JP2009243907A - Shape measuring method of cold-rolled steel sheet - Google Patents

Shape measuring method of cold-rolled steel sheet Download PDF

Info

Publication number
JP2009243907A
JP2009243907A JP2008087404A JP2008087404A JP2009243907A JP 2009243907 A JP2009243907 A JP 2009243907A JP 2008087404 A JP2008087404 A JP 2008087404A JP 2008087404 A JP2008087404 A JP 2008087404A JP 2009243907 A JP2009243907 A JP 2009243907A
Authority
JP
Japan
Prior art keywords
steel sheet
cold
rolled steel
shape
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008087404A
Other languages
Japanese (ja)
Other versions
JP5211802B2 (en
Inventor
Junichi Tateno
純一 舘野
Hideko Yasuhara
英子 安原
Muneyasu Tokunaga
宗康 徳永
Hiroshi Masumoto
博司 益本
Naoya Yokoyama
直也 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2008087404A priority Critical patent/JP5211802B2/en
Publication of JP2009243907A publication Critical patent/JP2009243907A/en
Application granted granted Critical
Publication of JP5211802B2 publication Critical patent/JP5211802B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a shape measuring method capable of determining fine irregularities generated especially on a cold-rolled steel sheet having the thickness of 0.4 mm or less. <P>SOLUTION: When measuring the surface shape of the cold-rolled steel sheet having the thickness of 0.4 mm or less, a distance to the surface of the cold-rolled steel sheet is measured over a fixed length by using a range finder, and a component having a period of 1,000 to 2,000 times of the thickness of the cold-rolled steel sheet is extracted from measured values, and the fine irregularities on the surface of the steel sheet are detected based on the number of peaks and the height of the peaks in extraction results. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、冷延鋼板の形状測定方法に関するものであり、特に厚みが0.4mm以下の冷延鋼板の表面形状を距離計を用いて測定する形状測定方法に関する。   The present invention relates to a method for measuring the shape of a cold-rolled steel sheet, and more particularly to a shape-measuring method for measuring the surface shape of a cold-rolled steel sheet having a thickness of 0.4 mm or less using a distance meter.

鋼板、特に冷延鋼板において、平坦度などの表面形状は品質上極めて重要な要素である。ここで、一般に平坦度不良は、図1に示すように、鋼板(以下、鋼帯を含めて鋼板と総称する)1に、(a)耳伸びおよび(b)腹伸び等、局部的に波状で、しかも、その程度が一定以上の変形がある場合をいう。
この図1に示すような、耳伸びや腹伸びなどの平坦度不良は、たわみや熱膨張などの圧延ロールの弾性変形に起因して発生することが知られている。ここで、鋼板の形状を測定するための測定方法あるいは測定装置(平坦度検出器ともいう)については、非特許文献1に開示されているように、接触式や非接触式などが広く実用化されている。
In steel sheets, particularly cold-rolled steel sheets, the surface shape such as flatness is an extremely important factor in quality. Here, in general, the flatness failure is, as shown in FIG. 1, locally applied to a steel plate (hereinafter collectively referred to as a steel plate including a steel strip) 1 such as (a) ear extension and (b) belly extension. In addition, it means a case where the degree of deformation exceeds a certain level.
As shown in FIG. 1, it is known that flatness defects such as ear stretch and belly stretch are caused by elastic deformation of a rolling roll such as deflection and thermal expansion. Here, as disclosed in Non-Patent Document 1, contact methods and non-contact methods are widely put into practical use for measuring methods or measuring devices (also called flatness detectors) for measuring the shape of steel plates. Has been.

例えば、接触式の形状測定装置は、幅方向に分割された測定ロールにより鋼板の幅方向張力分布を測定する。そして、測定した張力分布を鋼板のヤング率で除して幅方向の伸び差分布を算出するものである。この測定方式では、耳伸びや腹伸びなどの形状が測定可能である。   For example, a contact-type shape measuring apparatus measures the tension distribution in the width direction of a steel sheet with a measuring roll divided in the width direction. Then, the measured tension distribution is divided by the Young's modulus of the steel sheet to calculate the elongation difference distribution in the width direction. With this measurement method, it is possible to measure shapes such as ear stretch and belly stretch.

また、非接触式の形状測定装置では、レーザなどの光学式センサーを用いて鋼板の特定方向での変位から形状を測定するが、鋼板のパスラインの変動や振動による影響が問題となるため、その影響を除くための方法も開示されている。   In addition, in a non-contact type shape measuring device, the shape is measured from the displacement in a specific direction of the steel sheet using an optical sensor such as a laser, but the influence of fluctuation and vibration of the steel sheet pass line becomes a problem, A method for removing the effect is also disclosed.

特許文献1には、金属製帯状物の移動方向と交差する幅方向の複数箇所で金属製帯状物表面との距離を測定し、この測定値からパスライン変動量を周波数解析により分離除去した後、平坦度を算出する平坦度測定方法が開示されている。   In Patent Document 1, after measuring the distance to the surface of the metal strip at a plurality of positions in the width direction intersecting the moving direction of the metal strip, the path line fluctuation amount is separated and removed by frequency analysis from this measured value. A flatness measuring method for calculating flatness is disclosed.

