JPH0381605A - Flatness measuring method - Google Patents

Flatness measuring method

Info

Publication number
JPH0381605A
JPH0381605A JP21946289A JP21946289A JPH0381605A JP H0381605 A JPH0381605 A JP H0381605A JP 21946289 A JP21946289 A JP 21946289A JP 21946289 A JP21946289 A JP 21946289A JP H0381605 A JPH0381605 A JP H0381605A
Authority
JP
Japan
Prior art keywords
strip
flatness
width direction
plate width
distances
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21946289A
Other languages
Japanese (ja)
Inventor
Shigetomo Yaoi
矢追 臣知
Toru Sunahara
砂原 徹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP21946289A priority Critical patent/JPH0381605A/en
Publication of JPH0381605A publication Critical patent/JPH0381605A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To measure the flatness of a beltlike body in travel motion with high accuracy by measuring the distances of respective parts of the metallic beltlike end surface of a metallic beltlike body in the width direction crossing its moving direction, separating a bus line variation quantity from the measured values by a frequency analysis, and removing the influence of tension. CONSTITUTION:Material thermometers 20 and 21 are arrayed on the inlet side and exit side for a cooling belt 14 in the plate width direction while facing the surface of a strip 1 which detects the breadthwise temperature distribution of the surface of the strip 1. The maximum temperature difference of the surface temperature distribution of the strip 1 is calculated from the detection results of the material thermometers 20 and 21 and outputted as a plate width-directional temperature difference to a shape converter 40. Further, distance detectors 30 and 31 are provided on the exit side of a continuous annealing furnace and an inspection base 4 on the exit side and distances to the strip surfaces are detected at respective parts in the plate width direction in a specific tension state and/or no-tension state. Detectors 30 and 31 have laser displacement gauges arrayed in the plate width direction, the respective laser displacement meters measure the distances to the surface of the strip 1 and output them as flatness to a computing element 70 and a storage device 50, and the computing element 70 outputs them to a shape converter 40.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は連続焼鈍炉における帯状鋼板等のストリップの
平坦度を測定する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for measuring the flatness of a strip such as a strip steel plate in a continuous annealing furnace.

〔従来技術〕[Prior art]

一般に連続焼鈍炉の冷却帯における鋼板の冷却は、循環
ファンを用いて炉内の雰囲気力:スを水冷ガスクーラを
通して循環させ、冷却された雰囲気ガスを鋼板の上面側
及び下面側へ吹付けて鋼板を冷却することが行われてい
る。
Generally, the steel plate is cooled in the cooling zone of a continuous annealing furnace by using a circulation fan to circulate the atmospheric gas in the furnace through a water-cooled gas cooler, and then spraying the cooled atmospheric gas onto the top and bottom sides of the steel plate. cooling is being done.

しかしながらこの方法は連続焼鈍炉入側の鋼板形状に起
因する鋼板の幅方向の不均一冷却による形状不良が生じ
やすいという問題があった。これは連続焼鈍炉入側にお
いて、鋼板の両端部が伸びる所謂ヘリ延び等の形状不良
部分がある場合、その部分は充分に冷却されず、熱応力
により形状不良が増幅されるためである。
However, this method has a problem in that shape defects are likely to occur due to uneven cooling in the width direction of the steel plate due to the shape of the steel plate on the entrance side of the continuous annealing furnace. This is because if there is a shape defective portion such as a so-called edge extension where both ends of the steel plate are extended on the entrance side of the continuous annealing furnace, that portion is not cooled sufficiently and the shape defect is amplified by thermal stress.

前述の問題を解決すべく、連続焼鈍炉の冷却帯の入側又
は出側に板幅方向各部の表面までの距離(又は高さ)を
求める距離検出器を設け、この検出器データに基づいて
求めた板幅方向の形状、即ち平坦度に応じて板幅方向の
温度制御を行う方法が提案されている(特開昭61−2
43130号)。
In order to solve the above-mentioned problem, a distance detector is installed on the entrance or exit side of the cooling zone of the continuous annealing furnace to determine the distance (or height) to the surface of each part in the width direction of the plate, and based on this detector data, A method has been proposed in which the temperature in the width direction of the plate is controlled according to the determined shape in the width direction of the plate, that is, the flatness (Japanese Patent Laid-Open No. 61-2
No. 43130).

