JPH10282020A - Method of measuring composition and thickness of oxidized scale of steel plate and apparatus therefor - Google Patents
Method of measuring composition and thickness of oxidized scale of steel plate and apparatus thereforInfo
- Publication number
- JPH10282020A JPH10282020A JP9083587A JP8358797A JPH10282020A JP H10282020 A JPH10282020 A JP H10282020A JP 9083587 A JP9083587 A JP 9083587A JP 8358797 A JP8358797 A JP 8358797A JP H10282020 A JPH10282020 A JP H10282020A
- Authority
- JP
- Japan
- Prior art keywords
- ray
- steel sheet
- diffraction
- thickness
- composition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Length-Measuring Devices Using Wave Or Particle Radiation (AREA)
- Analysing Materials By The Use Of Radiation (AREA)
- Continuous Casting (AREA)
Abstract
Description
【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION
【0001】[0001]
【発明の属する技術分野】この発明は、鋼板の製造工程
において鋼板表面に生成する酸化スケールの除去条件の
最適化に関し、特にその指標となる酸化スケールの特性
をオンラインで迅速かつ精度よく測定する鋼板の酸化ス
ケールの組成・厚さの測定方法とその装置を提案するも
のである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to optimization of conditions for removing oxide scale formed on the surface of a steel sheet in a steel sheet manufacturing process, and more particularly, to a method for measuring the characteristics of the oxide scale, which is an index, quickly and accurately on-line. And a method and apparatus for measuring the composition and thickness of the oxide scale.
【0002】[0002]
【従来の技術】鋼板の製造工程で鋼板表面に生成される
酸化スケールは、鋼板の成型性、塗装性、めっき性およ
び溶接性を著しく阻害するため、鋼板表面に高圧水の噴
射あるいは鋼板を酸性液等に通板し洗浄することにより
除去して製品としている。2. Description of the Related Art Oxidation scale generated on the surface of a steel sheet during the manufacturing process of the steel sheet significantly impairs the formability, paintability, plating property and weldability of the steel sheet. The product is removed by passing it through a liquid or the like and washing it.
【0003】しかしながら、これらの高圧水の圧力およ
び水量、酸洗液等の濃度および浸漬時間(通板速度)と
いった製造条件に直接かかわるパラメータは作業者の経
験則に頼っていたため、鋼板表面に酸化スケール残りが
生じたり、あるいは必要以上のアクションをとるなど、
製品歩留りの低下や製造コストの上昇といった問題が生
じることから、酸化スケール除去条件の指標となりうる
酸化スケール特性の迅速な測定手段の出現が望まれてい
た。However, parameters directly related to the production conditions such as the pressure and amount of the high-pressure water, the concentration of the pickling solution and the immersion time (sheet passing speed) depended on the empirical rules of the operator, so that the surface of the steel sheet was oxidized. Such as running out of scale or taking more action than necessary
Since problems such as a decrease in product yield and an increase in manufacturing cost occur, it has been desired to provide a means for quickly measuring oxide scale characteristics, which can be an index of oxide scale removal conditions.
【0004】一般に、X線を励起源として用いる成分分
析等を行う手法は、信頼性が高く工業的に広く用いられ
ている。実験室的には、酸化スケールの種類を分別する
にはX線回折法が最も優れているが、鋼板の製造工程に
おいて、通板速度は高速であるため、従来のゴニオメー
タを用いたX線回折手法では、各組成を一括してかつ同
時にそれぞれのピークを測定できないので、迅速性に欠
け、オンラインでの酸化スケールの除去条件を決定する
ため指標としては用いることができないという問題があ
った。[0004] In general, a technique for performing component analysis or the like using X-rays as an excitation source has high reliability and is widely used industrially. In the laboratory, the X-ray diffraction method is the best for classifying the type of oxide scale. However, in the steel sheet manufacturing process, since the passing speed is high, the X-ray diffraction method using a conventional goniometer is used. According to the method, since the peaks of each composition cannot be measured simultaneously and at the same time, there is a problem that the method lacks quickness and cannot be used as an index for determining the conditions for removing the oxide scale online.
【0005】また、例えば、特開昭60−37187号
公報(薄層の定量分析法)に提案開示されているよう
に、蛍光X線を用いためっき層の組成および厚さを測定
する方法があるが、これも迅速性に欠けるという問題が
あった。Further, for example, as disclosed in Japanese Patent Application Laid-Open No. 60-37187 (quantitative analysis of thin layers), there is a method for measuring the composition and thickness of a plating layer using fluorescent X-rays. However, there is also a problem that this is lacking in speed.
【0006】さらに、鋼板には数10cmから100cm を超え
る板幅のものがあり、板幅方向に酸化スケールの厚さお
よび組成などのばらつきがあるため、板幅方向のデータ
収集を行う必要があった。Further, there are steel plates having a width of several tens cm to more than 100 cm, and the thickness and the composition of the oxide scale vary in the width direction. Therefore, it is necessary to collect data in the width direction. Was.
【0007】いずれにしても、製造工程中の走行する鋼
板について、その最適酸化スケール条件を決定するため
の指標となりうる酸化スケールの特性を迅速にかつ精度
よく測定する手法はこれまでになかった。In any case, there has been no method for quickly and accurately measuring the properties of oxide scale, which can be an index for determining the optimum oxide scale conditions, for a running steel sheet in a manufacturing process.
【0008】[0008]
【発明が解決しようとする課題】この発明は、前記した
問題点を有利に解決しようとするものであり、鋼板の製
造工程において生成される酸化スケールの最適除去条件
の指標となり得る酸化スケールの特性をオンラインで可
能とする鋼板の酸化スケールの組成・厚さの測定方法と
その装置を提案することを目的とする。SUMMARY OF THE INVENTION The present invention advantageously solves the above-mentioned problems, and has characteristics of an oxide scale that can be an index of an optimum condition for removing oxide scale generated in a steel sheet manufacturing process. It is an object of the present invention to propose a method and an apparatus for measuring the composition and thickness of an oxide scale of a steel sheet, which enables the on-line measurement.