特許文献2には、レーザ距離計を用いた鋼板の平坦度測定装置において、前記レーザ距離計の出力から鋼板の振動の影響を除去するローパスフィルタを設け、該ローパスフィルタを通過したレーザ距離計の出力に基づき、鋼板の平坦度に関する歪の演算を行う、平地度測定装置が開示されている。   In Patent Document 2, in a flatness measuring apparatus for a steel plate using a laser distance meter, a low-pass filter for removing the influence of vibration of the steel plate from the output of the laser distance meter is provided, and the laser distance meter that has passed through the low-pass filter is provided. A flatness measuring device is disclosed that calculates a strain related to the flatness of a steel sheet based on the output.

ところで、厚みが0.4mm以下の極薄の冷延鋼板では、図2に示すような、微小凹凸2が鋼板1の全面に発生する形状不良が存在する。特に、厚みが0.4mm以下の冷延鋼板に大きな需要がある建材の分野では、この微小凹凸2による形状不良が品質管理上重要となってきている。ここで、微小凹凸とは、鋼板1において局所的な凹部または凸部が全面にわたって発生する形状不良である。
「板圧延の理論と実際」(日本鉄鋼協会、P.164−177) 特開平3−81605号公報 特開平4−143608号公報
By the way, in an extremely thin cold-rolled steel sheet having a thickness of 0.4 mm or less, there is a shape defect in which minute irregularities 2 are generated on the entire surface of the steel sheet 1 as shown in FIG. In particular, in the field of building materials where there is a great demand for cold-rolled steel sheets having a thickness of 0.4 mm or less, the shape defects due to the fine irregularities 2 have become important for quality control. Here, the micro unevenness is a shape defect in which local concave portions or convex portions are generated over the entire surface of the steel sheet 1.
"Theory and Practice of Sheet Rolling" (Japan Iron and Steel Institute, P.164-177) Japanese Unexamined Patent Publication No. 3-81605 JP-A-4-143608

上述のように、製品鋼板における平坦度品質の重要性は増す一方であり、平坦度品質を確保することが要求されている。特に、厚みが0.4mm以下の極薄の冷延鋼板では、耳伸びや腹伸びなどの平坦度不良を抑制するだけでは不十分であり、鋼板全面に発生する微小凹凸の形状不良についても把握し、その表面形状の良否を判定することが必要となってきている。   As described above, the importance of the flatness quality in the product steel plate is increasing, and it is required to ensure the flatness quality. In particular, with ultra-thin cold-rolled steel sheets with a thickness of 0.4 mm or less, it is not enough to suppress poor flatness such as ear extension and belly extension, and it is also possible to grasp the shape irregularities of minute irregularities that occur on the entire surface of the steel sheet. It has become necessary to determine the quality of the surface shape.

しかしながら、微小凹凸が鋼板の全面に発生する形状不良については、幅方向の張力分布には現れないため、従来の接触式の形状測定方法のように、鋼板の幅方向張力分布から形状を算出する方法では、測定が不可能である。   However, since the shape defect in which minute irregularities occur on the entire surface of the steel sheet does not appear in the tension distribution in the width direction, the shape is calculated from the tension distribution in the width direction of the steel sheet as in the conventional contact-type shape measurement method. Measurement is not possible with the method.

一方、非接触式の形状測定方法では、その測定結果に微小な凹凸の成分が含まれているが、この微小な凹凸を具体的に把握することは困難であった。   On the other hand, in the non-contact type shape measuring method, the measurement result includes a minute unevenness component, but it is difficult to specifically grasp the minute unevenness.

なお、上記した特許文献1および特許文献2に記載の技術は、非接触式の形状測定方法において、鋼板のパスラインの変動や振動による影響を除去するものであり、微小な凹凸の測定に適用することはできないものである。   In addition, the technique described in Patent Document 1 and Patent Document 2 described above is a non-contact type shape measuring method that removes the influence of fluctuations and vibrations of a steel plate pass line, and is applied to measurement of minute unevenness. It can't be done.

本発明は、冷延鋼板の形状測定方法に関するものであり、特に厚みが0.4mm以下の冷延鋼板に発生する、微小凹凸を判定することが可能な形状測定方法について提案することを目的とする。   The present invention relates to a method for measuring the shape of a cold-rolled steel sheet, and in particular, proposes a shape-measuring method capable of determining minute irregularities occurring in a cold-rolled steel sheet having a thickness of 0.4 mm or less. .

本発明の要旨は次のとおりである。
(1)厚みが0.4mm以下の冷延鋼板の表面形状を測定するに当り、距離計を用いて、該冷延鋼板の表面との距離を一定長さにわたって測定し、該測定値から、冷延鋼板の厚みに対して1000倍以上2000倍以下の周期を有する成分を抽出し、該抽出結果における山の個数および山高さに基づいて、鋼板表面の微小凹凸を検知することを特徴とする冷延鋼板の形状測定方法。
The gist of the present invention is as follows.
(1) In measuring the surface shape of a cold-rolled steel sheet having a thickness of 0.4 mm or less, the distance from the surface of the cold-rolled steel sheet is measured over a certain length using a distance meter, A component having a period of 1000 times or more and 2000 times or less with respect to the thickness of the rolled steel sheet is extracted, and minute unevenness on the steel sheet surface is detected based on the number of peaks and the peak height in the extraction result. Method for measuring the shape of a rolled steel sheet.

(2)前記山の個数および山高さに基づいて、冷延鋼板の用途に応じた表面形状の良否を判定することを特徴とする前記(1)に記載の冷延鋼板の形状測定方法。 (2) The method for measuring the shape of a cold-rolled steel sheet according to (1), wherein the quality of the surface shape according to the use of the cold-rolled steel sheet is determined based on the number of ridges and the height of the hills.