連続焼鈍中における鋼板等のストリップの平坦度はスト
リップの表面に臨ませてその幅方向に配設した複数のレ
ーザ変位計にてストリップ表面との距離を測定し、その
測定データに基づいて表面の変位量を求め、第6図に示
す如きストリップの幅方向断面の垂直方向の変位距離り
と幅方向の変位幅lとの比によって表される急峻度、即
ちh/1を求め、これによって平坦度を表すようになっ
ている。
The flatness of a strip such as a steel plate during continuous annealing is determined by measuring the distance to the strip surface using multiple laser displacement meters placed in the width direction facing the surface of the strip, and then determining the flatness of the surface based on the measurement data. The amount of displacement is determined, and the steepness, h/1, is determined by the ratio of the displacement distance in the vertical direction of the cross section of the strip in the width direction and the width of displacement l in the width direction, as shown in FIG. It is designed to represent degree.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところで上述した如き平坦度の測定方法では移動中のス
トリップ表面の変位量を検出する際、ストリップのパス
ライン変動による誤差、或いは張力変化による誤差を排
除して平坦度を算出することが難しかった。
However, in the method for measuring flatness as described above, when detecting the amount of displacement of the surface of a strip during movement, it is difficult to calculate flatness while eliminating errors due to variations in the path line of the strip or errors due to changes in tension.

本発明はかかる事情に鑑みなされたものであって、その
目的とするところは走行中の金属製帯状物の平坦度をパ
スライン変動、張力変動に影響されることなく測定し得
るようにした平坦度測定方法を提供するにある。
The present invention has been made in view of the above circumstances, and its purpose is to provide a flatness system that enables the flatness of a running metal strip to be measured without being affected by pass line fluctuations or tension fluctuations. To provide a measurement method.

〔課題を解決するための手段〕[Means to solve the problem]

本発明に係る平坦度測定方法は、金属製帯状物の移動方
向と交叉する幅方向における金属製帯状端表面の各部の
距離を測定し、この測定値からパスライン変動量を周波
数解析により分離し、更に張力の影響を除去して平坦度
を算出する。
The flatness measuring method according to the present invention measures the distance of each part of the metal strip end surface in the width direction intersecting the moving direction of the metal strip, and separates the amount of pass line variation from this measurement value by frequency analysis. , further remove the influence of tension to calculate flatness.

〔作用〕[Effect]

本発明にあってはこれによってパスライン変動による影
響、更には張力の影響を除去した高精度の平坦度を得る
ことが可能となる。
According to the present invention, it is thereby possible to obtain highly accurate flatness that eliminates the influence of pass line fluctuations and furthermore the influence of tension.

〔実施例〕〔Example〕

以下、本発明をその実施例を示す図面に基づいて具体的
に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be specifically described below based on drawings showing embodiments thereof.

第1図は本発明を連続焼鈍炉で焼鈍中のストリップの平
坦度測定に適用した場合を示す模式図であり、図中1は
金属製帯状物である電磁鋼板等のストリップを示してい
る。ストリップ1はペイオフリール2から繰り出され、
連続焼鈍炉10.ルーパー3及び出側検査台4を通過し
て白抜矢符方向へ移送され、テンションリール5に巻取
られるようになっている。
FIG. 1 is a schematic diagram showing the case where the present invention is applied to the flatness measurement of a strip during annealing in a continuous annealing furnace, and in the figure, 1 indicates a strip of a metal strip such as an electrical steel sheet. Strip 1 is unwound from payoff reel 2,
Continuous annealing furnace 10. It passes through a looper 3 and an exit inspection table 4, is transported in the direction of the white arrow, and is wound onto a tension reel 5.