【0009】[0009]
【課題を解決するための手段】発明者らは、製造工程中
の鋼板の最適な酸化スケールの除去条件をオンラインで
決定し酸化スケールの除去工程へフィードフォワードす
るためには、鋼板表面の酸化スケールの組成・厚さを迅
速かつ精度よく測定すること、そして、そのためには回
折X線を用いることが有効であることに着目し、この発
明を達成したものである。すなわち、この発明の要旨と
するところは以下の通りである。Means for Solving the Problems In order to determine the optimum conditions for removing the oxide scale of the steel sheet during the manufacturing process online and feed it forward to the oxide scale removing step, the inventors have proposed an oxide scale on the steel sheet surface. The present invention has been achieved by noting that it is effective to measure the composition and thickness quickly and accurately and to use diffraction X-rays for that purpose. That is, the gist of the present invention is as follows.
【0010】X線発生装置からX線を鋼板表面に照射
し、鋼板表面から放射されるFeおよび種々のFe酸化物の
多数の回折X線ピーク強度をX線検出器により検出し、
それの回折X線ピーク強度とあらかじめ登録されている
Feおよび種々のFe酸化物の多くの回折X線ピーク強度と
をもとにして、酸化スケールの組成・厚さを定量するこ
とを特徴とする鋼板の酸化スケールの組成・厚さの測定
方法(第1発明)。X-rays are irradiated from the X-ray generator onto the surface of the steel sheet, and a large number of diffraction X-ray peak intensities of Fe and various Fe oxides emitted from the steel sheet surface are detected by an X-ray detector.
It is registered in advance as its diffraction X-ray peak intensity
A method for measuring the composition and thickness of the oxide scale of a steel sheet, characterized by quantifying the composition and thickness of the oxide scale based on the peak intensities of many diffraction X-rays of Fe and various Fe oxides ( 1st invention).
【0011】X線発生装置およびX線検出器を同時に
鋼板の板幅方向に高速で反復運動させ、板幅方向の酸化
スケールの組成および厚さのばらつきを測定することを
特徴とする第1発明に記載の鋼板の酸化スケールの組成
・厚さの測定方法(第2発明)。The first invention is characterized in that the X-ray generator and the X-ray detector are simultaneously repetitively moved at a high speed in the width direction of the steel sheet to measure the variation of the composition and thickness of the oxide scale in the width direction of the steel sheet. The method for measuring the composition and thickness of an oxide scale of a steel sheet according to (2nd invention).
【0012】鋼板の上下動による、鋼板とX線発生装
置およびX線検出器との距離の変動を常時モニタして一
定に保持することを特徴とする第1発明または第2発明
に記載の鋼板の酸化スケールの組成・厚さの測定方法
(第3発明)。[0012] The steel sheet according to the first or second invention, wherein the fluctuation of the distance between the steel sheet and the X-ray generator and the X-ray detector due to the vertical movement of the steel sheet is constantly monitored and kept constant. Method for measuring composition and thickness of oxide scale (third invention).
【0013】X線発生装置およびX線検出器を熱膨張
係数の小さい合金製の構造物で支持し、温度変化による
鋼板、X線発生装置およびX線検出器間の位置関係の変
動を抑制することを特徴とする第11、2発明または第
3発明に記載の鋼板の酸化スケールの組成・厚さの測定
方法(第4発明)。The X-ray generator and the X-ray detector are supported by a structure made of an alloy having a small coefficient of thermal expansion to suppress a change in the positional relationship between the steel plate, the X-ray generator and the X-ray detector due to a temperature change. The method for measuring the composition and thickness of an oxide scale of a steel sheet according to the eleventh, second or third invention, characterized by the above (fourth invention).
【0014】回折X線検出器に取り付けた多数のチャ
ンネルを有する微小検出素子により回折角度の変動を検
出した際に、その変動を圧電素子により補正し、回折X
線ピークを所定の回折角度で検出することを特徴とする
第1,2,3発明または第4発明に記載の鋼板の酸化ス
ケールの組成・厚さの測定方法(第5発明)。When a change in the diffraction angle is detected by a minute detection element having a large number of channels attached to a diffraction X-ray detector, the change is corrected by a piezoelectric element and the diffraction X-ray is detected.
The method for measuring the composition and thickness of an oxide scale of a steel sheet according to the first, second, third or fourth invention, wherein a line peak is detected at a predetermined diffraction angle (fifth invention).
【0015】Feの特定回折X線ピークの位置のずれを
分光器にそなえつけられた多数のチャンネルを有する微
小X線検出素子により検出することにより、鋼板の温度
変化および振動による回折X線ピーク位置の変動を補正
する第1,2,3,4発明または第5発明に記載の鋼板
の酸化スケールの組成・厚さの測定方法(第6発明)。By detecting the shift of the position of the specific diffraction X-ray peak of Fe by the minute X-ray detecting element having a large number of channels provided in the spectroscope, the position of the diffraction X-ray peak due to the temperature change and vibration of the steel sheet is detected. The method for measuring the composition / thickness of the oxide scale of a steel sheet according to the first, second, third, fourth or fifth invention which corrects the fluctuation of (6th invention).