本発明によれば、特に厚みが0.4mm以下の冷延鋼板に見られる、鋼板全面に発生する微小凹凸を測定することが可能になる。従って、冷延鋼板について、微小凹凸に起因した形状不良の有無を判定することができる。   According to the present invention, it is possible to measure minute unevenness that occurs on the entire surface of a steel sheet, particularly seen in a cold-rolled steel sheet having a thickness of 0.4 mm or less. Therefore, it is possible to determine the presence or absence of a shape defect due to minute unevenness in the cold-rolled steel sheet.

以下、本発明の実施の形態について図面を参照して説明する。
さて、冷延鋼板の形状不良には、図1に示した耳伸びや腹伸びなどの平坦度不良と、図2に示した鋼板全面に発生する微小な凹凸の形状不良の2形態がある。
耳伸び腹や伸びなどの平坦度不良は、たわみや熱膨張などの圧延ロールの弾性変形に起因して発生する。耳伸びや腹伸びなどの鋼板の平坦度不良の程度を示す指標としては、急峻度と呼ばれるものを使う。急峻度λは、例えば図1に示した鋼板1を端面から見た場合に、図3に示すように、耳伸びや腹伸びによる板厚方向の波の周期をL、波の高さをdとした場合に、
λ=d÷L×100 (%)・・・(1)
と表される。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
Now, there are two forms of cold rolled steel sheet shape defects, such as flatness defects such as ear stretches and belly stretches shown in FIG. 1, and minute irregularities in the fine irregularities generated on the entire surface of the steel sheet shown in FIG.
Flatness defects such as ear stretch and stretch are caused by elastic deformation of the rolling roll such as deflection and thermal expansion. What is called steepness is used as an index indicating the degree of flatness of the steel sheet, such as ear stretch or belly stretch. For example, when the steel plate 1 shown in FIG. 1 is viewed from the end surface, the steepness λ is L as the wave period in the thickness direction due to the ear extension or the belly extension, as shown in FIG. 3, and the wave height as d. If
λ = d ÷ L × 100 (%) (1)
It is expressed.

このような、耳伸びや腹伸びなどの鋼板形状を測定するための測定方法あるいは測定装置(平坦度検出器ともいう)については、前述したように接触式や非接触式などが広く実用化されている。
接触式の形状測定装置では、幅方向に分割された測定ロールにより鋼板の幅方向張力分布を測定し、該張力分布を鋼板のヤング率で除して幅方向の伸び差分布を算出するものである。さらに、伸び差分布を正弦曲線などで近似して、耳伸びや腹伸びなどの形状を急峻度として算出している。
また、非接触式の形状測定では、鋼板の長手方向での変位を測定し、変位の山と谷からピッチあたりの山高さを算出し急峻度を求める方法や、幅方向での伸び差(長さの差)から急峻度を求める方法などがある。
As described above, the contact method and the non-contact method have been widely put into practical use for measuring methods or measuring devices (also referred to as flatness detectors) for measuring the shape of a steel plate such as ear stretch or belly stretch. ing.
In the contact-type shape measuring apparatus, the tension distribution in the width direction of the steel sheet is measured by a measuring roll divided in the width direction, and the tension distribution is divided by the Young's modulus of the steel sheet to calculate the elongation difference distribution in the width direction. is there. Furthermore, the elongation difference distribution is approximated by a sine curve or the like, and the shape such as the ear extension or the belly extension is calculated as the steepness.
In non-contact type shape measurement, the displacement in the longitudinal direction of the steel sheet is measured, the peak height per pitch is calculated from the peaks and valleys of the displacement, and the steepness is obtained. There is a method of calculating the steepness from the difference in thickness.

しかしながら、本発明で対象とする、厚みが0.4mm以下の冷延鋼板において鋼板全面に発生する微小な凹凸による形状不良を把握するのは、従来の形状測定方法あるいは形状測定装置では不可能である。   However, it is impossible for the conventional shape measuring method or shape measuring apparatus to grasp the shape defect due to minute unevenness generated on the entire surface of the cold rolled steel sheet having a thickness of 0.4 mm or less, which is the subject of the present invention. .

発明者らは、厚さ0.4mm以下の冷延鋼板で見られるような、鋼板全面に発生する微小な凹凸による形状不良について鋭意検討した結果、その特徴的な発生形態を見出すことに成功し、本発明を成すに至った。
まず、微小凹凸の発生メカニズムであるが、これは鋼板が圧延中に上下ロールで挟まれた部分、つまりロールバイト内での鋼板に作用する応力に起因していることを、実験および解析的な検討により見出した。
As a result of earnestly examining the shape defect due to minute irregularities generated on the entire surface of the steel sheet, as found in a cold-rolled steel sheet having a thickness of 0.4 mm or less, the inventors succeeded in finding the characteristic generation form. The present invention has been accomplished.
First of all, the mechanism of the occurrence of micro unevenness is experimental and analytical that the steel sheet is caused by the stress acting on the steel sheet in the roll bite, that is, the part sandwiched between the upper and lower rolls during rolling. We found by examination.