連続焼鈍炉10はストリップ1を移送するラインの上流
側から順に配置した無酸化炉11、加熱帯12、均熱帯
13及び冷却帯14を備えている。
The continuous annealing furnace 10 includes a non-oxidizing furnace 11, a heating zone 12, a soaking zone 13, and a cooling zone 14, which are arranged in this order from the upstream side of the line for transferring the strip 1.

無酸化炉11はその内部でストリップ1を表裏両面から
直火バーナで加熱し、ストリップ1の表面に付着した圧
延油を燃焼させることにより除去するようになっている
The non-oxidizing furnace 11 is configured to heat the strip 1 from both the front and back surfaces using direct fire burners, thereby removing rolling oil adhering to the surface of the strip 1 by burning it.

加熱帯12は、還元性ガス雰囲気下でストリップlをラ
ジアントチューブにより表裏両面から加熱し、無酸化炉
11にて発生したストリップ1の表面の薄い酸化膜を還
元するようになっている。
The heating zone 12 is configured to heat the strip 1 from both the front and back surfaces using a radiant tube in a reducing gas atmosphere, thereby reducing the thin oxide film on the surface of the strip 1 generated in the non-oxidation furnace 11.

均熱帯13は、電磁鋼板等の場合にこれを均熱化してそ
の結晶粒子径を充分に大きくすることにより磁気特性を
改善するためのものである。
The soaking zone 13 is for soaking electrical steel sheets and the like to sufficiently increase the crystal grain size, thereby improving the magnetic properties.

冷却帯14は循環ファンにより還元性ガス雰囲気を水冷
式ガスクーラを過して循環させ、ストリップ1の上、下
面に冷却された雰囲気を吹き付けてこれを冷却するよう
になっている。なお各冷却風量は送気経路に夫々設けら
れたダンパーの開度を調節することにより調節されるよ
うにしである。
The cooling zone 14 is configured to circulate a reducing gas atmosphere through a water-cooled gas cooler using a circulation fan, and spray the cooled atmosphere onto the upper and lower surfaces of the strip 1 to cool it. Note that each cooling air volume is adjusted by adjusting the opening degree of a damper provided in each air supply path.

冷却帯14の入側、出側には夫々ストリップ1の幅方向
における表面の温度分布を検出すべくストリップlの表
面に臨ませて材温針20.21が板幅方向に列設されて
いる。材温針20.21としては、走査型放射温度計(
実開昭1r4−64031号)等が用いられる。
On the entrance and exit sides of the cooling zone 14, material temperature needles 20 and 21 are arranged in rows in the width direction of the strip 1, facing the surface of the strip 1 in order to detect the temperature distribution on the surface in the width direction of the strip 1, respectively. . As the material temperature needle 20.21, a scanning radiation thermometer (
Utility Model Application Publication No. 1r4-64031) etc. are used.

材温針20.21による検出結果からストリップ1の表
面温度分布の最大温度差が算出され、これを板幅方向温
度差として形状換算器40へ出力するようになっている
The maximum temperature difference in the surface temperature distribution of the strip 1 is calculated from the detection results by the material temperature needles 20 and 21, and this is output to the shape converter 40 as a temperature difference in the width direction of the strip.

また、連続焼鈍炉出側及び連続焼鈍炉出側検査台4には
距離検出器30.31が配設され、所定の張力状態下及
び/又は無張力状態下での板幅方向各部でストリップ表
面迄の距離を検出するようにしである。これら各検出器
30.31は複数のレーザー変位計を板幅方向へ配列し
たものであり、夫々のレーザー変位計はスト9フ11表
面迄の距離を測定し、これを平坦度演算器70及び記憶
装置50へ出力するようにしである。平坦度演算器70
は、各距!lil検出器30.31からの検出データに
基づいて次の過程でパスライン変動及び張力の影響を除
去した平坦度を算出し、これを形状換算器40へ出力す
るようになっている。
In addition, distance detectors 30 and 31 are installed on the continuous annealing furnace exit side and the continuous annealing furnace exit side inspection table 4, and the distance detectors 30 and 31 are installed on the strip surface at each part in the width direction of the strip under a predetermined tension state and/or under no tension state. It is designed to detect the distance. Each of these detectors 30 and 31 is a plurality of laser displacement meters arranged in the board width direction, and each laser displacement meter measures the distance to the surface of the striker 9 and the flatness calculator 70 and the flatness calculator 70. It is designed to be output to the storage device 50. Flatness calculator 70
Ha, each distance! Based on the detection data from the lil detectors 30 and 31, in the next process, the flatness is calculated by removing the effects of path line fluctuations and tension, and this is output to the shape converter 40.

第2図はストリップの長手方向各部における焼鈍炉出側
の板幅方向形状検出器30の測定値を示しており、横軸
にストリップの長手方向位置(1m)を、また縦軸に基
準面からの高さをとって示している。第2図中において
大きな山として表れているのが急峻度、またこの大きな
山中に表われている小さい凹凸はパスライン変動に起因
する波形である。そこでこの測定値データを関数とみな
し、これをフーリエ級数に分解すると各項毎の計数、即
ち各波長についての第3図に示す如きパワースペクトル
分布図が得られる。第3図はパワースペクトル分布図で
あり、横軸に波長(fl)を、また縦軸にパワースペク
トルをとって示しである。
Figure 2 shows the measured values of the shape detector 30 in the width direction of the strip at each part in the longitudinal direction of the strip on the outlet side of the annealing furnace. It is shown by taking the height of In FIG. 2, the large peaks that appear are steepness, and the small irregularities that appear within these large peaks are waveforms caused by path line fluctuations. Therefore, by regarding this measured value data as a function and decomposing it into a Fourier series, a count for each term, that is, a power spectrum distribution diagram as shown in FIG. 3 for each wavelength can be obtained. FIG. 3 is a power spectrum distribution diagram, in which the horizontal axis represents the wavelength (fl) and the vertical axis represents the power spectrum.

この分布図において波長、パワースペクトル値ともに小
さいのはパスライン変動に依るもの、また波長、パワー
スペクトル値の大きい波は急峻度に依るものがあると考
えられる。そこで第4図に示す如き無張力状態下での距
離検出器30の測定値と、第3図に示すパワースペクト
ルの最大値の項との相関についてみると、第5図に示す
如くになる。第5図は横軸にパワースペクトルの最大値
を示す項の値を、また縦軸に無張力状態下での山高さh
をとって示しである。このグラフから明らかなように両
者は略直線的な関係にあることが解る。
In this distribution map, it is thought that the reason why both the wavelength and the power spectrum value are small is due to the path line fluctuation, and the reason why the wavelength and the power spectrum value are large is due to the steepness. Therefore, if we look at the correlation between the measured value of the distance detector 30 under a tension-free condition as shown in FIG. 4 and the term of the maximum value of the power spectrum shown in FIG. 3, the correlation will be as shown in FIG. 5. In Figure 5, the horizontal axis shows the value of the term indicating the maximum value of the power spectrum, and the vertical axis shows the peak height h under no tension.
This is an indication. As is clear from this graph, there is a substantially linear relationship between the two.

従って第2図に示す如き測定値データについて第3図に
示す如きパワースペクトル分布を求め、計数が最大値を
示す項の値に基づき、第5図に従って山高さhを求めれ
ばパスライン変動張力変動の影響を除去した山高さhを
得ることが出来ることとなる。
Therefore, the power spectrum distribution as shown in FIG. 3 is obtained for the measured value data as shown in FIG. This means that it is possible to obtain the mountain height h from which the influence of is removed.

前記形状換算器40は、材温計20.21より入力され
た前記板幅方向温度差を過去の実操業データに基づき予
め定められた板幅方向温度差と急峻度との相関関係に基
づいて急峻度に換算し、この1a算結果を記憶装置50
及び自動制御装置60へ出力する。
The shape converter 40 converts the temperature difference in the strip width direction inputted from the material thermometer 20.21 based on the correlation between the temperature difference in the strip width direction and the steepness, which is predetermined based on past actual operation data. Convert the steepness to the 1a calculation result and store it in the storage device 50.
and output to the automatic control device 60.