【0016】鋼板表面にX線を照射するX線発生装置
および鋼板表面から放射される多数の回折X線ピーク強
度を同時に検出する多数のX線検出器を備える分光器を
支持する、熱膨張係数の小さい合金製の支持台と、分光
器からの多数の回折X線ピーク強度の情報とあらかじめ
登録されているFeおよびFe酸化物の多数の回折X線ヒー
ク強度との関係から、酸化スケールの組成・厚さを定量
するワークステーションとからなり、X線検出器が、そ
の近傍に多数のチャンネルを有する微小X線検出素子を
備えるとともに、分光器がこれらの微小X線検出素子か
らの信号により回折X線ピーク角度の変動を補正する圧
電素子を備え、かつ、支持台が、鋼板の板幅方向に反復
運動する機能と、距離計を備えて常時鋼板との距離をモ
ニタしてその変動を補正する機能とを具備してなる鋼板
の酸化スケールの組成・厚さの測定方法(第7発明)。A thermal expansion coefficient supporting a spectroscope including an X-ray generator for irradiating the surface of the steel sheet with X-rays and a number of X-ray detectors for simultaneously detecting a number of diffraction X-ray peak intensities emitted from the surface of the steel sheet. The composition of the oxide scale was determined from the relationship between the support made of an alloy with a small size and the information on the peak intensities of a large number of diffracted X-rays from the spectrometer and the previously registered intensities of the diffracted X-rays of Fe and Fe oxide. A workstation that quantifies the thickness, the X-ray detector includes minute X-ray detectors having a number of channels near it, and the spectrometer diffracts by signals from these minute X-ray detectors Equipped with a piezoelectric element that corrects fluctuations in the X-ray peak angle, and a function that the support base repeatedly moves in the width direction of the steel plate, and a rangefinder is used to constantly monitor the distance from the steel plate to compensate for the fluctuation. A method for measuring the composition and thickness of an oxide scale of a steel sheet having a function of correcting (7th invention).
【0017】ここで、Feの特定回折X線ピークとは、強
度の強い(110) ,(200) あるいは(211) 面を測定するの
が好適である。Here, the specific diffraction X-ray peak of Fe is preferably measured on a (110), (200) or (211) plane having a high intensity.
【0018】[0018]
【発明の実施の形態】以下、この発明をより詳細に説明
する。この発明は、前記したように、主として製造工程
中にある走行する鋼板の表面に大強度のX線を照射し、
Feおよび種々のFe酸化物の回折X線ピーク強度を同時に
測定して酸化スケールの組成・厚さを制度よく迅速に定
量するものであり、定量したこれらの値を指標として、
酸化スケール除去条件の最適化を実現させるものであ
る。BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in more detail. As described above, the present invention mainly irradiates the surface of a traveling steel plate during a manufacturing process with high-intensity X-rays,
The diffraction X-ray peak intensities of Fe and various Fe oxides are simultaneously measured, and the composition and thickness of the oxide scale are quantified quickly and accurately.
This is to realize optimization of conditions for removing oxide scale.
【0019】すなわち、鋼板から放射される回折X線ピ
ークを多数のX線検出器で検出するので、Feおよび種々
のFe酸化物の多数の回折X線ピークを同時に測定するこ
とができ、これらの測定した情報を、αFeおよび種々の
Fe酸化物の多数の回折X線ピークと、それらの回折X線
ピーク強度と酸化スケール厚さとの関係があらかじめ登
録されているワークステーションに投入することで、瞬
時に酸化スケールの組成・厚さが定量できることにな
る。That is, since the diffraction X-ray peaks emitted from the steel sheet are detected by a large number of X-ray detectors, a large number of diffraction X-ray peaks of Fe and various Fe oxides can be simultaneously measured. The measured information can be
The composition and thickness of the oxide scale are instantaneously input to a workstation in which the number of diffraction X-ray peaks of Fe oxide and the relationship between the intensity of the diffraction X-ray peak and the oxide scale thickness are registered in advance. It can be quantified.
【0020】ここで、酸化スケールの組成・厚さの測定
に回折X線を用いることの利点は、蛍光X線法と異な
り、酸化物の種類を分別できることと、X線強度が安定
していることである。Here, the advantage of using the diffracted X-ray for the measurement of the composition and thickness of the oxide scale is that, unlike the fluorescent X-ray method, the type of oxide can be separated and the X-ray intensity is stable. That is.
【0021】また、ワークステーションに登録するデー
タは、あらかじめ標準試料を用いて作成された、スケー
ル厚さとX線強度との関係(検量線)でよい。The data to be registered in the workstation may be a relationship (calibration curve) between the scale thickness and the X-ray intensity, which is prepared in advance using a standard sample.
【0022】つづいて、ワークステーションで定量した
酸化スケールの組成・厚さをプロセスコンピュータに投
入し、種々の酸化スケールの除去方法(高圧水噴射法、
硫酸や塩酸に代表される酸洗法、機械的方法)に合わせ
て最適な酸化スケールの除去条件を決定することがで
き、さらにプロスコンピュータに酸化スケール除去工程
へ最適除去条件を指示する機能を持たせれば、酸化スケ
ール除去条件の自動制御が可能になる。Subsequently, the composition and thickness of the oxidized scale determined in the work station are input to a process computer, and various oxidized scale removal methods (high-pressure water injection method,
The optimal conditions for removing oxide scale can be determined according to the pickling method and mechanical method typified by sulfuric acid and hydrochloric acid). If this is done, it becomes possible to automatically control the conditions for removing oxide scale.
【0023】つぎに、最適な酸化スケールの除去条件を
決定するためには、酸化スケールの組成・厚さの測定制
度を向上させることが重要である。この発明では、以下
に列記する手法により測定制度を向上させることができ
る。Next, in order to determine the optimum conditions for removing oxide scale, it is important to improve the measurement accuracy of the composition and thickness of oxide scale. In the present invention, the measurement accuracy can be improved by the methods listed below.