すなわち、ロールバイト内の鋼板には、上下ロールからの垂直方向の圧縮応力が作用して、鋼板は入側から出側にかけて徐々に厚みが減少しているが、このときロールバイト内において、上下から圧縮された材料は幅方向にも広がろうとし、幅方向に圧縮応力が発生する。この幅方向の圧縮応力は、ロールバイト出側にて開放されて、局所的な幅広がりが発生し、厚みの小さい極薄冷延鋼板の場合には、この局所的な幅広がりが座屈して、鋼板全面にわたる微小な凹凸形状となるのである。   In other words, the vertical compressive stress from the upper and lower rolls acts on the steel sheet in the roll bite, and the thickness of the steel sheet gradually decreases from the entry side to the exit side. The material that has been compressed from (1) tends to spread in the width direction, and compressive stress is generated in the width direction. This compressive stress in the width direction is released on the exit side of the roll bite, and a local width spread occurs. In the case of a very thin cold-rolled steel sheet with a small thickness, this local width spread is buckled. It becomes a minute uneven shape over the entire surface of the steel plate.

そこで、この微小な凹凸形状を有する冷延鋼板において、非接触式の距離計を鋼板長手方向に走査して鋼板表面の変位を測定し、その測定データから微小な凹凸形状の形態を調査した。ここに、厚み0.15mm、幅1000mmの冷延鋼板について、非接触レーザ式の距離計を鋼板の長手方向へ長さ1500mmにわたって走査させ、表面の変位を測定した結果について、図4に示す。この図4において、Lは鋼板の長手方向1500mm、Wは幅方向1000mmおよびHは厚み方向10mmのスケールを示している。   Therefore, in the cold-rolled steel sheet having the minute uneven shape, the displacement of the steel sheet surface was measured by scanning a non-contact type distance meter in the longitudinal direction of the steel sheet, and the form of the minute uneven shape was investigated from the measurement data. FIG. 4 shows the result of measuring the surface displacement of a cold rolled steel sheet having a thickness of 0.15 mm and a width of 1000 mm by scanning a non-contact laser distance meter in the longitudinal direction of the steel sheet over a length of 1500 mm. In FIG. 4, L indicates a scale of 1500 mm in the longitudinal direction of the steel sheet, W indicates a width direction of 1000 mm, and H indicates a thickness direction of 10 mm.

ついで、図4に示した変位の測定データについて、フーリエ変換によるスペクトル解析を行ったところ、微小な凹凸の一周期は190mmであることが判明した。
同様に、種々の厚みの冷延鋼板について、微小凹凸の周期を調査したところ、図5に示すような分布となることがわかった。すなわち、冷延鋼板の厚みと微小凹凸の周期には相関があり、微小凹凸の周期は鋼板厚みの1000倍以上2000倍以下の大きさであることが新たに判明した。また、微小凹凸による形状不良の度合いは、微小凹凸の周期は変わらずに、その山高さが大きくなることで高まることもわかった。
Next, when the spectrum analysis by Fourier transform was performed on the measurement data of the displacement shown in FIG. 4, it was found that one period of minute unevenness was 190 mm.
Similarly, when the period of minute irregularities was investigated for cold-rolled steel sheets having various thicknesses, it was found that the distribution shown in FIG. 5 was obtained. In other words, it has been newly found that the thickness of the cold-rolled steel sheet has a correlation with the period of minute irregularities, and the period of minute irregularities is not less than 1000 times and not more than 2000 times the thickness of the steel sheet. It was also found that the degree of shape defect due to minute irregularities increases as the peak height increases without changing the period of minute irregularities.

かように、冷延鋼板の表面形状の良否を判断するためには、冷延鋼板の厚みに応じて、変位測定データから微小凹凸の周期に相当する成分を抽出し、抽出した成分の変位データから微小凹凸の程度を判断すれば良い。すなわち、微小凹凸の程度は、微小凹凸における山の単位長さ当りの個数および山高さの平均値から適宜判断すれば良い。山高さについては、平均値を用いることにより、測定範囲の大きさに関係なく安定した評価が可能となる。   Thus, in order to judge whether the surface shape of the cold-rolled steel sheet is good or not, the component corresponding to the period of minute irregularities is extracted from the displacement measurement data according to the thickness of the cold-rolled steel sheet, and the displacement data of the extracted component From this, the degree of minute irregularities can be determined. That is, the degree of minute irregularities may be appropriately determined from the number of peaks per unit length in the minute irregularities and the average value of peak heights. As for the mountain height, by using the average value, it is possible to perform a stable evaluation regardless of the size of the measurement range.

以下に、本発明の方法について、厚み0.15mmおよび幅1000mmの冷延鋼板を例に、さらに詳細に説明する。
本発明では、まず、冷延鋼板の形状を、好ましくは非接触式の距離計を用いて測定する。このとき、幅方向での測定位置については、図4に示したように、幅方向に多数の位置で詳細に測定してもよいが、本発明が対象とする微小凹凸は、鋼板の全面に発生することが特徴であることから、任意の一位置での一定の長さにわたる測定で十分である。ここでは鋼板の幅方向中央において、長手方向1500mmにわたって変位を測定した。その測定結果を、図6に示す。
Hereinafter, the method of the present invention will be described in more detail by taking a cold-rolled steel sheet having a thickness of 0.15 mm and a width of 1000 mm as an example.
In the present invention, first, the shape of the cold-rolled steel sheet is preferably measured using a non-contact distance meter. At this time, as shown in FIG. 4, the measurement position in the width direction may be measured in detail at a large number of positions in the width direction. Because it is characteristic to occur, a measurement over a certain length at any one position is sufficient. Here, the displacement was measured over 1500 mm in the longitudinal direction at the center in the width direction of the steel sheet. The measurement results are shown in FIG.