前記比較演算器70は記憶装置50より入力される急峻
度信号と幅方向形状検出器30.31より人力される急
峻度信号とを比較し、その比較結果に基づいて形状換算
器40に与えられている材温と急峻度との相関関係を補
正する信号を形状換算器40へ出力する。自動制御装置
60は形状換算器40より入力された急峻度信号に基づ
き、例えば検出されたストリップ1の幅方向の形状が中
央部が膨らんだ状態であれば、該中央部の温度が他の部
分の温度より高温となるように、板幅方向の中央部の冷
却風量を調節するダンパーの開度を小さくする制御信号
をダンパー駆動装置80へ出力する。ダンパー駆動装置
80は自動制御装置60より人力された制御信号に些づ
きダンパーの開度を調節し、これによって冷却風景を調
節する。
The comparison calculator 70 compares the steepness signal inputted from the storage device 50 and the steepness signal input manually from the widthwise shape detector 30.31, and provides the steepness signal to the shape converter 40 based on the comparison result. A signal for correcting the correlation between the material temperature and steepness is output to the shape converter 40. Based on the steepness signal input from the shape converter 40, the automatic control device 60 calculates, for example, that if the detected shape in the width direction of the strip 1 is in a state in which the central portion is swollen, the temperature of the central portion is higher than that of other portions. A control signal is output to the damper drive device 80 to reduce the opening degree of the damper that adjusts the amount of cooling air at the center in the board width direction so that the temperature becomes higher than the temperature. The damper drive device 80 adjusts the opening degree of the damper according to a control signal manually input from the automatic control device 60, thereby adjusting the cooling landscape.

〔効果〕〔effect〕

以上の如く本発明方法にあっては距離計にて帯状物表面
との間の距離を測定し、この測定値からパスライン変動
量、更には張力の影響を除去した高精度の平坦度を算出
することが出来、平坦度の管理を一層精度よく行い得る
など本発明は優れた効果を奏するものである。
As described above, in the method of the present invention, the distance to the surface of the strip is measured using a distance meter, and from this measurement value, the amount of pass line variation and furthermore, the highly accurate flatness is calculated by removing the influence of tension. The present invention has excellent effects, such as being able to manage the flatness with even more precision.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法を連続焼鈍炉で焼鈍中のストリップ
に適用した場合を示す模式図、第2図は焼鈍炉出側距離
計測定値を示すグラフ、第3図はパワースペクトル分布
図、゛第4図は無張力状態での距離計測定値を示すグラ
フ、第5図はパワースペクトルの最大値の項の値と山高
さhとの関係を示すグラフ、第6図は平坦度の説明図で
ある。 1・・・ストリップ   2・・・れイオフリール10
・・・連続焼鈍炉    20.21・・・材温計30
.31・・・板幅方向形状検出器
Fig. 1 is a schematic diagram showing the case where the method of the present invention is applied to a strip being annealed in a continuous annealing furnace, Fig. 2 is a graph showing the measured value of the distance meter on the outlet side of the annealing furnace, and Fig. 3 is a power spectrum distribution diagram. Fig. 4 is a graph showing the rangefinder measurement value under no tension, Fig. 5 is a graph showing the relationship between the maximum value of the power spectrum and the mountain height h, and Fig. 6 is an explanatory diagram of flatness. be. 1...Strip 2...Leiofurir 10
... Continuous annealing furnace 20.21 ... Material temperature gauge 30
.. 31... Board width direction shape detector

Claims (1)

