を示す図である。FIG. 14 is a diagram showing the measurement results of the average Fe concentration in the plating layer of Comparative Example 3 according to the conventional example.

以下、図面を参照して、本発明の一実施形態を詳細に説明する。なお、この実施の形態により本発明が限定されるものではない。   Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings. In addition, this invention is not limited by this embodiment.

まず、図1および図2を参照して本実施の形態の対象とするGA鋼板のめっき層の構成について説明する。図1はGA鋼板のめっき層の構成を示す断面模式図であり、図2はめっき層中のFe濃度の平均(平均Fe濃度)とめっき層を構成する各合金相の体積割合との関係を示す図である。   First, with reference to FIG. 1 and FIG. 2, the structure of the plating layer of the GA steel plate made into the object of this Embodiment is demonstrated. FIG. 1 is a schematic cross-sectional view showing the configuration of a plated layer of a GA steel sheet. FIG. 2 shows the relationship between the average Fe concentration (average Fe concentration) in the plated layer and the volume ratio of each alloy phase constituting the plated layer. FIG.

図1に示すように、GA鋼板1のめっき層10では、下地鋼板20からのFeの熱拡散により、表面から下地鋼板20側に向かってFe濃度が高くなり、表面から下地鋼板20側に向かって、ζ相11、δ相12、Γ相13が形成される。これらの合金相は、図2に示すように、めっき層10の合金化の進展に伴い、その存在割合を変化させていく。すなわち、GA鋼板1の製造プロセスで実際に使用されるめっき層10中の平均Fe濃度の範囲は7〜15重量%であり、この濃度範囲においてはδ相12がめっき層10を構成する合金相の大部分を占めている。また、それ以外の濃度範囲においては、加熱温度や加熱時間などの加熱処理条件が異なること、めっき層10の外観が明らかに異なることから、合金化の過不足を容易に判断することが可能である。したがって、めっき層10中の平均Fe濃度範囲7〜15重量%において、主たる構成成分であるδ相12の変化を捉えることができれば、高感度かつ高精度にGA鋼板1の合金化度を測定できる。 As shown in FIG. 1, in the plating layer 10 of the GA steel sheet 1, the Fe concentration increases from the surface toward the base steel sheet 20 due to thermal diffusion of Fe from the base steel sheet 20, and from the surface toward the base steel sheet 20 side. Thus, a ζ phase 11, a δ 1 phase 12, and a Γ phase 13 are formed. As shown in FIG. 2, these alloy phases change their abundance with the progress of alloying of the plating layer 10. That is, the range of the average Fe concentration in the plating layer 10 that is actually used in the manufacturing process of the GA steel sheet 1 is 7 to 15% by weight. In this concentration range, the alloy in which the δ 1 phase 12 constitutes the plating layer 10. Occupies most of the phase. In addition, in other concentration ranges, the heat treatment conditions such as the heating temperature and the heating time are different, and the appearance of the plating layer 10 is clearly different, so it is possible to easily determine whether the alloying is excessive or insufficient. is there. Therefore, in the average Fe concentration range of 7 to 15% by weight in the plating layer 10, if the change of the main component δ 1 phase 12 can be captured, the degree of alloying of the GA steel sheet 1 is measured with high sensitivity and high accuracy. it can.

一方、図3は、各合金相中のFe濃度(Fe固溶量)を示す図である。図3に示すように、各合金相のFe固溶量はある程度の幅を持っている。めっき層10の主な構成成分であるδ相12における合金相中のFe濃度は8.2〜13.5原子%と比較的広い濃度範囲をとる。このような場合、固溶体合金の格子定数は、組成とともに直線的に変化するという、ベガード則が成り立つことが予想される。また、XRD法における回折角度2θと、結晶面間隔dおよび入射X線の波長λとの関係は、次式(1)のブラッグの法則で表すことができる。 On the other hand, FIG. 3 is a diagram showing the Fe concentration (Fe solid solution amount) in each alloy phase. As shown in FIG. 3, the Fe solid solution amount of each alloy phase has a certain width. The Fe concentration in the alloy phase in the δ 1 phase 12 which is the main component of the plating layer 10 is a relatively wide concentration range of 8.2 to 13.5 atomic%. In such a case, it is expected that Vegard's law holds that the lattice constant of the solid solution alloy changes linearly with the composition. Further, the relationship between the diffraction angle 2θ in the XRD method, the crystal plane interval d and the wavelength λ of the incident X-ray can be expressed by the Bragg law of the following equation (1).

2dsinθ=λ ・・・(1)   2 dsin θ = λ (1)

合金の組成の変化に伴い合金の格子定数が変化すると、結晶面間隔dも変化し、それに伴いX線回折角度2θもシフトする。室温において、α−Fe中のFe原子半径は1.24Åであり、Zn結晶中のZn原子半径は1.33Åである。δ相12においてベガード則が成り立つと仮定するならば、Fe原子半径の方が小さいため、Fe濃度が増加するにつれて格子定数が小さくなり、X線回折角度が高角側にシフトすると予想できる。すなわち、δ相12の回折角度の変化から、GA鋼板1の合金化度を予測できると考えられる。 When the lattice constant of the alloy changes as the alloy composition changes, the crystal plane spacing d also changes, and the X-ray diffraction angle 2θ also shifts accordingly. At room temperature, the radius of Fe atom in α-Fe is 1.24Å, and the radius of Zn atom in Zn crystal is 1.33Å. If it is assumed that Vegard's law holds in the δ 1 phase 12, since the Fe atomic radius is smaller, it can be expected that the lattice constant decreases as the Fe concentration increases, and the X-ray diffraction angle shifts to the higher angle side. That is, it is considered that the degree of alloying of the GA steel sheet 1 can be predicted from the change in the diffraction angle of the δ 1 phase 12.