【0024】・鋼板の酸化スケールの組成と厚さは、そ
の板幅方向にもばらつきがある。そこで、X線発生装置
とX線検出器とを支持する支持台を高速で板幅方向に反
復運動させて板幅方向の各回折X線ピーク強度を測定
し、これらのデータの代表値をとることで、より的確な
酸化スケールの除去条件を決定することができる。The composition and thickness of the oxide scale of the steel sheet vary in the sheet width direction. Therefore, the support for supporting the X-ray generator and the X-ray detector is repeatedly moved in the width direction of the plate at high speed to measure the peak intensity of each diffracted X-ray in the width direction of the plate, and a representative value of these data is obtained. This makes it possible to determine more accurate conditions for removing oxide scale.
【0025】・X線発生装置とX線検出器とを支持する
支持台を熱膨張係数の小さい合金製とすることで周辺温
度変化による鋼板、X線発生装置およびX線検出器間の
変動を減少でき、周辺温度変化による測定制度の低下を
抑制できる。The variation in the temperature of the steel plate, the X-ray generator and the X-ray detector due to a change in the ambient temperature is achieved by forming the support for supporting the X-ray generator and the X-ray detector from an alloy having a small thermal expansion coefficient. It is possible to reduce the measurement accuracy due to a change in the ambient temperature.
【0026】・製造工程中の走行する鋼板は上下動す
る。そこで、支持台に距離センサを付けて常時モニタ
し、鋼板との距離が許容範囲を超えたとき瞬時に支持台
を変化させることで、上下動によるX線発生装置および
X線検出器と鋼板との距離の変化による測定精度の低下
を防止できる。The traveling steel plate moves up and down during the manufacturing process. Therefore, a distance sensor is attached to the support and the monitor is constantly monitored, and when the distance from the steel plate exceeds an allowable range, the support is changed instantaneously. Can be prevented from deteriorating the measurement accuracy due to the change in the distance.
【0027】・X線検出器が主とするX線検出器の近傍
に多数のチャンネルを有する微小X線検出素子を配し
て、回折X線角度の変動を検知し、その変動を圧電素子
により補正することで、より正確な測定精度を得ること
ができる。A minute X-ray detecting element having a large number of channels is arranged in the vicinity of the X-ray detector mainly used by the X-ray detector to detect a change in the angle of the diffracted X-ray, and the change is detected by a piezoelectric element. By performing the correction, more accurate measurement accuracy can be obtained.
【0028】検出されたFeの特定回折X線ピークにより
鋼板の温度変化および振動による回折X線ピーク位置の
変動を補正することで、より正確な測定精度が得られ
る。By correcting the fluctuation of the diffraction X-ray peak position due to the temperature change and the vibration of the steel sheet by the detected specific diffraction X-ray peak of Fe, more accurate measurement accuracy can be obtained.
【0029】かくして、この発明では、製造工程中の走
行する鋼板であっても、その酸化スケールの組成と厚さ
を正確かつ迅速に測定できるので、それらの測定結果を
指標として即座に最適な酸化スケールの除去条件が決定
できる。したがって、インラインの酸化スケール除去工
程に適用でき、オーバアクションになることなく酸化ス
ケール残りのない酸化スケール除去条件のフィードフォ
ワードが可能になる。Thus, according to the present invention, the composition and thickness of the oxidized scale of a running steel sheet during the manufacturing process can be measured accurately and quickly, and the optimum oxidized scale can be immediately determined using the measurement results as an index. Scale removal conditions can be determined. Therefore, the present invention can be applied to an in-line oxide scale removing step, and feedforward of an oxide scale removing condition with no remaining oxide scale can be performed without overaction.
【0030】[0030]
【実施例】この発明の実施態様を図面にもとづいて以下
に述べる。DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below with reference to the drawings.
【0031】図1は、この発明に適合する酸化スケール
の組成・厚さの測定装置の一例を示す説明図である。図
1において、1はX線発生装置、2は多数のX線検出器
等を備える分光器、3はX線発生装置1および分光器2
の支持台、4は鋼板の板幅方向に延びる支持台3用のレ
ール、5はデータ解析用のワークステーションである。
また、6はプロセスコンピュータ、7は鋼板および8は
鋼板案内用のロールである。FIG. 1 is an explanatory view showing an example of a measuring device for measuring the composition and thickness of an oxide scale suitable for the present invention. In FIG. 1, 1 is an X-ray generator, 2 is a spectroscope equipped with a large number of X-ray detectors and the like, 3 is an X-ray generator 1 and a spectroscope 2
Reference numeral 4 denotes a rail for the support 3 extending in the width direction of the steel plate, and reference numeral 5 denotes a work station for data analysis.
6 is a process computer, 7 is a steel plate and 8 is a roll for guiding the steel plate.
【0032】X線発生装置1から鋼板7の表面にX線が
照射され、鋼板7の表面から放射される多数の回折X線
ピークをX線検出器を備える分光器2で検出し、これら
の検出したデータを、データ解析用のワークステーショ
ン5で多数の解析X線ピークとそれらの強度とから酸化
スケールの組成と厚さとを定量する。The surface of the steel plate 7 is irradiated with X-rays from the X-ray generator 1, and a number of diffraction X-ray peaks emitted from the surface of the steel plate 7 are detected by the spectroscope 2 having an X-ray detector. The detected data is used to quantify the composition and thickness of the oxide scale from a number of analytical X-ray peaks and their intensities at a data analysis workstation 5.
【0033】その際、鋼板7は比較的幅が広いので、板
幅方向で酸化スケールの組成や厚さが異なる可能性があ
るため、X線発生装置1および分光器2の支持台3は、
レール4の上を往復運動させる。また、支持台3は熱膨
張係数の非常に小さい合金製とすることで、温度変化に
よる鋼板7、X線発生装置1および分光器2の光学的配
置の変動を極力小さくできる。さらに、支持台3に距離
センサ(図示省略)を設置し、通板する鋼板7の上下動
をモニタし、その変動が許容範囲を超えた場合、支持台
3に備えた高さ調整装置(図示省略)により、上下動に
よる変動を瞬時に補正する。At this time, since the steel plate 7 is relatively wide, the composition and thickness of the oxide scale may be different in the width direction of the steel plate.
Reciprocate on rail 4. In addition, since the support 3 is made of an alloy having a very small coefficient of thermal expansion, a change in the optical arrangement of the steel plate 7, the X-ray generator 1, and the spectroscope 2 due to a temperature change can be minimized. Further, a distance sensor (not shown) is installed on the support 3 to monitor the vertical movement of the steel plate 7 to be passed. If the fluctuation exceeds an allowable range, a height adjusting device (shown in FIG. (Omitted), the fluctuation due to the vertical movement is instantaneously corrected.
【0034】加えて、分光器2には、Feの特定回折線ピ
ークにより、鋼板7の温度変化および振動による回折X
線ピーク位置の変動を補正する機能をもたせる。すなわ
ち、分光器2を圧電素子等で最適な位置(初期位置)に
微動させる。In addition, the spectrometer 2 detects the diffraction X due to the temperature change and vibration of the steel plate 7 by the specific diffraction line peak of Fe.
A function to correct the fluctuation of the line peak position is provided. That is, the spectroscope 2 is finely moved to an optimum position (initial position) by a piezoelectric element or the like.
【0035】これらは、走行する鋼板のオンラインでの
測定において、その測定精度を向上するために極めて重
要である。These are extremely important for improving the measurement accuracy in online measurement of a running steel plate.
【0036】ついで、図2は、この発明に適合する分光
器の説明図で、(a) は側面図、(b)は(a) 図のA−A′
矢視図である。FIGS. 2A and 2B are explanatory views of a spectroscope conforming to the present invention. FIG. 2A is a side view, and FIG.
It is an arrow view.
【0037】これらの図において、2は分光器、9,10
および11はX線検出器、12はX線検出位置を補正するた
めの多数のチャンネルを有する微小X 線検出素子であ
る。In these figures, 2 is a spectroscope, 9 and 10
Numeral 11 denotes an X-ray detector, and 12 denotes a minute X-ray detecting element having a number of channels for correcting the X-ray detection position.
【0038】この分光器2では、分光器2に備え付けら
れているX線検出器9,10および11で鋼板7から放射さ
れる回折X線のうちから目的とするそれぞれの回折X線
ピークを検出する。微小X線検出素子12は、例えば微小
なフォトダイオードを回折角度方向に並べたもので、所
定のチャンネルでX線強度が最大になるようにモニタす
る。この微小X線検出素子12により、回折X線ピークの
ずれがモニタされた場合、分光器2に備え付けられてい
る高速で動く圧電素子(図示省略)により、分光器2の
位置を補正する。In the spectroscope 2, the X-ray detectors 9, 10 and 11 provided in the spectroscope 2 detect respective desired diffraction X-ray peaks from the diffraction X-rays radiated from the steel plate 7. I do. The minute X-ray detection element 12 is, for example, an array of minute photodiodes arranged in the direction of the diffraction angle, and monitors the X-ray intensity so as to be maximum in a predetermined channel. When the deviation of the diffraction X-ray peak is monitored by the minute X-ray detection element 12, the position of the spectroscope 2 is corrected by a high-speed moving piezoelectric element (not shown) provided in the spectroscope 2.
【0039】かくして、ワークステーション5で得られ
たデータは、鋼板の酸化スケール除去条件をフィードフ
ォワードするための指標として、プロセスコンピュータ
6に転送され、ここで最適酸化スケール除去条件が決定
される。Thus, the data obtained at the workstation 5 is transferred to the process computer 6 as an index for feeding forward the oxidation scale removal conditions of the steel sheet, where the optimum oxidation scale removal conditions are determined.
【0040】つぎに、C:0.002 atom%、Si:1.0 atom
%、Mn:1.0 atom%を含有する鋼スラブを素材として、
熱間圧延したのち、鋼板表面に高圧水を噴射して一次ス
ケールを除去しコイルに巻取る工程の、圧延終了後から
コイルに巻取るまでの間において、走行中の酸化スケー
ルを有する鋼板、酸化スケールを除去した各鋼板につい
て、上記した装置によりαFeおよびFe酸化物の回折X線
スペクトルの測定をそれぞれ行った。Next, C: 0.002 atom%, Si: 1.0 atom
%, Mn: Steel slab containing 1.0 atom%
After hot rolling, in the process of removing primary scale by injecting high-pressure water onto the steel sheet surface and winding it on a coil, from the end of rolling to winding on the coil, a steel sheet having an oxidized scale during traveling, oxidation With respect to each steel sheet from which the scale was removed, the diffraction X-ray spectra of αFe and Fe oxide were measured by the above-described apparatus.
【0041】酸化スケールを除去した鋼板のαFeの回折
X線スペクトルのグラフを図3に示し、酸化スケールを
有する鋼板のαFeおよびFe酸化物の回折X線スペクトル
のグラフを図4に示す。これらの図から明らかなよう
に、図3に比し図4のαFe回折X線ピーク強度は減少し
ており、酸化スケールがαFe回折X線ピーク強度の減少
に影響していることが分る。FIG. 3 shows a graph of the diffraction X-ray spectrum of αFe of the steel sheet from which the oxide scale has been removed, and FIG. 4 shows a graph of the diffraction X-ray spectrum of αFe and Fe oxide of the steel sheet having the oxide scale. As is clear from these figures, the αFe diffraction X-ray peak intensity in FIG. 4 is smaller than that in FIG. 3, and it is found that the oxide scale affects the decrease in αFe diffraction X-ray peak intensity.
【0042】ついで、上記と同様の素材を用いて熱間圧
延した酸化スケール厚さの異なる鋼板について測定し
た、酸化スケール厚さと回折X線ピーク強度との関係の
グラフを図5に示す。図5から明らかなように、酸化ス
ケール厚さが増加すると、αFeの回折X線ピーク強度は
減少するが、Fe酸化物AおよびBの回折X線ピーク強度
は増加している。FIG. 5 is a graph showing the relationship between the oxide scale thickness and the diffraction X-ray peak intensity, which was measured for steel sheets having different oxide scale thicknesses, which were hot rolled using the same materials as described above. As is clear from FIG. 5, as the oxide scale thickness increases, the diffraction X-ray peak intensity of αFe decreases, but the diffraction X-ray peak intensity of Fe oxides A and B increases.
【0043】このとき、Fe酸化物Aについて、その厚
さ:tとその回折X線ピーク強度:Iとの関係は下記式
(1)のようになる。 I=a(1−e-bt ) ---(1) ここで、a:定数 b:定数At this time, for the Fe oxide A, the relationship between its thickness: t and its diffraction X-ray peak intensity: I is represented by the following equation (1). I = a (1-e- bt ) --- (1) where a: constant b: constant
【0044】しがって、Fe酸化物Bについても同様の式
が成立し、これらの式をワークステーション5に登録し
ておけば、Fe酸化物AおよびBの回折X線ピーク強度を
検出することで酸化スケール厚さを知ることができる。Accordingly, the same formula holds for the Fe oxide B, and if these formulas are registered in the workstation 5, the diffraction X-ray peak intensities of the Fe oxides A and B can be detected. Thus, the thickness of the oxide scale can be known.
【0045】[0045]
【発明の効果】この発明は、X線を鋼板表面に照射し、
鋼板表面からのFeおよび種々のFe酸化物の回折X線ピー
クを同時に検出して酸化スケールの組成と厚さとを定量
するものであり、この発明によれば、製造工程中の走行
する鋼板に適用しても、板幅方向の酸化スケールの組成
および厚さのばらつき、走行する鋼板の上下動および温
度変化などにも対応して補正することが可能であり、迅
速かつ正確に酸化スケールの組成・厚さを定量できるの
で、最適酸化スケール除去条件を決定する指標として好
適であり、その除去条件をフィードフォワードすれば、
鋼板の生産性および作業能率の向上に大きく寄与でき
る。According to the present invention, X-rays are irradiated on the surface of a steel sheet,
According to the present invention, the composition and thickness of the oxide scale are determined by simultaneously detecting the diffraction X-ray peaks of Fe and various Fe oxides from the surface of the steel sheet. However, the composition and thickness of the oxide scale in the width direction of the sheet can be corrected in response to variations in the composition and thickness of the sheet, the vertical movement of the running steel sheet, and temperature changes. Since the thickness can be quantified, it is suitable as an index for determining the optimum oxidation scale removal condition, and if the removal condition is feed forward,
It can greatly contribute to the improvement of the productivity and work efficiency of the steel sheet.
【図1】この発明に適合する酸化スケールの組成・厚さ
の測定装置の一例を示す説明図である。FIG. 1 is an explanatory diagram showing an example of an apparatus for measuring the composition and thickness of an oxide scale suitable for the present invention.
【図2】この発明に適合する分光器の説明図である。
(a) は側面図である。(b) は(a) 図のA−A′矢視図で
ある。FIG. 2 is an explanatory diagram of a spectroscope compatible with the present invention.
(a) is a side view. (b) is a view on arrow AA 'of (a).
【図3】酸化スケールを除去した鋼板のαFeの回折X線
スペクトルのグラフである。FIG. 3 is a graph of a diffraction X-ray spectrum of αFe of a steel sheet from which oxide scale has been removed.
【図4】酸化スケールを有する鋼板のαFeおよび種々の
Fe酸化物の回折X線スペクトルのグラフである。FIG. 4 shows αFe and various values of a steel sheet having an oxide scale.
It is a graph of the diffraction X-ray spectrum of Fe oxide.
【図5】酸化スケール厚さと回折X線ピーク強度との関
係のグラフである。FIG. 5 is a graph showing the relationship between oxide scale thickness and diffraction X-ray peak intensity.
1 X線発生装置 2 分光器 3 支持台 4 レール 5 ワークステーション 6 プロセスコンピュータ 7 鋼板 8 ロール 9,10,11 X線検出器 12 微小X線検出素子 DESCRIPTION OF SYMBOLS 1 X-ray generator 2 Spectrometer 3 Support stand 4 Rail 5 Workstation 6 Process computer 7 Steel plate 8 Roll 9,10,11 X-ray detector 12 Micro X-ray detector
Claims (7)
し、鋼板表面から放射されるFeおよび種々のFe酸化物の
多数の回折X線ピーク強度をX線検出器により検出し、
それの回折X線ピーク強度とあらかじめ登録されている
Feおよび種々のFe酸化物の多くの回折X線ピーク強度と
をもとにして、酸化スケールの組成・厚さを定量するこ
とを特徴とする鋼板の酸化スケールの組成・厚さの測定
方法。1. A steel sheet surface is irradiated with X-rays from an X-ray generator, and a large number of diffraction X-ray peak intensities of Fe and various Fe oxides emitted from the steel sheet surface are detected by an X-ray detector.
It is registered in advance as its diffraction X-ray peak intensity
A method for measuring the composition and thickness of an oxide scale of a steel sheet, wherein the composition and thickness of the oxide scale are quantified based on the peak intensities of many diffraction X-rays of Fe and various Fe oxides.