【特許請求の範囲】 1、金属製帯状物の移動方向と交叉する幅方向の複数個
所で金属製帯状物表面との距離を測定し、この測定値か
らパスライン変動量を周波数解析により分離除去した後
、平坦度を算出することを特徴とする平坦度測定方法。 2、算出した平坦度を無張力状態での平坦度に較正する
請求項1記載の平坦度測定方法。
[Claims] 1. Measure the distance to the surface of the metal strip at multiple points in the width direction intersecting the moving direction of the metal strip, and separate and remove the amount of pass line variation from the measured values by frequency analysis. A flatness measurement method characterized by calculating flatness after calculating the flatness. 2. The method for measuring flatness according to claim 1, wherein the calculated flatness is calibrated to the flatness under no tension.
JP21946289A 1989-08-24 1989-08-24 Flatness measuring method Pending JPH0381605A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21946289A JPH0381605A (en) 1989-08-24 1989-08-24 Flatness measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21946289A JPH0381605A (en) 1989-08-24 1989-08-24 Flatness measuring method

Publications (1)

Publication Number Publication Date
JPH0381605A true JPH0381605A (en) 1991-04-08

Family

ID=16735809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21946289A Pending JPH0381605A (en) 1989-08-24 1989-08-24 Flatness measuring method

Country Status (1)

Country Link
JP (1) JPH0381605A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009243907A (en) * 2008-03-28 2009-10-22 Jfe Steel Corp Shape measuring method of cold-rolled steel sheet
CN104330256A (en) * 2014-11-06 2015-02-04 无锡永凯达齿轮有限公司 Automatic measuring and dowel mounting machine special for belt tightening pulley of automobile
JP2016140898A (en) * 2015-02-04 2016-08-08 Jfeスチール株式会社 Flat shape measuring method of steel strip, and measuring equipment

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009243907A (en) * 2008-03-28 2009-10-22 Jfe Steel Corp Shape measuring method of cold-rolled steel sheet
CN104330256A (en) * 2014-11-06 2015-02-04 无锡永凯达齿轮有限公司 Automatic measuring and dowel mounting machine special for belt tightening pulley of automobile
CN104330256B (en) * 2014-11-06 2017-01-25 无锡永凯达齿轮有限公司 Automatic measuring and dowel mounting machine special for belt tightening pulley of automobile
JP2016140898A (en) * 2015-02-04 2016-08-08 Jfeスチール株式会社 Flat shape measuring method of steel strip, and measuring equipment

Similar Documents

Publication Publication Date Title
US8920024B2 (en) Steel plate quality assurance system and equipment thereof
CN104936713B (en) Flatness measuring and measuring of residual stresses for a metallic flat product
US3483721A (en) Material tester
CN110057712A (en) A kind of oxidization burning loss rate measurement system and method
JPH0381605A (en) Flatness measuring method
US20150023387A1 (en) Steel plate quality assurance system and equipment thereof
JPH08193887A (en) Method for measuring temperature of material in hot rolling line
JPH10282020A (en) Method of measuring composition and thickness of oxidized scale of steel plate and apparatus therefor
JPH0821716A (en) Shape detector of band material
JPH0158444B2 (en)
JP2636557B2 (en) Method for detecting in-furnace tension of annealed material in horizontal continuous annealing furnace
JP3089614B2 (en) Method and apparatus for detecting tension in horizontal continuous heat treatment furnace
KR100302397B1 (en) Apparatus for uniformly cooling upper and lower surfaces of high temperature steel sheet
JP3284948B2 (en) Strip meandering control method
KR100415921B1 (en) Method for measuring width of slab
SU904818A1 (en) Method of monitoring non-uniform deformation across cold rolled strip width in rolling mills
JPS5981508A (en) Measuring device for straightness of steel material strip between runs
JPH0266125A (en) Flatness controller for continuous annealing furnace
JPH0727535A (en) Shape measuring method for rolled strip and device thereof
JPH0682045B2 (en) Oxide film measuring device in heat treatment furnace for steel strip
JPH0214808Y2 (en)
Alderton et al. The continuous measurement and control of gauge in strip rolling
CN118023307A (en) Infrared temperature measuring device for hot-rolled aluminum plate and precision compensation method
JPH01134204A (en) Curvature detecting method for stock to be rolled
KR100332710B1 (en) Method and device for measuring shape and / or leveling of moving strip steel