本実施の形態では、図4に示すように、めっき付着量とめっき層中の平均Fe濃度とが異なる4種のGA鋼板1を用意した。なお、図4に示すめっき付着量と平均Fe濃度は、XRD法による測定(XRD測定)を終えた試料を用いて、次に示す手順で化学分析した値である。すなわち、めっき付着量は、JISH0401に準拠して、XRD測定の非対象面を完全にシールして、ヘキサメチレンテトラミンを少量添加した塩酸水溶液中でめっき層10を溶解し、溶解前後の試料片の重量差から算出した。また、平均Fe濃度は、めっき層10溶解後の溶液をICP発光分光分析した結果から算出した。   In the present embodiment, as shown in FIG. 4, four types of GA steel sheets 1 having different plating adhesion amounts and average Fe concentrations in the plating layer were prepared. Note that the plating adhesion amount and the average Fe concentration shown in FIG. 4 are values obtained by chemical analysis in the following procedure using a sample that has been measured by the XRD method (XRD measurement). That is, in accordance with JIS 0401, the non-target surface of XRD measurement was completely sealed, and the plating layer 10 was dissolved in a hydrochloric acid aqueous solution to which a small amount of hexamethylenetetramine was added. Calculated from the weight difference. The average Fe concentration was calculated from the result of ICP emission spectroscopic analysis of the solution after dissolution of the plating layer 10.

図5は、各合金相について、上記式(1)のブラッグの法則で求められる理論的な回折角度を示す図である。図5に示す理論的な回折角度に基づいて、図4に示すGA鋼板1を下記の条件でXRD測定した。XRD測定用の装置には、集中ビーム光学系のX線回折装置(リガク社製RU−300)を用い、入射X線はCr−Kα線、X線入射角度を60°とし、図5に示した各Fe−Zn合金相の理論的な回折角度から±0.5°の範囲を、スキャンステップを0.05°、スキャンスピードを0.4°/minとして測定した。さらに、各合金相の測定範囲の中で最大となる強度を回折ピーク強度とし、強度が最大となる角度を回折ピーク角度とした。   FIG. 5 is a diagram showing a theoretical diffraction angle obtained by Bragg's law of the above formula (1) for each alloy phase. Based on the theoretical diffraction angle shown in FIG. 5, the GA steel sheet 1 shown in FIG. 4 was subjected to XRD measurement under the following conditions. As the XRD measurement apparatus, a concentrated beam optical X-ray diffractometer (Rigaku RU-300) is used. The incident X-ray is Cr-Kα ray, and the X-ray incident angle is 60 °. Further, the range of ± 0.5 ° from the theoretical diffraction angle of each Fe—Zn alloy phase was measured at a scan step of 0.05 ° and a scan speed of 0.4 ° / min. Furthermore, the maximum intensity in the measurement range of each alloy phase was defined as the diffraction peak intensity, and the angle at which the intensity was maximum was defined as the diffraction peak angle.

図6は、各合金相の回折ピーク強度とめっき層中の平均Fe濃度との関係を示す図である。各合金相の回折ピーク強度の増減に着目すると、めっき層中の平均Fe濃度の増加に伴い、ζ相11の強度が減少し約11重量%でほぼ一定となり、δ相12とΓ相13の回折ピーク強度はわずかに単調増加しているのがわかる。これは、合金化の進展とともにFe濃度の低いζ層が減少・消失し、Fe濃度の高いδ相12とΓ相13とが生成・成長したことを示している。ζ相11の回折ピーク強度は、約700カウントの大幅な減少が見られるものの、約11重量%で一定となるため、GA鋼板1の製造プロセスで実際に使用される平均Fe濃度7〜15重量%の範囲全体で、めっき層10中の平均Fe濃度の高精度測定のための指標には適さない。一方、δ相12とΓ相13の回折ピーク強度は、平均Fe濃度7〜15重量%の範囲全体で単調増加しているが、その増加は約200カウントとわずかであるため、めっき層10中の平均Fe濃度を高精度に測定するには適さない。 FIG. 6 is a diagram showing the relationship between the diffraction peak intensity of each alloy phase and the average Fe concentration in the plating layer. Focusing on the increase / decrease in the diffraction peak intensity of each alloy phase, as the average Fe concentration in the plating layer increases, the intensity of the ζ phase 11 decreases and becomes substantially constant at about 11% by weight, and the δ 1 phase 12 and the Γ phase 13 It can be seen that the intensity of the diffraction peak increases slightly. This indicates that as the alloying progresses, the ζ layer having a low Fe concentration decreases / disappears, and the δ 1 phase 12 and the Γ phase 13 having a high Fe concentration are generated and grown. Although the diffraction peak intensity of the ζ phase 11 is substantially reduced by about 700 counts, it becomes constant at about 11% by weight, so that the average Fe concentration actually used in the manufacturing process of the GA steel sheet 1 is 7 to 15% by weight. % Is not suitable as an index for high-accuracy measurement of the average Fe concentration in the plating layer 10 in the entire range. On the other hand, the diffraction peak intensities of the δ 1 phase 12 and the Γ phase 13 monotonically increase over the entire range of the average Fe concentration of 7 to 15% by weight, but the increase is slight, about 200 counts. It is not suitable for measuring the average Fe concentration in the medium with high accuracy.

図7は、図5に示した各合金相の結晶面間隔から求まる理論的な回折角度からの回折ピーク角度のずれとめっき層中の平均Fe濃度との関係を示す図である。各合金相の回折ピーク角度の変化に着目すると、平均Fe濃度とζ相11およびΓ相13との間に明確な相関関係は見られないが、δ相12の回折ピーク角度は平均Fe濃度に対して正比例していることがわかる。これは、この平均Fe濃度範囲内におけるGAめっき層10中のδ相12においてベガード則が成り立ち、合金化の進展に伴うFeの拡散により、δ相12中のFe固溶量が増加することを示している。この回折ピーク角度の変化量(ずれ)はおよそ0.7°と大きいため、高精度に平均Fe濃度を測定することが可能と考えられる。 FIG. 7 is a diagram showing the relationship between the deviation of the diffraction peak angle from the theoretical diffraction angle obtained from the crystal plane spacing of each alloy phase shown in FIG. 5 and the average Fe concentration in the plating layer. Focusing on the change in the diffraction peak angle of each alloy phase, no clear correlation is found between the average Fe concentration and the ζ phase 11 and the Γ phase 13, but the diffraction peak angle of the δ 1 phase 12 is the average Fe concentration. It can be seen that it is directly proportional to. This is because the Vegard law is established in the δ 1 phase 12 in the GA plating layer 10 within this average Fe concentration range, and the amount of Fe solid solution in the δ 1 phase 12 increases due to the diffusion of Fe accompanying the progress of alloying. It is shown that. Since the change amount (deviation) of the diffraction peak angle is as large as approximately 0.7 °, it is considered possible to measure the average Fe concentration with high accuracy.

以上から、GA鋼板1のめっき層10中の平均Fe濃度とδ相の回折ピーク角度の変化量との関係について、次式(2)で表される非常にシンプルな関係式で表すことができることが明らかになった。 From the above, the relationship between the average Fe concentration in the plated layer 10 of the GA steel sheet 1 and the amount of change in the diffraction peak angle of the δ 1 phase can be expressed by a very simple relational expression represented by the following expression (2). It became clear that we could do it.

平均Fe濃度=a×回折ピーク角度の変化量+b ・・・(2)
ただし、a,bは定数
Average Fe concentration = a × difference in diffraction peak angle + b (2)
Where a and b are constants

以上、説明したように、本実施の形態の合金化亜鉛めっき鋼板の合金化度測定方法によれば、GA鋼板1の合金化度と各Fe−Zn合金相のXRD法による回折ピークとの関係において、合金化度の変化とともに、各合金相の回折ピーク強度の変化に加え、めっき層10の主たる構成成分であるδ相12の回折ピーク角度が変化することに基づいて、このδ相12の回折角度の変化を指標にして、合金化度としてめっき層中の平均Fe濃度を算出するので、非破壊で迅速に精度よく簡便に測定できる。 As described above, according to the method for measuring the degree of alloying of the galvanized steel sheet according to the present embodiment, the relationship between the degree of alloying of the GA steel sheet 1 and the diffraction peak of each Fe—Zn alloy phase by the XRD method. In this case, in addition to the change in the diffraction peak intensity of each alloy phase as well as the change in the degree of alloying, this δ 1 phase is based on the change in the diffraction peak angle of the δ 1 phase 12 which is the main constituent of the plating layer 10. Since the average Fe concentration in the plating layer is calculated as the degree of alloying using the change in the diffraction angle of 12 as an index, non-destructive and quick and simple measurement can be performed.

また、本実施の形態ではFe−Zn合金相の回折ピーク角度の変化を指標としており、X線吸収の影響が少ないため、めっき付着量によることなく、合金化度を測定できる。また、本法は、走行中の鋼帯表面に生成されたGA鋼板1のFe濃度のオンライン測定に応用することも可能である。   In this embodiment, the change in the diffraction peak angle of the Fe—Zn alloy phase is used as an index, and the influence of X-ray absorption is small, so that the degree of alloying can be measured without depending on the amount of plating adhesion. The present method can also be applied to online measurement of the Fe concentration of the GA steel sheet 1 generated on the surface of the traveling steel strip.

但し、走行中の鋼帯表面に生成されたGA鋼板1のFe濃度をオンライン測定する場合には、回折ピーク角度が板厚や鋼板の振動の影響を受けるため、Fe濃度の分析精度が低下する。そこで、本発明の発明者らは、回折ピーク角度に対する板厚や鋼板の振動の影響を調査するため、図4に示すGA鋼板1のうち、試料AのGA鋼板1のFe濃度を下記の条件でXRD測定した。XRD測定用の装置には、1次元X線検出器を搭載したリガク社製AutoMATEを用い、入射X線をCr−Kα線、コリメータ径をφ2mm、積算時間を60秒として測定した。   However, when measuring the Fe concentration of the GA steel plate 1 generated on the surface of the running steel strip, the diffraction peak angle is affected by the plate thickness and the vibration of the steel plate, so the Fe concentration analysis accuracy decreases. . Therefore, the inventors of the present invention investigated the influence of the plate thickness and the vibration of the steel plate on the diffraction peak angle, and among the GA steel plates 1 shown in FIG. The XRD measurement was performed with As an apparatus for XRD measurement, AutoMATE manufactured by Rigaku Corporation equipped with a one-dimensional X-ray detector was used. The incident X-ray was measured as Cr-Kα ray, the collimator diameter as φ2 mm, and the integration time as 60 seconds.

また、回折ピーク角度に対する鋼板の傾斜の変化の影響を調べる測定においては、試料を適正な測定位置に配置し、1次元X線検出器の2θ角度を127.0°が中心になるようにX線源と1次元X線検出器との配置を保った状態で、X線入射角度を60.5°、63.5°、66.5°と変化させて測定を行った。また、回折ピーク角度に対する表面垂直方向の距離の変化の影響を調べる測定においては、試料を適正な測定位置から表面垂直方向に0.5mmステップで±2mm変化させて測定を行った。さらに、これらの測定結果から、δ相12の回折ピーク角度を重心法により算出した。 Further, in the measurement for examining the influence of the change in the inclination of the steel sheet on the diffraction peak angle, the sample is placed at an appropriate measurement position, and the 2θ angle of the one-dimensional X-ray detector is set so that 127.0 ° is the center. With the arrangement of the radiation source and the one-dimensional X-ray detector maintained, measurement was performed by changing the X-ray incident angle to 60.5 °, 63.5 °, and 66.5 °. Further, in the measurement for examining the influence of the change in the distance in the surface vertical direction on the diffraction peak angle, the measurement was performed by changing the sample from the appropriate measurement position by ± 2 mm in 0.5 mm steps in the surface vertical direction. Furthermore, from these measurement results, the diffraction peak angle of the δ 1 phase 12 was calculated by the centroid method.

図8は、δ相12の回折ピーク角度のずれと試料傾斜の変化量との関係を示す図、図9は、δ相12の回折ピーク角度のずれと適正な測定位置からの試料表面垂直方向の距離の変化量との関係を示す図である。図8に示すように、δ相12の回折ピーク角度は、試料の傾斜角の変化に対してほとんど変化しない。これに対して、図9に示すように、δ相12の回折ピーク角度は、表面垂直方向の距離の変化に対して大きく変化し、その変化量は約0.25°/mmであった。これは、表面垂直方向に試料位置が変化することによって、試料から出射する回折X線の1次元X線検出器上における角度が変化することにより、回折ピーク角度が見かけ上変化するためであり、このδ相12の回折ピーク角度の見かけ上のずれと表面垂直方向の距離とは正比例関係となる。 FIG. 8 is a diagram showing the relationship between the deviation of the diffraction peak angle of the δ 1 phase 12 and the amount of change in the sample tilt. FIG. 9 shows the deviation of the diffraction peak angle of the δ 1 phase 12 and the sample surface from the appropriate measurement position. It is a figure which shows the relationship with the variation | change_quantity of the distance of a perpendicular direction. As shown in FIG. 8, the diffraction peak angle of the δ 1 phase 12 hardly changes with changes in the tilt angle of the sample. On the other hand, as shown in FIG. 9, the diffraction peak angle of the δ 1 phase 12 changed greatly with respect to the change of the distance in the surface vertical direction, and the change amount was about 0.25 ° / mm. . This is because the diffraction peak angle changes apparently by changing the angle of the diffracted X-rays emitted from the sample on the one-dimensional X-ray detector by changing the sample position in the direction perpendicular to the surface. The apparent deviation of the diffraction peak angle of the δ 1 phase 12 is directly proportional to the distance in the surface vertical direction.

従って、走行中の鋼帯表面に生成されたGA鋼板1のFe濃度をオンライン測定する場合には、表面垂直方向の距離の変化のみを考慮すればよく、この距離の変化を回折X線と同時に測定すれば、回折ピーク角度の見かけ上のずれを補正し、高精度にFe濃度を測定することが可能となる。なお、この見かけ上の回折ピーク角度のずれを低減するため、X線源と1次元X線検出器のいずれか又は双方にコリメータやソーラースリット等を配置して平行ビーム光学系とすることが望ましい。   Therefore, when measuring the Fe concentration of the GA steel sheet 1 generated on the surface of the running steel strip, it is only necessary to consider the change in the distance in the direction perpendicular to the surface. If measured, the apparent shift of the diffraction peak angle can be corrected and the Fe concentration can be measured with high accuracy. In order to reduce the apparent deviation of the diffraction peak angle, it is desirable to arrange a collimator, a solar slit, or the like in either or both of the X-ray source and the one-dimensional X-ray detector to form a parallel beam optical system. .

以上、本発明者によってなされた発明を適用した実施の形態について説明したが、本実施形態による本発明の開示の一部をなす記述及び図面により本発明は限定されることはない。すなわち、本実施形態に基づいて当業者等によりなされる他の実施の形態、実施例および運用技術等は全て本発明の範疇に含まれる。   Although the embodiment to which the invention made by the present inventor is applied has been described above, the present invention is not limited by the description and the drawings that form a part of the disclosure of the present invention according to this embodiment. That is, other embodiments, examples, operational techniques, and the like made by those skilled in the art based on this embodiment are all included in the scope of the present invention.

なお、測定に用いる回折曲線のピークは他の被検成分の回折曲線のピークと重ならないピークである必要があり、なおかつ強度の強いピークを用いることが望ましい。また、結晶面間隔の変化に伴う回折角度の変化量が大きくなり、結晶面間隔の変化をより高精度に測定することが可能となるため、高角度の回折ピークを用いることがより望ましい。また、測定に用いるピークは被検成分毎に複数用いてもよい。なお、各合金相ピークの測定範囲は理論的な回折角度から±0.5°の範囲に限るものではない。また、ここでは、強度が最大となる角度や重心法で求めた角度を回折ピーク角度としたが、回折曲線をフィッティング関数でピークフィッティングして求めた値や、重心法や半値幅法等の数値演算処理等で求めた値を用いることにより、より正確なピーク角度を求めることができる。   Note that the peak of the diffraction curve used for the measurement needs to be a peak that does not overlap with the peak of the diffraction curve of another test component, and it is desirable to use a peak having a high intensity. In addition, since the amount of change in the diffraction angle associated with the change in crystal plane spacing becomes large and the change in crystal plane spacing can be measured with higher accuracy, it is more desirable to use a diffraction peak at a high angle. A plurality of peaks used for measurement may be used for each test component. The measurement range of each alloy phase peak is not limited to a range of ± 0.5 ° from the theoretical diffraction angle. Also, here, the angle at which the intensity is maximum or the angle obtained by the centroid method is used as the diffraction peak angle, but the value obtained by peak fitting the diffraction curve with the fitting function or the numerical value such as the centroid method or half-width method A more accurate peak angle can be obtained by using a value obtained by arithmetic processing or the like.

また、ここでは、検出器をスキャンして回折ピーク角度の変化を測定しているが、X線検出器として1次元検出器や2次元検出器を用いてもよい。1次元検出器や2次元検出器を用いれば、回折ピーク角度の変化をより迅速に測定することが可能となる。なお、1次元検出器や2次元検出器は、スキャンしてもよいし、ある角度に固定してもよい。また、入射X線源やX線入射角度は、ここに記載した内容に限られるものではない。   Here, the detector is scanned to measure the change in the diffraction peak angle, but a one-dimensional detector or a two-dimensional detector may be used as the X-ray detector. If a one-dimensional detector or a two-dimensional detector is used, a change in the diffraction peak angle can be measured more quickly. The one-dimensional detector and the two-dimensional detector may be scanned or fixed at a certain angle. Further, the incident X-ray source and the X-ray incident angle are not limited to those described here.

(実施例)
GA鋼板1について、本発明法によりめっき層10中の平均Fe濃度を測定し、正確度を算出して、従来法により求めた平均Fe濃度の正確度σdと比較した。なお、正確度とは次式(3)で表されるもので、式(3)中の「XRD分析値」は実施例または従来例により得られた平均Fe濃度であり、「化学分析値」は化学分析により得られた平均Fe濃度(基準値)である。
(Example)
For the GA steel sheet 1, the average Fe concentration in the plating layer 10 was measured by the method of the present invention, the accuracy was calculated, and compared with the accuracy σd of the average Fe concentration obtained by the conventional method. The accuracy is represented by the following formula (3), and the “XRD analysis value” in the formula (3) is the average Fe concentration obtained by the example or the conventional example, and the “chemical analysis value” Is the average Fe concentration (reference value) obtained by chemical analysis.