次に、冷延鋼板の長手方向での一定長さ、ここでは1500mmの長さについての距離計の測定値から、微小凹凸に相当する成分として、冷延鋼板の厚みに対して1000倍以上2000倍以下の周期の成分を抽出する。すなわち、鋼板の厚みが0.15mmであるから、微小凹凸成分の周期は150mm以上300mm以下である。なお、図6に示した測定値データから特定の周期の成分を抽出するためには、フーリエ変換など一般的な信号処理手法を用いればよい。
かくして抽出された周期150mm以上300mm以下の凹凸成分について、山の個数と山高さから、鋼板の形状の良否を判定することとした。図6に示した測定データの例では、長さ1500mm当りの個数は9個、山高さの平均は0.8mm並びに最大は1.4mmであった。このような仕様の微小凹凸が鋼板表面に存在することになる。
Next, from a measured value of a distance meter for a certain length in the longitudinal direction of the cold-rolled steel sheet, here, a length of 1500 mm, as a component corresponding to minute irregularities, 1000 times or more to the thickness of the cold-rolled steel sheet 2000 Extract a component with a period less than double. That is, since the thickness of the steel sheet is 0.15 mm, the period of the minute unevenness component is 150 mm or more and 300 mm or less. In order to extract a component having a specific period from the measured value data shown in FIG. 6, a general signal processing method such as Fourier transform may be used.
With regard to the concavo-convex component having a cycle of 150 mm or more and 300 mm or less extracted in this way, the quality of the steel sheet was determined from the number of peaks and the height of the peaks. In the example of measurement data shown in FIG. 6, the number per 1500 mm length was 9, the average peak height was 0.8 mm, and the maximum was 1.4 mm. The micro unevenness | corrugation of such a specification will exist in the steel plate surface.

さて、製品鋼板として許容される形状不良の程度は、その鋼板の用途によって異なってくるのが一般的である。ここでは、建材用途の一つであるパネル材(鋼板を断熱材に接着貼付けしたもの)での表面形状の良否判定に用いる事例を説明する。すなわち、パネル材用途において、鋼板に微小凹凸による形状不良があると、断熱材との接着不良が発生する。この観点から、種々の冷延鋼板の表面形状について、断熱材との接着性を、面積1mあたりに接着不良がない場合:良好(○)、接着不良が1〜2個の場合:やや不良(△)、接着不良が3個以上の場合:不良(×)の判定を行った。 Now, it is common that the degree of shape defect allowed as a product steel plate varies depending on the use of the steel plate. Here, the example used for the quality determination of the surface shape in the panel material (what adhered the steel plate to the heat insulating material) which is one of the building materials uses is demonstrated. That is, in a panel material application, if the steel sheet has a shape defect due to minute unevenness, a bonding failure with the heat insulating material occurs. From this point of view, regarding the surface shape of various cold-rolled steel sheets, the adhesion with the heat insulating material is good (◯) when there is no adhesion failure per 1 m 2 area, and when there are 1 to 2 adhesion failures: somewhat poor (△), when there are 3 or more adhesion failures: The failure (x) was determined.

図7に、前述した方法で算出した微小凹凸の山個数(長さ1500mmあたり)および微小凹凸の平均山高さと、冷延鋼板の表面形状の判定結果との関係を示す。図7より、表面形状の良否は、微小凹凸の山個数および微小凹凸の平均山高さによって判定できることがわかる。この事例では、微小凹凸の山個数(長さ1500mmあたり)が2個未満かつ平均山高さが0.5mm未満のときに、前記接着性に関する評価は良好(○)になり、山個数(長さ1500mmあたり)が6個未満かつ平均山高さが1.0mm未満のときに、表面形状はやや不良(△)となり、山個数(長さ1500mmあたり)が6個以上または平均山高さが1.0mm以上のときに表面形状は不良(×)であった。
従って、前記接着性に関しては、以上の山の個数および山高さの基準値をもって、各冷延鋼板の測定結果から得られた、山の個数および山高さから判定すればよいことになる。
FIG. 7 shows the relationship between the number of minute irregularities (per length of 1500 mm) and the average height of minute irregularities calculated by the method described above, and the determination result of the surface shape of the cold-rolled steel sheet. From FIG. 7, it can be seen that the quality of the surface shape can be determined by the number of ridges and the average height of the ridges. In this example, when the number of ridges of minute irregularities (per 1500mm length) is less than 2 and the average ridge height is less than 0.5mm, the evaluation regarding adhesiveness is good (○), and the number of ridges (length 1500mm) When the average height is less than 1.0 mm, the surface shape is slightly poor (△), and the number of peaks (per 1500 mm in length) is 6 or more, or the average height is 1.0 mm or more. The surface shape was poor (x).
Therefore, the adhesiveness can be determined from the number of peaks and the height of the peaks obtained from the measurement results of each cold-rolled steel sheet with the above-mentioned reference values for the number of peaks and the height of the peaks.

なお、微小凹凸による形状不良が発生しやすいのは、厚みが0.4mm以下の冷延鋼板であるため、本発明で対象とする冷延鋼板は厚みを0.4mm以下とする。一方、厚みの下限は特に設ける必要はないが、冷延鋼板として商業的に生産ニーズがあるのは0.07mm以上である。   In addition, since it is a cold-rolled steel plate having a thickness of 0.4 mm or less that is likely to cause a shape defect due to minute unevenness, the thickness of the cold-rolled steel plate targeted in the present invention is 0.4 mm or less. On the other hand, it is not necessary to set the lower limit of the thickness, but it is 0.07 mm or more that has a commercial production need as a cold-rolled steel sheet.

また、該冷延鋼板の表面との距離を測定する「一定長さ」は、少なくとも微小凹凸の一山が測定できる長さは必要であり、本発明で対象とする鋼板の厚みが0.4mm以下であり、かつ微小凹凸成分の上限が鋼板厚の2000倍であるから、0.4×2000=800(mm)以上の長さが必要になる。一方、上限はとくに定める必要はないが、2000mm程度で十分である。   In addition, the “constant length” for measuring the distance from the surface of the cold-rolled steel sheet needs to be at least a length that can measure a minute unevenness, and the thickness of the steel sheet targeted in the present invention is 0.4 mm or less. In addition, since the upper limit of the minute unevenness component is 2000 times the steel plate thickness, a length of 0.4 × 2000 = 800 (mm) or more is required. On the other hand, the upper limit is not particularly required, but about 2000 mm is sufficient.

本発明の方法を、図8に示す冷間タンデム圧延機を用いた冷間圧延の製造に適用した。図8において、50は5スタンドからなる冷間タンデム圧延機であり、第1スタンドから第4スタンドまでは4段ミル、最終スタンドの第5スタンドは6段ミルである。第5スタンドの出側には、接触ロール式の形状測定器(幅方向の張力分布測定器)40が設置されている。最終スタンドで圧延された冷延鋼板は、コイル60として巻き取られる。   The method of the present invention was applied to the production of cold rolling using the cold tandem rolling mill shown in FIG. In FIG. 8, reference numeral 50 denotes a cold tandem rolling mill having 5 stands. The first stand to the fourth stand are a four-stage mill, and the fifth stand of the final stand is a six-stage mill. On the exit side of the fifth stand, a contact roll type shape measuring device (a tension distribution measuring device in the width direction) 40 is installed. The cold-rolled steel sheet rolled at the final stand is wound up as a coil 60.

かような冷間タンデム圧延機に、熱間圧延後に酸洗を施したSPCC鋼からなる母板を供給し、厚み2.0mmの母板に、0.07mmから0.4mmの範囲まで減厚する冷間圧延を行った。ここで、形状測定器(幅方向の張力分布測定器)40で測定された耳伸びや腹伸びなどの平坦度の程度に基づいて、第5スタンドのロールベンディング装置およびゾーンクーラント装置を適宜制御した。ロールベンディング装置による形状制御では、測定した形状にて腹伸び形状が大きいようであれば、ロール端部へ作用させる垂直荷重を大きくし、耳伸び形状が大きいようであれば、垂直荷重を小さくするように制御した。ゾーンクーラント装置による形状制御では、幅方向での伸びが大きくなった部分について、その位置に相当するロール部分にクーラントによる冷却を施した。   A cold tandem rolling mill is supplied with a base plate made of SPCC steel that has been pickled after hot rolling, and the thickness is reduced from 0.07 mm to 0.4 mm on a 2.0 mm thick base plate. Rolled. Here, the roll bending device and the zone coolant device of the fifth stand were appropriately controlled based on the degree of flatness such as ear stretch and belly stretch measured by the shape measuring device (tension distribution measuring device in the width direction) 40. . In the shape control by the roll bending device, the vertical load applied to the roll end is increased if the measured shape is large, and the vertical load is decreased if the ear stretch shape is large. Was controlled as follows. In the shape control by the zone coolant apparatus, the roll portion corresponding to the position of the portion where the elongation in the width direction was large was cooled by the coolant.

[発明例1]
次いで、冷間圧延後に巻き取られたコイル60を、図9に示すように定盤上に静置した。図9において、70は定盤および1は冷延鋼板である。冷延鋼板1における測定長さLは1500mmとした。次いで、非接触レーザ式距離計を用いて、幅Wの中心上の測定ライン3に沿って、長さ1500mmの変位を測定した。この距離計の測定値から、微小凹凸に相当する成分として、冷延鋼板の厚みに対して1000倍以上2000倍以下の周期の成分を抽出する。特定の周期の成分を抽出するために、フーリエ変換を用いた。次に、抽出された凹凸成分において、山の個数と山高さを算出したところ、山の個数:6個および山高さの平均値:0.5mmであり、実際の鋼板観察による微小凹凸の発生状況との差はなかった。
[Invention Example 1]
Next, the coil 60 wound up after the cold rolling was placed on a surface plate as shown in FIG. In FIG. 9, 70 is a surface plate and 1 is a cold-rolled steel sheet. The measurement length L in the cold rolled steel sheet 1 was 1500 mm. Next, a displacement of 1500 mm in length was measured along the measurement line 3 on the center of the width W using a non-contact laser distance meter. From the measured value of the distance meter, a component having a period of 1000 times or more and 2000 times or less with respect to the thickness of the cold-rolled steel sheet is extracted as a component corresponding to minute unevenness. A Fourier transform was used to extract a specific period component. Next, in the extracted unevenness component, the number of peaks and the height of the peaks were calculated. The number of peaks: 6 and the average value of peak heights: 0.5 mm. There was no difference.

[発明例2]
前記発明例1と同様の条件にて、非接触レーザ式距離計に替えて接触ロール式の形状測定器(幅方向の張力分布測定器)40で冷延鋼板1表面の形状測定を行った。発明例1の場合と同様に、抽出された凹凸成分において、山の個数と山高さを算出したところ、山の個数:6個および山高さの平均値:0.5mmであり、実際の鋼板観察による微小凹凸の発生状況との差はなかった。
[Invention Example 2]
Under the same conditions as in Invention Example 1, the shape of the surface of the cold-rolled steel sheet 1 was measured with a contact roll type shape measuring instrument (tensile distribution measuring instrument in the width direction) 40 instead of the non-contact laser type distance meter. As in the case of Invention Example 1, in the extracted uneven component, the number of peaks and the height of the peaks were calculated. The number of peaks: 6 and the average value of the heights of the peaks: 0.5 mm. There was no difference from the occurrence of minute irregularities.