鋼板の板幅方向に高速で反復運動させ、板幅方向の酸化
スケールの組成および厚さのばらつきを測定することを
特徴とする請求項1に記載の鋼板の酸化スケールの組成
・厚さの測定方法。2. The method according to claim 1, wherein the X-ray generator and the X-ray detector are simultaneously repetitively moved at a high speed in the width direction of the steel sheet to measure the variation in the composition and thickness of the oxide scale in the width direction of the steel sheet. Item 4. The method for measuring the composition and thickness of an oxide scale of a steel sheet according to Item 1.
置およびX線検出器との距離の変動を常時モニタして一
定に保持することを特徴とする請求項1または2に記載
の鋼板の酸化スケールの組成・厚さの測定方法。3. The steel sheet according to claim 1, wherein the fluctuation of the distance between the steel sheet and the X-ray generator and the X-ray detector due to the vertical movement of the steel sheet is constantly monitored and kept constant. For measuring the composition and thickness of the oxide scale.
係数の小さい合金製の構造物で支持し、温度変化による
鋼板、X線発生装置およびX線検出器間の位置関係の変
動を抑制することを特徴とする請求項1、2または3に
記載の鋼板の酸化スケールの組成・厚さの測定方法。4. An X-ray generator and an X-ray detector are supported by a structure made of an alloy having a small coefficient of thermal expansion, and a change in a positional relationship between the steel plate, the X-ray generator and the X-ray detector due to a temperature change is provided. The method for measuring the composition and thickness of an oxide scale of a steel sheet according to claim 1, wherein the composition is suppressed.
ンネルを有する微小検出素子により回折角度の変動を検
出した際に、その変動を圧電素子により補正し、回折X
線ピークを所定の回折角度で検出することを特徴とする
請求項1,2,3または4に記載の鋼板の酸化スケール
の組成・厚さの測定方法。5. When a change in a diffraction angle is detected by a minute detection element having a large number of channels attached to a diffraction X-ray detector, the change is corrected by a piezoelectric element and the diffraction X-ray is detected.
The method for measuring the composition and thickness of an oxide scale of a steel sheet according to claim 1, wherein the line peak is detected at a predetermined diffraction angle.
温度変化および振動による回折X線ピーク位置の変動を
補正する請求項1,2,3,4または5に記載の鋼板の
酸化スケールの組成・厚さの測定方法。6. The oxidation scale of a steel sheet according to claim 1, wherein the specific diffraction X-ray peak of Fe corrects the fluctuation of the diffraction X-ray peak position due to the temperature change and vibration of the steel sheet. How to measure composition and thickness.
および鋼板表面から放射される多数の回折X線ピーク強
度を同時に検出する多数のX線検出器を備える分光器を
支持する、熱膨張係数の小さい合金製の支持台と、分光
器からの多数の回折X線ピーク強度の情報とあらかじめ
登録されているFeおよびFe酸化物の多数の回折X線ピー
ク強度との関係から、酸化スケールの組成・厚さを定量
するワークステーションとからなり、 X線検出器が、その近傍に多数のチャンネルを有する微
小X線検出素子を備えるとともに、分光器がこれらの微
小X線検出素子からの信号により回折X線ピーク角度の
変動を補正する圧電素子を備え、 かつ、支持台が、鋼板の板幅方向に反復運動する機能
と、距離計を備えて常時鋼板との距離をモニタしてその
変動を補正する機能とを具備してなる鋼板の酸化スケー
ルの組成・厚さの測定方法。7. A heat source that supports a spectroscope including an X-ray generator that irradiates X-rays on the surface of a steel sheet and a number of X-ray detectors that simultaneously detect a number of diffraction X-ray peak intensities emitted from the surface of the steel sheet. From the relationship between the support made of an alloy having a small expansion coefficient, the information on the many peaks of the diffraction X-rays from the spectrometer, and the previously registered peak intensities of the diffractions of Fe and Fe oxide, the oxide scale A workstation for quantifying the composition and thickness of the X-ray detector. The X-ray detector is equipped with minute X-ray detectors having a large number of channels in the vicinity, and the spectrometer is used to detect signals from these minute X-ray detectors. Equipped with a piezoelectric element that corrects the fluctuation of the diffraction X-ray peak angle, and the support base has a function to repeatedly move in the width direction of the steel sheet. To A method for measuring the composition and thickness of an oxide scale of a steel sheet having a function of correcting.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9083587A JPH10282020A (en) | 1997-04-02 | 1997-04-02 | Method of measuring composition and thickness of oxidized scale of steel plate and apparatus therefor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9083587A JPH10282020A (en) | 1997-04-02 | 1997-04-02 | Method of measuring composition and thickness of oxidized scale of steel plate and apparatus therefor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH10282020A true JPH10282020A (en) | 1998-10-23 |
Family
ID=13806635
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9083587A Withdrawn JPH10282020A (en) | 1997-04-02 | 1997-04-02 | Method of measuring composition and thickness of oxidized scale of steel plate and apparatus therefor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH10282020A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1906174A1 (en) * | 2006-09-29 | 2008-04-02 | Heinz Ehgartner Gesellschaft m.b.h. | Method for determining the hardness profile of case-hardened steel |
JP2011191212A (en) * | 2010-03-15 | 2011-09-29 | Sii Nanotechnology Inc | Apparatus and method for inspecting x-ray transmission |
JP2014095133A (en) * | 2012-11-12 | 2014-05-22 | Jfe Steel Corp | Method of producing cold rolled steel sheet |
JP2014095134A (en) * | 2012-11-12 | 2014-05-22 | Jfe Steel Corp | Method of manufacturing cold rolled steel sheet |
WO2014081074A1 (en) * | 2012-11-23 | 2014-05-30 | 주식회사 포스코 | Apparatus for measuring scale thickness of steel plate |
WO2018199188A1 (en) * | 2017-04-25 | 2018-11-01 | 新日鐵住金株式会社 | Scale composition determination system, scale composition determination method, and program |
US10449584B2 (en) | 2013-05-30 | 2019-10-22 | Primetals Technologies Austria GmbH | Adjustable descaler |
WO2023090093A1 (en) * | 2021-11-18 | 2023-05-25 | 株式会社神戸製鋼所 | Method for calculating film thickness of grain boundary oxide layer, method for determining platability, method for producing plated steel sheet, and apparatus for calculating film thickness |
US11906880B2 (en) | 2018-03-23 | 2024-02-20 | Fujifilm Corporation | Cam follower and lens barrel |
-
1997
- 1997-04-02 JP JP9083587A patent/JPH10282020A/en not_active Withdrawn
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1906174A1 (en) * | 2006-09-29 | 2008-04-02 | Heinz Ehgartner Gesellschaft m.b.h. | Method for determining the hardness profile of case-hardened steel |
JP2011191212A (en) * | 2010-03-15 | 2011-09-29 | Sii Nanotechnology Inc | Apparatus and method for inspecting x-ray transmission |
JP2014095133A (en) * | 2012-11-12 | 2014-05-22 | Jfe Steel Corp | Method of producing cold rolled steel sheet |
JP2014095134A (en) * | 2012-11-12 | 2014-05-22 | Jfe Steel Corp | Method of manufacturing cold rolled steel sheet |
WO2014081074A1 (en) * | 2012-11-23 | 2014-05-30 | 주식회사 포스코 | Apparatus for measuring scale thickness of steel plate |
CN104781631A (en) * | 2012-11-23 | 2015-07-15 | Posco公司 | Apparatus for measuring scale thickness of steel plate |
US10449584B2 (en) | 2013-05-30 | 2019-10-22 | Primetals Technologies Austria GmbH | Adjustable descaler |
KR20190113883A (en) * | 2017-04-25 | 2019-10-08 | 닛폰세이테츠 가부시키가이샤 | Scale composition determination system, scale composition determination method, and program |
JP6477984B1 (en) * | 2017-04-25 | 2019-03-06 | 新日鐵住金株式会社 | Scale composition determination system, scale composition determination method, and program |
WO2018199188A1 (en) * | 2017-04-25 | 2018-11-01 | 新日鐵住金株式会社 | Scale composition determination system, scale composition determination method, and program |
CN110536760A (en) * | 2017-04-25 | 2019-12-03 | 日本制铁株式会社 | Oxide skin forms decision-making system, oxide skin composition determination method and program |
US11029212B2 (en) | 2017-04-25 | 2021-06-08 | Nippon Steel Corporation | Scale composition determination system, scale composition determination method, and program |
CN110536760B (en) * | 2017-04-25 | 2021-10-01 | 日本制铁株式会社 | Scale composition determination system, scale composition determination method, and program |
US11454542B2 (en) | 2017-04-25 | 2022-09-27 | Nippon Steel Corporation | Scale composition determination system, scale composition determination method, and program |
US11906880B2 (en) | 2018-03-23 | 2024-02-20 | Fujifilm Corporation | Cam follower and lens barrel |
WO2023090093A1 (en) * | 2021-11-18 | 2023-05-25 | 株式会社神戸製鋼所 | Method for calculating film thickness of grain boundary oxide layer, method for determining platability, method for producing plated steel sheet, and apparatus for calculating film thickness |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5850211B1 (en) | X-ray diffraction apparatus and X-ray diffraction measurement method | |
JPH10282020A (en) | Method of measuring composition and thickness of oxidized scale of steel plate and apparatus therefor | |
CN104936713A (en) | Flatness measuring and measuring of residual stresses for a metallic flat product | |
EP0473154B1 (en) | System for making an on-line determination of degree of alloying in galvannealed steel sheets | |
US20160252469A1 (en) | On-line coating adhesion determination apparatus of galvannealed steel sheet, and galvannealed steel sheet manufacturing line | |
CN105229413B (en) | Flatness assay method, the flatness measure device of sheet material and the manufacture method of steel plate of sheet material | |
JP4878485B2 (en) | Cold continuous rolling equipment | |
US5325416A (en) | Method for measuring Fe coating weight of Fe-coated stainless steel sheet | |
JP3817812B2 (en) | Calibration method for annealing furnace radiation thermometer | |
JP2007196261A (en) | Method and apparatus for detecting/controlling edge drop in cold rolling | |
JP4302852B2 (en) | Method for measuring surface oxide of metal material and X-ray diffractometer | |
JP2014055353A (en) | Method for measuring alloying degree of alloyed galvanized steel | |
JPH07243970A (en) | Applied oil quantity measuring method on metal material surface and device therefor | |
JPH0242402B2 (en) | ||
JPS6259256B2 (en) | ||
CN109563606B (en) | Method for measuring alloying degree and/or plating adhesion amount of galvanized steel sheet | |
JP2006226709A (en) | Measuring instrument of amount of aqueous solution | |
JP2006234540A (en) | H-section steel shape measuring method | |
KR101320015B1 (en) | Cold rolling mill system | |
KR20040058742A (en) | Optimal target shape decision system and its method for improving flatness of cold rolled strip | |
JPS5847243A (en) | Method of and apparatus for monitoring phase modification of steel | |
JPH0381605A (en) | Flatness measuring method | |
RU2230291C2 (en) | Procedure for measuring plotteness of sheet material | |
JPH04236724A (en) | Method for controlling temperature in continuous heat treatment line | |
Trusillo et al. | Shapemeter IP-4 on the continuous thermal treatment line of Samara Metallurgical Works |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20040706 |