JP5850211B1 - X-ray diffraction apparatus and X-ray diffraction measurement method - Google Patents

X-ray diffraction apparatus and X-ray diffraction measurement method Download PDF

Info

Publication number
JP5850211B1
JP5850211B1 JP2015545215A JP2015545215A JP5850211B1 JP 5850211 B1 JP5850211 B1 JP 5850211B1 JP 2015545215 A JP2015545215 A JP 2015545215A JP 2015545215 A JP2015545215 A JP 2015545215A JP 5850211 B1 JP5850211 B1 JP 5850211B1
Authority
JP
Japan
Prior art keywords
ray
test sample
ray diffraction
measurement
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015545215A
Other languages
Japanese (ja)
Other versions
JPWO2015119056A1 (en
Inventor
朋弘 青山
朋弘 青山
克己 山田
山田  克己
野呂 寿人
寿人 野呂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2015545215A priority Critical patent/JP5850211B1/en
Application granted granted Critical
Publication of JP5850211B1 publication Critical patent/JP5850211B1/en
Publication of JPWO2015119056A1 publication Critical patent/JPWO2015119056A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • G01N23/207Diffractometry using detectors, e.g. using a probe in a central position and one or more displaceable detectors in circumferential positions

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

本発明の一態様であるX線回折装置(1)は、被検試料(16)のX線回折強度プロファイルを測定する測定ユニット(2)と、被検試料(16)と測定ユニット(2)との間の離間距離(Z)を測定する距離測定部(9)と、X線回折強度プロファイルを補正処理するデータ処理部(10)とを備える。測定ユニット(2)は、被検試料(16)にX線を照射するX線照射部(3)と、被検試料(16)からの複数の回折X線を1次元検出または2次元検出するX線検出部(6)と、基準面(17)に対して相対的にX線照射部(3)およびX線検出部(6)を固定配置される筐体(8)とを有する。データ処理部(10)は、離間距離(Z)をもとに被検試料(16)の変位(ΔZ)を算出し、算出した変位(ΔZ)に応じて、被検試料(16)の測定点における真のX線回折角度(2θ)を算出し、算出した真のX線回折角度(2θ)をもとに、X線回折強度プロファイルを補正する。An X-ray diffractometer (1) according to an aspect of the present invention includes a measurement unit (2) that measures an X-ray diffraction intensity profile of a test sample (16), a test sample (16), and a measurement unit (2). A distance measuring unit (9) for measuring a separation distance (Z) between the two and a data processing unit (10) for correcting the X-ray diffraction intensity profile. The measurement unit (2) performs one-dimensional detection or two-dimensional detection of an X-ray irradiation unit (3) that irradiates the test sample (16) with X-rays and a plurality of diffraction X-rays from the test sample (16). An X-ray detection unit (6) and a housing (8) in which the X-ray irradiation unit (3) and the X-ray detection unit (6) are fixedly disposed relative to the reference surface (17). The data processing unit (10) calculates the displacement (ΔZ) of the test sample (16) based on the separation distance (Z), and measures the test sample (16) according to the calculated displacement (ΔZ). The true X-ray diffraction angle (2θ) at the point is calculated, and the X-ray diffraction intensity profile is corrected based on the calculated true X-ray diffraction angle (2θ).

Description

本発明は、被検試料を構成する物質のX線回折強度プロファイルを測定するX線回折装置およびX線回折測定方法に関するものである。  The present invention relates to an X-ray diffraction apparatus and an X-ray diffraction measurement method for measuring an X-ray diffraction intensity profile of a substance constituting a test sample.

X線回折法は、被検試料に照射したX線の回折ピークの角度、強度、幅等から、この被検試料を構成する物質の結晶構造、量、結晶格子間隔、歪み、応力、結晶配向性、結晶性等、多くの有用な情報を得ることができる。このため、X線回折法は、様々な分野において、被検試料に各種処理を行った際の特性評価に広く用いられている。  The X-ray diffraction method determines the crystal structure, amount, crystal lattice spacing, strain, stress, crystal orientation of the substance constituting the test sample from the angle, intensity, width, etc. of the X-ray diffraction peak irradiated to the test sample. Many useful information such as properties and crystallinity can be obtained. For this reason, the X-ray diffraction method is widely used in various fields for evaluating characteristics when various types of processing are performed on a test sample.

一般に、X線回折法を用いた被検試料のX線回折測定は、製造後あるいは製造中の鋼帯等の製品から一部分を被検試料として採取し、採取した被検試料を用いて製造ライン外すなわちオフラインで行われる。しかしながら、被検試料のX線回折測定をオフラインで行う場合、得られたX線回折測定結果を製造中の製品の製造条件に即座に反映して製造条件を制御することは、困難である。一方、製造中の製品の製造条件を制御する際には、上述したように被検試料に関する多くの有用な情報を取得可能なX線回折測定結果を製造条件に即座に反映することが望ましい。このため、被検試料のX線回折測定を、製品の製造ライン内すなわちオンラインで行う技術が重要である。  In general, X-ray diffraction measurement of a test sample using the X-ray diffraction method is performed by collecting a part of a sample from a product such as a steel strip after manufacture or during manufacture as a test sample and using the collected test sample. It takes place outside or offline. However, when X-ray diffraction measurement of a test sample is performed off-line, it is difficult to control the manufacturing conditions by immediately reflecting the obtained X-ray diffraction measurement results on the manufacturing conditions of the product being manufactured. On the other hand, when controlling the manufacturing conditions of the product being manufactured, it is desirable to immediately reflect the X-ray diffraction measurement result capable of acquiring a lot of useful information on the test sample in the manufacturing conditions as described above. For this reason, a technique for performing X-ray diffraction measurement of a test sample within a product production line, that is, online is important.

なお、オンラインでのX線回折測定に関する従来技術として、例えば、ある特定のX線回折角度となるように入射X線源とX線検出器とを固定してX線回折強度を測定するオンラインX線回折装置が提案されている(特許文献1〜8または非特許文献1参照)。また、被検試料のX線回折強度プロファイルを測定して回折ピーク角度や積分強度、半値幅等を算出するオンラインX線回折装置および方法が提案されている(特許文献9〜15参照)。X線回折強度プロファイルを測定するタイプのオンラインX線回折装置の中には、特許文献9に開示されるように、入射X線として白色X線を用い、X線検出器としてエネルギー分散型検出器を用いたオンラインX線回折装置がある。また、特許文献10に開示されるように、X線検出器として1次元検出器を用いたオンラインX線回折装置がある。  In addition, as a conventional technique related to online X-ray diffraction measurement, for example, online X which measures an X-ray diffraction intensity by fixing an incident X-ray source and an X-ray detector so as to have a specific X-ray diffraction angle. A line diffraction device has been proposed (see Patent Documents 1 to 8 or Non-Patent Document 1). Further, an online X-ray diffraction apparatus and method for measuring an X-ray diffraction intensity profile of a test sample and calculating a diffraction peak angle, an integrated intensity, a half width, and the like have been proposed (see Patent Documents 9 to 15). Among on-line X-ray diffractometers that measure X-ray diffraction intensity profiles, as disclosed in Patent Document 9, white X-rays are used as incident X-rays, and energy dispersive detectors are used as X-ray detectors. There is an on-line X-ray diffractometer using Further, as disclosed in Patent Document 10, there is an online X-ray diffraction apparatus using a one-dimensional detector as an X-ray detector.

特許第2542906号公報Japanese Patent No. 2542906 特許第2707865号公報Japanese Patent No. 2707865 特公昭56−12314号公報Japanese Examined Patent Publication No. 56-12314 特許第2534834号公報Japanese Patent No. 2534834 特開平9−33455号公報JP-A-9-33455 特許第3034801号公報Japanese Patent No. 3034801 特公平6−68472号公報Japanese Examined Patent Publication No. 6-68472 特公平6−90154号公報Japanese Patent Publication No. 6-90154 特許第3817812号公報Japanese Patent No. 3817812 特許第3217843号公報Japanese Patent No. 3217843 特開昭52−21887号公報JP-A-52-21887 特開平6−25894号公報JP-A-6-25894 特開平7−276235号公報JP-A-7-276235 特開2012−163392号公報JP2012-163392A 特許第2810225号公報Japanese Patent No. 2810225

「川崎製鉄技報」 1986年 Vol.18 No.2 p.31"Kawasaki Steel Technical Report" 1986 Vol.18 No.2 p.31

前述したとおり、X線回折法によれば、測定したX線回折強度プロファイルから、被検試料を構成する物質の結晶構造、構成物質の量、応力、結晶配向性をはじめとした様々な情報を得ることが可能となる。しかしながら、特許文献1〜8または非特許文献1に記載された従来技術では、ある特定のX線回折角度のX線回折強度を測定しているので、被検試料を構成する物質の量や厚さ等、X線回折強度から得られる情報が限られてしまい、被検試料の必要とする情報が得られない可能性がある。  As described above, according to the X-ray diffraction method, various information including the crystal structure of the substance constituting the test sample, the amount of the constituent substance, the stress, and the crystal orientation are obtained from the measured X-ray diffraction intensity profile. Can be obtained. However, in the conventional techniques described in Patent Documents 1 to 8 or Non-Patent Document 1, since the X-ray diffraction intensity at a specific X-ray diffraction angle is measured, the amount and thickness of the substance constituting the test sample In addition, the information obtained from the X-ray diffraction intensity is limited, and there is a possibility that information required by the test sample cannot be obtained.

また、被検試料のX線回折強度プロファイルをオンラインで測定するに際しては、着目する角度範囲のX線回折強度プロファイルを迅速に測定することのみならず、X線回折強度プロファイルの測定時におけるX線回折角度の誤差を抑制することが要求される。しかしながら、特許文献9〜15に記載された従来技術では、被検試料の厚さや形状の変化、あるいは走行中(搬送中)の被検試料や設置架台等の振動に伴い、X線回折強度プロファイルの測定ユニットと被検試料との間の距離が変化してしまい、これに起因して、被検試料のX線回折角度に誤差が生じることから、被検試料のX線回折強度プロファイルの測定精度が低下するという問題がある。  In addition, when measuring the X-ray diffraction intensity profile of the test sample online, not only can the X-ray diffraction intensity profile in the angle range of interest be measured quickly, but also X-rays at the time of measuring the X-ray diffraction intensity profile. It is required to suppress diffraction angle errors. However, in the prior art described in Patent Documents 9 to 15, the X-ray diffraction intensity profile is accompanied by changes in the thickness and shape of the test sample, or vibrations of the test sample and the installation stand during traveling (during transport). Since the distance between the measurement unit and the test sample changes, and this causes an error in the X-ray diffraction angle of the test sample, the X-ray diffraction intensity profile of the test sample is measured. There is a problem that accuracy decreases.

特に、特許文献9の実施例1には、X線源およびX線検出器を回転走査させて被検試料のX線回折強度プロファイルを測定するオンラインX線回折装置が記載されている。このオンラインX線回折装置には、X線回折強度の測定ユニットと被検試料との間の距離変化に起因して生じるX線回折角度の誤差の対策がなされていないという問題がある。また、被検試料のX線回折強度プロファイルを測定するために、X線源およびX線検出器を絶えず高速で繰り返し回転走査する必要があることから、X線源およびX線検出器の高速回転駆動に伴う振動に起因して被検試料のX線回折角度に誤差が生じるのみならず、回転走査のための回転駆動部の機械的耐久性が低下するという問題がある。  In particular, Example 1 of Patent Document 9 describes an online X-ray diffractometer that measures an X-ray diffraction intensity profile of a test sample by rotating and scanning an X-ray source and an X-ray detector. This on-line X-ray diffractometer has a problem that no countermeasure is taken against an error in the X-ray diffraction angle caused by a change in the distance between the X-ray diffraction intensity measurement unit and the test sample. Further, in order to measure the X-ray diffraction intensity profile of the test sample, the X-ray source and the X-ray detector need to be constantly repeatedly rotated at high speed, so that the X-ray source and the X-ray detector are rotated at high speed. There is a problem that not only an error occurs in the X-ray diffraction angle of the test sample due to vibration caused by driving, but also the mechanical durability of the rotary drive unit for rotary scanning is lowered.

また、特許文献9の実施例5に記載されたように、入射X線として平行ビーム状白色X線を用い、回折X線の検出器としてエネルギー分散型検出器を用いたオンラインX線回折装置には、被検試料から励起される特性X線がX線回折強度プロファイルの形状に影響を与えるという問題がある。また、角度分解能があまり高くないため、いくつかの回折ピークが近接する場合には、回折ピークの判別や分離が困難になるという問題もある。  Further, as described in Example 5 of Patent Document 9, an on-line X-ray diffractometer using parallel beam-like white X-rays as incident X-rays and an energy dispersive detector as a diffracted X-ray detector is used. Has a problem that the characteristic X-rays excited from the test sample affect the shape of the X-ray diffraction intensity profile. Further, since the angular resolution is not so high, there is also a problem that it is difficult to distinguish and separate diffraction peaks when several diffraction peaks are close to each other.

一方、特許文献10に記載された従来技術では、被検試料に平行ビーム状X線を照射する入射X線源と、被検試料からの回折X線を検出する1次元検出器とを被検試料の表裏両面側に配置し、被検試料の平均位置に対する高さを測定する測定装置を被検試料の片面側に配置し、これら1次元検出器および測定装置の各出力データをもとに、X線回折角度の補正を行っている。しかしながら、この特許文献10には、X線回折角度の補正に関する具体的な記述がないことに加えて、X線回折角度の補正に必要な測定装置が被検試料の片面側のみにしか配置されていないため、被検試料の厚さや形状の変化に起因するX線回折角度の誤差を十分に補正することができないという問題がある。  On the other hand, in the prior art described in Patent Document 10, an incident X-ray source that irradiates a test sample with parallel beam X-rays and a one-dimensional detector that detects diffracted X-rays from the test sample are detected. A measurement device that is placed on both the front and back sides of the sample and measures the height relative to the average position of the test sample is placed on one side of the test sample. Based on the output data of these one-dimensional detectors and measurement devices The X-ray diffraction angle is corrected. However, in Patent Document 10, there is no specific description regarding correction of the X-ray diffraction angle, and in addition, a measuring apparatus necessary for correcting the X-ray diffraction angle is arranged only on one side of the test sample. Therefore, there is a problem that the error of the X-ray diffraction angle due to the change in the thickness and shape of the test sample cannot be sufficiently corrected.

本発明は、上記の事情に鑑みてなされたものであって、被検試料のX線回折強度プロファイルをオンラインで迅速且つ高精度に測定することが可能なX線回折装置およびX線回折測定方法を提供することを目的とする。  The present invention has been made in view of the above circumstances, and is an X-ray diffraction apparatus and an X-ray diffraction measurement method capable of measuring an X-ray diffraction intensity profile of a test sample on-line quickly and with high accuracy. The purpose is to provide.

上述した課題を解決し、目的を達成するために、本発明にかかるX線回折装置は、被検試料の測定点にX線を照射するX線照射部と、前記X線が前記被検試料の測定点によって回折されてなる複数の回折X線を1次元検出または2次元検出して前記被検試料のX線回折強度プロファイルを測定するX線検出部と、前記被検試料の基準位置となる基準面に対して相対的に前記X線照射部および前記X線検出部を固定配置される筐体とを有する測定ユニットと、前記被検試料の測定点と前記測定ユニットとの間の離間距離を測定する距離測定部と、前記測定ユニットと前記基準面との間の基準離間距離と前記距離測定部によって測定された前記離間距離との差を前記被検試料の厚さ方向の変位ΔZとして算出し、算出した前記変位ΔZと、前記X線照射部から前記被検試料の測定点へのX線入射角度αと、前記基準面内の基準測定点から前記X線検出部までの距離Rと、前記基準測定点から前記X線検出部への見かけの回折X線出射角度Θexと、以下に示す数式(1)とを用いることによって、前記被検試料の測定点における真のX線回折角度2θを算出し、算出した前記真のX線回折角度2θをもとに、前記X線回折強度プロファイルを補正するデータ処理部と、を備えたことを特徴とする。In order to solve the above-described problems and achieve the object, an X-ray diffraction apparatus according to the present invention includes an X-ray irradiation unit that irradiates a measurement point of a test sample with X-rays, and the X-ray is the test sample. An X-ray detector that measures one or two-dimensionally a plurality of diffracted X-rays diffracted by the measurement points to measure an X-ray diffraction intensity profile of the test sample; a reference position of the test sample; A measurement unit having a housing in which the X-ray irradiation unit and the X-ray detection unit are fixedly disposed relative to a reference plane, and a separation between the measurement point of the test sample and the measurement unit A difference ΔZ in the thickness direction of the test sample is a difference between a distance measuring unit that measures the distance, a reference separation distance between the measurement unit and the reference plane, and the separation distance measured by the distance measurement unit. And the calculated displacement ΔZ and the X-ray X-ray incident angle α from the irradiation unit to the measurement point of the test sample, distance R from the reference measurement point in the reference plane to the X-ray detection unit, and from the reference measurement point to the X-ray detection unit The true X-ray diffraction angle 2θ at the measurement point of the test sample is calculated by using the apparent diffraction X-ray emission angle Θ ex and the following formula (1), and the calculated true X And a data processing unit for correcting the X-ray diffraction intensity profile based on the line diffraction angle 2θ.

Figure 0005850211
Figure 0005850211

また、本発明にかかるX線回折装置は、上記の発明において、前記データ処理部は、前記X線入射角度αと、前記見かけの回折X線出射角度Θexと、以下に示す数式(2)とを用いることによって、前記基準測定点における見かけのX線回折角度2Θを算出し、算出した前記見かけのX線回折角度2Θと、前記被検試料の厚さ方向の変位ΔZと、以下に示す数式(3)とを用いることによって、前記真のX線回折角度2θを算出することを特徴とする。
2Θ=Θex+α ・・・(2)
2θ=2Θ+a×ΔZ+b ・・・(3)
ただし、a,bは定数
In the X-ray diffractometer according to the present invention, in the above invention, the data processing unit includes the X-ray incident angle α, the apparent diffracted X-ray emission angle Θ ex, and the following mathematical formula (2): The apparent X-ray diffraction angle 2Θ at the reference measurement point is calculated, and the calculated apparent X-ray diffraction angle 2Θ and the thickness direction displacement ΔZ of the test sample are shown below. The true X-ray diffraction angle 2θ is calculated by using Equation (3).
2Θ = Θ ex + α ··· ( 2)
2θ = 2Θ + a × ΔZ + b (3)
Where a and b are constants

また、本発明にかかるX線回折装置は、上記の発明において、前記距離測定部は、前記被検試料の複数の測定点に沿って複数配置され、複数の前記距離測定部は、前記被検試料の複数の測定点と前記測定ユニットとの各間の離間距離を各々測定することを特徴とする。  In the X-ray diffractometer according to the present invention, in the above invention, a plurality of the distance measuring units are arranged along a plurality of measurement points of the test sample, and the plurality of the distance measuring units are the test sample. The distance between each of the plurality of measurement points of the sample and the measurement unit is measured.

また、本発明にかかるX線回折測定方法は、被検試料の測定点にX線を照射するX線照射部と、前記X線が前記被検試料の測定点によって回折されてなる複数の回折X線を1次元検出または2次元検出するX線検出部と、前記被検試料の基準位置となる基準面に対して相対的に前記X線照射部および前記X線検出部を固定配置される筐体とを有する測定ユニットを用い、前記被検試料のX線回折強度プロファイルを測定し、且つ、距離測定部を用いて前記被検試料の測定点と前記測定ユニットとの間の離間距離を測定する測定ステップと、前記測定ユニットと前記基準面との間の基準離間距離と前記距離測定部によって測定された前記離間距離との差を前記被検試料の厚さ方向の変位ΔZとして算出し、算出した前記変位ΔZと、前記X線照射部から前記被検試料の測定点へのX線入射角度αと、前記基準面内の基準測定点から前記X線検出部までの距離Rと、前記基準測定点から前記X線検出部への見かけの回折X線出射角度Θexと、以下に示す数式(4)とを用いることによって、前記被検試料の測定点における真のX線回折角度2θを算出するX線回折角度算出ステップと、前記X線回折角度算出ステップによって算出した前記真のX線回折角度2θをもとに、前記X線回折強度プロファイルを補正する補正ステップと、を含むことを特徴とする。The X-ray diffraction measurement method according to the present invention includes an X-ray irradiation unit that irradiates a measurement point of a test sample with X-rays, and a plurality of diffractions in which the X-ray is diffracted by the measurement point of the test sample. An X-ray detection unit that detects X-rays one-dimensionally or two-dimensionally, and the X-ray irradiation unit and the X-ray detection unit are fixedly arranged relative to a reference plane that is a reference position of the test sample. A measurement unit having a housing, and measuring an X-ray diffraction intensity profile of the test sample, and using a distance measuring unit to determine a separation distance between the measurement point of the test sample and the measurement unit A difference between a measurement step to be measured, a reference separation distance between the measurement unit and the reference plane and the separation distance measured by the distance measurement unit is calculated as a displacement ΔZ in the thickness direction of the test sample. The calculated displacement ΔZ and the X-ray irradiation X-ray incidence angle α from the reference point to the measurement point of the test sample, distance R from the reference measurement point in the reference plane to the X-ray detection unit, and from the reference measurement point to the X-ray detection unit An X-ray diffraction angle calculation step of calculating a true X-ray diffraction angle 2θ at the measurement point of the test sample by using the apparent diffraction X-ray emission angle Θ ex and the following equation (4): A correction step of correcting the X-ray diffraction intensity profile based on the true X-ray diffraction angle 2θ calculated by the X-ray diffraction angle calculation step.

Figure 0005850211
Figure 0005850211

また、本発明にかかるX線回折測定方法は、上記の発明において、前記X線回折角度算出ステップは、前記X線入射角度αと、前記見かけの回折X線出射角度Θexと、以下に示す数式(5)とを用いることによって、前記基準測定点における見かけのX線回折角度2Θを算出し、算出した前記見かけのX線回折角度2Θと、前記被検試料の厚さ方向の変位ΔZと、以下に示す数式(6)とを用いることによって、前記真のX線回折角度2θを算出することを特徴とする。
2Θ=Θex+α ・・・(5)
2θ=2Θ+a×ΔZ+b ・・・(6)
ただし、a,bは定数
In the X-ray diffraction measurement method according to the present invention, in the above invention, the X-ray diffraction angle calculation step includes the X-ray incident angle α, the apparent diffraction X-ray emission angle Θ ex, and By using the mathematical formula (5), the apparent X-ray diffraction angle 2Θ at the reference measurement point is calculated, the calculated apparent X-ray diffraction angle 2Θ, and the displacement ΔZ in the thickness direction of the test sample, The true X-ray diffraction angle 2θ is calculated by using the following formula (6).
2Θ = Θ ex + α (5)
2θ = 2Θ + a × ΔZ + b (6)
Where a and b are constants

また、本発明にかかるX線回折測定方法は、上記の発明において、前記測定ステップは、前記被検試料の複数の測定点に沿って配置された複数の前記距離測定部を用い、前記被検試料の複数の測定点と前記測定ユニットとの各間の離間距離を各々測定することを特徴とする。  Further, in the X-ray diffraction measurement method according to the present invention, in the above invention, the measurement step uses the plurality of distance measuring units arranged along a plurality of measurement points of the sample to be tested. The distance between each of the plurality of measurement points of the sample and the measurement unit is measured.

本発明によれば、被検試料のX線回折強度プロファイルをオンラインで迅速且つ高精度に測定することができるという効果を奏する。  According to the present invention, there is an effect that an X-ray diffraction intensity profile of a test sample can be measured on-line quickly and with high accuracy.

図1は、本発明の実施の形態にかかるX線回折装置の一構成例を示す模式図である。FIG. 1 is a schematic diagram showing a configuration example of an X-ray diffraction apparatus according to an embodiment of the present invention. 図2は、本発明の実施の形態におけるX線回折角度の算出原理を説明するための図である。FIG. 2 is a diagram for explaining the calculation principle of the X-ray diffraction angle in the embodiment of the present invention. 図3は、本発明の実施の形態における被検試料の変位に対する真のX線回折角度の関係を例示する図である。FIG. 3 is a diagram illustrating the relationship of the true X-ray diffraction angle with respect to the displacement of the test sample in the embodiment of the present invention. 図4は、本発明の実施の形態にかかるX線回折測定方法の一例を示すフローチャートである。FIG. 4 is a flowchart showing an example of the X-ray diffraction measurement method according to the embodiment of the present invention. 図5は、本実施例における被検試料の鋼中成分の一例を示す図である。FIG. 5 is a diagram showing an example of components in steel of the test sample in this example. 図6は、本実施例における合金化溶融亜鉛めっき鋼帯のめっき層の構成を示す断面模式図である。FIG. 6 is a schematic cross-sectional view showing the configuration of the plated layer of the galvannealed steel strip in this example. 図7は、本実施例における合金化溶融亜鉛めっき鋼帯の各測定点のX線回折強度プロファイル測定結果を示す図である。FIG. 7 is a diagram showing X-ray diffraction intensity profile measurement results at each measurement point of the alloyed hot-dip galvanized steel strip in this example.

以下に、添付図面を参照して、本発明にかかるX線回折装置およびX線回折測定方法の好適な実施の形態について詳細に説明する。なお、本実施の形態により、本発明が限定されるものではない。  Exemplary embodiments of an X-ray diffraction apparatus and an X-ray diffraction measurement method according to the present invention will be described below in detail with reference to the accompanying drawings. Note that the present invention is not limited to the embodiment.

(X線回折装置)
まず、本発明の実施の形態にかかるX線回折装置について説明する。図1は、本発明の実施の形態にかかるX線回折装置の一構成例を示す模式図である。本実施の形態にかかるX線回折装置1は、製造ライン内において鋼板等の製品を被検試料16としてX線回折測定を行うオンラインX線回折装置であり、図1に示すように、被検試料16のX線回折強度プロファイルを測定する測定ユニット2と、測定ユニット2と被検試料16との間の離間距離を測定する距離測定部9とを備える。また、X線回折装置1は、X線回折測定に関する各種データ処理を行うデータ処理部10と、各種情報を入力する入力部11と、X線回折測定結果等の情報を出力する出力部12と、X線回折測定結果等の情報を記憶する記憶部13と、X線回折装置1の各構成部を制御する制御部14とを備える。
(X-ray diffractometer)
First, an X-ray diffraction apparatus according to an embodiment of the present invention will be described. FIG. 1 is a schematic diagram showing a configuration example of an X-ray diffraction apparatus according to an embodiment of the present invention. The X-ray diffractometer 1 according to the present embodiment is an on-line X-ray diffractometer that performs X-ray diffraction measurement using a product such as a steel plate as a test sample 16 in a production line. As shown in FIG. A measurement unit 2 that measures the X-ray diffraction intensity profile of the sample 16 and a distance measurement unit 9 that measures the separation distance between the measurement unit 2 and the test sample 16 are provided. The X-ray diffractometer 1 includes a data processing unit 10 that performs various data processing relating to X-ray diffraction measurement, an input unit 11 that inputs various information, and an output unit 12 that outputs information such as X-ray diffraction measurement results. , A storage unit 13 that stores information such as X-ray diffraction measurement results, and a control unit 14 that controls each component of the X-ray diffraction apparatus 1.

測定ユニット2は、被検試料16のX線回折測定を行うユニットである。図1に示すように、測定ユニット2は、被検試料16にX線18aを照射するX線照射部3と、被検試料16からの複数の回折X線18bを検出するX線検出部6と、X線検出部6に入射する複数の回折X線18bからKβ線を除去するKβフィルタ7と、X線照射部3とX線検出部6とKβフィルタ7とを収容する筐体8とを備える。  The measurement unit 2 is a unit that performs X-ray diffraction measurement of the test sample 16. As shown in FIG. 1, the measurement unit 2 includes an X-ray irradiation unit 3 that irradiates a test sample 16 with X-rays 18 a and an X-ray detection unit 6 that detects a plurality of diffraction X-rays 18 b from the test sample 16. A Kβ filter 7 that removes Kβ rays from the plurality of diffracted X-rays 18 b incident on the X-ray detection unit 6, and a housing 8 that houses the X-ray irradiation unit 3, the X-ray detection unit 6, and the Kβ filter 7. Is provided.

X線照射部3は、被検試料16の測定点にX線18aを照射するものであり、図1に示すように、X線源4とX線平行ビーム化用機器5とを備える。X線源4は、各種X線管または放射光源等を用いて構成され、被検試料16の所望のX線回折強度プロファイルを得ることが可能な波長帯域のX線18aを、被検試料16の測定点に向けて出射する。X線平行ビーム化用機器5は、ソーラスリット、コリメータ、または多層膜ミラー等を用いて構成され、X線源4のX線出射口に設けられる。X線平行ビーム化用機器5は、X線源4によって発生し出射されたX線18aを平行ビーム化する。このようなX線平行ビーム化用機器5によるX線18aの平行ビーム化は、X線ビームの拡がりによって生じるX線回折強度プロファイルの角度分解能の低下を抑制するために必要である。X線18aは、X線平行ビーム化用機器5によって平行ビーム化された後、図1に示すように、被検試料16の測定点に入射する。  The X-ray irradiation unit 3 irradiates the measurement point of the test sample 16 with X-rays 18a, and includes an X-ray source 4 and an X-ray parallel beam converting device 5 as shown in FIG. The X-ray source 4 is configured using various X-ray tubes or radiation light sources, and the X-ray 18a having a wavelength band capable of obtaining a desired X-ray diffraction intensity profile of the test sample 16 is converted into the test sample 16. The light is emitted toward the measurement point. The X-ray parallel beam forming device 5 is configured using a solar slit, a collimator, a multilayer mirror, or the like, and is provided at the X-ray exit of the X-ray source 4. The X-ray parallel beam converting device 5 converts the X-ray 18a generated and emitted by the X-ray source 4 into a parallel beam. The parallelization of the X-ray 18a by the X-ray parallel beam converting device 5 is necessary to suppress the decrease in the angular resolution of the X-ray diffraction intensity profile caused by the expansion of the X-ray beam. The X-ray 18a is converted into a parallel beam by the X-ray parallel beam forming device 5, and then enters the measurement point of the test sample 16 as shown in FIG.

上述したようにX線18aが照射される被検試料16の測定点は、図1において、基準面17内の基準測定点Oと一致している。基準面17は、被検試料16の厚さ方向(以下、厚さ方向と適宜略す)の基準位置となる固定面である。基準測定点Oは、X線照射部3からのX線18aが照射される測定点を含む被検試料16の表面(以下、被検面という)と基準面17とが一致する場合に被検試料16の測定点と一致する基準面17内の固定点である。被検試料16は、その被検面と基準面17とが概ね一致するように、製造ラインの搬送装置(図示せず)によって順次搬送される。なお、被検試料16の厚さ方向は、被検試料16の幅方向および搬送方向(以下、幅方向、搬送方向と各々必要に応じて略す)に対して垂直な方向である。被検試料16の搬送方向は、図1の紙面に対して垂直な方向である。  As described above, the measurement point of the test sample 16 irradiated with the X-ray 18a coincides with the reference measurement point O in the reference plane 17 in FIG. The reference surface 17 is a fixed surface that serves as a reference position in the thickness direction of the test sample 16 (hereinafter, abbreviated as the thickness direction as appropriate). The reference measurement point O is detected when the surface of the test sample 16 (hereinafter referred to as the test surface) including the measurement point irradiated with the X-ray 18a from the X-ray irradiation unit 3 coincides with the reference surface 17. This is a fixed point in the reference surface 17 that coincides with the measurement point of the sample 16. The test sample 16 is sequentially transported by a transport device (not shown) on the production line so that the test surface and the reference surface 17 are substantially coincident. The thickness direction of the test sample 16 is a direction perpendicular to the width direction and the transport direction of the test sample 16 (hereinafter, the width direction and the transport direction are abbreviated as necessary). The conveyance direction of the test sample 16 is a direction perpendicular to the paper surface of FIG.

X線検出部6は、X線照射部3からのX線18aが被検試料16の測定点によって回折されてなる複数の回折X線18bを1次元検出または2次元検出して、この被検試料16のX線回折強度プロファイルを測定する。具体的には、X線検出部6は、1次元配列または2次元配列された複数のX線検出素子を有する1次元検出器または2次元検出器を用いて構成され、複数のX線検出面を被検試料16の測定点側に向けた態様にして固定配置される。X線検出部6は、被検試料16の測定点から所定の角度範囲内に出射した複数の回折X線18bを一度に1次元検出または2次元検出する。これにより、X線検出部6は、所定のX線回折角度範囲内について、被検試料16の測定点のX線回折強度プロファイルを一度に測定する。その都度、X線検出部6は、測定したX線回折強度プロファイルをデータ処理部10に送信する。なお、X線検出部6を構成する1次元検出器または2次元検出器として、例えば、信号に対する感度および応答性と角度分解能とに優れ、且つ、メンテナンス性に優れた半導体式検出器を用いることが望ましい。  The X-ray detection unit 6 performs one-dimensional detection or two-dimensional detection of a plurality of diffracted X-rays 18b obtained by diffracting the X-rays 18a from the X-ray irradiation unit 3 by the measurement points of the test sample 16, The X-ray diffraction intensity profile of the sample 16 is measured. Specifically, the X-ray detection unit 6 is configured using a one-dimensional detector or a two-dimensional detector having a plurality of X-ray detection elements arranged one-dimensionally or two-dimensionally, and has a plurality of X-ray detection surfaces. Are fixedly arranged in such a manner as to face the measurement point side of the test sample 16. The X-ray detection unit 6 performs one-dimensional detection or two-dimensional detection of a plurality of diffracted X-rays 18 b emitted from a measurement point of the test sample 16 within a predetermined angle range at a time. Thereby, the X-ray detection part 6 measures the X-ray diffraction intensity profile of the measurement point of the test sample 16 at a time within a predetermined X-ray diffraction angle range. Each time, the X-ray detection unit 6 transmits the measured X-ray diffraction intensity profile to the data processing unit 10. In addition, as the one-dimensional detector or the two-dimensional detector constituting the X-ray detection unit 6, for example, a semiconductor detector having excellent sensitivity and response to signals and angular resolution and excellent maintainability is used. Is desirable.

Kβフィルタ7は、図1に示すように、X線検出部6のX線検出面側に固定配置され、被検試料16の測定点からX線検出部6に向かって出射した複数の回折X線18bのKβ線を除去する。すなわち、これら複数の回折X線18bは、Kβフィルタ7によってKβ線を除去された後、X線検出部6の複数のX線検出素子に各々入射する。  As shown in FIG. 1, the Kβ filter 7 is fixedly arranged on the X-ray detection surface side of the X-ray detection unit 6, and a plurality of diffraction X rays emitted from the measurement point of the test sample 16 toward the X-ray detection unit 6. The Kβ line on line 18b is removed. That is, the plurality of diffracted X-rays 18 b are incident on the plurality of X-ray detection elements of the X-ray detection unit 6 after the Kβ rays are removed by the Kβ filter 7.

筐体8は、上述したX線照射部3、X線検出部6、およびKβフィルタ7等を収容するものであり、被検試料16の基準位置となる基準面17に対して相対的にX線照射部3およびX線検出部6を固定配置される。具体的には、図1に示すように、筐体8は、その内部にX線照射部3およびX線検出部6が固定配置された状態を維持して、基準面17から被検試料16の厚さ方向に所定の距離、離間するように支持機構(図示せず)等によって支持される。この状態において、筐体8は、X線照射部3の基準面17に対する相対的な位置およびX線照射方向と、X線検出部6の基準面17に対する相対的な位置およびX線検出面方向とを固定する。この結果、筐体8内部のX線照射部3およびX線検出部6は、被検試料16の所望のX線回折強度プロファイルを測定可能な配置状態に固定される。  The housing 8 accommodates the X-ray irradiation unit 3, the X-ray detection unit 6, the Kβ filter 7, and the like described above, and is relatively X with respect to the reference surface 17 serving as the reference position of the test sample 16. The beam irradiation unit 3 and the X-ray detection unit 6 are fixedly arranged. Specifically, as shown in FIG. 1, the casing 8 maintains a state in which the X-ray irradiation unit 3 and the X-ray detection unit 6 are fixedly disposed therein, and the test sample 16 from the reference surface 17. Is supported by a support mechanism (not shown) or the like so as to be separated by a predetermined distance in the thickness direction. In this state, the housing 8 is configured such that the relative position and X-ray irradiation direction of the X-ray irradiation unit 3 with respect to the reference surface 17, and the relative position and X-ray detection surface direction of the X-ray detection unit 6 with respect to the reference surface 17. And fix. As a result, the X-ray irradiation unit 3 and the X-ray detection unit 6 inside the housing 8 are fixed in an arrangement state in which a desired X-ray diffraction intensity profile of the test sample 16 can be measured.

すなわち、筐体8内部のX線照射部3から出射されたX線18aは、基準面17に対し所定のX線入射角度αをなして基準測定点O(具体的には被検試料16の測定点)に入射する。被検試料16の測定点に入射したX線18aは、X線回折角度2θをなして回折される。このX線18aを被検試料16によって回折してなる複数の回折X線18bは、被検試料16の被検面に対し回折X線出射角度θexをなして、被検試料16の測定点から筐体8内部のX線検出部6に向け出射する。また、これら複数の回折X線18bは、筐体8内部においてX線検出部6のX線検出面側に固定配置されたKβフィルタ7を通過した後、X線検出部6によって検出される。That is, the X-ray 18 a emitted from the X-ray irradiation unit 3 inside the housing 8 forms a predetermined X-ray incident angle α with respect to the reference surface 17 and specifically the reference measurement point O (specifically, the test sample 16 Incident at the measurement point. The X-ray 18a incident on the measurement point of the test sample 16 is diffracted at an X-ray diffraction angle 2θ. A plurality of diffracted X-rays 18b formed by diffracting the X-ray 18a by the test sample 16 form a diffraction X-ray emission angle θ ex with respect to the test surface of the test sample 16, and the measurement points of the test sample 16 are measured. To the X-ray detector 6 inside the housing 8. The plurality of diffracted X-rays 18 b are detected by the X-ray detection unit 6 after passing through the Kβ filter 7 fixedly arranged on the X-ray detection surface side of the X-ray detection unit 6 inside the housing 8.

距離測定部9は、被検試料16の測定点と測定ユニット2との間の離間距離(以下、被検試料距離という)を測定する。具体的には、図1に示すように、距離測定部9は、測定ユニット2の筐体8を介して基準面17内の基準測定点Oに対向するように、筐体8の内壁に固定配置される。距離測定部9は、基準面17に沿って順次搬送される被検試料16の被検面と筐体8との離間距離を、被検試料距離Zとして非接触に測定し、その都度、測定した被検試料距離Zをデータ処理部10に送信する。このような距離測定部9は、被検試料16の被検面に対して超音波または光信号を送受波して被検試料距離Zを測定する非接触型の距離計であってもよいが、距離の測定精度が高く且つ応答性に優れるという観点から、被検試料16の被検面に対してレーザ光を送受光して被検試料距離Zを非接触に測定するレーザ距離計であることが望ましい。  The distance measuring unit 9 measures a separation distance between the measurement point of the test sample 16 and the measurement unit 2 (hereinafter referred to as a test sample distance). Specifically, as shown in FIG. 1, the distance measuring unit 9 is fixed to the inner wall of the housing 8 so as to face the reference measurement point O in the reference surface 17 through the housing 8 of the measurement unit 2. Be placed. The distance measuring unit 9 measures the separation distance between the test surface of the test sample 16 and the housing 8 sequentially conveyed along the reference surface 17 in a non-contact manner as the test sample distance Z, and each time the measurement is performed. The measured specimen distance Z is transmitted to the data processing unit 10. Such a distance measuring unit 9 may be a non-contact type distance meter that transmits and receives ultrasonic waves or optical signals to and from the test surface of the test sample 16 to measure the test sample distance Z. The laser distance meter measures the sample distance Z in a non-contact manner by transmitting and receiving laser light to the test surface of the test sample 16 from the viewpoint of high distance measurement accuracy and excellent responsiveness. It is desirable.

データ処理部10は、被検試料16の厚さ方向の位置変化に対応して、被検試料16のX線回折強度プロファイルを補正する。具体的には、データ処理部10は、測定ユニット2と被検試料16の測定点との間の離間距離すなわち被検試料距離Zを距離測定部9から取得する。また、データ処理部10は、予め設定された基準面17と測定ユニット2(詳細には筐体8)との間の離間距離(以下、基準離間距離という)を有する。データ処理部10は、この設定された基準離間距離と距離測定部9によって測定された被検試料距離Zとの差を、被検試料16の厚さ方向の変位ΔZとして算出する。データ処理部10は、この算出した変位ΔZに対応して、被検試料16の測定点における真のX線回折角度2θを算出する。一方、データ処理部10は、被検試料16の測定点におけるX線回折強度プロファイルをX線検出部6から取得する。データ処理部10は、上述したように算出した真のX線回折角度2θをもとに、このX線検出部6からのX線回折強度プロファイルを補正する。  The data processing unit 10 corrects the X-ray diffraction intensity profile of the test sample 16 in accordance with the change in the position of the test sample 16 in the thickness direction. Specifically, the data processing unit 10 acquires the distance between the measurement unit 2 and the measurement point of the test sample 16, that is, the test sample distance Z from the distance measurement unit 9. Further, the data processing unit 10 has a preset separation distance (hereinafter referred to as a reference separation distance) between the reference surface 17 and the measurement unit 2 (specifically, the housing 8). The data processing unit 10 calculates the difference between the set reference separation distance and the test sample distance Z measured by the distance measurement unit 9 as the displacement ΔZ in the thickness direction of the test sample 16. The data processing unit 10 calculates the true X-ray diffraction angle 2θ at the measurement point of the test sample 16 corresponding to the calculated displacement ΔZ. On the other hand, the data processing unit 10 acquires the X-ray diffraction intensity profile at the measurement point of the test sample 16 from the X-ray detection unit 6. The data processing unit 10 corrects the X-ray diffraction intensity profile from the X-ray detection unit 6 based on the true X-ray diffraction angle 2θ calculated as described above.

入力部11は、入力キーまたはマウス等の入力デバイスを用いて構成され、作業者の入力操作に応じて各種情報を制御部14に入力する。例えば、入力部11によって制御部14に入力される情報として、測定ユニット2による被検試料16のX線回折強度プロファイルの測定開始または測定終了を指示する情報、X線回折強度プロファイルの測定時間を指示する情報、その他、制御部14に対して指示する情報等が挙げられる。  The input unit 11 is configured using an input device such as an input key or a mouse, and inputs various types of information to the control unit 14 in accordance with an input operation by the worker. For example, as information input to the control unit 14 by the input unit 11, information instructing measurement start or measurement end of the X-ray diffraction intensity profile of the test sample 16 by the measurement unit 2, measurement time of the X-ray diffraction intensity profile The information to instruct | indicate, the information etc. which instruct | indicate with respect to the control part 14 etc. are mentioned.

出力部12は、制御部14の制御に基づいて、データ処理部10による補正後のX線回折強度プロファイル、入力部11による入力情報等の各種情報を出力する。このような出力部12は、上記の各種情報を表示する表示装置であってもよいし、上記の各種情報を紙等の印刷媒体に印刷するプリンタであってもよいし、これらを組み合わせたものであってもよい。  The output unit 12 outputs various information such as an X-ray diffraction intensity profile after correction by the data processing unit 10 and input information by the input unit 11 based on the control of the control unit 14. Such an output unit 12 may be a display device that displays the above-described various types of information, a printer that prints the above-described various types of information on a print medium such as paper, or a combination thereof. It may be.

記憶部13は、制御部14によって記憶指示された情報を記憶し、制御部14によって読み出し指示された情報を記憶情報の中から読み出して制御部14に送信する。例えば、記憶部13は、制御部14の制御に基づき、上述したデータ処理部10による補正後のX線回折強度プロファイルを、被検試料16の測定点と対応付けて記憶し、蓄積する。  The storage unit 13 stores information instructed to be stored by the control unit 14, reads information instructed to be read out by the control unit 14 from the stored information, and transmits the information to the control unit 14. For example, the storage unit 13 stores and accumulates the X-ray diffraction intensity profile corrected by the data processing unit 10 described above in association with the measurement point of the test sample 16 based on the control of the control unit 14.

制御部14は、X線回折装置1の各構成部を制御し、且つ、これら各構成部間の信号の入出力を制御する。具体的には、制御部14は、入力部11からの入力情報等に基づいて、測定ユニット2による被検試料16のX線回折強度プロファイルの測定タイミング(開始または終了のタイミング)あるいは測定時間等を制御する。この際、制御部14は、X線照射部3のX線源4が被検試料16の測定点に対して照射するX線18aの照射タイミングまたは照射時間を制御する。また、制御部14は、被検試料16の測定点毎に被検試料距離Zを測定するように距離測定部9を制御する。  The control unit 14 controls each component of the X-ray diffraction apparatus 1 and controls input / output of signals between these components. Specifically, the control unit 14 measures the measurement timing (start timing or end timing) of the X-ray diffraction intensity profile of the test sample 16 by the measurement unit 2 or the measurement time based on the input information from the input unit 11 or the like. To control. At this time, the control unit 14 controls the irradiation timing or irradiation time of the X-ray 18 a that the X-ray source 4 of the X-ray irradiation unit 3 irradiates the measurement point of the test sample 16. Further, the control unit 14 controls the distance measuring unit 9 so as to measure the test sample distance Z for each measurement point of the test sample 16.

また、制御部14は、測定ユニット2によってX線回折強度プロファイルを測定される被検試料16の測定点と、距離測定部9によって被検試料距離Zを測定される被検試料16の測定点とが一致するように、X線検出部6からデータ処理部10に送信されるX線回折強度プロファイルと、距離測定部9からデータ処理部10に送信される被検試料距離Zとの対応付けを制御する。この制御に基づき、データ処理部10は、被検試料16の測定点毎に、X線検出部6からのX線回折強度プロファイルと距離測定部9からの被検試料距離Zとを対応付ける。一方、制御部14は、補正後のX線回折強度プロファイルを出力する出力部12の動作制御と、補正後のX線回折強度プロファイルを記憶し蓄積する記憶部13の動作制御とを行う。  The control unit 14 also measures the measurement point of the test sample 16 whose X-ray diffraction intensity profile is measured by the measurement unit 2 and the measurement point of the test sample 16 whose measurement sample distance Z is measured by the distance measurement unit 9. The X-ray diffraction intensity profile transmitted from the X-ray detection unit 6 to the data processing unit 10 and the test sample distance Z transmitted from the distance measurement unit 9 to the data processing unit 10 are matched with each other. To control. Based on this control, the data processing unit 10 associates the X-ray diffraction intensity profile from the X-ray detection unit 6 with the test sample distance Z from the distance measurement unit 9 for each measurement point of the test sample 16. On the other hand, the control unit 14 performs operation control of the output unit 12 that outputs the corrected X-ray diffraction intensity profile and operation control of the storage unit 13 that stores and stores the corrected X-ray diffraction intensity profile.

なお、図1には特に図示しないが、上述したような構成を有するX線回折装置1には、測定ユニット2およびデータ処理部10等の各構成部を動作させるための各種電源が付随する。また、X線回折装置1には、必要に応じて、X線源4等の各構成部を冷却するための冷却装置、各構成部の温度を一定に保つための恒温装置、測定ユニット2の筐体8内部の雰囲気を制御するためのパージ装置や圧力制御装置等を付随させてもよい。  Although not particularly shown in FIG. 1, the X-ray diffraction apparatus 1 having the above-described configuration is accompanied by various power sources for operating the respective components such as the measurement unit 2 and the data processing unit 10. The X-ray diffractometer 1 includes a cooling device for cooling each component such as the X-ray source 4 as necessary, a thermostat for keeping the temperature of each component constant, and a measurement unit 2. A purge device or a pressure control device for controlling the atmosphere inside the housing 8 may be attached.

(X線回折角度の算出原理)
つぎに、X線回折強度プロファイルの測定対象である被検試料16の測定点における真のX線回折角度2θの算出原理について説明する。図1に示したX線回折装置1において、X線照射部3は、被検試料16の測定点に対してX線18aを照射し、X線検出部6は、この測定点からの複数の回折X線18bを1次元検出または2次元検出して、この測定点におけるX線回折強度プロファイルを測定する。この際、被検試料16は、被検試料16の走行(搬送)に伴う振動、被検試料16の厚さまたは形状の変化等に起因して、被検試料16の厚さ方向すなわち被検面の垂直方向に位置変化する。この位置変化に伴い、被検試料16の被検面は、上述した基準面17(図1参照)から被検試料16の厚さ方向に変位し、この結果、X線検出部6によって測定されるX線回折強度プロファイルのX線回折角度に誤差が生じる。したがって、X線回折強度プロファイルの高精度な測定を実現するためには、このように生じるX線回折角度の誤差を補正する必要がある。
(Calculation principle of X-ray diffraction angle)
Next, the calculation principle of the true X-ray diffraction angle 2θ at the measurement point of the sample 16 to be measured for the X-ray diffraction intensity profile will be described. In the X-ray diffraction apparatus 1 shown in FIG. 1, the X-ray irradiation unit 3 irradiates the measurement point of the sample 16 with X-rays 18a, and the X-ray detection unit 6 includes a plurality of measurement points from the measurement point. The diffracted X-ray 18b is detected one-dimensionally or two-dimensionally, and the X-ray diffraction intensity profile at this measurement point is measured. At this time, the test sample 16 is moved in the thickness direction of the test sample 16, that is, the test sample 16 due to vibration accompanying the travel (conveyance) of the test sample 16, a change in the thickness or shape of the test sample 16, and the like. The position changes in the vertical direction of the surface. With this change in position, the test surface of the test sample 16 is displaced in the thickness direction of the test sample 16 from the above-described reference surface 17 (see FIG. 1), and as a result, is measured by the X-ray detector 6. An error occurs in the X-ray diffraction angle of the X-ray diffraction intensity profile. Therefore, in order to realize high-accuracy measurement of the X-ray diffraction intensity profile, it is necessary to correct the X-ray diffraction angle error that occurs in this way.

図2は、本発明の実施の形態におけるX線回折角度の算出原理を説明するための図である。図2において、点光源Aは、X線照射部3のX線源4に対応する。X線検出素子Bは、X線検出部6における複数のX線検出素子を代表する。被検試料16が基準面17に対して厚さ方向に変位していない場合、すなわち、被検試料16の被検面と基準面17とが一致する場合、被検試料16の測定点は基準面17内の基準測定点Oと一致する。点光源Aにおいて発生したX線は、この測定点(=基準測定点O)に到達して回折し、回折X線として、基準面17に対し回折X線出射角度Θexをなして基準測定点Oから出射する(図2の破線矢印参照)。この基準測定点Oから出射した回折X線は、X線検出素子Bに到達し、X線検出素子BによってX線回折強度が測定される。FIG. 2 is a diagram for explaining the calculation principle of the X-ray diffraction angle in the embodiment of the present invention. In FIG. 2, the point light source A corresponds to the X-ray source 4 of the X-ray irradiation unit 3. The X-ray detection element B represents a plurality of X-ray detection elements in the X-ray detection unit 6. When the test sample 16 is not displaced in the thickness direction with respect to the reference surface 17, that is, when the test surface of the test sample 16 matches the reference surface 17, the measurement point of the test sample 16 is the reference point. It coincides with the reference measurement point O in the surface 17. The X-ray generated in the point light source A reaches this measurement point (= reference measurement point O) and is diffracted. As a diffracted X-ray, the reference measurement point 17 forms a diffraction X-ray emission angle Θ ex with respect to the reference measurement point. The light exits from O (see broken line arrow in FIG. 2). The diffracted X-ray emitted from the reference measurement point O reaches the X-ray detection element B, and the X-ray diffraction intensity is measured by the X-ray detection element B.

一方、図2に示すように、被検試料16の被検面が基準面17から厚さ方向に変位した場合、被検試料16の測定点O’は、この基準面17からの被検試料16の変位ΔZに応じて、基準測定点Oから位置ずれする。点光源Aにおいて発生したX線は、この測定点O’に到達して回折し、回折X線として、被検試料16の被検面に対し回折X線出射角度θ exをなして測定点O’から出射する(図2の実線矢印参照)。この測定点O’から出射した回折X線は、X線検出素子Bに到達し、X線検出素子BによってX線回折強度が測定される。この際、被検試料16における回折X線の真の回折X線出射角度θexと、上述した基準面17における回折X線の見かけの回折X線出射角度Θexとの間には、角度ずれが生じる。この角度ずれは、X線回折強度を測定する際のX線回折角度の誤差要因である。  On the other hand, as shown in FIG. 2, when the test surface of the test sample 16 is displaced in the thickness direction from the reference surface 17, the measurement point O ′ of the test sample 16 is the test sample from the reference surface 17. The position shifts from the reference measurement point O in accordance with 16 displacements ΔZ. The X-rays generated in the point light source A reach this measurement point O ′ and are diffracted, and as diffracted X-rays, the diffraction X-ray emission angle θ with respect to the test surface of the test sample 16. exAnd exit from the measurement point O '(see solid line arrow in FIG. 2). The diffracted X-ray emitted from the measurement point O ′ reaches the X-ray detection element B, and the X-ray diffraction intensity is measured by the X-ray detection element B. At this time, the true diffraction X-ray emission angle θ of the diffraction X-ray in the test sample 16exAnd the apparent diffraction X-ray exit angle Θ of the diffraction X-ray at the reference plane 17 described aboveexAn angle shift occurs between the two. This angular deviation is an error factor of the X-ray diffraction angle when measuring the X-ray diffraction intensity.

上述したように被検試料16の被検面が基準面17から厚さ方向に変位した場合、変位後の被検試料16の測定点O’における真の回折X線出射角度θexと、基準面17内の基準測定点Oにおける見かけの回折X線出射角度Θexとの関係は、被検試料16の測定点O’とX線検出素子Bとの間の厚さ方向の距離および幅方向の距離を用い、以下に示す数式(7)によって表すことができる。なお、図2に示すように、変位ΔZは、被検試料16の被検面が基準面17から厚さ方向に変位した距離である。距離Rは、基準面17内の基準測定点Oから、X線検出部6に対応するX線検出素子Bまでの距離(以下、OB間の距離と適宜いう)である。X線入射角度αは、X線照射部3のX線源4に対応する点光源Aから被検試料16の測定点O’に照射されるX線の入射角度である。このX線入射角度αは、点光源Aから基準測定点Oに照射されるX線の入射角度と同値である。As described above, when the test surface of the test sample 16 is displaced from the reference surface 17 in the thickness direction, the true diffraction X-ray emission angle θ ex at the measurement point O ′ of the test sample 16 after the displacement and the reference The relationship between the apparent diffraction X-ray emission angle Θ ex at the reference measurement point O in the surface 17 is the distance in the thickness direction and the width direction between the measurement point O ′ of the test sample 16 and the X-ray detection element B. Can be expressed by the following formula (7). As shown in FIG. 2, the displacement ΔZ is the distance that the test surface of the test sample 16 is displaced from the reference surface 17 in the thickness direction. The distance R is a distance from the reference measurement point O in the reference plane 17 to the X-ray detection element B corresponding to the X-ray detection unit 6 (hereinafter referred to as a distance between OBs as appropriate). The X-ray incident angle α is an incident angle of X-rays irradiated from the point light source A corresponding to the X-ray source 4 of the X-ray irradiation unit 3 to the measurement point O ′ of the test sample 16. This X-ray incident angle α is the same value as the X-ray incident angle irradiated from the point light source A to the reference measurement point O.

Figure 0005850211
Figure 0005850211

また、変位後の被検試料16の測定点O’における真のX線回折角度2θは、この測定点O’におけるX線入射角度αと、真の回折X線出射角度θexとを用い、以下に示す数式(8)によって表すことができる。
2θ=α+θex ・・・(8)
Further, the true X-ray diffraction angle 2θ at the measurement point O ′ of the test sample 16 after the displacement uses the X-ray incident angle α and the true diffraction X-ray emission angle θ ex at the measurement point O ′, It can be represented by the following formula (8).
2θ = α + θ ex (8)

上述した数式(7)および数式(8)に基づいて、変位後の被検試料16の測定点O’における真のX線回折角度2θは、以下に示す数式(9)によって表すことができる。  Based on Equations (7) and (8) described above, the true X-ray diffraction angle 2θ at the measurement point O ′ of the test sample 16 after displacement can be expressed by Equation (9) below.

Figure 0005850211
Figure 0005850211

数式(9)において、基準測定点OからX線検出素子Bまでの距離R、X線入射角度α、および基準測定点Oにおける見かけの回折X線出射角度Θexは、図1に示したX線照射部3およびX線検出部6の基準面17に対する相対的な配置の固定によって決まる設計上の既知の値である。このため、変位ΔZが距離測定部9(図1参照)の測定結果をもとに決まれば、数式(9)に基づいて真のX線回折角度2θが算出可能となる。In equation (9), the distance R from the reference measurement point O to the X-ray detection element B, the X-ray incident angle α, and the apparent diffraction X-ray emission angle Θ ex at the reference measurement point O are the X shown in FIG. This is a known design value determined by fixing the relative arrangement of the beam irradiation unit 3 and the X-ray detection unit 6 with respect to the reference plane 17. Therefore, if the displacement ΔZ is determined based on the measurement result of the distance measuring unit 9 (see FIG. 1), the true X-ray diffraction angle 2θ can be calculated based on the formula (9).

本発明の実施の形態において、上述した既知の距離R、X線入射角度α、および見かけの回折X線出射角度Θexは、図1に示したX線回折装置1のデータ処理部10に予め設定される。データ処理部10は、上述したように、測定ユニット2と基準面17との間の基準離間距離と距離測定部9によって測定された被検試料距離Zとの差を、被検試料16の厚さ方向の変位ΔZとして算出する。ついで、データ処理部10は、算出した変位ΔZと、X線照射部3から被検試料16の測定点O’へのX線入射角度αと、基準面17内の基準測定点OからX線検出部6までの距離Rと、基準測定点OからX線検出部6への見かけの回折X線出射角度Θexと、上述した数式(9)とを用いることによって、被検試料16の測定点O’における真のX線回折角度2θを算出する。また、データ処理部10は、X線検出部6によって測定された被検試料16の測定点O’におけるX線回折強度プロファイルを、上述したように算出した真のX線回折角度2θをもとに補正する。In the embodiment of the present invention, the above-mentioned known distance R, X-ray incident angle α, and apparent diffracted X-ray exit angle Θ ex are stored in advance in the data processing unit 10 of the X-ray diffractometer 1 shown in FIG. Is set. As described above, the data processing unit 10 determines the difference between the reference separation distance between the measurement unit 2 and the reference surface 17 and the test sample distance Z measured by the distance measurement unit 9 as the thickness of the test sample 16. It is calculated as the displacement ΔZ in the vertical direction. Subsequently, the data processing unit 10 calculates the calculated displacement ΔZ, the X-ray incident angle α from the X-ray irradiation unit 3 to the measurement point O ′ of the test sample 16, and the X-ray from the reference measurement point O in the reference surface 17. By using the distance R to the detection unit 6, the apparent diffraction X-ray emission angle Θ ex from the reference measurement point O to the X-ray detection unit 6, and the above-described equation (9), the measurement of the test sample 16 is performed. The true X-ray diffraction angle 2θ at the point O ′ is calculated. Further, the data processing unit 10 calculates the X-ray diffraction intensity profile at the measurement point O ′ of the test sample 16 measured by the X-ray detection unit 6 based on the true X-ray diffraction angle 2θ calculated as described above. To correct.

一方、図2に示すOB間の距離Rが200[mm]であり、X線入射角度αが45[°]であり、見かけの回折X線出射角度Θexが60[°]である場合、上述した数式(9)に基づいて被検試料16の変位ΔZに対する真のX線回折角度2θの関係を算出した結果、これら変位ΔZと真のX線回折角度2θとの間に所定の相関がみられた。この変位ΔZと真のX線回折角度2θとの相関において、基準面17内の基準測定点Oにおける回折X線の見かけのX線回折角度2Θは、以下の数式(10)によって表すことができる。
2Θ=Θex+α ・・・(10)
すなわち、X線入射角度αが45[°]であり、見かけの回折X線出射角度Θexが60[°]である場合、見かけのX線回折角度2Θは、105[°]である。
On the other hand, when the distance R between OBs shown in FIG. 2 is 200 [mm], the X-ray incident angle α is 45 [°], and the apparent diffraction X-ray emission angle Θ ex is 60 [°], As a result of calculating the relationship of the true X-ray diffraction angle 2θ with respect to the displacement ΔZ of the test sample 16 based on the above formula (9), there is a predetermined correlation between the displacement ΔZ and the true X-ray diffraction angle 2θ. It was seen. In the correlation between the displacement ΔZ and the true X-ray diffraction angle 2θ, the apparent X-ray diffraction angle 2Θ of the diffracted X-ray at the reference measurement point O in the reference surface 17 can be expressed by the following formula (10). .
2Θ = Θ ex + α ··· ( 10)
That is, when the X-ray incident angle α is 45 [°] and the apparent diffraction X-ray emission angle Θ ex is 60 [°], the apparent X-ray diffraction angle 2Θ is 105 [°].

図3は、本発明の実施の形態における被検試料の変位に対する真のX線回折角度の関係を例示する図である。図3に示すように、被検試料16の変位ΔZがOB間の距離R(図2参照)に対して小さい場合、見かけのX線回折角度2Θを一定にした時の真のX線回折角度2θは、変位ΔZの増減変化に対してほぼ直線状に変化する。このような変位ΔZと真のX線回折角度2θとの相関が成立する場合、真のX線回折角度2θは、変位ΔZおよび見かけのX線回折角度2Θを用い、以下の数式(11)によって表すことができる。
2θ=2Θ+a×ΔZ+b ・・・(11)
ただし、数式(11)において、aおよびbは任意の定数である。
FIG. 3 is a diagram illustrating the relationship of the true X-ray diffraction angle with respect to the displacement of the test sample in the embodiment of the present invention. As shown in FIG. 3, when the displacement ΔZ of the test sample 16 is smaller than the distance R between OBs (see FIG. 2), the true X-ray diffraction angle when the apparent X-ray diffraction angle 2Θ is constant. 2θ changes substantially linearly with respect to the change in displacement ΔZ. When such a correlation between the displacement ΔZ and the true X-ray diffraction angle 2θ holds, the true X-ray diffraction angle 2θ uses the displacement ΔZ and the apparent X-ray diffraction angle 2Θ, and is expressed by the following formula (11). Can be represented.
2θ = 2Θ + a × ΔZ + b (11)
However, in Formula (11), a and b are arbitrary constants.

上述したように被検試料16の変位ΔZがOB間の距離Rに対して小さい場合、データ処理部10(図1参照)は、X線入射角度αと、見かけの回折X線出射角度Θexと、上述した数式(10)とを用いることによって、基準測定点Oにおける見かけのX線回折角度2Θを算出する。続いて、データ処理部10は、算出した見かけのX線回折角度2Θと、被検試料16の厚さ方向の変位ΔZと、上述した数式(11)とを用いることによって、真のX線回折角度2θを算出する。また、データ処理部10は、X線検出部6によって測定された被検試料16の測定点O’におけるX線回折強度プロファイルを、このように算出した真のX線回折角度2θをもとに補正する。As described above, when the displacement ΔZ of the test sample 16 is smaller than the distance R between the OBs, the data processing unit 10 (see FIG. 1) determines the X-ray incident angle α and the apparent diffracted X-ray emission angle Θ ex. And the apparent X-ray diffraction angle 2Θ at the reference measurement point O is calculated by using the above-described formula (10). Subsequently, the data processing unit 10 uses the calculated apparent X-ray diffraction angle 2Θ, the displacement ΔZ in the thickness direction of the sample 16 to be tested, and the above formula (11) to obtain true X-ray diffraction. The angle 2θ is calculated. Further, the data processing unit 10 calculates the X-ray diffraction intensity profile at the measurement point O ′ of the test sample 16 measured by the X-ray detection unit 6 based on the true X-ray diffraction angle 2θ thus calculated. to correct.

なお、データ処理部10は、OB間の距離R、X線入射角度α、および見かけの回折X線出射角度Θexが上述した数値以外の場合であっても、被検試料16の変位ΔZがOB間の距離Rに対して小さければ、上述した数式(10)および数式(11)に基づき、変位ΔZに対応して真のX線回折角度2θを算出することができる。Note that the data processing unit 10 determines that the displacement ΔZ of the test sample 16 is the case where the distance R between OBs, the X-ray incident angle α, and the apparent diffracted X-ray emission angle Θ ex are other than the numerical values described above. If the distance is small relative to the distance R between the OBs, the true X-ray diffraction angle 2θ can be calculated in accordance with the displacement ΔZ based on the above-described equations (10) and (11).

(X線回折測定方法)
つぎに、本発明の実施の形態にかかるX線回折測定方法について説明する。図4は、本発明の実施の形態にかかるX線回折測定方法の一例を示すフローチャートである。本実施の形態にかかるX線回折測定方法において、図1に示したX線回折装置1は、順次搬送される被検試料16の測定点毎に、図4に示すステップS101〜S105の各処理ステップを行う。
(X-ray diffraction measurement method)
Next, an X-ray diffraction measurement method according to an embodiment of the present invention will be described. FIG. 4 is a flowchart showing an example of the X-ray diffraction measurement method according to the embodiment of the present invention. In the X-ray diffraction measurement method according to the present embodiment, the X-ray diffraction apparatus 1 shown in FIG. 1 performs each process of steps S101 to S105 shown in FIG. 4 for each measurement point of the sample 16 to be sequentially conveyed. Do step.

すなわち、図4に示すように、X線回折装置1は、まず、被検試料16のX線回折強度プロファイルと、測定ユニット2と被検試料16との間の被検試料距離Zとを測定する(ステップS101)。ステップS101において、X線回折装置1は、測定ユニット2を用い、被検試料16の測定点にX線18aを照射して、この測定点から所定のX線回折角度範囲に出射した複数の回折X線18bを検出し、これにより、この測定点のX線回折強度プロファイルを測定する。且つ、X線回折装置1は、距離測定部9を用いて、被検試料16の測定点と測定ユニット2との間の離間距離、すなわち被検試料距離Zを測定する。  That is, as shown in FIG. 4, the X-ray diffraction apparatus 1 first measures the X-ray diffraction intensity profile of the test sample 16 and the test sample distance Z between the measurement unit 2 and the test sample 16. (Step S101). In step S101, the X-ray diffractometer 1 uses the measurement unit 2 to irradiate the measurement point of the test sample 16 with the X-ray 18a, and outputs a plurality of diffractions emitted from the measurement point to a predetermined X-ray diffraction angle range. The X-ray 18b is detected, and thereby the X-ray diffraction intensity profile at this measurement point is measured. Further, the X-ray diffraction apparatus 1 uses the distance measuring unit 9 to measure the separation distance between the measurement point of the test sample 16 and the measurement unit 2, that is, the test sample distance Z.

詳細には、測定ユニット2は、図1に示したように、X線源4およびX線平行ビーム化用機器5を有するX線照射部3と、X線18aが被検試料16の測定点によって回折されてなる複数の回折X線18bを検出するX線検出部6と、複数の回折X線18bからKβ線を除去するKβフィルタ7と、被検試料16の基準位置となる基準面17に対して相対的に、X線照射部3、X線検出部6およびKβフィルタ7を固定配置される筐体8とを有する。X線照射部3は、被検試料16の所望のX線回折強度プロファイルを取得可能な波長帯域のX線18aを平行ビーム化して被検試料16の測定点に照射する。Kβフィルタ7は、このX線18aを照射された測定点からの複数の回折X線18bのKβ線を除去する。X線検出部6は、Kβフィルタ7によるKβ線除去後の複数の回折X線18bを1次元検出または2次元検出し、これにより、この被検試料16の測定点におけるX線回折強度プロファイルを一度に測定する。X線検出部6は、このように測定点のX線回折強度プロファイルを測定する都度、測定したX線回折強度プロファイルをデータ処理部10に送信する。  Specifically, as shown in FIG. 1, the measurement unit 2 includes an X-ray irradiation unit 3 having an X-ray source 4 and an X-ray parallel beam forming device 5, and an X-ray 18 a is a measurement point of the test sample 16. X-ray detector 6 for detecting a plurality of diffracted X-rays 18b diffracted by the K, a Kβ filter 7 for removing Kβ rays from the plurality of diffracted X-rays 18b, and a reference surface 17 serving as a reference position for the sample 16 to be examined. The X-ray irradiation unit 3, the X-ray detection unit 6, and the housing 8 on which the Kβ filter 7 is fixedly disposed. The X-ray irradiation unit 3 converts X-rays 18 a in a wavelength band that can obtain a desired X-ray diffraction intensity profile of the test sample 16 into parallel beams and irradiates the measurement point of the test sample 16. The Kβ filter 7 removes the Kβ rays of the plurality of diffraction X-rays 18b from the measurement point irradiated with the X-rays 18a. The X-ray detection unit 6 performs one-dimensional detection or two-dimensional detection of the plurality of diffraction X-rays 18b after the Kβ ray is removed by the Kβ filter 7, thereby obtaining an X-ray diffraction intensity profile at the measurement point of the test sample 16. Measure at once. The X-ray detection unit 6 transmits the measured X-ray diffraction intensity profile to the data processing unit 10 every time the X-ray diffraction intensity profile at the measurement point is measured in this way.

上述したX線回折強度プロファイルの測定に並行して、X線回折装置1の距離測定部9は、被検試料16の被検面に対するレーザ光の送受光等により、被検試料16の測定点と測定ユニット2との間の被検試料距離Zを測定する。この際、距離測定部9は、測定ユニット2の筐体8と被検試料16の被検面との間の離間距離を、被検試料距離Zとして測定する。その都度、距離測定部9は、測定した被検試料距離Zをデータ処理部10に送信する。  In parallel with the above-described measurement of the X-ray diffraction intensity profile, the distance measuring unit 9 of the X-ray diffraction apparatus 1 measures the measurement point of the test sample 16 by transmitting and receiving laser light with respect to the test surface of the test sample 16. A test sample distance Z between the measuring unit 2 and the measuring unit 2 is measured. At this time, the distance measuring unit 9 measures the separation distance between the casing 8 of the measurement unit 2 and the test surface of the test sample 16 as the test sample distance Z. Each time, the distance measuring unit 9 transmits the measured specimen distance Z to the data processing unit 10.

上述したステップS101を実行後、X線回折装置1は、被検試料16の厚さ方向の位置変化に対応して、被検試料16の測定点における真のX線回折角度2θを算出する(ステップS102)。ステップS102において、データ処理部10は、ステップS101による被検試料距離Zの測定結果を距離測定部9から既に取得済みである。データ処理部10は、測定ユニット2と基準面17との間の基準離間距離と、ステップS101において距離測定部9により測定された被検試料距離Zとの差を、被検試料16の厚さ方向の変位ΔZとして算出する。ついで、データ処理部10は、上記のように算出した変位ΔZと、X線照射部3から被検試料16の測定点へのX線入射角度αと、基準面17内の基準測定点OからX線検出部6までの距離Rと、基準測定点OからX線検出部6への見かけの回折X線出射角度Θexと、上述した数式(9)とを用いることによって、被検試料16の測定点における真のX線回折角度2θを算出する。After executing step S101 described above, the X-ray diffraction apparatus 1 calculates the true X-ray diffraction angle 2θ at the measurement point of the test sample 16 in response to the change in the position of the test sample 16 in the thickness direction ( Step S102). In step S <b> 102, the data processing unit 10 has already acquired the measurement result of the test sample distance Z in step S <b> 101 from the distance measurement unit 9. The data processing unit 10 determines the difference between the reference separation distance between the measurement unit 2 and the reference surface 17 and the test sample distance Z measured by the distance measurement unit 9 in step S101 as the thickness of the test sample 16. Calculated as a displacement ΔZ in the direction. Next, the data processing unit 10 calculates the displacement ΔZ calculated as described above, the X-ray incident angle α from the X-ray irradiation unit 3 to the measurement point of the test sample 16, and the reference measurement point O in the reference plane 17. By using the distance R to the X-ray detector 6, the apparent diffraction X-ray emission angle Θ ex from the reference measurement point O to the X-ray detector 6, and the above-described equation (9), the test sample 16 The true X-ray diffraction angle 2θ at the measurement point is calculated.

つぎに、X線回折装置1は、ステップS102によって算出した真のX線回折角度2θをもとに、被検試料16の測定点におけるX線回折強度プロファイルを補正する(ステップS103)。ステップS103において、データ処理部10は、ステップS101によるX線回折強度プロファイルの測定結果を測定ユニット2のX線検出部6から既に取得済みである。データ処理部10は、ステップS101においてX線検出部6により測定されたX線回折強度プロファイルのX線回折角度、すなわち見かけのX線回折角度2Θを、上述した数式(9)に基づいて算出した真のX線回折角度2θに補正する。これにより、データ処理部10は、このステップS101によるX線回折強度プロファイルのX線回折角度の誤差を補正する。  Next, the X-ray diffraction apparatus 1 corrects the X-ray diffraction intensity profile at the measurement point of the test sample 16 based on the true X-ray diffraction angle 2θ calculated at step S102 (step S103). In step S103, the data processing unit 10 has already acquired the measurement result of the X-ray diffraction intensity profile in step S101 from the X-ray detection unit 6 of the measurement unit 2. The data processing unit 10 calculates the X-ray diffraction angle of the X-ray diffraction intensity profile measured by the X-ray detection unit 6 in step S101, that is, the apparent X-ray diffraction angle 2Θ based on the above-described equation (9). The true X-ray diffraction angle 2θ is corrected. Thereby, the data processing unit 10 corrects the error of the X-ray diffraction angle of the X-ray diffraction intensity profile in step S101.

ついで、X線回折装置1は、ステップS103による補正後のX線回折強度プロファイルを記憶および出力する(ステップS104)。ステップS104において、制御部14は、データ処理部10による補正後のX線回折強度プロファイルを被検試料16の測定点と対応付けて記憶するように記憶部13を制御する。記憶部13は、この制御部14の制御に基づいて、データ処理部10による補正後のX線回折強度プロファイルを被検試料16の測定点別に記憶する。これに並行して、制御部14は、データ処理部10による補正後のX線回折強度プロファイルおよび被検試料16の測定点を示す各情報を出力するように出力部12を制御する。出力部12は、この制御部14の制御に基づいて、これらの各情報を画面表示し、または、紙等の印刷媒体に印刷する。あるいは、出力部12は、これらの各情報の画面表示と印刷出力とを実行する。  Next, the X-ray diffractometer 1 stores and outputs the X-ray diffraction intensity profile corrected in step S103 (step S104). In step S <b> 104, the control unit 14 controls the storage unit 13 to store the X-ray diffraction intensity profile corrected by the data processing unit 10 in association with the measurement point of the test sample 16. The storage unit 13 stores the X-ray diffraction intensity profile corrected by the data processing unit 10 for each measurement point of the test sample 16 based on the control of the control unit 14. In parallel with this, the control unit 14 controls the output unit 12 so as to output each piece of information indicating the X-ray diffraction intensity profile corrected by the data processing unit 10 and the measurement point of the test sample 16. Based on the control of the control unit 14, the output unit 12 displays each piece of information on a screen or prints it on a print medium such as paper. Alternatively, the output unit 12 performs screen display and print output of these pieces of information.

その後、X線回折装置1は、被検試料16に対するX線回折強度プロファイルの測定を終了するか否かを判断する(ステップS105)。ステップS105において、制御部14は、被検試料16の測定開始から設定の測定時間が経過した場合、被検試料16に設定された全ての測定点についてX線回折強度プロファイルの測定が完了した場合、または、入力部11の入力情報によってX線回折強度プロファイルの測定終了が指示された場合、被検試料16に対するX線回折強度プロファイルの測定が終了したと判断する。被検試料16に対するX線回折強度プロファイルの測定が終了した場合(ステップS105,Yes)、X線回折装置1は、本処理を終了する。また、被検試料16に対するX線回折強度プロファイルの測定が終了していない場合(ステップS105,No)、X線回折装置1は、上述したステップS101に戻り、このステップS101以降の処理ステップを適宜繰り返す。  Thereafter, the X-ray diffractometer 1 determines whether or not to end the measurement of the X-ray diffraction intensity profile for the test sample 16 (step S105). In step S <b> 105, when the set measurement time has elapsed from the start of measurement of the test sample 16, the control unit 14 completes the measurement of the X-ray diffraction intensity profile for all measurement points set on the test sample 16. Alternatively, when the end of the measurement of the X-ray diffraction intensity profile is instructed by the input information of the input unit 11, it is determined that the measurement of the X-ray diffraction intensity profile for the test sample 16 is completed. When the measurement of the X-ray diffraction intensity profile for the test sample 16 is completed (step S105, Yes), the X-ray diffraction apparatus 1 ends this process. If the measurement of the X-ray diffraction intensity profile for the test sample 16 has not been completed (No at Step S105), the X-ray diffraction apparatus 1 returns to Step S101 described above, and appropriately performs the processing steps after Step S101. repeat.

一方、上述したステップS102において、データ処理部10は、図2に示したOB間の距離Rが被検試料16の変位ΔZに比して小さい場合、上述した数式(10)および数式(11)に基づいて真のX線回折角度2θを算出してもよい。この際、データ処理部10は、X線入射角度αと、見かけの回折X線出射角度Θexと、上述した数式(10)とを用いることによって、基準面17内の基準測定点Oにおける見かけのX線回折角度2Θを算出する。続いて、データ処理部10は、この算出した見かけのX線回折角度2Θと、ステップS102による被検試料16の厚さ方向の変位ΔZと、上述した数式(11)とを用いることによって、被検試料16の測定点における真のX線回折角度2θを算出する。On the other hand, in the above-described step S102, when the distance R between the OBs shown in FIG. 2 is smaller than the displacement ΔZ of the test sample 16, the data processing unit 10 performs the above-described mathematical expressions (10) and (11). Based on the above, the true X-ray diffraction angle 2θ may be calculated. At this time, the data processing unit 10 uses the X-ray incident angle α, the apparent diffracted X-ray emission angle Θ ex, and the above-described equation (10), so that the apparent measurement point O at the reference measurement point O in the reference plane 17 is obtained. X-ray diffraction angle 2Θ is calculated. Subsequently, the data processing unit 10 uses the calculated apparent X-ray diffraction angle 2Θ, the displacement ΔZ in the thickness direction of the test sample 16 in step S102, and the above-described equation (11), thereby The true X-ray diffraction angle 2θ at the measurement point of the specimen 16 is calculated.

また、データ処理部10は、その後のステップS103において、X線検出部6からのX線回折強度プロファイルのX線回折角度、すなわち見かけのX線回折角度2Θを、上述した数式(10)および数式(11)に基づいて算出した真のX線回折角度2θに補正する。これにより、データ処理部10は、このX線回折強度プロファイルのX線回折角度の誤差を補正する。  Further, in the subsequent step S103, the data processing unit 10 calculates the X-ray diffraction angle of the X-ray diffraction intensity profile from the X-ray detection unit 6, that is, the apparent X-ray diffraction angle 2Θ, using the above-described formula (10) and formula The true X-ray diffraction angle 2θ calculated based on (11) is corrected. Thereby, the data processing unit 10 corrects the error of the X-ray diffraction angle of the X-ray diffraction intensity profile.

(実施例)
つぎに、本発明の実施例について説明する。本実施例において、図1に示したX線回折装置1は、合金化溶融亜鉛めっき鋼帯(以下、GA鋼帯という)を製造する連続式GA鋼帯製造ラインに適用した。
(Example)
Next, examples of the present invention will be described. In this example, the X-ray diffraction apparatus 1 shown in FIG. 1 was applied to a continuous GA steel strip production line for producing an alloyed hot-dip galvanized steel strip (hereinafter referred to as GA steel strip).

具体的には、連続式GA鋼帯製造ラインにおいて、処理対象の鋼帯のライン速度は100[mpm]に一定とし、図5に示す成分をもち且つ厚さ(詳細には鋼帯を形成する鋼板の厚さ)が1.0[mm]である処理対象の鋼帯に対し、めっき付着量および合金化温度を制御して溶融亜鉛めっき合金化処理(めっき付着量:42.0〜48.0[g/m2]、Fe濃度:7.2〜15.2[重量%])を行った。この連続式GA鋼帯製造ライン内のうち、鋼帯温度が100[℃]以下になるライン領域上に、図1に示したX線回折装置1が設置され、このX線回折装置1が、被検試料16としてのGA鋼帯のX線回折強度プロファイルをオンラインで測定した。この際、X線回折装置1は、連続式GA鋼帯製造ラインのライン中心部に固定して設置され、順次搬送されるGA鋼帯の幅方向中央部分を測定点としてX線回折強度プロファイルの測定を行った。また、X線回折装置1によるGA鋼帯のX線回折強度プロファイルの測定時間は、30[秒]に設定した。Specifically, in a continuous GA steel strip production line, the line speed of the steel strip to be treated is constant at 100 [mpm], has the components shown in FIG. 5 and has a thickness (specifically, a steel strip is formed). The steel strip to be treated having a steel sheet thickness of 1.0 [mm] is subjected to hot dip galvanizing alloying treatment (plating adhesion amount: 42.0 to 48.48) by controlling the plating adhesion amount and the alloying temperature. 0 [g / m 2 ], Fe concentration: 7.2 to 15.2 [wt%]). In the continuous GA steel strip production line, the X-ray diffractometer 1 shown in FIG. 1 is installed on a line region where the steel strip temperature becomes 100 [° C.] or less. The X-ray diffraction intensity profile of the GA steel strip as the test sample 16 was measured online. At this time, the X-ray diffractometer 1 is fixedly installed at the center of the continuous GA steel strip production line, and the X-ray diffraction intensity profile is measured at the central portion in the width direction of the GA steel strip that is sequentially conveyed. Measurements were made. The measurement time of the X-ray diffraction intensity profile of the GA steel strip by the X-ray diffractometer 1 was set to 30 [seconds].

図6は、本実施例におけるGA鋼帯のめっき層の構成を示す断面模式図である。図6に示す被検試料16としてのGA鋼帯のめっき層20では、下地鋼板24からのFeの熱拡散により、GA鋼帯表面から下地鋼板24側に向かってFe濃度が高くなる。このようなGA鋼帯のめっき層20では、図6に示すように、GA鋼帯表面から下地鋼板24側に向かって、ζ相(FeZn13)21、δ1相(FeZn7−10)22、Γ相およびΓ1相(Fe3Zn10およびFe11Zn40、以下、Γ相とΓ相とをあわせて単にΓ相という)23が形成される。これらの合金相は、めっき層20の合金化の進展に伴い、その存在割合を変化させていく。これは、めっき層20の合金化が進むにつれて下地鋼板24からFeが拡散することにより、金属亜鉛、すなわちη相(図示せず)が消失し、ζ相21、δ1相22、Γ相23が順次生成、成長するためである。FIG. 6 is a schematic cross-sectional view showing the configuration of the plating layer of the GA steel strip in this example. In the plated layer 20 of the GA steel strip as the test sample 16 shown in FIG. 6, the Fe concentration increases from the GA steel strip surface toward the base steel plate 24 due to thermal diffusion of Fe from the base steel plate 24. In such a plated layer 20 of the GA steel strip, as shown in FIG. 6, the ζ phase (FeZn 13 ) 21 and the δ 1 phase (FeZn 7-10 ) 22 from the GA steel strip surface toward the base steel plate 24 side. , Γ phase and Γ 1 phase (Fe 3 Zn 10 and Fe 11 Zn 40 , hereinafter, Γ phase and Γ 1 phase are simply referred to as Γ phase) 23 are formed. These alloy phases change their abundance with the progress of alloying of the plating layer 20. This is because, as the alloying of the plating layer 20 progresses, Fe diffuses from the base steel plate 24, so that the metallic zinc, that is, the η phase (not shown) disappears, and the ζ phase 21, the δ 1 phase 22, and the Γ phase 23. This is because these are sequentially generated and grown.

一方、本実施例において、連続式GA鋼帯製造ラインに設置したX線回折装置1は、X線源4(図1参照)にCr管球を用い、コリメータ径φ4[mm]のコリメータ(X線平行ビーム化用機器5)によってX線18aを平行ビーム化して、走行するGA鋼帯(被検試料16)にX線18aを照射した。また、本実施例におけるX線回折装置1は、X線検出部6として半導体型1次元検出器を用い、距離測定部9としてレーザ距離計を用いた。このようなX線回折装置1において、被検試料16としてのGA鋼帯に対するX線18aの入射角度(X線入射角度α)は65[°]であった。基準面17の基準測定点O(図1,2参照)から1次元検出器受光面の中心に到達する回折X線18bの出射角度(図2に示す見かけの回折X線出射角度Θex)は、65[°]であった。この基準測定点Oから1次元検出器受光面の中心までの距離R(図2参照)は、250[mm]であった。On the other hand, in this embodiment, the X-ray diffraction apparatus 1 installed in the continuous GA steel strip production line uses a Cr tube for the X-ray source 4 (see FIG. 1) and a collimator (X The X-ray 18a was converted into a parallel beam by the line parallel beam forming device 5), and the traveling GA steel strip (test sample 16) was irradiated with the X-ray 18a. Further, in the X-ray diffraction apparatus 1 in this example, a semiconductor one-dimensional detector was used as the X-ray detector 6 and a laser rangefinder was used as the distance measurement unit 9. In such an X-ray diffractometer 1, the incident angle (X-ray incident angle α) of the X-ray 18a with respect to the GA steel strip as the test sample 16 was 65 [°]. The emission angle of the diffracted X-ray 18b (apparent diffracted X-ray emission angle Θ ex shown in FIG. 2) reaching the center of the light receiving surface of the one-dimensional detector from the reference measurement point O (see FIGS. 1 and 2) of the reference surface 17 is 65 [°]. A distance R (see FIG. 2) from the reference measurement point O to the center of the light receiving surface of the one-dimensional detector was 250 [mm].

また、GA鋼帯の厚さ方向の変位ΔZは、付属のレーザ距離計による測定結果をもとに算出され、算出した変位ΔZの標準偏差は40[μm]以下であった。このことから、GA鋼帯の変位ΔZの発生要因は、通板するGA鋼帯の厚さ(鋼板厚)変化を主要因とする。このため、本実施例では、X線回折強度プロファイルの測定時間中にレーザ距離計によって順次得られた距離測定結果に基づく各変位ΔZの平均値を算出し、この算出した変位ΔZの平均値を用いて、X線回折角度の補正を行った。  Further, the displacement ΔZ in the thickness direction of the GA steel strip was calculated based on the measurement result by the attached laser distance meter, and the standard deviation of the calculated displacement ΔZ was 40 [μm] or less. From this, the cause of the displacement ΔZ of the GA steel strip is mainly the change in the thickness (steel plate thickness) of the GA steel strip to be passed. For this reason, in this embodiment, the average value of each displacement ΔZ based on the distance measurement results sequentially obtained by the laser distance meter during the measurement time of the X-ray diffraction intensity profile is calculated, and the average value of the calculated displacement ΔZ is calculated. Used to correct the X-ray diffraction angle.

さらに、本実施例では、被検試料16としてのGA鋼帯のライン速度と同GA鋼帯の長さとをもとに逆算して、X線回折装置1によるX線回折強度プロファイルの測定点とほぼ同じ位置のGA鋼帯部分から合金化溶融亜鉛めっき鋼片(以下、GA鋼片という)を採取した。このGA鋼帯の測定点P1,P2,P3に対応する3つのGA鋼片の各々に対し、X線回折強度プロファイル測定の非対象面を完全にシールして、ヘキサメチレンテトラミンを少量添加した塩酸水溶液中に、これら3つのGA鋼片を各々浸漬した。これにより、これら3つのGA鋼片のめっき層(例えば図6に示すめっき層20)を各々溶解し、溶解前後のGA鋼片の重量差(JISH0401)を算出し、さらに、溶解後の溶液をICP発光分光分析して、GA鋼片のめっき付着量とめっき中Fe濃度とを算出した。Furthermore, in this example, the measurement point of the X-ray diffraction intensity profile by the X-ray diffractometer 1 is calculated based on the line speed of the GA steel strip as the test sample 16 and the length of the GA steel strip. An alloyed hot-dip galvanized steel piece (hereinafter referred to as GA steel piece) was collected from the GA steel strip portion at substantially the same position. For each of the three GA steel pieces corresponding to the measurement points P 1 , P 2 and P 3 of the GA steel strip, the non-target surface of the X-ray diffraction intensity profile measurement is completely sealed, and a small amount of hexamethylenetetramine is added. Each of these three GA steel pieces was immersed in the added aqueous hydrochloric acid solution. As a result, the plating layers of these three GA steel pieces (for example, the plating layer 20 shown in FIG. 6) are dissolved, the weight difference (GASH 0401) of the GA steel pieces before and after dissolution is calculated, and the solution after dissolution is further added. ICP emission spectroscopic analysis was performed to calculate the coating amount of GA steel pieces and the Fe concentration during plating.

この結果、GA鋼帯の測定点P1におけるめっき付着量およびFe濃度は、各々、42.0[g/m2]、7.2[重量%]であった。GA鋼帯の測定点P2におけるめっき付着量およびFe濃度は、各々、46.0[g/m2]、11.4[重量%]であった。GA鋼帯の測定点P3におけるめっき付着量およびFe濃度は、各々、48.0[g/m2]、15.2[重量%]であった。As a result, the plating adhesion amount and the Fe concentration at the measurement point P 1 of the GA steel strip were 42.0 [g / m 2 ] and 7.2 [wt%], respectively. The plating adhesion amount and Fe concentration at the measurement point P 2 of the GA steel strip were 46.0 [g / m 2 ] and 11.4 [wt%], respectively. The plating adhesion amount and Fe concentration at the measurement point P 3 of the GA steel strip were 48.0 [g / m 2 ] and 15.2 [wt%], respectively.

図7は、本実施例におけるGA鋼帯の各測定点のX線回折強度プロファイル測定結果を示す図である。図7において、相関線L1は、GA鋼帯の測定点P1についてオンラインで測定したX線回折強度プロファイルを示す。相関線L2は、GA鋼帯の測定点P2についてオンラインで測定したX線回折強度プロファイルを示す。相関線L3は、GA鋼帯の測定点P3についてオンラインで測定したX線回折強度プロファイルを示す。図7に示すように、GA鋼帯の合金化処理条件の変化に伴う合金相の種類や量の変化、並びに合金相のX線回折強度のピークを示すX線回折角度(以下、回折ピーク角度という)の変化を即座に知ることができる。このため、図7に示すX線回折強度プロファイルの測定結果に基づいた各種情報を、GA鋼帯の製造条件の制御に速やかにフィードバックすることが可能となる。FIG. 7 is a diagram showing the X-ray diffraction intensity profile measurement result at each measurement point of the GA steel strip in the present example. 7, correlation line L1 shows the X-ray diffraction intensity profile measured on-line measurement point P 1 of the GA steel strip. Correlation line L2 shows the X-ray diffraction intensity profile measured on-line measurement point P 2 of the GA steel strip. Correlation line L3, for measuring point P 3 of the GA steel strip showing the X-ray diffraction intensity profile measured online. As shown in FIG. 7, the X-ray diffraction angle indicating the peak of the X-ray diffraction intensity of the alloy phase (hereinafter referred to as the diffraction peak angle) )) Immediately. Therefore, various information based on the measurement result of the X-ray diffraction intensity profile shown in FIG. 7 can be quickly fed back to the control of the GA steel strip production conditions.

例えば、図7に示すX線回折強度プロファイルの測定結果から、めっき中のFe濃度の増加に伴い、ζ相のX線回折強度のピークが減少する様子と、δ1相のX線回折強度のピークが増加し且つδ1相の回折ピーク角度が高角側にシフトする様子と、Γ相のX線回折強度のピークが増加する様子とがわかる。これらの関係から、合金化に伴いζ相が消失し、δ1相およびΓ相が順次生成・成長する現象を読み取ることができる。また、図7に示すδ1相の回折ピーク角度のシフトから、δ1相中にFeが固溶して結晶格子間隔が小さくなる現象も読み取ることができる。以上の結果をもとに、望みの物理的特性を持った合金相構造となるようにGA鋼帯の製造条件を制御することによって、GA鋼帯をより高い歩留で製造することができる。For example, from the measurement result of the X-ray diffraction intensity profile shown in FIG. 7, the peak of the X-ray diffraction intensity of the ζ phase decreases with the increase of the Fe concentration during plating, and the X-ray diffraction intensity of the δ 1 phase It can be seen that the peak increases and the diffraction peak angle of the δ 1 phase shifts to the high angle side, and that the peak of the X-ray diffraction intensity of the Γ phase increases. From these relationships, it is possible to read a phenomenon in which the ζ phase disappears with alloying, and the δ 1 phase and the Γ phase are sequentially generated and grown. It can also be read from the shift of the diffraction peak angle of the δ 1 phase shown in FIG. 7 that Fe is dissolved in the δ 1 phase and the crystal lattice spacing is reduced. Based on the above results, the GA steel strip can be manufactured at a higher yield by controlling the manufacturing conditions of the GA steel strip so as to obtain an alloy phase structure having desired physical characteristics.

したがって、本発明の実施の形態にかかるX線回折装置1を用いてオンラインで被検試料16のX線回折強度プロファイルを測定すれば、製造中の被検試料16の物理的特性を速やかに知ることができる。このように知り得た物理的特性を被検試料16の製造条件の制御に速やかにフィードバックすることが可能となるので、製品をより高い歩留で製造することができる。  Therefore, if the X-ray diffraction intensity profile of the test sample 16 is measured online using the X-ray diffraction apparatus 1 according to the embodiment of the present invention, the physical characteristics of the test sample 16 being manufactured can be quickly known. be able to. Since it is possible to quickly feed back the physical characteristics obtained in this way to the control of the manufacturing conditions of the test sample 16, the product can be manufactured with a higher yield.

以上、説明したように、本発明の実施の形態では、被検試料の基準位置となる基準面に対して相対的に固定配置されたX線照射部およびX線検出部を筐体内部に有する測定ユニットを用い、被検試料の測定点にX線を照射して、この測定点から所定の角度範囲に回折する複数の回折X線を1次元検出または2次元検出し、これにより、被検試料のX線回折強度プロファイルを測定し、且つ、距離測定部を用いて被検試料の測定点と測定ユニットとの間の被検試料距離を測定している。また、距離測定部によって測定された被検試料距離をもとに被検試料の厚さ方向の変位を算出し、この算出した変位と、被検試料の測定点へのX線入射角度と、基準面内の基準測定点からX線検出部までの距離と、基準測定点における見かけの回折X線出射角度とを適宜用い、上述した数式(9)あるいは数式(10)および数式(11)に基づいて、被検試料の測定点における真のX線回折角度を算出し、この算出した真のX線回折角度をもとに、被検試料の測定点におけるX線回折強度プロファイルを補正している。  As described above, in the embodiment of the present invention, the X-ray irradiation unit and the X-ray detection unit that are fixedly arranged relative to the reference plane serving as the reference position of the test sample are included in the housing. A measurement unit is used to irradiate a measurement point of a test sample with X-rays and to detect a plurality of diffracted X-rays diffracted from the measurement point to a predetermined angle range in a one-dimensional or two-dimensional manner. The X-ray diffraction intensity profile of the sample is measured, and the test sample distance between the measurement point of the test sample and the measurement unit is measured using the distance measuring unit. Further, the displacement in the thickness direction of the test sample is calculated based on the test sample distance measured by the distance measuring unit, the calculated displacement, and the X-ray incident angle to the measurement point of the test sample, Using the distance from the reference measurement point in the reference plane to the X-ray detector and the apparent diffracted X-ray emission angle at the reference measurement point as appropriate, Equation (9) or Equation (10) and Equation (11) described above are used. Based on this, the true X-ray diffraction angle at the measurement point of the test sample is calculated, and the X-ray diffraction intensity profile at the measurement point of the test sample is corrected based on the calculated true X-ray diffraction angle. Yes.

このため、被検試料を構成する物質の結晶構造、構成物質の量、応力、結晶配向性をはじめとした所望の情報を取得可能なX線回折強度プロファイルを、X線照射部およびX線検出部を回転走査させることなく、オンラインで一度に測定することができる。これに加え、被検試料の厚さや形状の変化、あるいは走行中の被検試料や設置架台等の振動に起因して生じるX線回折角度の誤差を十分に補正することができ、補正後のX線回折角度を、被検試料のX線回折強度プロファイルの測定結果に反映させることができる。以上のことから、着目する角度範囲のX線回折強度プロファイルを効率よく測定できるとともに、X線回折強度プロファイルにおけるX線回折角度誤差を可能な限り低減することができる。この結果、被検試料の所望のX線回折強度プロファイルをオンラインで迅速且つ高精度に測定することができる。  Therefore, an X-ray diffraction intensity profile and X-ray detection can be performed with an X-ray diffraction intensity profile capable of obtaining desired information including the crystal structure of the substance constituting the test sample, the amount of constituent substances, stress, and crystal orientation. Measurement can be performed online at one time without rotating the part. In addition to this, it is possible to sufficiently correct errors in the X-ray diffraction angle caused by changes in the thickness and shape of the test sample, or vibrations of the test sample and the installation platform during travel. The X-ray diffraction angle can be reflected in the measurement result of the X-ray diffraction intensity profile of the test sample. From the above, it is possible to efficiently measure the X-ray diffraction intensity profile in the angle range of interest, and to reduce the X-ray diffraction angle error in the X-ray diffraction intensity profile as much as possible. As a result, a desired X-ray diffraction intensity profile of the test sample can be measured quickly and with high accuracy on-line.

また、本発明の実施の形態では、被検試料の測定点にX線を照射するX線照射部と、被検試料の測定点によって回折した複数の回折X線を検出するX線検出部とを基準面に対して相対的に固定配置している。このため、被検試料のX線回折強度プロファイルを測定するに際して、測定ユニット(具体的にはX線照射部およびX線検出部)の機械的負荷を可能な限り軽減することができる。この結果、測定ユニットの機械的寿命の低下を抑制できることから、機械的耐久性に優れたX線回折装置を実現することができる。  In the embodiment of the present invention, an X-ray irradiation unit that irradiates the measurement point of the test sample with X-rays, and an X-ray detection unit that detects a plurality of diffraction X-rays diffracted by the measurement point of the test sample; Are fixedly arranged relative to the reference plane. For this reason, when measuring the X-ray diffraction intensity profile of the test sample, the mechanical load on the measurement unit (specifically, the X-ray irradiation unit and the X-ray detection unit) can be reduced as much as possible. As a result, since the reduction in the mechanical life of the measurement unit can be suppressed, an X-ray diffractometer with excellent mechanical durability can be realized.

さらに、本発明の実施の形態では、X線回折装置1に距離測定部9を複数設けることにより、被検試料16における複数の測定点の各別に、被検試料16と測定ユニット2との間の離間距離を測定することができる。この場合、距離測定部9は、被検試料16の複数の測定点に沿って複数配置される。これら複数の距離測定部9は、被検試料16の複数の測定点と測定ユニット2との各間の離間距離(被検試料距離Z)を各々測定する。このように複数の距離測定部9を用いて被検試料16の測定点毎に被検試料距離Zを測定することにより、基準面17に対する被検試料16の厚さ方向の変位ΔZを測定点毎に精度よく測定することができる。このため、被検試料16の厚さや形状、振動の影響等、各測定点の状況に応じて、被検試料16の測定点の変位ΔZを精度よく取得することができる。これにより、測定点毎のX線回折角度の精度を高めることができ、この結果、複数の測定点におけるX線回折強度プロファイルの測定精度の向上を促進することができる。なお、測定点毎に被検試料16の厚さや形状、振動の影響等が異なる場合には、これら複数の距離測定部9を全ての測定点に対応して配置することが望ましい。  Furthermore, in the embodiment of the present invention, by providing a plurality of distance measuring units 9 in the X-ray diffractometer 1, the distance between the test sample 16 and the measurement unit 2 for each of the plurality of measurement points in the test sample 16. Can be measured. In this case, a plurality of distance measuring units 9 are arranged along a plurality of measurement points of the test sample 16. The plurality of distance measuring units 9 respectively measure the separation distance (test sample distance Z) between the plurality of measurement points of the test sample 16 and the measurement unit 2. Thus, by measuring the test sample distance Z for each measurement point of the test sample 16 using the plurality of distance measuring units 9, the displacement ΔZ in the thickness direction of the test sample 16 with respect to the reference surface 17 is measured. It is possible to measure with high accuracy every time. Therefore, the displacement ΔZ of the measurement point of the test sample 16 can be obtained with high accuracy according to the situation of each measurement point such as the thickness and shape of the test sample 16 and the influence of vibration. Thereby, the precision of the X-ray diffraction angle for every measurement point can be raised, As a result, the improvement of the measurement precision of the X-ray diffraction intensity profile in a some measurement point can be promoted. In addition, when the thickness and shape of the test sample 16 are different for each measurement point, the influence of vibration, and the like, it is desirable to arrange the plurality of distance measurement units 9 corresponding to all the measurement points.

なお、上述した実施の形態では、被検試料のX線回折強度プロファイルの測定と被検試料距離の測定とを並行して行っていたが、本発明は、これに限定されるものではない。本発明において、被検試料のX線回折強度プロファイルの測定は、被検試料距離の測定の前に行ってもよいし、後に行ってもよい。  In the above-described embodiment, the measurement of the X-ray diffraction intensity profile of the test sample and the measurement of the test sample distance are performed in parallel, but the present invention is not limited to this. In the present invention, the measurement of the X-ray diffraction intensity profile of the test sample may be performed before or after the measurement of the test sample distance.

また、上述した実施の形態では、順次搬送される被検試料のX線回折強度プロファイルを測定していたが、本発明は、これに限定されるものではない。本発明において、X線回折強度プロファイルの測定は、停止した状態の被検試料に対して行ってもよいし、走行した状態の被検試料に対して行ってもよい。あるいは、被検試料を載置する試料ステージを測定ユニットに対して相対的に移動させて、試料ステージ上の被検試料のX線回折強度プロファイルを測定してもよいし、測定ユニットに移動機構を設け、被検試料に対して相対的に測定ユニットを移動させて、被検試料のX線回折強度プロファイルを測定してもよい。この場合、被検試料の被検面内における任意の箇所についてX線回折強度プロファイルを測定することが可能となる。  In the above-described embodiment, the X-ray diffraction intensity profile of the sample to be sequentially conveyed is measured, but the present invention is not limited to this. In the present invention, the measurement of the X-ray diffraction intensity profile may be performed on the test sample in a stopped state or may be performed on the test sample in a running state. Alternatively, the X-ray diffraction intensity profile of the test sample on the sample stage may be measured by moving the sample stage on which the test sample is placed relative to the measurement unit. And the X-ray diffraction intensity profile of the test sample may be measured by moving the measurement unit relative to the test sample. In this case, the X-ray diffraction intensity profile can be measured at an arbitrary position within the test surface of the test sample.

さらに、上述した実施の形態では、GA鋼帯等の鉄鋼製品を被検試料としていたが、本発明は、これに限定されるものではない。本発明にかかるX線回折装置およびX線回折測定方法によってX線回折強度プロファイルを測定される被検試料は、GA鋼板等の各種鋼材であってもよいし、鋼以外の鉄合金であってもよいし、銅またはアルミニウム等の鉄合金以外の金属であってもよい。また、セラミックス材料や半導体材料、樹脂材料等、結晶性を示すその他の材料にも適用できる。すなわち、本発明において、被検試料の素材は、鋼、鋼以外の鉄合金、鉄合金以外の金属、セラミックス材料、半導体材料、樹脂材料等のいずれであってもよく、また、鋼種等の金属種類(例えば強度や組成等)も特に問われない。  Furthermore, although steel products, such as GA steel strip, were used as the test sample in the above-described embodiment, the present invention is not limited to this. The test sample whose X-ray diffraction intensity profile is measured by the X-ray diffractometer and the X-ray diffraction measurement method according to the present invention may be various steel materials such as GA steel plate, or an iron alloy other than steel. It may be a metal other than an iron alloy such as copper or aluminum. Further, the present invention can also be applied to other materials exhibiting crystallinity, such as ceramic materials, semiconductor materials, and resin materials. That is, in the present invention, the material of the test sample may be any of steel, iron alloys other than steel, metals other than iron alloys, ceramic materials, semiconductor materials, resin materials, etc. The type (for example, strength and composition) is not particularly limited.

また、上述した実施の形態および実施例により本発明が限定されるものではなく、上述した各構成要素を適宜組み合わせて構成したものも本発明に含まれる。その他、上述した実施の形態に基づいて当業者等によりなされる他の実施の形態、実施例および運用技術等は全て本発明の範疇に含まれる。  Further, the present invention is not limited by the above-described embodiments and examples, and the present invention includes a configuration in which the above-described constituent elements are appropriately combined. In addition, other embodiments, examples, operational techniques, and the like made by those skilled in the art based on the above-described embodiments are all included in the scope of the present invention.

以上のように、本発明にかかるX線回折装置およびX線回折測定方法は、被検試料を構成する物質のX線回折強度プロファイルの測定に有用であり、特に、被検試料のX線回折強度プロファイルをオンラインで迅速且つ高精度に測定することに適している。  As described above, the X-ray diffractometer and the X-ray diffraction measurement method according to the present invention are useful for measuring the X-ray diffraction intensity profile of the substance constituting the test sample, and in particular, the X-ray diffraction of the test sample. It is suitable for measuring the intensity profile quickly and with high accuracy online.

1 X線回折装置
2 測定ユニット
3 X線照射部
4 X線源
5 X線平行ビーム化用機器
6 X線検出部
7 Kβフィルタ
8 筐体
9 距離測定部
10 データ処理部
11 入力部
12 出力部
13 記憶部
14 制御部
16 被検試料
17 基準面
20 めっき層
21 ζ相
22 δ1
23 Γ相
24 下地鋼板
A 点光源
B X線検出素子
L1〜L3 相関線
O 基準測定点
O’,P1〜P3 測定点
DESCRIPTION OF SYMBOLS 1 X-ray diffractometer 2 Measurement unit 3 X-ray irradiation part 4 X-ray source 5 X-ray parallel beam apparatus 6 X-ray detection part 7 K (beta) filter 8 Case 9 Distance measurement part 10 Data processing part 11 Input part 12 Output part Reference Signs List 13 Storage Unit 14 Control Unit 16 Test Sample 17 Reference Surface 20 Plating Layer 21 Zeta Phase 22 δ 1 Phase 23 Γ Phase 24 Base Steel Plate A Point Light Source B X-ray Detection Element L1 to L3 Correlation Line O Reference Measurement Point O ′, P 1 ~P 3 measuring points

Claims (6)

被検試料の測定点にX線を照射するX線照射部と、前記X線が前記被検試料の測定点によって回折されてなる複数の回折X線を1次元検出または2次元検出して前記被検試料のX線回折強度プロファイルを測定するX線検出部と、前記被検試料の基準位置となる基準面に対して相対的に前記X線照射部および前記X線検出部を固定配置される筐体とを有する測定ユニットと、
前記被検試料の測定点と前記測定ユニットとの間の離間距離を測定する距離測定部と、
前記測定ユニットと前記基準面との間の基準離間距離と前記距離測定部によって測定された前記離間距離との差を前記被検試料の厚さ方向の変位ΔZとして算出し、算出した前記変位ΔZと、前記X線照射部から前記被検試料の測定点へのX線入射角度αと、前記基準面内の基準測定点から前記X線検出部までの距離Rと、前記基準測定点から前記X線検出部への見かけの回折X線出射角度Θexと、以下に示す数式(1)とを用いることによって、前記被検試料の測定点における真のX線回折角度2θを算出し、算出した前記真のX線回折角度2θをもとに、前記X線回折強度プロファイルを補正するデータ処理部と、
を備えたことを特徴とするX線回折装置。
Figure 0005850211
An X-ray irradiator that irradiates a measurement point of the test sample with X-rays, and a plurality of diffracted X-rays formed by diffracting the X-rays by the measurement point of the test sample are detected in one or two dimensions to detect An X-ray detection unit that measures an X-ray diffraction intensity profile of a test sample, and the X-ray irradiation unit and the X-ray detection unit are fixedly disposed relative to a reference plane that is a reference position of the test sample. A measuring unit having a housing
A distance measurement unit for measuring a separation distance between the measurement point of the test sample and the measurement unit;
A difference between a reference separation distance between the measurement unit and the reference surface and the separation distance measured by the distance measurement unit is calculated as a displacement ΔZ in the thickness direction of the test sample, and the calculated displacement ΔZ An X-ray incident angle α from the X-ray irradiation unit to the measurement point of the test sample, a distance R from the reference measurement point in the reference plane to the X-ray detection unit, and the reference measurement point The true X-ray diffraction angle 2θ at the measurement point of the test sample is calculated by using the apparent diffraction X-ray emission angle Θ ex to the X-ray detection unit and the following formula (1). A data processing unit for correcting the X-ray diffraction intensity profile based on the true X-ray diffraction angle 2θ,
An X-ray diffraction apparatus comprising:
Figure 0005850211
前記データ処理部は、前記X線入射角度αと、前記見かけの回折X線出射角度Θexと、以下に示す数式(2)とを用いることによって、前記基準測定点における見かけのX線回折角度2Θを算出し、算出した前記見かけのX線回折角度2Θと、前記被検試料の厚さ方向の変位ΔZと、以下に示す数式(3)とを用いることによって、前記真のX線回折角度2θを算出することを特徴とする請求項1に記載のX線回折装置。
2Θ=Θex+α ・・・(2)
2θ=2Θ+a×ΔZ+b ・・・(3)
ただし、a,bは定数
The data processing unit uses the X-ray incident angle α, the apparent diffracted X-ray emission angle Θ ex, and the following equation (2) to obtain an apparent X-ray diffraction angle at the reference measurement point. 2Θ is calculated, and the true X-ray diffraction angle is calculated by using the calculated apparent X-ray diffraction angle 2Θ, the displacement ΔZ in the thickness direction of the test sample, and the following equation (3). The X-ray diffractometer according to claim 1, wherein 2θ is calculated.
2Θ = Θ ex + α ··· ( 2)
2θ = 2Θ + a × ΔZ + b (3)
Where a and b are constants
前記距離測定部は、前記被検試料の複数の測定点に沿って複数配置され、
複数の前記距離測定部は、前記被検試料の複数の測定点と前記測定ユニットとの各間の離間距離を各々測定することを特徴とする請求項1または2に記載のX線回折装置。
A plurality of the distance measuring units are arranged along a plurality of measurement points of the test sample,
The X-ray diffractometer according to claim 1, wherein the plurality of distance measuring units respectively measure the distances between the plurality of measurement points of the test sample and the measurement unit.
被検試料の測定点にX線を照射するX線照射部と、前記X線が前記被検試料の測定点によって回折されてなる複数の回折X線を1次元検出または2次元検出するX線検出部と、前記被検試料の基準位置となる基準面に対して相対的に前記X線照射部および前記X線検出部を固定配置される筐体とを有する測定ユニットを用い、前記被検試料のX線回折強度プロファイルを測定し、且つ、距離測定部を用いて前記被検試料の測定点と前記測定ユニットとの間の離間距離を測定する測定ステップと、
前記測定ユニットと前記基準面との間の基準離間距離と前記距離測定部によって測定された前記離間距離との差を前記被検試料の厚さ方向の変位ΔZとして算出し、算出した前記変位ΔZと、前記X線照射部から前記被検試料の測定点へのX線入射角度αと、前記基準面内の基準測定点から前記X線検出部までの距離Rと、前記基準測定点から前記X線検出部への見かけの回折X線出射角度Θexと、以下に示す数式(4)とを用いることによって、前記被検試料の測定点における真のX線回折角度2θを算出するX線回折角度算出ステップと、
前記X線回折角度算出ステップによって算出した前記真のX線回折角度2θをもとに、前記X線回折強度プロファイルを補正する補正ステップと、
を含むことを特徴とするX線回折測定方法。
Figure 0005850211
An X-ray irradiator that irradiates a measurement point of the test sample with X-rays, and an X-ray that detects one-dimensionally or two-dimensionally a plurality of diffracted X-rays formed by diffracting the X-ray by the measurement point of the test sample Using the measurement unit having a detection unit and a housing in which the X-ray irradiation unit and the X-ray detection unit are fixedly arranged relative to a reference plane serving as a reference position of the test sample, A measurement step of measuring an X-ray diffraction intensity profile of the sample and measuring a separation distance between the measurement point of the test sample and the measurement unit using a distance measurement unit;
A difference between a reference separation distance between the measurement unit and the reference surface and the separation distance measured by the distance measurement unit is calculated as a displacement ΔZ in the thickness direction of the test sample, and the calculated displacement ΔZ An X-ray incident angle α from the X-ray irradiation unit to the measurement point of the test sample, a distance R from the reference measurement point in the reference plane to the X-ray detection unit, and the reference measurement point X-ray for calculating the true X-ray diffraction angle 2θ at the measurement point of the test sample by using the apparent diffraction X-ray emission angle Θ ex to the X-ray detection unit and the following equation (4) Diffraction angle calculation step;
A correction step of correcting the X-ray diffraction intensity profile based on the true X-ray diffraction angle 2θ calculated by the X-ray diffraction angle calculation step;
An X-ray diffraction measurement method comprising:
Figure 0005850211
前記X線回折角度算出ステップは、前記X線入射角度αと、前記見かけの回折X線出射角度Θexと、以下に示す数式(5)とを用いることによって、前記基準測定点における見かけのX線回折角度2Θを算出し、算出した前記見かけのX線回折角度2Θと、前記被検試料の厚さ方向の変位ΔZと、以下に示す数式(6)とを用いることによって、前記真のX線回折角度2θを算出することを特徴とする請求項4に記載のX線回折測定方法。
2Θ=Θex+α ・・・(5)
2θ=2Θ+a×ΔZ+b ・・・(6)
ただし、a,bは定数
The X-ray diffraction angle calculation step uses the X-ray incident angle α, the apparent diffraction X-ray emission angle Θ ex, and the following equation (5) to obtain an apparent X at the reference measurement point. The true X-ray diffraction angle 2Θ is calculated, and the calculated true X-ray diffraction angle 2Θ, the displacement ΔZ in the thickness direction of the test sample, and the following formula (6) are used. The X-ray diffraction measurement method according to claim 4, wherein the line diffraction angle 2θ is calculated.
2Θ = Θ ex + α (5)
2θ = 2Θ + a × ΔZ + b (6)
Where a and b are constants
前記測定ステップは、前記被検試料の複数の測定点に沿って配置された複数の前記距離測定部を用い、前記被検試料の複数の測定点と前記測定ユニットとの各間の離間距離を各々測定することを特徴とする請求項4または5に記載のX線回折測定方法。  The measurement step uses a plurality of the distance measurement units arranged along a plurality of measurement points of the test sample, and determines a separation distance between each of the plurality of measurement points of the test sample and the measurement unit. 6. The X-ray diffraction measurement method according to claim 4, wherein each measurement is performed.
JP2015545215A 2014-02-05 2015-01-30 X-ray diffraction apparatus and X-ray diffraction measurement method Active JP5850211B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015545215A JP5850211B1 (en) 2014-02-05 2015-01-30 X-ray diffraction apparatus and X-ray diffraction measurement method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014020327 2014-02-05
JP2014020327 2014-02-05
PCT/JP2015/052699 WO2015119056A1 (en) 2014-02-05 2015-01-30 X-ray diffraction analyzer and analyzing method
JP2015545215A JP5850211B1 (en) 2014-02-05 2015-01-30 X-ray diffraction apparatus and X-ray diffraction measurement method

Publications (2)

Publication Number Publication Date
JP5850211B1 true JP5850211B1 (en) 2016-02-03
JPWO2015119056A1 JPWO2015119056A1 (en) 2017-03-23

Family

ID=53777863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015545215A Active JP5850211B1 (en) 2014-02-05 2015-01-30 X-ray diffraction apparatus and X-ray diffraction measurement method

Country Status (4)

Country Link
JP (1) JP5850211B1 (en)
CN (1) CN105960590B (en)
MX (1) MX361122B (en)
WO (1) WO2015119056A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102450776B1 (en) 2017-10-27 2022-10-05 삼성전자주식회사 Laser processing method, substrate dicing method, and substrate processing apparatus for performing the same

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10386313B2 (en) * 2016-09-29 2019-08-20 Bruker Jv Israel Ltd. Closed-loop control of X-ray knife edge
US10753890B2 (en) * 2017-03-09 2020-08-25 Malvern Panalytical B.V. High resolution X-ray diffraction method and apparatus
JP6776181B2 (en) * 2017-05-31 2020-10-28 株式会社神戸製鋼所 Stress measurement method
JP6775777B2 (en) * 2017-08-29 2020-10-28 株式会社リガク How to display the measurement result in X-ray diffraction measurement
JP2019128307A (en) * 2018-01-26 2019-08-01 国立大学法人東北大学 Stress measuring device for conveyed object
CN110632108B (en) * 2019-10-29 2023-08-22 中国华能集团有限公司 Flux addition control system and method based on X-ray diffraction analysis
JP7165416B2 (en) * 2020-01-15 2022-11-04 株式会社リガク X-ray analysis device, X-ray analysis method, and X-ray analysis program

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0544007A (en) * 1991-08-09 1993-02-23 Nisshin Steel Co Ltd Method for controlling alloying degree of galvannealed steel sheet
JPH0968507A (en) * 1995-08-31 1997-03-11 Shimadzu Corp X-ray diffraction device
WO2013161922A1 (en) * 2012-04-25 2013-10-31 新日鐵住金株式会社 METHOD AND DEVICE FOR DETERMINING Fe-Zn ALLOY PHASE THICKNESS OF HOT-DIP GALVANIZED STEEL SHEET

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0625894A (en) * 1992-07-08 1994-02-01 Kobe Steel Ltd Production of fe-zn alloy plated steel sheet
JP3675079B2 (en) * 1996-12-24 2005-07-27 株式会社島津製作所 X-ray diffractometer
JP4458513B2 (en) * 2003-08-18 2010-04-28 株式会社リガク Equipment for evaluating specific polymer crystals

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0544007A (en) * 1991-08-09 1993-02-23 Nisshin Steel Co Ltd Method for controlling alloying degree of galvannealed steel sheet
JPH0968507A (en) * 1995-08-31 1997-03-11 Shimadzu Corp X-ray diffraction device
WO2013161922A1 (en) * 2012-04-25 2013-10-31 新日鐵住金株式会社 METHOD AND DEVICE FOR DETERMINING Fe-Zn ALLOY PHASE THICKNESS OF HOT-DIP GALVANIZED STEEL SHEET

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6015010623; 森 茂之, 武内 孝一, 松本 義朗: '「GAめっき鋼板の合金化度分析法」' 鉄と鋼 Vol. 82, No. 11, 19961101, pp. 917-922, 社団法人日本鉄鋼協会 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102450776B1 (en) 2017-10-27 2022-10-05 삼성전자주식회사 Laser processing method, substrate dicing method, and substrate processing apparatus for performing the same

Also Published As

Publication number Publication date
JPWO2015119056A1 (en) 2017-03-23
CN105960590A (en) 2016-09-21
MX2016010066A (en) 2016-10-07
CN105960590B (en) 2018-12-21
WO2015119056A1 (en) 2015-08-13
MX361122B (en) 2018-11-28

Similar Documents

Publication Publication Date Title
JP5850211B1 (en) X-ray diffraction apparatus and X-ray diffraction measurement method
EP3064931B1 (en) Quantitative x-ray analysis
JP4262734B2 (en) X-ray fluorescence analyzer and method
US9671222B2 (en) Method and device for determining thickness of rolling stock
JP6123908B2 (en) On-line plating adhesion judgment device for alloyed hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet production line
US6885726B2 (en) Fluorescent X-ray analysis apparatus
JP5403193B1 (en) Method and apparatus for measuring Fe-Zn alloy phase thickness of galvannealed steel sheet
CN105758345A (en) X-ray fluorescence imaging apparatus for on-line measurement of strip steel coating thickness
TW201435337A (en) Evaluation system and evaluation method of machined surface condition
TWI439664B (en) Radiation thickness meter
EP3012622A1 (en) Thermal diffusivity measurement device
KR102140602B1 (en) Method and device for carrying out an x-ray fluorescence analysis
US9194823B2 (en) Radiation inspection apparatus
JP2014055353A (en) Method for measuring alloying degree of alloyed galvanized steel
JP2915294B2 (en) Method and apparatus for measuring oil coating amount on metal material surface
JP2012168075A (en) Method for measurement of internal stress of material including large grain
JPH10282020A (en) Method of measuring composition and thickness of oxidized scale of steel plate and apparatus therefor
JP2006091001A (en) Method and system for measuring coating deposition, and infrared spectrophotometer
CN109563606B (en) Method for measuring alloying degree and/or plating adhesion amount of galvanized steel sheet
JP4302852B2 (en) Method for measuring surface oxide of metal material and X-ray diffractometer
EP3633357B1 (en) Stress measurement method
JP2013092502A (en) Temperature measuring apparatus and emissivity measuring device
JP2015165228A (en) Method for measurement of measurement object by means of x-ray fluorescence
EP3633358B1 (en) Stress measurement method
JPS6188128A (en) Method for measuring film thickness and composition of alloy coat

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20151030

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151117

R150 Certificate of patent or registration of utility model

Ref document number: 5850211

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250