σd=Σ{(XRD分析値)−(化学分析値)}2/(n−1) ・・・(3)
但し、n:試験材数
σd = Σ {(XRD analysis value) − (chemical analysis value)} 2 / (n−1) (3)
Where n is the number of test materials

〔実施例1〕
本発明の実施例1として、めっき付着量44.4〜62.0g/m、めっき層10中の平均Fe濃度9.0〜15.0重量%のGA鋼板試験材を10個準備した。なお、めっき付着量と平均Fe濃度は、XRD測定を終えた試料のXRD測定の非対象面を完全にシールして、ヘキサメチレンテトラミンを少量添加した塩酸水溶液中でめっき層を溶解し、溶解前後の試料片の重量差(JISH0401)と、溶解後の溶液をICP発光分光分析した結果から算出した値である。これらの試料を、前述の集中ビーム光学系X線回折装置を用い、入射X線をCr−Kα線、X線入射角度を60°とし、125.5〜128.5°の範囲を、スキャンステップを0.05°、積算時間を40秒として測定した。さらに、測定範囲の両端に接する直線をバックグラウンドとして除算し、δ相12の回折ピーク角度を重心法で求めた。さらに、化学分析による平均Fe濃度と測定したδ相12の回折ピーク角度から前記式(2)を重回帰して、係数aとbを求めた。
[Example 1]
As Example 1 of the present invention, 10 GA steel sheet test materials having a plating adhesion amount of 44.4 to 62.0 g / m 2 and an average Fe concentration of 9.0 to 15.0 wt% in the plating layer 10 were prepared. In addition, the amount of plating adhesion and the average Fe concentration were determined by completely sealing the non-target surface of the XRD measurement of the sample after the XRD measurement, dissolving the plating layer in a hydrochloric acid aqueous solution to which a small amount of hexamethylenetetramine was added, and before and after the dissolution. This is a value calculated from the difference in the weight of the sample pieces (JISH0401) and the result of ICP emission spectroscopic analysis of the solution after dissolution. Using these concentrated beam optical system X-ray diffractometers, these samples were scanned in the range of 125.5 to 128.5 ° with the incident X-ray being Cr-Kα ray and the X-ray incident angle being 60 °. Was measured at 0.05 ° and the integration time was 40 seconds. Furthermore, the straight line in contact with both ends of the measurement range was divided as the background, and the diffraction peak angle of δ 1 phase 12 was determined by the centroid method. Further, the equation (2) was subjected to multiple regression from the average Fe concentration by chemical analysis and the measured diffraction peak angle of the δ 1 phase 12 to obtain the coefficients a and b.

〔実施例2〕
本発明法における1次元検出器又は2次元検出器の有用性を実施例1と同じ試験材を用いて検討した。XRD測定用の装置には、入射X線源にコリメータを取り付け、回線X線の検出用に1次元検出器を搭載した、擬似平行ビーム系のX線回折装置(リガク社製AutoMATE)を用い、入射X線をCr−Kα線、X線入射角度を63.5°とし、検出器の2θ角度を127.0°が中心になるように固定した状態で積算時間を60秒として測定した。さらに、測定結果から125.5〜128.5°の範囲のデータを抜き出し、実施例1と同様に、この範囲の両端に接する直線をバックグラウンドとして除算し、δ相12の回折ピーク角度を重心法で求めた。さらに、化学分析による平均Fe濃度と測定したδ相12の回折ピーク角度から前記式(2)を重回帰して、係数aとbを求めた。
[Example 2]
The usefulness of the one-dimensional detector or the two-dimensional detector in the method of the present invention was examined using the same test material as in Example 1. The XRD measurement apparatus uses a quasi-parallel beam X-ray diffractometer (AutoMATE manufactured by Rigaku Corporation) equipped with a collimator on the incident X-ray source and a one-dimensional detector for detecting the line X-ray. The measurement was performed with an integration time of 60 seconds in a state where the incident X-ray was Cr-Kα, the X-ray incident angle was 63.5 °, and the 2θ angle of the detector was fixed at 127.0 °. Further, data in the range of 125.5 to 128.5 ° is extracted from the measurement result, and the straight line in contact with both ends of this range is divided as the background in the same manner as in Example 1, and the diffraction peak angle of the δ 1 phase 12 is calculated. Obtained by the center of gravity method. Further, the equation (2) was subjected to multiple regression from the average Fe concentration by chemical analysis and the measured diffraction peak angle of the δ 1 phase 12 to obtain the coefficients a and b.

〔従来例〕
従来例として、Γ相13の回折強度とバックグラウンド強度との関係から平均Fe濃度を求める方法(上記特許文献1および非特許文献1参照)についても、同じ試験材を用いて検討を行った。測定条件は、実施例1と同じ集中ビーム光学系X線回折装置を用い、入射X線をCr−Kα線、X線入射角度を60°とし、積算時間40秒で、回折角度139.0°のX線強度IΓを測定した。また、回折角度139.0°におけるバッググラウンド強度IBGは、回折角度90°のX線強度と回折角度150°のX線強度とを用いて内挿法又は外挿法によって算出した。
[Conventional example]
As a conventional example, a method of obtaining an average Fe concentration from the relationship between the diffraction intensity of the Γ phase 13 and the background intensity (see Patent Document 1 and Non-Patent Document 1) was also examined using the same test material. The measurement conditions were the same concentrated beam optical system X-ray diffractometer as in Example 1, the incident X-ray was Cr-Kα ray, the X-ray incident angle was 60 °, the integration time was 40 seconds, and the diffraction angle was 139.0 °. The X-ray intensity IΓ was measured. The background intensity IBG at a diffraction angle of 139.0 ° was calculated by interpolation or extrapolation using the X-ray intensity at a diffraction angle of 90 ° and the X-ray intensity at a diffraction angle of 150 °.

化学分析による平均Fe濃度とこれらの値から、次式(4)(比較例1、特許文献1参照)と次式(5)(比較例2、非特許文献1参照)を重回帰して係数c〜fを求めた。   From the average Fe concentration by chemical analysis and these values, the following equation (4) (see Comparative Example 1, Patent Document 1) and the following equation (5) (Comparative Example 2, see Non-Patent Document 1) are subjected to multiple regression to obtain coefficients. c to f were obtained.

平均Fe濃度=c×(IΓ−IBG)/IΓ+d ・・・(4)
平均Fe濃度=e×ln(IΓ/IBG)+f ・・・(5)
ここで、c,d,e,fは定数
Average Fe concentration = c × (IΓ−IBG) / IΓ + d (4)
Average Fe concentration = e × ln (IΓ / IBG) + f (5)
Where c, d, e, and f are constants.

図10は、上記実施例と、比較例1,2におけるめっき層中の平均Fe濃度の測定結果を示す図であり、各例について、XRD測定により求められた平均Fe濃度と化学分析により求められた合金化度との関係を示す。図10に示すように、実施例によれば、従来例(比較例1,2)に比べて、化学分析により求められた合金化度とのずれが小さいことがわかる。平均Fe濃度分析の正確度σdを求めたところ、比較例1及び比較例2では共に0.9重量%であったのに対し、実施例1及び実施例2では共に0.3重量%と従来例に比べてかなり良好であった。また、実施例1及び実施例2の測定時間はそれぞれ約41分及び60秒であった。従って、回折X線の検出器に1次元検出器を用いることにより、分析正確度を同等に保ちつつ、測定時間を大幅に短縮することが可能となる。   FIG. 10 is a diagram showing the measurement results of the average Fe concentration in the plating layer in the above examples and Comparative Examples 1 and 2, and for each example, the average Fe concentration obtained by XRD measurement and the chemical analysis. The relationship with the degree of alloying is shown. As shown in FIG. 10, according to the example, it can be seen that the deviation from the degree of alloying obtained by chemical analysis is smaller than in the conventional examples (Comparative Examples 1 and 2). When the accuracy σd of the average Fe concentration analysis was obtained, it was 0.9% by weight in both Comparative Example 1 and Comparative Example 2, whereas it was 0.3% by weight in both of Example 1 and Example 2, which was conventional. It was considerably better than the example. Moreover, the measurement time of Example 1 and Example 2 was about 41 minutes and 60 seconds, respectively. Therefore, by using a one-dimensional detector as a diffracted X-ray detector, it is possible to greatly shorten the measurement time while maintaining the same analysis accuracy.

〔実施例3〕
図11は、合金化溶融亜鉛めっき鋼板のFe濃度をオンラインで測定する際に用いられる本発明法によるX線回折装置の測定ヘッド部の構成を示す模式図である。測定ヘッド部30には、合金化溶融亜鉛めっき鋼板34に所定の入射角αになるようにX線を放射するCrターゲットX線管31が配設されている。1次元検出器32は、CrターゲットX線管31により放射され、合金化溶融亜鉛めっき鋼板34により回折されたX線を測定する。1次元検出器32は、δ相に対応する角度で設置され、回折X線プロファイルを測定することができるように構成されている。回折X線プロファイルを測定する位置の直上又は近傍にはレーザー変位計33が設置されている。レーザー変位計33は、回折X線プロファイルと同時に測定ヘッドと合金化溶融亜鉛めっき鋼板34との間の距離を測定できるように構成されている。図中の符号35はコリメータを示し、符号36はKβフィルタを示す。
Example 3
FIG. 11 is a schematic diagram showing the configuration of the measurement head portion of the X-ray diffraction apparatus according to the present invention used when measuring the Fe concentration of the galvannealed steel sheet on-line. The measurement head unit 30 is provided with a Cr target X-ray tube 31 that emits X-rays to the alloyed hot-dip galvanized steel sheet 34 so as to have a predetermined incident angle α. The one-dimensional detector 32 measures the X-rays radiated from the Cr target X-ray tube 31 and diffracted by the galvannealed steel plate 34. The one-dimensional detector 32 is installed at an angle corresponding to the δ 1 phase, and is configured to measure a diffracted X-ray profile. A laser displacement meter 33 is installed immediately above or near the position where the diffraction X-ray profile is measured. The laser displacement meter 33 is configured to measure the distance between the measuring head and the galvannealed steel plate 34 simultaneously with the diffraction X-ray profile. Reference numeral 35 in the figure denotes a collimator, and reference numeral 36 denotes a Kβ filter.

測定ヘッドには、図示しないX線発生装置とX線管とを冷却するための冷却水送水装置及び測定ヘッド内の温度を一定に保つための恒温装置とが接続されている。さらに、測定ヘッドには演算処理装置が接続されている。演算処理装置は、1次元検出器32で測定されたδ相の回折X線プロファイルとレーザー変位計33で測定された距離とから角度補正とピーク位置算出とを実行し、合金化度を算出する。 The measurement head is connected to an X-ray generator (not shown) and a cooling water feeding device for cooling the X-ray tube and a thermostatic device for keeping the temperature in the measurement head constant. Furthermore, an arithmetic processing unit is connected to the measurement head. The arithmetic processing unit performs angle correction and peak position calculation from the diffracted X-ray profile of δ 1 phase measured by the one-dimensional detector 32 and the distance measured by the laser displacement meter 33, and calculates the degree of alloying. To do.

連続式合金化溶融亜鉛めっき鋼帯製造ラインにおいて、図12に示す成分を有する板厚1.0mmの鋼種A及び鋼種Bの鋼帯に、ライン速度100mpm一定とし、めっき付着量と合金化温度とを制御して溶融亜鉛めっき合金化処理(めっき付着量44.4〜62.0g/m、Fe濃度9.0〜15.0重量%)を行った後、鋼板温度が100℃以下になるライン上に図11(実施例3)及び非特許文献1(比較例3)に示すオンライン合金化度測定システムを設置し、合金化溶融亜鉛めっき鋼帯の合金化度を測定時間30秒でオンライン測定した。 In the continuous alloying hot dip galvanized steel strip production line, the steel strips of steel grade A and steel grade B having the components shown in FIG. Is controlled to perform hot dip galvanizing alloying treatment (plating adhesion amount 44.4 to 62.0 g / m 2 , Fe concentration 9.0 to 15.0 wt%), and then the steel plate temperature becomes 100 ° C. or lower. The on-line alloying degree measurement system shown in FIG. 11 (Example 3) and Non-Patent Document 1 (Comparative Example 3) is installed on the line, and the alloying degree of the galvannealed steel strip is measured online for 30 seconds. It was measured.

さらに、ライン速度と鋼帯の長さから逆算してXRD測定した位置とほぼ同じ位置から合金化溶融亜鉛めっき鋼片を採取し、XRD測定の非対象面を完全にシールして、ヘキサメチレンテトラミンを少量添加した塩酸水溶液中でめっき層を溶解し、溶解前後の試料片の重量差(JISH0401)と溶解後の溶液をICP発光分光分析した結果からめっき付着量と平均Fe濃度を算出した。   Furthermore, the alloyed hot-dip galvanized steel pieces are collected from almost the same position as the XRD measurement position calculated from the line speed and the length of the steel strip, and the non-target surface of the XRD measurement is completely sealed to obtain hexamethylenetetramine. The plating layer was dissolved in an aqueous hydrochloric acid solution with a small amount of added, and the plating adhesion amount and the average Fe concentration were calculated from the results of ICP emission spectroscopic analysis of the weight difference (JISH4011) between the sample pieces before and after dissolution and the solution after dissolution.

さらに、鋼種Aと鋼種Bについて、化学分析による平均Fe濃度と測定結果から式(2)及び式(5)を重回帰して、実施例3及び比較例3における係数a,b,e,fをそれぞれ算定した。   Furthermore, for steel type A and steel type B, the coefficients a, b, e, f in Example 3 and Comparative Example 3 were subjected to multiple regression of Equation (2) and Equation (5) from the average Fe concentration by chemical analysis and the measurement results. Was calculated respectively.

図13及び図14はそれぞれ、実施例3及び比較例3におけるめっき層中の平均Fe濃度の測定結果を示す図であり、各例について、XRD測定により求められた平均Fe濃度と化学分析により求められた合金化度との関係を示す。また、各例について、鋼種BのFe濃度を鋼種A用の算定式で求めた結果も示す。図13及び図14に示すように、実施例3によれば、従来例(比較例3)に比べて、化学分析により求められた合金化度とのずれが小さく、鋼種Aと鋼種Bの平均Fe濃度分析の正確度σdは、比較例3ではそれぞれ0.9と0.8重量%であったのに対し、実施例3ではそれぞれ0.3と0.4重量%であり、従来例に比べてかなり良好であった。   FIGS. 13 and 14 are diagrams showing the measurement results of the average Fe concentration in the plating layers in Example 3 and Comparative Example 3, respectively. For each example, the average Fe concentration obtained by XRD measurement and the chemical analysis were obtained. The relationship with the obtained alloying degree is shown. Moreover, about each example, the result of having calculated | required the Fe density | concentration of the steel type B with the formula for steel type A is also shown. As shown in FIG. 13 and FIG. 14, according to Example 3, the deviation from the degree of alloying obtained by chemical analysis is small compared to the conventional example (Comparative Example 3), and the average of steel types A and B The accuracy σd of the Fe concentration analysis was 0.9 and 0.8% by weight in Comparative Example 3, respectively, whereas 0.3 and 0.4% by weight in Example 3, respectively. It was considerably better than that.

また、異なる鋼種の検量線を用いて平均Fe濃度を求めた場合にも、比較例3では分析正確度が3.1重量%であったのに対し、実施例3では0.9重量%であった。これにより、実施例3によれば、従来例(比較例3)に比べて、化学分析により求められた合金化度とのずれがはるかに小さいことがわかる。これは、従来例(比較例3)は、めっき層10と下地鋼板20の界面近傍に少量生成されるΓ相13のX線回折強度の変化を利用してFe濃度を算出しており、Γ相13の生成量は下地鋼板20の成分や合金化条件の違いにより変化するためである。一方、本発明による実施例3においてはGAめっき層10の主たる構成成分であるδ相12の回折ピーク角度の変化を利用してFe濃度を算出しているため、下地鋼板20の成分や合金化条件の違いによる影響を受けにくい。従って、本手法によれば、下地鋼板の成分や合金化条件が異なる場合でも、GA鋼板1のFe濃度を正確にオンライン測定することができる。 Also, when the average Fe concentration was determined using calibration curves of different steel types, the analysis accuracy was 3.1 wt% in Comparative Example 3, whereas 0.9 wt% in Example 3. there were. Thereby, according to Example 3, it turns out that the shift | offset | difference with the alloying degree calculated | required by the chemical analysis is far smaller compared with a prior art example (comparative example 3). This is because the conventional example (Comparative Example 3) calculates the Fe concentration using the change in the X-ray diffraction intensity of the Γ phase 13 generated in a small amount near the interface between the plating layer 10 and the base steel plate 20, This is because the amount of phase 13 produced varies depending on the components of the base steel plate 20 and the alloying conditions. On the other hand, in Example 3 according to the present invention, since the Fe concentration is calculated using the change in the diffraction peak angle of the δ 1 phase 12 which is the main component of the GA plating layer 10, the components and alloys of the base steel plate 20 Less affected by differences in conversion conditions. Therefore, according to this method, even when the components and alloying conditions of the base steel plate are different, the Fe concentration of the GA steel plate 1 can be accurately measured online.

以上のことから、図11に示すX線回折装置を用い本発明方法により合金化度を測定すれば、その結果を速やかに製造条件の制御にフィードバックすることが可能になるので、合金化溶融亜鉛めっき鋼板をより高い歩留で製造することができる。   From the above, if the degree of alloying is measured by the method of the present invention using the X-ray diffractometer shown in FIG. 11, the result can be quickly fed back to the control of the production conditions. A plated steel sheet can be manufactured with a higher yield.

1 GA鋼板
10 めっき層
11 ζ相
12 δ
13 Γ相
20 下地鋼板
DESCRIPTION OF SYMBOLS 1 GA steel plate 10 Plating layer 11 ζ phase 12 δ 1 phase 13 Γ phase 20 Base steel plate

Claims (4)

合金化溶融亜鉛めっき層が表面に存在する試料にX線を照射するステップと、
該試料のめっき層を構成する合金相の回折ピーク角度を測定するステップと、
前記回折ピーク角度の変化からめっき層中の平均Fe濃度をめっき層の合金化度として算出するステップと、
を含むことを特徴とするX線回折法を用いた合金化溶融亜鉛めっき鋼板の合金化度測定方法。
Irradiating a sample having an alloyed hot-dip galvanized layer on the surface with X-rays;
Measuring the diffraction peak angle of the alloy phase constituting the plating layer of the sample;
Calculating the average Fe concentration in the plating layer from the change in the diffraction peak angle as the degree of alloying of the plating layer;
A method for measuring the degree of alloying of an alloyed hot-dip galvanized steel sheet using an X-ray diffraction method.
前記合金相は、δ相であることを特徴とする請求項1に記載の合金化溶融亜鉛めっき鋼板の合金化度測定方法。 The method for measuring the degree of alloying of an galvannealed steel sheet according to claim 1, wherein the alloy phase is a δ 1 phase. 前記めっき層中の平均Fe濃度を算出するステップは、前記回折ピーク角度の変化量を以下に示す数式(1)に代入することによってめっき層中の平均Fe濃度を算出するステップを含むことを特徴とする請求項1又は2に記載の合金化溶融亜鉛めっき鋼板の合金化度測定方法。
平均Fe濃度=a×回折ピーク角度の変化量+b …(1)
ただし、a,bは定数
The step of calculating the average Fe concentration in the plating layer includes the step of calculating the average Fe concentration in the plating layer by substituting the change amount of the diffraction peak angle into the following mathematical formula (1). The method for measuring the degree of alloying of the galvannealed steel sheet according to claim 1 or 2.
Average Fe concentration = a × difference of diffraction peak angle + b (1)
Where a and b are constants
前記回折ピーク角度を測定するステップは、1次元X線検出器又は2次元X線検出器を用いて回折X線を測定するステップを含むことを特徴とする請求項1〜3のうち、いずれか1項に記載の合金化溶融亜鉛めっき鋼板の合金化度測定方法。 The step of measuring the diffraction peak angle includes a step of measuring diffracted X-rays using a one-dimensional X-ray detector or a two-dimensional X-ray detector. The method for measuring the degree of alloying of the galvannealed steel sheet according to item 1.
JP2013167582A 2012-08-13 2013-08-12 Method for measuring the degree of alloying of galvannealed steel sheets Active JP5962615B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013167582A JP5962615B2 (en) 2012-08-13 2013-08-12 Method for measuring the degree of alloying of galvannealed steel sheets

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012179172 2012-08-13
JP2012179172 2012-08-13
JP2013167582A JP5962615B2 (en) 2012-08-13 2013-08-12 Method for measuring the degree of alloying of galvannealed steel sheets

Publications (2)

Publication Number Publication Date
JP2014055353A JP2014055353A (en) 2014-03-27
JP5962615B2 true JP5962615B2 (en) 2016-08-03

Family

ID=50612917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013167582A Active JP5962615B2 (en) 2012-08-13 2013-08-12 Method for measuring the degree of alloying of galvannealed steel sheets

Country Status (1)

Country Link
JP (1) JP5962615B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6520865B2 (en) * 2016-08-17 2019-05-29 Jfeスチール株式会社 Method of measuring degree of alloying and / or plating adhesion of galvanized steel sheet
KR102232487B1 (en) * 2017-10-05 2021-03-29 닛폰세이테츠 가부시키가이샤 Plating adhesion evaluation device, plating adhesion evaluation method, alloyed hot-dip galvanized steel sheet manufacturing facility, and alloyed hot-dip galvanized steel sheet manufacturing method
JP7328611B1 (en) * 2021-10-26 2023-08-17 日本製鉄株式会社 plated steel plate

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5847659B2 (en) * 1975-08-12 1983-10-24 日新製鋼株式会社 What is the best way to go about it?
JPS56100348A (en) * 1980-01-14 1981-08-12 Kawasaki Steel Corp Measuring apparatus of alloying degree of plated plate on line used x-ray detector having position discriminating ability
JPS61148355A (en) * 1984-12-21 1986-07-07 Kawasaki Steel Corp Measurement of ion concentration during plating of alloyed zinc galvanized steel plate
JP2904891B2 (en) * 1990-08-31 1999-06-14 日新製鋼株式会社 Online alloying degree measuring device for galvanized steel sheet
JPH0712761A (en) * 1993-06-28 1995-01-17 Sumitomo Metal Ind Ltd Determination method for upper layer plating of steel plate having multilayer of alloyed and fused galvanization
JPH07311164A (en) * 1994-05-17 1995-11-28 Kobe Steel Ltd Method and instrument for measuring diffracted x-ray distribution of metallic plate
JPH0933455A (en) * 1995-07-14 1997-02-07 Sumitomo Metal Ind Ltd Method for measuring alloyed degree of alloying plated layer

Also Published As

Publication number Publication date
JP2014055353A (en) 2014-03-27

Similar Documents

Publication Publication Date Title
KR900008955B1 (en) Method of measuring layer theckness and composition of alloy plating
KR101572765B1 (en) METHOD AND DEVICE FOR DETERMINING Fe-Zn ALLOY PHASE THICKNESS OF HOT-DIP GALVANIZED STEEL SHEET
JP5850211B1 (en) X-ray diffraction apparatus and X-ray diffraction measurement method
KR20020060741A (en) Quantitative measuring method and apparatus of metal phase using x-ray diffraction method, and method for making plated steel sheet using them
US5155751A (en) System for making an on-line determination of degree of alloying in galvannealed steel sheets
JP5962615B2 (en) Method for measuring the degree of alloying of galvannealed steel sheets
JPS5847659B2 (en) What is the best way to go about it?
EP0348574B1 (en) Method of simultaneously measuring thickness and composition of film and apparatus therefor
JPH0933455A (en) Method for measuring alloyed degree of alloying plated layer
CN109563606B (en) Method for measuring alloying degree and/or plating adhesion amount of galvanized steel sheet
JP2707865B2 (en) Method of measuring alloying degree of alloyed galvanized layer
JPH06347247A (en) Measuring method of thickness of alloy phase of plated layer
JPS6014109A (en) Measuring device of buld-up quantity of plating of galvanized steel plate
JPH0435028B2 (en)
JP2542906B2 (en) Method for measuring alloying degree of galvannealed steel sheet by X-ray diffraction method
JPH0610660B2 (en) Method for measuring film thickness and composition of alloy film
JPH0440655B2 (en)
JPH10103942A (en) Measuring method for degree of plating adhesion to surface layer and lower layer of double-layer plated steel plate
JPH09152409A (en) Method of judging degree of alloying for alloyed zinc plated steel plate
JPH02257045A (en) Method and device for measuring plated deposit of plated steel sheet and composition of plated film
JP2002228430A (en) Method for measuring mass of deposit per unit area of plating or of surface-treating coating
JPH07260715A (en) Method and apparatus for measuring thickness of alloy plating phase
KR20040056245A (en) X-ray optics system for measuring phase fraction and alloying degree of galvannealed steels

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160531

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160613

R150 Certificate of patent or registration of utility model

Ref document number: 5962615

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250