[比較例1]
一般的な形状測定方法である接触ロール式の形状測定器(幅方向の張力分布測定器)40で冷延鋼板1表面の測定を行った。この張力分布測定のみの方法では、耳伸びや腹伸びなどの形状判定は可能であるが、微小凹凸の測定までは不可能であった。
[Comparative Example 1]
The surface of the cold-rolled steel sheet 1 was measured with a contact roll type shape measuring device (a tension distribution measuring device in the width direction) 40 which is a general shape measuring method. With this method of only tension distribution measurement, shape determination such as ear extension and belly extension is possible, but measurement of minute irregularities is impossible.

[比較例2]
前記発明例1と同様に定盤上に静置した鋼板を非接触レーザ式の距離計で測定し、その測定結果における最大山高さで鋼板表面形状を評価した。最大山高さのみの評価では、微小凹凸成分以外の山高さの影響を受けてしまうため、本発明が対象とするような微小凹凸に起因した形状不良に関する判定は不可能である。
[Comparative Example 2]
In the same manner as in Invention Example 1, the steel plate placed on the surface plate was measured with a non-contact laser type distance meter, and the steel plate surface shape was evaluated with the maximum peak height in the measurement result. In the evaluation of only the maximum peak height, since it is affected by the peak height other than the minute unevenness component, it is impossible to determine the shape defect caused by the minute unevenness as the object of the present invention.

鋼板製品の耳伸びおよび腹伸びの形状を示す図である。It is a figure which shows the shape of the ear elongation and belly elongation of a steel plate product. 極薄鋼板に特有の微小凹凸の形状を示す図である。It is a figure which shows the shape of the micro unevenness | corrugation peculiar to an ultra-thin steel plate. 急峻度の定義を示す図である。It is a figure which shows the definition of steepness. 冷延鋼板の形状を非接触式距離計にて測定した例を示す図である。It is a figure which shows the example which measured the shape of the cold rolled steel plate with the non-contact type distance meter. 鋼板の厚みと微小凹凸の周期との関係を示す図である。It is a figure which shows the relationship between the thickness of a steel plate, and the period of a micro unevenness | corrugation. 鋼板の幅方向の中央について長手方向1500mmの変位を測定した例を示す図である。It is a figure which shows the example which measured the displacement of 1500 mm in the longitudinal direction about the center of the width direction of a steel plate. 微小凹凸の個数および平均山高さと冷延鋼板表面の判定結果との関係を示す図である。It is a figure which shows the relationship between the number of minute unevenness | corrugations, average peak height, and the determination result of the surface of a cold-rolled steel plate. 本発明の実施例に用いた冷間タンデム圧延機を模式的に示す図である。It is a figure which shows typically the cold tandem rolling mill used for the Example of this invention. 定盤上に静置した冷延鋼板を示す図である。It is a figure which shows the cold-rolled steel plate left still on the surface plate.

符号の説明Explanation of symbols

1 鋼板
2 微小凹凸
3 測定ライン
1 Steel plate 2 Micro unevenness 3 Measurement line

Claims (2)

厚みが0.4mm以下の冷延鋼板の表面形状を測定するに当り、距離計を用いて、該冷延鋼板の表面との距離を一定長さにわたって測定し、該測定値から、冷延鋼板の厚みに対して1000倍以上2000倍以下の周期を有する成分を抽出し、該抽出結果における山の個数および山高さに基づいて、鋼板表面の微小凹凸を検知することを特徴とする冷延鋼板の形状測定方法。   In measuring the surface shape of a cold-rolled steel sheet having a thickness of 0.4 mm or less, a distance meter was used to measure the distance from the surface of the cold-rolled steel sheet over a certain length. A component having a period of 1000 times or more and 2000 times or less with respect to the thickness is extracted, and based on the number of ridges and the hill height in the extraction result, a micro unevenness on the surface of the steel sheet is detected. Shape measurement method. 前記山の個数および山高さに基づいて、冷延鋼板の用途に応じた表面形状の良否を判定することを特徴とする請求項1に記載の冷延鋼板の形状測定方法。   The method for measuring the shape of a cold-rolled steel sheet according to claim 1, wherein the quality of the surface shape according to the use of the cold-rolled steel sheet is determined based on the number of ridges and the height of the hills.
JP2008087404A 2008-03-28 2008-03-28 Method for measuring the shape of cold-rolled steel sheet Expired - Fee Related JP5211802B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008087404A JP5211802B2 (en) 2008-03-28 2008-03-28 Method for measuring the shape of cold-rolled steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008087404A JP5211802B2 (en) 2008-03-28 2008-03-28 Method for measuring the shape of cold-rolled steel sheet

Publications (2)

Publication Number Publication Date
JP2009243907A true JP2009243907A (en) 2009-10-22
JP5211802B2 JP5211802B2 (en) 2013-06-12

Family

ID=41305997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008087404A Expired - Fee Related JP5211802B2 (en) 2008-03-28 2008-03-28 Method for measuring the shape of cold-rolled steel sheet

Country Status (1)

Country Link
JP (1) JP5211802B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018099732A (en) * 2016-12-20 2018-06-28 Jfeスチール株式会社 Method for evaluating deformation performance of steel pipe, and method for manufacturing steel pipe
CN117268272A (en) * 2023-11-23 2023-12-22 深圳市博硕科技股份有限公司 Heat insulation sheet thickness detection system and detection method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59143907A (en) * 1983-02-07 1984-08-17 Sumitomo Metal Ind Ltd Method for measuring surface roughness of steel plate
JPH01165910A (en) * 1987-12-23 1989-06-29 Kawasaki Steel Corp Method for measuring flatness of strip like material
JPH0381605A (en) * 1989-08-24 1991-04-08 Sumitomo Metal Ind Ltd Flatness measuring method
JPH04204008A (en) * 1990-11-30 1992-07-24 Nkk Corp Method for measuring flatness of steel plate
JPH05256630A (en) * 1992-03-11 1993-10-05 Nippon Steel Corp Surface irregular stripe inspecting device for steel plate
JPH0942943A (en) * 1995-07-27 1997-02-14 Ricoh Co Ltd Surface inspection device
JP2004020468A (en) * 2002-06-19 2004-01-22 Jfe Steel Kk Surface form measuring method and program of its method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59143907A (en) * 1983-02-07 1984-08-17 Sumitomo Metal Ind Ltd Method for measuring surface roughness of steel plate
JPH01165910A (en) * 1987-12-23 1989-06-29 Kawasaki Steel Corp Method for measuring flatness of strip like material
JPH0381605A (en) * 1989-08-24 1991-04-08 Sumitomo Metal Ind Ltd Flatness measuring method
JPH04204008A (en) * 1990-11-30 1992-07-24 Nkk Corp Method for measuring flatness of steel plate
JPH05256630A (en) * 1992-03-11 1993-10-05 Nippon Steel Corp Surface irregular stripe inspecting device for steel plate
JPH0942943A (en) * 1995-07-27 1997-02-14 Ricoh Co Ltd Surface inspection device
JP2004020468A (en) * 2002-06-19 2004-01-22 Jfe Steel Kk Surface form measuring method and program of its method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018099732A (en) * 2016-12-20 2018-06-28 Jfeスチール株式会社 Method for evaluating deformation performance of steel pipe, and method for manufacturing steel pipe
WO2018116787A1 (en) * 2016-12-20 2018-06-28 Jfeスチール株式会社 Method for evaluating deformation performance of steel pipe and method for manufacturing steel pipe
RU2726168C1 (en) * 2016-12-20 2020-07-09 ДжФЕ СТИЛ КОРПОРЕЙШН Steel pipe deformability estimation method and steel pipe manufacturing method
CN117268272A (en) * 2023-11-23 2023-12-22 深圳市博硕科技股份有限公司 Heat insulation sheet thickness detection system and detection method
CN117268272B (en) * 2023-11-23 2024-02-06 深圳市博硕科技股份有限公司 Heat insulation sheet thickness detection system and detection method

Also Published As

Publication number Publication date
JP5211802B2 (en) 2013-06-12

Similar Documents

Publication Publication Date Title
JP6365526B2 (en) Bearing deterioration detection method and bearing deterioration detection device for small diameter roll
JP2016153138A (en) Vibration abnormality detection method and device for cold rolling or temper rolling
EP2623221B1 (en) Manufacturing device and manufacturing method for hot-rolled steel strip
JP4709628B2 (en) Cold rolled steel sheet manufacturing method
JP5211802B2 (en) Method for measuring the shape of cold-rolled steel sheet
JP4106040B2 (en) Abnormality diagnosis and abnormality avoidance method for steel sheet cooling control device
CN108655188B (en) Plate shape measurement error compensation method
JP7226402B2 (en) Metal strip rolling control method, rolling control device, and manufacturing method
JP5811051B2 (en) Method for cold rolling metal plate and method for producing metal plate
JP7121948B2 (en) Apparatus for Acquiring Information on Elongation Occurrence of Strip Electrode Plate, Method for Acquiring Information on Occurrence of Wrinkles on Electrode Band, Display Device for Information on Occurrence of Wrinkles on Electrode Strip, and Control Device for Roll Press Device
JP2008107241A (en) Method and apparatus for measuring plate shape of metal strip
JP4873902B2 (en) Operation support apparatus, operation support method, computer program, and computer-readable recording medium in continuous processing equipment for metal strip
JP2019141874A (en) Cold rolling method of metal strip
JP5353029B2 (en) Cold rolled steel sheet manufacturing method
JP2002292427A (en) Setting method for setting depression position of correction roll for roller leveler
JP2013180335A (en) Method of straightening steel sheet with roller leveler and roller leveler straightener
JP6572981B2 (en) Chatter mark prevention method and chatter mark prevention apparatus
JP6079344B2 (en) Apparatus and method for manufacturing a differential thickness steel sheet having a thickness difference in the sheet width direction
JP3690282B2 (en) Camber and wedge prevention method in hot rolling
JP7067541B2 (en) Rolling mill control method and control device
JPH0727535A (en) Shape measuring method for rolled strip and device thereof
JP2007330996A (en) Method and apparatus for correcting shape of metal strip
JP7280506B2 (en) Cold tandem rolling equipment and cold tandem rolling method
JP5928721B2 (en) Prediction method and prediction device for shape defects due to runout cooling strain
JP5618210B2 (en) Outlet shape control method in cold rolling mill

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120717

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120724

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121030

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20121130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130211

R150 Certificate of patent or registration of utility model

Ref document number: 5211802

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160308

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees