JP3675079B2 - X-ray diffractometer - Google Patents

X-ray diffractometer Download PDF

Info

Publication number
JP3675079B2
JP3675079B2 JP34301096A JP34301096A JP3675079B2 JP 3675079 B2 JP3675079 B2 JP 3675079B2 JP 34301096 A JP34301096 A JP 34301096A JP 34301096 A JP34301096 A JP 34301096A JP 3675079 B2 JP3675079 B2 JP 3675079B2
Authority
JP
Japan
Prior art keywords
sample
intensity
ray
time
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP34301096A
Other languages
Japanese (ja)
Other versions
JPH10185844A (en
Inventor
忠幸 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP34301096A priority Critical patent/JP3675079B2/en
Publication of JPH10185844A publication Critical patent/JPH10185844A/en
Application granted granted Critical
Publication of JP3675079B2 publication Critical patent/JP3675079B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、試料に特性X線を照射し、試料によって回折されたX線を検出して試料成分の定性・定量分析を行うX線回折装置に関する。
【0002】
【従来の技術】
X線回折装置は粉末試料などに含まれる結晶成分の定性・定量分析を行う装置であって、X線源からの特性X線を試料に照射し、試料から放射される回折X線をゴニオメータに搭載された検出器によって回折角度ごとに検出する。図4に従来のX線回折装置を示すように、粉末試料23は通常試料ホルダを用いて20mm角程度の大きさの平板状に成形されてθ軸27上のゴニオメータの中心に載置され、X線管21のターゲットで発生したX線26は所定の設置位置とスリット幅を持つ発散スリット22によってその広がりが1〜3°程度に規制されて試料23の表面に照射される。ゴニオメータの2θ軸がθ軸に対して2倍の関係を保ちながら連動して回転駆動され、試料23から放射される回折X線は2θ軸28に搭載された検出スリット24と検出器25によって検出される。
【0003】
測定されるX線強度は、試料の状態が同じであったとしてもX線源であるX線管の使用時間や試料からの回折X線を検出するシンチレーションカウンタなどの検出器の状態、さらには、室温などの周囲環境によって変化する。例えば、X線管ターゲットで発生したX線を透過させるX線管側壁に設けられた窓にはフィラメントから蒸発したタングステンが徐々にではあるが堆積していき、透過するX線の強度が使用時間とともに低下していく。また、検出器として使われるシンチレーションカウンタにはX線を可視光に変換するNaIなどからなるシンチレータが使用されるが、このシンチレータは湿気に弱いので使用環境によってはX線を光に変換する効率が低下し、これも測定されるX線強度を低下させることになる。
【0004】
従来のX線回折装置装置においては、このような比較的長期にわたる強度変化についての対策は特別にはとられておらず、測定されたX線強度を補正するようなことは行われていない。
【0005】
【発明が解決しようとする課題】
上述したように、従来技術においては、X線回折装置の各部の経時的劣化や周囲環境の変動による測定X線強度の変化に対して有効な補正などを行っていなかったので、定量分析などにおいては時間を経ることによって定量精度が低下していき、または、定量精度を維持しようとすれば分析対象試料の測定のつど検量線を書き直すなどの手間がかかるという問題点があった。
【0006】
本発明は、このような事情に鑑みてなされたものであり、X線回折装置において、管球や検出器等の劣化または周囲温度などの環境の変化に対応した測定強度の変化を補正することによって常に装置調整当初のX線強度が得られるようにして定量精度を向上させることを目的とする。
【0007】
【課題を解決するための手段】
本発明は、上記課題を解決するために、試料に特性X線を照射するX線源と、この試料によって回折されるX線を検出する検出器を備えたX線回折装置において、基準とする時点において基準試料を測定したときの基準強度を記憶する記憶手段と、分析対象試料を測定する時点において測定される基準試料の分析時点強度と記憶されている前記基準強度に基づいて分析対象試料の測定強度を補正する補正式を求める演算手段を備え、分析対象試料の測定時に前記X線源や検出器等の状態変化による分析対象試料のX線強度の変化を補正するようにしたことを特徴とする。
【0008】
経時的に変化しない基準試料の基準時点の測定強度を記憶しておき、ある程度の日にちが経過した後に、分析対象試料を測定したときの測定強度を、その時に再測定した基準試料の分析時点強度に基づいて補正するので、X線源や検出器の経時的変化を打ち消すことができて精度のよい定量分析結果が得られる。
【0009】
ここで、基準となる時点とは、装置を据え付けたときや定期的なメンテナンスを行った直後が最適であって、X線回折装置の良好な性能が発揮される状態のときをいう。
【0010】
【発明の実施の形態】
本発明の一実施の形態を図面を用いて説明する。
図1に本発明のX線回折装置の概略図を示す。X線管1から放射されたX線は試料2に照射され、この試料2によって回折されたX線が検出器3によって検出される。試料2と検出器3はそれぞれゴニオメータ4のθ軸と2θ軸に搭載されており、それがいわゆるθ−2θ連動の駆動方法でゴニオメータの中心軸を中心として回転されて回折角度ごとにX線強度が測定され、X線回折パターンが得られる。
【0011】
検出器3からの信号は制御部5の中に含まれる強度測定回路5aによってデジタルデータに変換され、データ処理部6に送られ測定データメモリ6aに保存される。また、制御部5のうちの動作制御回路5bはX線管1のパワーの制御やゴニオメータ4の回転駆動などを制御している。制御部5はX線計数のためのアナログ回路やデジタル的に動作制御を行うためのマイクロコンピュータおよび入出力器などによって構成されている。データ処理部6はパーソナルコンピュータなどで構成することができ、測定の結果得られたX線回折データに基づいて、X線回折装置としての各種のデータ処理を行い、CRTやプリンタなどで構成される出力・表示部7に分析結果を出力する。
【0012】
本発明の特徴的構成として、データ処理部6のなかに基準試料を測定したときのX線強度データを保存する基準強度メモリ6bと、補正関数(補正係数)を記憶する補正関数メモリ6cと、補正関数を求めるとともに分析対象試料の測定強度を補正演算する演算部6dを備えている。
【0013】
次に図2のフローチャートを用いて分析対象試料の測定強度を補正演算する方法について説明する。X線回折装置を最初に据え付けたとき、あるいは、定期的なメンテナンスを行ったときを基準となる時点とみなし、そのときに図2(a) のように、基準試料を用いて装置の最もよい状態を記憶する。すなわち、時間が経っても結晶構造や表面の状態などの性質が変わらないような試料を基準試料として選定し、その基準試料によるX線回折強度を実際に分析するときの測定条件において測定する(S1)。測定条件というのはX線管にかけるパワーや強度測定の積分時間など装置として設定できるさまざまな条件のことである。もちろん、必要とされる測定条件が何種類かあってもよいのであって、それぞれの測定条件で基準試料の強度を測定しておけばよい。基準試料も一種類および一個とは限られない。そのようにして測定された基準試料のX線強度は基準強度メモリ6bに記憶しておく(S2)。
【0014】
実際に分析対象試料を分析するときには、前回の装置のメンテナンス時から時間が経っているとすれば、ある程度のX線管の劣化などは避けられないから、装置全体としての感度を較正する必要がある。そのために、図2(b) に示すように先に測定しておいた基準試料の強度に基づいて測定強度の補正を行う。まず始めに基準試料を用いて基準強度を測定したときと同じ測定条件によってX線強度を測定し(S11)、この時に得られた強度Km とメンテナンス時に得られた基準強度Ks に基づいて補正関数F(Km )を求める(S12)。補正関数の例については後述する。次に、分析対象となる試料の回折パターンを測定し(S13)、得られた測定強度Im を補正関数Fにあてはめ、補正された強度Ih を、Ih =F(Im )として求め(S14)、以後はこのIh を測定された強度として扱って通常の定性分析や定量分析を行う(S15)。引き続いて別の測定を行う場合には補正関数を求めるステップは行わずにS13にもどって測定以降を繰り返せばよい(S16)。
【0015】
補正関数の例、および、その求め方を図3を用いて説明する。図3に示すグラフにおいて、基準時点および測定時点と書かれたグラフの横軸は回折角度(2θ角度)であり、縦軸は測定されたX線強度である。また、補正関数と書かれたグラフの横軸は測定時点における基準試料のX線強度であり、縦軸は基準時点における基準試料のX線強度である。
【0016】
図3(a) は一つの基準強度値を用いて補正する例であり、補正関数は原点をとおる直線となる。基準試料の適当な回折ピーク(ピークの角度はθ1 とする)の強度を測定し、メンテナンス直後などの基準時点に基準強度Ks が得られ、分析対象試料を測定する測定時点に強度Km が得られたとすると、分析対象試料の補正前の強度Im と補正後の強度Ih の関係すなわち補正式は次のようになる。
【0017】
Ih =αIm (1)
ここで
α=Ks /Km (2)
である。
【0018】
図3(b) は二つの基準強度値を用いて補正する方法であり、補正関数は2点を通る直線となる。試料に含まれる成分の濃度を変えるなどして測定されるX線強度の異なる二つの基準試料を用意して、適当な回折ピークのそれぞれの基準試料の強度を測定する。基準時点における基準強度がそれぞれKs1とKs2であり、分析対象試料を測定する測定時点の強度がKm1とKm2であったとすると、分析対象試料の補正前の強度Im と補正後の強度Ih の関係すなわち補正式は次のようになる。
【0019】
Ih =αIm +β (3)
ここで
α=(Ks1−Ks2)/(Km1−Km2) (4)
β=(Ks2Km1−Ks1Km2)/(Km1−Km2) (5)
である。
【0020】
図3(c) はより一般的に三つ以上の基準強度値を用いて補正する方法であり、補正関数は2次以上の多項式とする。三つ以上の基準強度値は、図3(b) で説明した方法と同様にX線強度の異なる三つ以上の基準試料を用意して測定してもよいが、図3(c) に示すように一つのピークプロファイルの頂点およびその裾の値を用いてもよい。例えば4点の強度を用いるとして、基準時点において、回折角度θ1 ,θ2 ,θ3 ,θ4 での基準試料のX線強度をそれぞれKs1,Ks2,Ks3,Ks4とし、測定時点でのそれぞれの強度をKm1,Km2,Km3,Km4とすると、分析対象試料の補正前の強度Im と補正後の強度Ih の関係すなわち補正式は次のようになる。
【0021】
Ih =F(Im ) (6)
ここで、補正関数F(Im )は4点のデータの組みを最小二乗法などで2次の多項式で表したものである。この補正関数の次数は2次とは限られず、データの点数によっては3次以上の多項式としてもよい。
【0022】
【発明の効果】
本発明のX線回折装置は、測定されたX線強度データを経時的に変化しない基準試料のデータを用いて補正するので、常に装置の状態が最良の状態であるとみなすことができ、装置の各構成部品の劣化や周囲環境の変化に影響されないX線強度データを得ることができる。その補正されたデータがX線回折装置としての定性分析や定量分析において使用されるので、得られる結果は信頼性の高いものとなる。
【0023】
また、定量分析においては標準試料を利用して作成した検量線などを使用するが、本発明のX線回折装置で得られるX線強度データは信頼性の高いものであるから、個々の分析対象試料の測定にあたって検量線を書き直す必要がなく、手間がかからず迅速な分析が可能である。
【図面の簡単な説明】
【図1】本発明のX線回折装置の一実施例を示す図である。
【図2】本発明のX線回折装置を用いてX線強度を測定する手順を示すフローチャートである。
【図3】本発明のX線回折装置で用いる補正関数の例である。
【図4】従来のX線回折装置を示す図である。
【符号の説明】
1…X線管 2…試料
3…検出器 4…ゴニオメータ
5…制御部 6…データ処理部
7…出力・表示部
21…X線管 22…発散スリット
23…試料 24…検出スリット
25…検出器 26…X線
27…θ軸 28…2θ軸
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an X-ray diffractometer that irradiates a sample with characteristic X-rays, detects X-rays diffracted by the sample, and performs qualitative and quantitative analysis of sample components.
[0002]
[Prior art]
An X-ray diffractometer is a device that performs qualitative and quantitative analysis of crystal components contained in powder samples and the like, irradiates the sample with characteristic X-rays from an X-ray source, and uses the diffracted X-rays emitted from the sample as a goniometer Detection is carried out for each diffraction angle by an on-board detector. As shown in FIG. 4 showing a conventional X-ray diffraction apparatus, the powder sample 23 is usually formed into a flat plate having a size of about 20 mm square using a sample holder and placed at the center of the goniometer on the θ axis 27. The spread of the X-rays 26 generated at the target of the X-ray tube 21 is restricted to about 1 to 3 ° by the diverging slit 22 having a predetermined installation position and slit width, and is irradiated on the surface of the sample 23. The 2θ axis of the goniometer is rotationally driven while maintaining a double relationship with the θ axis, and the diffracted X-ray radiated from the sample 23 is detected by the detection slit 24 and the detector 25 mounted on the 2θ axis 28. Is done.
[0003]
The measured X-ray intensity is the same as the condition of the sample, such as the usage time of the X-ray tube as an X-ray source, the state of a detector such as a scintillation counter that detects diffracted X-rays from the sample, and Depends on the ambient environment such as room temperature. For example, tungsten evaporated from the filament gradually accumulates on the window provided on the side wall of the X-ray tube that transmits X-rays generated by the X-ray tube target, and the intensity of the transmitted X-ray is determined by the usage time. It goes down with it. The scintillation counter used as a detector uses a scintillator made of NaI or the like that converts X-rays into visible light. However, since this scintillator is sensitive to moisture, the efficiency of converting X-rays into light may be increased depending on the usage environment. This will also reduce the measured X-ray intensity.
[0004]
In the conventional X-ray diffractometer apparatus, no special measures are taken for such a relatively long-term intensity change, and no correction is made to the measured X-ray intensity.
[0005]
[Problems to be solved by the invention]
As described above, in the prior art, effective correction was not performed for changes in measured X-ray intensity due to deterioration with time of each part of the X-ray diffractometer or changes in the surrounding environment. However, there is a problem that the quantitative accuracy decreases with time, or if it is attempted to maintain the quantitative accuracy, it takes time to rewrite the calibration curve for each measurement of the sample to be analyzed.
[0006]
The present invention has been made in view of such circumstances, and in an X-ray diffractometer, corrects a change in measurement intensity corresponding to deterioration of a tube, a detector, or the like or an environmental change such as an ambient temperature. Therefore, it is an object to improve the quantitative accuracy by always obtaining the X-ray intensity at the beginning of device adjustment.
[0007]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present invention uses a reference in an X-ray diffraction apparatus including an X-ray source that irradiates a sample with characteristic X-rays and a detector that detects X-rays diffracted by the sample. A storage means for storing a reference intensity when the reference sample is measured at a time point; an analysis time intensity of the reference sample measured at the time of measuring the analysis target sample; and the analysis target sample based on the stored reference intensity Computation means for obtaining a correction formula for correcting the measurement intensity is provided, and changes in the X-ray intensity of the analysis target sample due to changes in the state of the X-ray source, detector, etc. are corrected during measurement of the analysis target sample. And
[0008]
The measurement intensity at the reference time point of the reference sample that does not change over time is stored, and after a certain date has passed, the measurement intensity when measuring the sample to be analyzed is the intensity at the time of analysis of the reference sample that was remeasured at that time. Therefore, it is possible to cancel the change with time of the X-ray source and the detector and to obtain an accurate quantitative analysis result.
[0009]
Here, the reference time point is the time when the apparatus is installed or immediately after regular maintenance is performed and the X-ray diffractometer exhibits good performance.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the present invention will be described with reference to the drawings.
FIG. 1 shows a schematic diagram of an X-ray diffraction apparatus of the present invention. X-rays radiated from the X-ray tube 1 are applied to the sample 2, and X-rays diffracted by the sample 2 are detected by the detector 3. The sample 2 and the detector 3 are mounted on the θ axis and 2θ axis of the goniometer 4, respectively, and are rotated around the central axis of the goniometer by a so-called θ-2θ interlocking driving method, and the X-ray intensity for each diffraction angle. Are measured, and an X-ray diffraction pattern is obtained.
[0011]
The signal from the detector 3 is converted into digital data by the intensity measurement circuit 5a included in the control unit 5, sent to the data processing unit 6, and stored in the measurement data memory 6a. The operation control circuit 5b in the control unit 5 controls the power of the X-ray tube 1 and the rotational drive of the goniometer 4. The controller 5 includes an analog circuit for X-ray counting, a microcomputer for digitally controlling operation, an input / output device, and the like. The data processing unit 6 can be configured by a personal computer or the like, and performs various data processing as an X-ray diffraction apparatus based on X-ray diffraction data obtained as a result of measurement, and is configured by a CRT, a printer, or the like. The analysis result is output to the output / display unit 7.
[0012]
As a characteristic configuration of the present invention, a reference intensity memory 6b for storing X-ray intensity data when a reference sample is measured in the data processing unit 6, a correction function memory 6c for storing a correction function (correction coefficient), A calculation unit 6d is provided that calculates a correction function and corrects the measurement intensity of the sample to be analyzed.
[0013]
Next, a method for correcting and calculating the measurement intensity of the sample to be analyzed will be described using the flowchart of FIG. When the X-ray diffractometer is installed for the first time or when regular maintenance is performed, it is regarded as a reference time point, and at that time, as shown in FIG. Remember state. That is, a sample whose properties such as crystal structure and surface state do not change over time is selected as a reference sample, and the X-ray diffraction intensity by the reference sample is measured under the measurement conditions for actual analysis ( S1). The measurement conditions are various conditions that can be set as a device such as power applied to the X-ray tube and integration time of intensity measurement. Of course, there may be several types of measurement conditions required, and the intensity of the reference sample may be measured under each measurement condition. The reference sample is not limited to one type and one. The X-ray intensity of the reference sample thus measured is stored in the reference intensity memory 6b (S2).
[0014]
When actually analyzing the sample to be analyzed, it is necessary to calibrate the sensitivity of the entire device because some degree of X-ray tube deterioration is inevitable if time has passed since the previous maintenance of the device. is there. For this purpose, the measurement intensity is corrected based on the intensity of the reference sample previously measured as shown in FIG. First, the X-ray intensity is measured under the same measurement conditions as when the reference intensity is measured using the reference sample (S11), and the correction function is based on the intensity Km obtained at this time and the reference intensity Ks obtained during maintenance. F (Km) is obtained (S12). An example of the correction function will be described later. Next, the diffraction pattern of the sample to be analyzed is measured (S13), the obtained measurement intensity Im is applied to the correction function F, and the corrected intensity Ih is obtained as Ih = F (Im) (S14). Thereafter, this Ih is treated as the measured intensity, and normal qualitative analysis and quantitative analysis are performed (S15). When another measurement is subsequently performed, the step of obtaining the correction function is not performed, and the process returns to S13 and the subsequent measurement is repeated (S16).
[0015]
An example of the correction function and how to obtain it will be described with reference to FIG. In the graph shown in FIG. 3, the horizontal axis of the graph written as the reference time point and the measurement time point is the diffraction angle (2θ angle), and the vertical axis is the measured X-ray intensity. Further, the horizontal axis of the graph written as the correction function is the X-ray intensity of the reference sample at the time of measurement, and the vertical axis is the X-ray intensity of the reference sample at the reference time.
[0016]
FIG. 3A shows an example of correction using one reference intensity value, and the correction function is a straight line passing through the origin. Measure the intensity of the appropriate diffraction peak of the reference sample (the peak angle is θ1), obtain the reference intensity Ks at the reference time immediately after maintenance, etc., and obtain the intensity Km at the measurement time to measure the sample to be analyzed. Assuming that, the relationship between the intensity Im before correction of the sample to be analyzed and the intensity Ih after correction, that is, the correction formula is as follows.
[0017]
Ih = αIm (1)
Where α = Ks / Km (2)
It is.
[0018]
FIG. 3B shows a correction method using two reference intensity values, and the correction function is a straight line passing through two points. Two reference samples having different X-ray intensities measured by changing the concentrations of components contained in the sample are prepared, and the intensity of each reference sample of an appropriate diffraction peak is measured. If the reference intensities at the reference time are Ks1 and Ks2, respectively, and the intensities at the time of measurement for measuring the sample to be analyzed are Km1 and Km2, the relationship between the intensity Im before correction and the intensity Ih after correction, ie, The correction formula is as follows.
[0019]
Ih = αIm + β (3)
Where α = (Ks1−Ks2) / (Km1−Km2) (4)
β = (Ks2Km1-Ks1Km2) / (Km1-Km2) (5)
It is.
[0020]
FIG. 3 (c) shows a more general correction method using three or more reference intensity values, and the correction function is a second or higher order polynomial. Three or more reference intensity values may be measured by preparing three or more reference samples having different X-ray intensities as in the method described in FIG. 3 (b). As described above, the value of the apex of one peak profile and its skirt may be used. For example, assuming that four intensities are used, the X-ray intensities of the reference samples at the diffraction angles θ1, θ2, θ3, and θ4 at the reference time are Ks1, Ks2, Ks3, and Ks4, and the respective intensities at the measurement time are Km1. , Km2, Km3, and Km4, the relationship between the intensity Im before correction of the sample to be analyzed and the intensity Ih after correction, that is, the correction equation is as follows.
[0021]
Ih = F (Im) (6)
Here, the correction function F (Im) is a four-point data set represented by a quadratic polynomial by the least square method or the like. The order of the correction function is not limited to the second order, and may be a third or higher order polynomial depending on the number of data points.
[0022]
【The invention's effect】
Since the X-ray diffractometer of the present invention corrects the measured X-ray intensity data using the data of the reference sample that does not change with time, the apparatus can always be considered to be in the best state. X-ray intensity data that is not affected by the deterioration of each component or the surrounding environment can be obtained. Since the corrected data is used in qualitative analysis or quantitative analysis as an X-ray diffractometer, the obtained result is highly reliable.
[0023]
In quantitative analysis, a calibration curve created using a standard sample is used. Since the X-ray intensity data obtained by the X-ray diffraction apparatus of the present invention is highly reliable, There is no need to rewrite the calibration curve when measuring the sample, and it is possible to perform a quick analysis without taking time and effort.
[Brief description of the drawings]
FIG. 1 is a diagram showing an embodiment of an X-ray diffraction apparatus according to the present invention.
FIG. 2 is a flowchart showing a procedure for measuring X-ray intensity using the X-ray diffraction apparatus of the present invention.
FIG. 3 is an example of a correction function used in the X-ray diffraction apparatus of the present invention.
FIG. 4 is a view showing a conventional X-ray diffraction apparatus.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... X-ray tube 2 ... Sample 3 ... Detector 4 ... Goniometer 5 ... Control part 6 ... Data processing part 7 ... Output / display part 21 ... X-ray tube 22 ... Divergence slit 23 ... Sample 24 ... Detection slit 25 ... Detector 26 ... X-ray 27 ... θ axis 28 ... 2θ axis

Claims (1)

試料に特性X線を照射するX線源と、この試料によって回折されるX線を検出する検出器を備えたX線回折装置において、基準とする時点において基準試料を測定したときの 2 以上の基準強度を記憶する記憶手段と、分析対象試料を測定する時点において前記基準強度を測定したときと同一の測定条件の下で基準試料を測定したときの 2 以上の分析時点強度および前記記憶手段に記憶されている前記基準強度に基づいて分析対象試料の測定強度を補正する補正式を求める演算手段とを備え、分析対象試料の測定時にX 線回折装置の各部の経時的劣化や周囲環境の変動による分析対象試料のX線強度の変化を補正するようにしたことを特徴とするX線回折装置。In an X-ray diffractometer equipped with an X-ray source that irradiates a sample with characteristic X-rays and a detector that detects X-rays diffracted by the sample, two or more when a reference sample is measured at a reference time point The storage means for storing the reference intensity, and two or more analysis time points when the reference sample is measured under the same measurement conditions as when the reference intensity is measured at the time of measuring the sample to be analyzed, and the storage means Computation means for obtaining a correction formula for correcting the measurement intensity of the sample to be analyzed based on the stored reference intensity, the time-dependent deterioration of each part of the X- ray diffractometer and the fluctuation of the surrounding environment during measurement of the sample to be analyzed An X-ray diffractometer characterized by correcting changes in X-ray intensity of a sample to be analyzed due to the above.
JP34301096A 1996-12-24 1996-12-24 X-ray diffractometer Expired - Fee Related JP3675079B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34301096A JP3675079B2 (en) 1996-12-24 1996-12-24 X-ray diffractometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34301096A JP3675079B2 (en) 1996-12-24 1996-12-24 X-ray diffractometer

Publications (2)

Publication Number Publication Date
JPH10185844A JPH10185844A (en) 1998-07-14
JP3675079B2 true JP3675079B2 (en) 2005-07-27

Family

ID=18358246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34301096A Expired - Fee Related JP3675079B2 (en) 1996-12-24 1996-12-24 X-ray diffractometer

Country Status (1)

Country Link
JP (1) JP3675079B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4714768B2 (en) * 2008-08-11 2011-06-29 株式会社アルバック Measuring method using secondary electron multiplier and apparatus using secondary electron multiplier
JP5850211B1 (en) * 2014-02-05 2016-02-03 Jfeスチール株式会社 X-ray diffraction apparatus and X-ray diffraction measurement method
JP6357794B2 (en) * 2014-02-17 2018-07-18 株式会社島津製作所 X-ray diffractometer and sensitivity correction method for X-ray diffractometer
JP6354605B2 (en) * 2015-01-22 2018-07-11 株式会社島津製作所 X-ray analyzer
US10145809B2 (en) 2016-06-28 2018-12-04 Shimadzu Corporation X-ray diffraction device and sensitivity calibration method for X-ray diffraction device

Also Published As

Publication number Publication date
JPH10185844A (en) 1998-07-14

Similar Documents

Publication Publication Date Title
CA2009698C (en) Method of measuring plating amount and plating film composition of plated steel plate and apparatus therefor
US6041096A (en) Method and apparatus for total reflection X-ray fluorescence spectroscopy
JP3675079B2 (en) X-ray diffractometer
JPS5862508A (en) Device and method of measuring thickness
JPS6235054B2 (en)
US10145809B2 (en) X-ray diffraction device and sensitivity calibration method for X-ray diffraction device
US6516047B2 (en) X-ray diffraction apparatus and method
EP1524516A1 (en) X-ray diffractometer and method of correcting measurement position thereof
JPH05126767A (en) Radiometric analysis device
KR200418412Y1 (en) An apparatus for measuring the distance between bragg's planes of a crystal using X-ray
EP1097373A2 (en) X-ray diffraction apparatus with an x-ray optical reference channel
USRE30884E (en) On-line system for monitoring sheet material additives
JP4662370B2 (en) Angle correction method and X-ray diffraction apparatus in X-ray diffraction measurement
JP4211192B2 (en) X-ray diffractometer
JP5013525B2 (en) X-ray diffraction measurement method and X-ray diffraction apparatus
CN115038959B (en) Fluorescent X-ray analysis device, determination method, and determination program
JP3629542B2 (en) X-ray fluorescence analyzer
JP2977166B2 (en) X-ray diffractometer with wide-range X-ray detector
JPH05119000A (en) Fluorescent x-ray analyzing device
JP2000213999A (en) X-ray stress measuring method
GB2121168A (en) X-ray device
WO1993000567A1 (en) Apparatus and method for calibrating an x-ray layer thickness measuring apparatus
JPH0798287A (en) Deriving method for correlation expression between intensity of fluorescent x-ray and content of element
JPH0833358B2 (en) Total reflection fluorescent X-ray analyzer
JP2000310602A (en) Fluorescent x-ray analyzer and recording medium used therein

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050412

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050425

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080513

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090513

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100513

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100513

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110513

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110513

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120513

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130513

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130513

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees